12 United States Patent

Elazary et al.

US008510807B1

US 8,510,807 B1
Aug. 13, 2013

(10) Patent No.:
45) Date of Patent:

(54) REAL-TIME GRANULAR STATISTICAL
REPORTING FOR DISTRIBUTED
PLATFORMS

(75) Inventors: Lior Elazary, Agoura Hills, CA (US);
Robert J. Peters, Santa Monica, CA
(US); Seungyeob Choi, Northridge, CA
(US)

(73) Assignee: Edgecast Networks, Inc., Santa Monica,
CA (US)

( *) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 84 days.

(21) Appl. No.: 13/217,924
(22) Filed: Aug. 25,2011

Related U.S. Application Data
(60) Provisional application No. 61/524,294, filed on Aug.

16, 2011.
(51) Imt. Cl.
GO6F 7/04 (2006.01)
GO6F 15/16 (2006.01)
GO6F 17/30 (2006.01)
GO6l 21/62 (2013.01)
HO4L 29/06 (2006.01)
(52) U.S. CL
CPC ......... GO6F 21/6218 (2013.01); HO4L 63/104
(2013.01)
USPC ... 726/4;709/217,709/219; 709/224
(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

0,725,263 Bl 4/2004 Torres
6,857,012 B2* 2/2005 Simetal. ................. 709/222
6,895,431 B1* 5/2005 Bero .......ccccovvviniiininnnnn, 709/220

6,975,963 B2* 12/2005 Hamiltonetal. ............. 702/182
7,117,262 B2  10/2006 Bai et al.

7,231,442 B2 6/2007 Chen

7,376,730 B2* 5/2008 Pandya ..................... 709/224

(Continued)

FOREIGN PATENT DOCUMENTS
KR 20030004473 ¥ 1/2003

OTHER PUBLICATIONS

Falk, A Comprehensive and Flexible Security Concept for CDNs 1n
Heterogeneous Environments, 14th IST Mobile & Wireless Commu-
nications Summit, Dresden, Germany, Jun. 19-23, 2005, 5 pages.™

(Continued)

Primary Examiner — Andrew L Nalven
Assistant Examiner — Walter Malinowski

(74) Attorney, Agent, or Firm — Los Angeles Patent Group;
Arman Katiraei

(57) ABSTRACT

Some embodiments provide a reporting system for improved
granular real-time performance statistics reporting 1n a dis-
tributed platform. The reporting system includes a statistic
server and a portal. The statistics server 1s communicably
coupled to servers of the distributed platform that produce
statistical data related to the distribution of content and execu-
tion of services for different customers. The statistics server
aggregates the statistical data from the plurality of servers 1n
an optimized staggered manner during a recurring interval.
This reduces the amount of statistical data that 1s passed at any
particular instance 1n time from the servers the statistics serv-
ers. The statistics server incrementally updates a real-time
performance report for a particular customer as the statistical
data 1s aggregated for the particular customer so that the
computational and memory overhead for dertving the perfor-
mance report 1n real-time 1s reduce. The portal then presents
the performance report to the particular customer.

21 Claims, 15 Drawing Sheets




US 8,510,807 B1

Page 2
(56) References Cited 2007/0220515 Al1*  9/2007 Dewittetal. ..ooovvnnn.n, 718/100
2007/0233884 Al1* 10/2007 Farberetal. ................. 700/229
2008/0010375 A1* 1/2008 Colemanetal. .............. 700/225
U.s. PALENT DOC[_IMENTS 2008/0263180 A1* 10/2008 Hurstetal. ....ooovvevninninn, 709/219
7,657,622 Bl 2/2010 Douglis et al. 2009/0204646 Al*  8/2009 Park .....ococoovvvieiiiiiiiiin, 707/203
7,765,304 B2* 7/2010 Davisetal. ................... 709/227 2009/0254993 Al* 10/2009 LeONe ..ooovvvvvveveveeeeveennn, 726/25
8,117,276 B1* 2/2012 Sakataetal. .................. 709/214 2010/0296409 A1* 11/2010 Foketal ... ... . . 370/252
8,180,896 B2 5/2012 Sakataetal. ................. 709/226 2010/0315979 Al* 12/2010 Surinenietal. ....oooevvnn... 370/310
8,332,529 B1* 12/2012 Shetty .......ccoviiviiiinn, 709/231 2012/0084399 Al1* 4/2012 Scharberetal. .............. 709/219
8,412,764 B1* 4/2013 Liskovetal. ................ 709/201 2012/0265725 Al* 10/2012 WeErner ........coooovvvvvvvinn.. 707/600
2002/0156552 Al1* 10/2002 Whiting ............cooeeen, 700/300
2002/0177910 Al 11/2002 Quarterman et al. OTHER PUBLICATIONS
2003/0149581 Al 8/2003 Chaudhri et al. _ _
2003/0236905 Al* 12/2003 Choietal . ... 709/231 Pathan, Content Delivery Networks: State of the Art, Insights, and
2003/0237016 Al1* 12/2003 Johnsonetal. ...ooovvvviniin, 714/4 Imperatives, Springer-Verlag Berlin Heidelberg, 2008, pp. 3-32.*
2004/0143683 Al1* 7/2004 Greenwood ......oovvvvne... 700/250
2006/0072556 Al1l*  4/2006 Garrett .....ooovvivivviiinininnn, 370/352 * cited by examiner



U.S. Patent Aug. 13,2013 Sheet 1 of 15 US 8,510,807 B1

F Origin W o
Server Al

(CDN

i +.:’_E:ﬁ
(Customer) '

R -
4 Traffic
Mngr

4 t
\

T
.....

“Traffic
Mngr
120

Stats/ POP3
Config

Administrative
Server

Edg C i
Server

e
Server

{CDN
Customer)

" Traffic
Mngr

............
o e
Ty A

- oy

ratfic
Mngr

= Figure 1 20
Prior Art



U.S. Patent Aug. 13,2013 Sheet 2 of 15 US 8,510,807 B1

Origin

Server

(CDN
(ustomer)

Statistics

Server
210

POP2

Origin
Server
(CDN
Customer)

Figure 2




U.S. Patent Aug. 13,2013 Sheet 3 of 15 US 8,510,807 B1

6s
78
38
4s Og

.‘ I T
donds) J_____|_ _! 1 ;
U R Intetval __1_____ ____E

360

Statistics Server
210

Figure 3



U.S. Patent Aug. 13,2013 Sheet 4 of 15 US 8,510,807 B1

410 420
6s

l 25 l IE
l 3s ' 3S

58 10s

1_ l
: 1* Interval ; N
S I (5seCoNdShcccenaaes . 2 :
360
Total Hits per Interval - Customer 1D 123456
2xx per Interval - Total Hits per Interval
I 4xx per Interval ] . ]ﬂ .
— — — — — 440 XX per Infervd

T 123456/stream .11V
| Bandwidth

123456/stream1 .flv
I Connections

123456/stream X . fly
Bandwidth

"
=
o
w

123456/stream X . flv 7 25 MB/s

Bandwidth

123456/stream X . tlv
Connections

) I

'\XX

- |
<
H-m
=

123456/streamX.fl1v
Connections

I

Figure 4



U.S. Patent Aug. 13,2013 Sheet 5 of 15 US 8,510,807 B1

S table for
Total Hits per 29 12 15 4 11 72
interval

xx per Interval

S table for
XX per Interva -
| Total Hits per 43 24 41 55 35 198
Interval
5xx per interval .
e I I I I I

HTTF Bandwidth l
HTTE Connections l - r r 1 1
4xx per

PS table for —
FMS Bandwidth l- Customer 4321 ' =59 I “
{ Oxxper Total Hits
per
HTTP Bs:
s | e e | = [ [ 5 | o | 7
HTTP Co
FMS Ba
Bandwidth 3
FMS Co
1234/stream .fiv l 5xx per Interval ---
Conneclions WMS B:
1234/streamX flv HT TP Bandwidth 2MB/s m- oMB/s § 8MB/s
Bandwidth WMS Co
1234/streamX tlv HT TP Connections m--
Connections 1235/str
Bandl - FMS Bandwidth - s -- 7MB/s
e 1235750
& o P I N I
1235/str
WMS Bandwidth Z2MB/s m 3MB/s 1 3MB/s § 8MB/s
1235/str
P e NN (N I I
520 . .
aszljstreambilv p o pipe 1 MB/s | 2 MB/s | 4 MB/s
Bandwidth
Connections | |
4321 /stream1 flv
Ser N ) I I
@
Fl ure 5 4321/stream1 flv
g Connections
540




U.S. Patent Aug. 13,2013 Sheet 6 of 15 US 8,510,807 B1

610

" PS table for
Customer 1234 EST ES2 ES3 ES4

Total Hits per
Interval

N
N

Y
N
e

-
MO
wemmalt,
) o)
O
-

Z2XX per interval 21

oL

= |

 S—

3xx per Interval

1234/stream1 flv
Bandwidth

1234/stream1 flv
Connections

3 MB/s | 3 mBss || merd] 2 mBrs | 9 Mars

I
A‘B
_-

B
"

620 670
ES3 [+2=3
Customer ID 1234
Total Hits -
18
oer Interval
0 2xX per Interval

N1 T3xx per Interval

640 1+2+2=3

]
" PS table for
Total Hits per 5 15 4
Interval
T I R O R
| _ 660
1234/stream1.flv ' — 630
MLV 2 mBss | 3 MBS 2 mB/s |Is mBysl]
Bandwidth — —
. 4 1
Connections

mﬁ

Figure 6

N
L.

630




U.S. Patent Aug. 13,2013 Sheet 7 of 15 US 8,510,807 B1

700

A

710
Present login interface for user to enter login
information
720
Obtain login information
730
Authenticate user with obtained login
information
740
Query the statistics server using the
authentication information for the user
750
Obtain performance reports for the identified
user
760

Maintain session with the user’s client and the
statistics server to forward updated derived
values to the user client

End

Figure 7



U.S. Patent Aug. 13,2013 Sheet 8 of 15 US 8,510,807 B1

.' 830 /—
Statistics Server
320

Statistics Server
310

| oad Balancer
3860

Fortal
840

870

Figure 3



U.S. Patent Aug. 13,2013 Sheet 9 of 15 US 8,510,807 B1

7

930

Statistics Server Statistics Server
910 920
@

Load Balancer
960

Portal
940

950

Figure 9



U.S. Patent Aug. 13,2013 Sheet 10 of 15 US 8,510,807 B1

Load alancer
1010

Statistics Server Statistics Server
1020 1030

Load Balancer
1040

Portal
1060

Figure 10



U.S. Patent Aug. 13,2013 Sheet 11 of 15 US 8,510,807 B1

1110 1120

Figure 11



U.S. Patent Aug. 13,2013 Sheet 12 of 15 US 8,510,807 B1

1210 Y | | 1230

CDN1 Statistics CDN2 Statistics
Forwarding Server Forwarding Server
1220 1240

Reportig System

Statistics Server _ l
1250 <
|
|

Figure 12



U.S. Patent Aug. 13,2013 Sheet 13 of 15 US 8,510,807 B1

— —
| \ A
I | 1310 1330 l
I l

|

Statistics Server
1320

Figure 13



U.S. Patent Aug. 13,2013 Sheet 14 of 15 US 8,510,807 B1

CDN Statistics
Server

Reporting System
Statistics Server

Server
1420

Figure 14



I dInsiy

0eSl

US 8,510,807 B1

$9¢1 _ Ol

MIOMION S001AR(T 1ndug J0SSAD0I1]

Sheet 15 of 15

$O051

Aug. 13, 2013

SIDIAJ(T dinQ AJOUIDIA WOISAS

G161

Ge6l

U.S. Patent

0c¢s

NOH

I3RIOIS

$C6

0051



US 8,510,807 Bl

1

REAL-TIME GRANULAR STATISTICAL
REPORTING FOR DISTRIBUTED
PLATFORMS

CLAIM OF BENEFIT TO RELAT.
APPLICATIONS

s
w

This application claims the benefit of U.S. provisional
application 61/524,294, entitled “Open Content Delivery
Network Platform with Capacity Exchange”, filed Aug. 16,
2011. The contents of Provisional Application 61/524,294 are
hereby incorporated by reference.

TECHNICAL FIELD

The present invention relates to the reporting of statistics in
distributed platforms including content delivery networks.

BACKGROUND ART

Content delivery networks (CDNs) have greatly improved
the way content 1s transierred across data networks such as
the Internet. A CDN accelerates the delivery of content by
reducing the distance that content travels 1n order to reach a
destination. To do so, the CDN strategically locates surrogate
origin servers, also referred to as caching servers or edge
servers, at various points-of-presence (POPs) that are geo-
graphically proximate to large numbers of content consumers
and the CDN utilizes a traffic management system to route
requests for content hosted by the CDN to the edge server that
can optimally deliver the requested content to the content
consumer. Determination of the optimal edge server may be
based on geographic proximity to the content consumer as
well as other factors such as load, capacity, and responsive-
ness of the edge servers. The optimal edge server delivers the
requested content to the content consumer in a manner that 1s
more eflicient than when origin servers of the content pub-
lisher deliver the requested content. For example, a CDN may
locate edge servers 1n Los Angeles, Dallas, and New York.
These edge servers may cache content that 1s published by a
particular content publisher with an origin server 1n Miamiu.
When a content consumer 1n San Francisco submits a request
tor the published content, the CDN will deliver the content
from the Los Angeles edge server on behalf of the content
publisher as opposed to the much greater distance that would
be required when delivering the content from the origin server
in Miami. In this manner, the CDN reduces the latency, jitter,
and amount of buffering that 1s experienced by the content
consumer. The CDN also allows the content publisher to
offload infrastructure, configuration, and maintenance costs
while still having the ability to rapidly scale resources as
needed. Content publishers can therefore devote more time to
the creation of content and less time to the creation of an
infrastructure that delivers the created content to the content
consumers.

As a result of these and other benefits, many different
CDNs are 1n operation today. Edgecast, Akamai, Limelight,
and CDNetworks are some examples of operating CDN s that
are responsible for the delivery of terabytes worth of content.
FIG. 1 1illustrates a representative infrastructure for some
CDNs. As shown in FIG. 1, the infrastructure includes a
distributed set of edge servers 110, traific management serv-
ers 120, and an administrative server 130. The figure also
illustrates the interactions that CDN customers including
content publishers have with the CDN and interactions that
content consumers or end users have with the CDN.

10

15

20

25

30

35

40

45

50

55

60

65

2

Each edge server of the set of edge servers 110 may repre-
sent a single physical machine or a cluster of machines. The
cluster of machines may include a server farm for a geo-
graphically proximate set of physically separate machines or
a set of virtual machines that execute over partitioned sets of
resources of one or more physically separate machines. The
set of edge servers 110 are distributed across different edge
regions of the Internet to facilitate the “last mile” delivery of
content. The edge servers run various processes that (1) man-
age what content is cached, (2) how content is cached, (3) how
content 1s retrieved from the origin server when the content 1s
not present i cache, (4) monitor server capacity (e.g., avail-
able processor cycles, available memory, available storage,
etc.), (5) monitor network performance (e.g., latency, downed
links, etc.), and (6) report statistical data on the delivered
content. The set of edge servers 110 may provide the moni-
toring iformation to the traific management servers 120 to
facilitate the routing of content consumers to the optimal edge
servers. The set of edge servers 110 may provide the statisti-
cal data to the administrative server 130 where the data 1s
aggregated and processed to produce performance reports for
the delivery of the customers’ content.

The traffic management servers 120 route content consum-
ers, and more specifically, content consumer 1ssued requests
for content to the one or more edge servers. Different CDN
implementations utilize different traffic management
schemes to achieve such routing to the optimal edge servers.
Consequently, the traffic management servers 120 can
include different combinations of Doman Name System
(DNS) servers, load balancers, and routers performing Any-
cast or Border Gateway Protocol (BGP) routing. For
example, some CDNs utilize the traffic management servers
120 to provide a two-tiered DNS routing scheme, wherein the
first DNS tier resolves a DNS request to the CDN region (or
POP) that 1s closest to the requesting content consumer and
the second DNS tier resolves the DNS request to the optimal
edge server 1n the closest CDN region. As another example,
some CDNs use Anycast routing to 1identily the optimal edge
Server.

The administrative server 130 may include a central server
of the CDN or a distributed set of interoperating servers that
perform the configuration control and reporting functionality
of the CDN. Content publishers register with the administra-
tive server 130 1n order to access services and functionality of
the CDN. Accordingly, content publishers are also referred to
as customers of the CDN. Once registered, customers can
interface with the administrative server 130 to specily a con-
figuration and view performance reports.

Specilying a configuration mnvolves 1dentifying the content
that 1s to be delivered by the CDN, the amount of CDN
resources to provision, the type of CDN resources to provi-
s10n, the geographic regions where the CDN resources are to
be provisioned, and the caching policies for the provisioned
resources as some examples.

The performance reports are an essential feature of any
CDN as they provide customers (1.e., content publishers) with
insight as to how their configurations are performing across
the CDN. The usefulness of these reports depends on their
granularity and their freshness.

Granulanty relates to the specificity of the performance
reports. Less granular reports are useful in providing an over-
all view of the customer’s configuration across the CDN.
More granular reports are useful in providing a detailed view
as to particular performance aspects of the customer’s con-
figuration.

Freshness relates to the temporal validity of the statistical
data that 1s reported. In other words, freshness relates to the




US 8,510,807 Bl

3

delay with which the statistical data 1s retrieved and processed
before being reported to the customers. The closer to real-
time the statistical data 1s reported, the sooner a customer or
administrator can take action to address 1ssues such as unex-
pected configuration errors, demand surges, network failures,
or equipment failures.

However, existing reporting systems and methods are
resource mtensive and suller from scalability 1ssues. Specifi-
cally, many current systems and methods utilize a statistics
server as a central hub for the aggregation and processing of
statistical data from the edge servers 110 and for the distri-
bution of the resulting performance reports to the customers.
This 1s because the statistical data for a particular customer’s
configuration can be distributed across many edge servers and
that statistical data must first be centralized before 1t can be
processed to produce the performance reports. Therefore, the
statistics server requires suificient computational and
memory/storage resources to (1) aggregate and store the sta-
tistical data from each of the edge servers in real-time, (2)
process the aggregated statistical data to produce the perfor-
mance reports for each customer of the CDN, and (3) dis-
seminate the performance reports to the customers 1n an on-
demand basis.

As the aggregated data becomes more granular or the real-
time refresh rate increases, the amount of statistical data
being passed from the edge servers 110 to the statistics server
increases. This results in increased resource consumption at
both the edge servers 110 and the statistics server. However,
there 1s a greater 1mpact on the statistics server than on the
edge servers 110. For example, an increase 1in granularity that
results 1 twice the amount of statistical data being reported
from an edge server 1s magnified at the statistics server
according to the number of edge servers that provide statisti-
cal data to the statistics server. Specifically, 1t each of four
edge servers provides 1 MB of statistical data to the statistics
server at periodic intervals, then the statistics server recerves
4 MB of statistical data at each interval. I1 the granularity for
the provided statistical data changes such that each edge
server ol the four edge servers reports 2 MB of data at each
interval, then the statistics server recetves 8 MB of data at
cach interval.

Moreover, the front-end demand for the presentation of the
performance reports also consumes resources of the statistics
server. As more customers request to view the performance
reports, there 1s greater demand placed on the resources of the
statistics server. When historic statistics are also reported, the
statistics server 1s required to additionally store past statistical
data 1n addition to the real-time statistical data. Consequently,
the resources of the statistics server can be quickly over
utilized.

While deploying a set of statistics servers can oitfload some
of the load that would otherwise be placed on a single statis-
tics server, such deployment does not ameliorate the large
quantities of statistical data that 1s passed within the CDN. In
fact, such deployment may exacerbate the situation when the
statistical data has to be replicated to each statistics server in
the set of statistics servers. Furthermore, the deployment does
not ameliorate the overall amount of processing performed by
the set of statistics servers and the deployment adds inira-
structure costs for each newly deployed statistics server.

Accordingly, there 1s a need for improved systems and
methods with which to perform granular real-time reporting,
within a distributed platiorm such as a CDN. Specifically,
there 1s a need to reduce the amount of statistical data that 1s
passed between the edge servers and the one or more statistics
servers at a particular instance 1n time without degrading the
ability (1) to report in real-time and (2) to report granular

10

15

20

25

30

35

40

45

50

55

60

65

4

statistical data. There 1s also a need to reduce the memory,
storage, and computational load on the one or more statistics

servers such that the statistics servers can support reporting
for larger numbers of customers, more granular statistical
data, increased real-time refresh rates, and more edge servers
without the need for additional resources. There 1s further a
need to reduce the load on the one more statistics servers so
that the servers can provide performance reports to a larger
number of customers.

SUMMARY OF THE INVENTION

It1s an object of the present invention to define systems and
methods for improved and efficient reporting of granular
real-time performance statistics 1n a distributed platiform such
as a content delivery network (CDN). It 1s further an object to
provide such granular real-time reporting while reducing the
amount of statistical data that 1s passed at any particular
instance in time from a set of edge servers to one or more
statistics servers. It1s further an object to reduce the resources
that are needed to produce performance reports from the
aggregated statistical data such that the statistics servers can
support (1) aggregating and reporting for larger numbers of
customers, (2) more granular statistical data, (3) increased
real-time refreshrates, and (4) more edge servers that produce
statistical data.

To achieve these and other objects, some embodiments
provide systems and methods for improved granular real-time
performance statistics reporting, hereinafter collectively
referred to as the reporting system. In some embodiments, the
reporting system comprises a statistics server, portal, and
database. The reporting system 1s integrated at various levels
in a distributed platform. The distributed platform can include
a CDN, multiple interoperating CDNSs 1n an Open CDN plat-
form, or other cloud service providers. The reporting system
ol some embodiments can seamlessly integrate with the vari-
ous distributed platforms and provide real-time granular sta-
tistical reporting, wherein the real-time granular statistical
reporting details the performance realized for each customer
across the distributed platform irrespective of whether the
customer’s configuration(s) 1s deployed to one or more edge
servers that are operated by one or more CDNEs.

In some embodiments, the statistics server aggregates sta-
tistical data from a set of edge servers of the distributed
platform. This includes aggregating statistical data from edge
servers ol different CDNs, wherein an edge server of two
different CDNs can produce statistical data for the same
customer configuration that 1s deployed to both such edge
servers. Additionally, this includes aggregating statistical
data for multiple customer configurations that are deployed to
the same edge server. In some embodiments, the statistics
server reduces the amount of statistical data that 1s aggregated
at any given instance in time by aggregating the data from the
set of edge servers 1n an optimized staggered manner. Spe-
cifically, the statistics server aggregates statistical data from a
different subset of the set of edge servers at different time
windows within a recurring time interval. As a result, the
statistical data 1s still aggregated in real-time, but 1n a manner
in which the resources of the statistics server are proportion-
ally utilized over the time interval. To further leverage the
existing resources of the statistics server, some embodiments
provide a dynamic data structure with which the statistical
data 1s reported to the statistics server. Specifically, the data
structure reported by a particular edge server 1s dynamically
populated with different sets of statistical data based on dii-
terent relevant performance statistics that the particular edge
server produces during each recurring reporting interval.




US 8,510,807 Bl

S

The statistics server processes the statistical data in the
agoregated data structures as they are recerved in the stag-
gered manner. In some embodiments, processing includes
updating performance statistics tables with statistical data
that 1s parsed from the aggregated data structures. In some
embodiments, the performance statistics tables store real-
time values for different performance statistics reported by
the edge servers. As the statistical data from different edge
servers arrive in the staggered manner, the statistics server
incrementally and 1n real-time updates the stored values 1n the
performance statistics table and with each update, the statis-
tics server updates derived values for the performance
reports. In this manner, dertved values for the performance
reports are never stale and computational and memory over-
head for the statistics server 1s reduced.

In some embodiments, the portal 1s communicably coupled
to one or more statistics servers and the portal provides the
interface through which users (e.g., system administrators
and customers of the distributed platiorm) are able to view
performance reports for their deployved configurations. In
some embodiments, the portal offloads the storage and pro-
cessing overhead for producing historical performance
reporting to the user client. To do so, the portal maintains a
session between the statistics server and the user client. As the
derived values for the statistics are updated in real-time at the
statistics server, the portals forwards the updated derived
values to the user client. The user client constructs a historical
trend of statistical data by storing each real-time update as a
separate value in local memory. Consequently, the storing and
presentation of historical statistical trend data 1s offloaded
from the statistics server to the user client, thereby reducing
the resource overhead at the statistics server. In some embodi-
ments, the portal 1s communicably coupled to the database of
the reporting system. The portal utilizes the database to
authenticate users and identity which performance reports the
users are authornized to view.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to achieve a better understanding of the nature of
the present invention, a preferred embodiment for the report-
ing system will now be described, by way of example only,
with reference to the accompanying drawings in which:

FIG. 1 1llustrates a representative inirastructure for some
CDNes.

FIG. 2 presents the various components of the reporting
system 1n accordance with some embodiments.

FIG. 3 presents a timing diagram to conceptually illustrate
the optimized statistical data aggregation that 1s performed by
the statistics server 1n accordance with some embodiments.

FI1G. 4 conceptually illustrates two dynamic data structures
that the statistics server aggregates from a particular edge
server at two different instances 1n time.

FIG. 5 conceptually illustrates a set of performance statis-
tics tables 1n accordance with some embodiments.

FIG. 6 conceptually illustrates the cleansing routine in
accordance with some embodiments.

FI1G. 7 presents an authentication process performed by the
portal 1n accordance with some embodiments.

FIGS. 8-10 1llustrate frameworks for scaling the statistics
servers ol the reporting system in accordance with some
embodiments.

FIGS. 11-14 illustrate frameworks for integrating the
reporting system of some embodiments ito an Open CDN
platform.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 15 illustrates a computer system or server with which
some embodiments are implemented.

DETAILED DESCRIPTION

In the following detailed description, numerous details,
examples, and embodiments of the reporting system 1s set
forth and described. As one skilled 1n the art would under-
stand 1n light of the present description, the reporting system
1s not limited to the embodiments set forth, and the reporting
system may be practiced without some of the specific details
and examples discussed. Also, reference 1s made to the
accompanying figures, which illustrate specific embodiments
in which the reporting system can be practiced. It 1s to be
understood that other embodiments can be used and structural
changes can be made without departing from the scope of the
embodiments herein described.

I. Real-Time Granular Reporting System

Distributed platforms provide cost effective means for con-
tent publishers to efficiently distribute their content to large

numbers of content consumers over the Internet and other
data networks. As the global footprint of these distributed
platiorms grows with larger edge server deployments across
distinct geographic regions, there 1s a need for improved
systems and methods with which to report the performance
statistics from these distributed platforms. Specifically, there
1s a need for systems and methods that can generate pertor-
mance statistics in different real-time refresh rates and on
different granular bases for large numbers of customers
whose configurations are deployed across large numbers of
edge servers. Resources of existing reporting systems and
methods can quickly be overwhelmed by the vast amount of
statistical data that 1s generated as a result of having to support
any one or more of: (1) increased real-time refresh rates, (2)
increased granularity in reporting, (3) increased number of
supported customers, and (4) increased number of edge serv-
ers 1n the distributed platform that produce the statistical data.

For these reasons, some embodiments provide a reporting,
system for improved and efficient reporting of granular real-
time performance statistics 1n a distributed platiorm such as a
content delivery network (CDN). Other distributed platiorms
with which the reporting system can operate include an Open
CDN platform and platforms of various cloud service provid-
ers such as Amazon CloudFront, Amazon FC2, AT&T, and
Servepath. The Open CDN platform 1s discussed below 1n
Section II. A more detailed discussion of the Open CDN
platformis provided in United States provisional patent appli-
cation entitled “Open Content Delivery Network Platform
with Capacity Exchange”, filed on Aug. 16, 2011 with
assigned Ser. No. 61/524,294.

FIG. 2 presents the various components of the reporting
system 1n accordance with some embodiments. The reporting
system 1ncludes statistics server 210, portal 220, and database
230. In this figure, the reporting system 1s integrated within an
existing CDN infrastructure that includes administrative
server 240, traflic management servers 2350, and edge servers
260. Specifically, the reporting system 1s integrated as part of
the administrative server 240, wherein the administrative
server 240 performs the reporting functionality for the CDN.
In some embodiments, the reporting system 1s a standalone
system that operates independent of the administrative server
240. This 1s especially the case when the distributed platform
does not have an administrative server 240 or the administra-
tive server 240 performs functionality that 1s inconsistent
with the defimition of the administrative server 240 provided
herein.




US 8,510,807 Bl

7

Though a single statistics server 210, portal 220, and data-
base 230 are shown 1n FIG. 2, 1t should be apparent that each
of these components 210-230 may be representative of one or
more servers that are separate physical machines collocated at
a single geographic location, separate physical machines at
different distributed locations, or virtual machines that oper-
ate using partitioned resources of one or more physical serv-
ers. Furthermore, the reporting system may include other
components in addition to or instead of the statistics server
210, portal 220, and database 230 and that the functionality of
the statistics server 210, portal 220, and database 230 need not
be implemented by physically separate devices or function-
ally distinct components.

As used hereafter, statistical data comprises the different
performance statistics that an edge server quantitatively mea-
sures and produces values for when delivering content or
when executing some service on behalf of each customer or
cach customer configuration that 1s deployed to that edge
server. A performance report compiles the statistical data for
a particular customer or a particular customer configuration
of the distributed platform based on statistical data that 1s
aggregated from a set of edge servers that are involved 1n
delivering content or executing some service on behalf of that
particular customer or that particular customer configuration.
In some embodiments, the performance report includes one
or more values that are derived from the compiled set of
statistical data. Each derived value 1dentifies the performance
realized by the set of edge servers for a different performance
statistic. The performance report including the compiled set
of statistical data and derived values 1s updated in real-time.
In some embodiments, the performance report 1s interactive
such that different granular levels of specificity can be pre-
sented for the different performance statistics.

Table 1 presents some of the performance metrics that an
edge server quantitatively measures and produces values for
when delivering content or executing some service on behalf
ol a particular customer or customer configuration:

TABLE 1
STATISTIC DESCRIPTION
Current The current bandwidth in use on a specified platform
Bandwidth (e.g., HI'TP large object, HT'TP small object,
application delivery network (ADN), flash media
server (FMS), windows media services (WMS).
Bandwidth Displays the amount of bandwidth used for a specified
Over Time platform.
Connections The number of connections that have been established
Over Time for a specified platform.
Purge/Load Indicates how many purge and load requests are currently
in queue to be processed.
Storage Displays how much storage space 1s being used on the

CDN origin server.

The total number of requests per second for the current
platform.

The total number of 2xx status codes (e.g., 200, 201, 202,
etc.) that occur per second for the current platform. This
type of status code indicates that the request was
successiully delivered to the client.

The total number of 304 status codes that occur per
second for the current platform. This status code
indicates that the requested asset has not been modified,
since 1t was last retrieved by the HTTP client.

The total number of 3xx status codes (e.g., 300, 301, 302,
etc.) that occur per second for the current platform. This
type of status code indicates that the request resulted

in a redirection.

The total number of 403 status codes that occur per
second for the current platform. This status code
indicates that the request was deemed unauthorized.

The total number of 404 status codes that occur per

Total Hits per
second
2XX per second

304 per second

3xx per second

403 per second

404 per second

10

15

20

25

30

35

40

45

50

55

60

65

S
TABLE 1-continued

STATISTIC DESCRIPTION

second for the current platform. This status code
indicates that the requested asset could not be found.

The total number of 4xx status codes (e.g., 400,401, 402,
403, etc.) that occur per second for the current platform.
This status code indicates that the requested asset was
not delivered to the client.

The total number of 5xx status codes (e.g., 500, 501, 502,
etc.) that occur per second for the current platform.

The total number of requests per second for the current

4xx per second

5xx per second

Total Hits per

second platform. Used as a baseline indicator to see the
percentage of total hits that a particular cache status
COMprises.

TCP_HIT per  The total number of requests per second that result in a

second TCP_HIT. A TCP_HIT occurs when a cached asset is
served from a POP to the client.

TCP_EX- The total number of requests per second that result in a

PIRED_HIT TCP_EXPIRED_HIT. A TCP_EXPIRED_HIT occurs

per second when an expired cached asset 1s served from the POP to

the client. An expired cached asset (i.e. an asset whose
max-age has been exceeded) 1s served when the origin
server indicates that a newer version of the asset does
not exist.

TCP_MISS per The total number of requests per second that result in a

second TCP_MISS. A TCP_MISS occurs when the requested
asset was not found on the POP closest to the client. The
asset will be requested from the origin server and then
served to the client.

TCP_EX- The total number of requests per second that result in a

PIRED MISS TCP_EXPIRED_MISS. A TCP_EXPIRED_MISS

per second occurs when a newer version of an expired cached asset
is served from the POP to the client. If a cached asset has
expired (1.e. an asset whose max-age has been exceeded),
then a check will be performed on the origin server for a
newer version of that asset. If an updated version is
found, then it will be served to the client instead of the
cached version.

TCP_CLI- The total number of requests per second that result in a

ENT_RE- TCP_CLIENT_REFRESH MISS . A

FRESH_MISS TCP_CLIENT_REFRESH_ MISS occurs when an

per second HTTP client (e.g. browser) forces an edge server to
retrieve a new version of a stale asset from the
Origin server.

NONE per The total number of requests per second that

second result 1n no cache status.

CONFIG_NO- The total number of requests per second that result in a

CACHE CONFIG_NOCACHE. A CONFIG_NOCACHE

per second occurs when an asset’s Cache-Control and Expires
headers indicate that it should not be cached on a
POP or by the HTTP client.

UNCACHE- The total number of requests per second that result

ABLE in an UNCACHEABLE. UNCACHEABLE occurs

per second when a request results 1n an error (e.g., 403
Forbidden, 404 Not Found, etc.).

Per stream The real-time total number of connections for a

number particular stream (WMS stream and FMS stream).

of connections

Per stream The real-time amount of bandwidth consumed by a

bandwidth particular stream (WMS stream and FMS stream).

For example:

Stream Name Type B/W Conns
202000/_custl/ Live 2.83 13
streaml.flv Mbps
202000/_cust2/ On- 205.44 2
streamZ.flv Demand Kbps

802000/ Live 1 5
originstream.com Mbps

A. Statistics Server

The statistics server 210 1s tasked with aggregating statis-
tical data from the edge servers of a distributed platform and
with processing the aggregated statistical data to derive
granular performance reports that are updated 1n real-time. In
some embodiments, the statistics server 210 aggregates sta-
tistical data from edge servers of different CDNs, wherein an
edge server of two different CDNSs can produce statistical data




US 8,510,807 Bl

9

for the same customer configuration that 1s deployed to both
such edge servers. Additionally 1n some embodiments, the
statistics server aggregates statistical data for multiple cus-
tomer configurations that are deployed to the same edge
SErver. 5

To 1ncrease the efficiency and scalability of the statistics
server 210 without increasing the resource utilization of the
statistics server 210, some embodiments implement various
optimizations 1n the data aggregation procedure. Some such
optimizations include staggered data aggregation and 10
dynamic reporting of statistical data. Additionally, some
embodiments optimize the manner 1n which the performance
reports are derived by minimizing the processing and
memory overhead for deriving and updating the performance
reports 1n real-time. Consequently, the statistics server 210 15
can 1n real-time derive performance reports for a larger num-
ber of customers and for more granular data than 1s possible
with statistics servers of existing reporting systems having the
same set of resources.

FI1G. 3 presents a timing diagram to conceptually illustrate 20
the optimized statistical data aggregation that 1s performed by
the statistics server 210 1n accordance with some embodi-
ments. The statistics server 210 1s communicably coupled to
cach of several edge servers 310, 320, 330, 340, and 350 of a
distributed platform through one or more IP connections, 25
TCP sessions, or other unsecure or secure network connec-
tions. In some embodiments, a configuration file 1dentifies
cach of the edge servers 310-350 from which statistical data
1s to be aggregated. The configuration file specifies the pro-
tocols and addressing that the statistics server 210 uses to pull 30
the statistical data from the edge servers 310-350 1n the opti-
mized manner further described below. In some embodi-
ments, each of the edge servers 310-350 are configured with
the protocols and addressing of the statistics server 210 such
that the statistical data 1s pushed from each edge server 310- 35
350 to the statistics server 210 1n the optimized manner fur-
ther described below. Based on the framework of the distrib-
uted platform, the edge servers 310-350 may include edge
servers that are operated by a single CDNSP, two or more
independent CDNSPs, or a cloud service provider. 40

To optimize the aggregation of the statistical data, the
statistics server 210 aggregates the statistical data 1n a stag-
gered manner. As shown 1n FIG. 3, the statistics server 210
aggregates statistical data from a different subset of the set of
edge servers 310-350 at different time windows within a 45
recurring time interval 360. For exemplary purposes, the
recurring time interval 360 1s defined to be a five second
interval. Accordingly, the statistics server 210 aggregates the
statistical data from each of the edge servers 310-350 every
five seconds. However, the statistics server 210 aggregates the 50
statistical data (1) from edge server 310 during the first sec-
ond of the five second interval 360, (2) from edge server 320
during the second second of the five second interval 360, (3)
from edge server 330 during the third second of the five
second 1nterval 360, (4) from edge server 340 during the 55
fourth second of the five second interval 360, and (5) from
edge server 350 during the fifth second of the five second
interval 360.

It should be apparent to one of ordinary skill that the
recurring time 1nterval and the window within the time inter- 60
val can be changed for more frequent refreshing of the real-
time data or to accommodate aggregating the statistical data
from a greater number of edge servers. Also, statistical data
may be aggregated from two or more edge servers during the
same window within the recurring time interval. For example, 65
the statistics server 210 aggregates the statistical data from
the edge servers 310-350 at three second intervals, wherein

10

the statistics server 210 aggregates the statistical data (1) from
edge servers 310 and 320 during the first second of the three
second 1nterval, (2) from edge servers 330 and 340 during the
second second of the three second interval, and (3) from edge
server 350 during the third second of the three second inter-
val.

Based on this staggered aggregation, the resources of the
statistics server 210 are evenly utilized over the recurring time
interval. As a result, the edge servers 310-350 no longer
compete against one another for resources of the statistics
server 210 and each edge server 310-350 can pass greater
amounts of data within 1ts allotted time window than would
otherwise be possible 1f all the edge servers 310-350 were
continually passing data to the statistics server at the same
time. The statistics server 210 can therefore support data
aggregation with a greater number of edge servers, more
granular data, and with increased real-time refresh rates with-
out the need for expanding the resources of the statistics
server 210. Moreover, the staggered aggregation affords
greater {reshness for the statistics 1n the performance reports.
In other words, the staggered aggregation results in more
accurate real-time statistics than those provided by other
reporting system. Specifically, most other reporting systems
wait until the completion of a recurring interval before updat-
ing real-time statistics that are presented to the customer. If
the recurring interval 1s ten seconds, then the real-time statis-
tics appearing in the customer’s performance reports are
updated every ten seconds. Also, some of the reported statis-
tics can be up to ten seconds stale as a result of one or more
edge servers reporting their data at the first second of the ten
second interval and the reporting system waiting until the
tenth second before reporting the statistics. Conversely, the
staggered statistical data aggregation performed by the
reporting system of the embodiments herein allows reporting,
to occur at a much more granular basis. Specifically, if a ten
second recurring interval 1s used and statistical data from each
of twenty edge servers 1s aggregated at every half second, then
the real-time statistics appearing 1n the customer’s perfor-
mance reports can be updated every half second instead of
waiting the full ten second interval as new statistical data 1s
aggregated at the half second. Moreover, the freshness of the
reported statistical data 1s consistently maintained throughout
the recurring interval irrespective of when within the recur-
ring interval the data 1s reported.

In some embodiments, the edge servers pass the statistical
data 1n dynamic data structures to further optimize the aggre-
gation of the statistical data. FIG. 4 conceptually illustrates
two dynamic data structures 410 and 420 that the statistics
server aggregates from a particular edge server at two differ-
ent instances 1n time. Data structure 410 1s aggregated {first
(1.e., during a first instance of a particular time interval) and
data structure 420 1s aggregated second (1.e., during a second
instance of the particular time interval). In this figure, each
data structure 410 and 420 contains statistical data that 1s
reported for the same particular customer or customer con-
figuration. The customer or customer configuration 1s 1denti-
fied 1n the data structures 410 and 420 with a customer 1den-
tifier. In some embodiments, the customer identifier 1s
assigned by the distributed platform when the customer reg-
1sters for services of the distributed platform. The customer
identifier 1s passed to the edge server as part of the customer’s
configuration that i1s deployed to that edge server. In some
embodiments, the each data structure 410 and 420 1s encoded
as a dictionary to store the statistical data. In some embodi-
ments, the dictionary includes a list of <identifier:value>
pairs. The identifier of a <identifier:value> pair 1dentifies a
performance statistic and the value of the <identifier:value>




US 8,510,807 Bl

11

pair identifies the value for that performance statistic during,
the current time 1nterval. It should be apparent that the <iden-
tifier:value> pairs are shown and described herein for exem-
plary purposes and to facilitate the understanding of the
dynamic data structures. The reporting system may utilize
other formatting or structures to identily a performance sta-
tistic and its associated value 1n addition to or mstead of the
<1dentifier:value> pairs.

The data structures 410 and 420 are dynamic because the
populated <identifier: value> pairs change depending on what
statistical data the particular edge server has produced for the
customer during the corresponding reporting interval. A par-
ticular <identifier:value> pair entry for a particular statistic
may be populated 1n the data structure when the data structure
1s first passed to the statistics server (at a first reporting inter-
val) and omitted when the data structure 1s next passed to the
statistics server (at a second reporting 1interval). For example,
the data structure 410 includes <identifier:value> pairs 430,
440, and 450, while data structure 420 omuits these <identifier:
value> pairs. 430 identifies the number of 4xx errors detected
during a first reporting interval. 440 identifies the bandwidth
consumed 1n passing the stream “streaml.tlv” during the first
reporting interval. 450 1dentifies the number of connections
established for the stream “streaml.flv’” during the first report-
ing 1nterval. The data structure 420 may omit the <identifier:
value> pairs 430, 440, and 450 when there was one or more
4xx errors detected during the first reporting interval and none
detected during the second reporting interval. Also, the par-
ticular edge server may have ceased streaming the “stream-
1.fIv” file during the second interval such that there was no
statistical data produced for this stream during the second
reporting interval.

This dynamic reporting minimizes the size of the aggre-
gated data structures and reduces the amount of statistical
data that 1s passed from the edge servers to the statistics
server. To further reduce the size of the data structures, some
embodiments compress the data structures at the edge servers
betore passing the compressed data structures to the statistics
Server.

In some embodiments, the statistics server processes the
statistical data to generate and update one or more real-time
granular performance reports for each customer of the dis-
tributed platform. Specifically, the processing compiles the
statistical data from a set of edge servers that are involved 1n
delivering content on behalf of a particular customer or cus-
tomer configuration. The processing further derives one or
more values from the compiled set of statistical data to 1den-
tify the performance realized by the set of edge servers for
different performance statistics.

In some embodiments, the processing occurs 1n real-time
as the data structures are aggregated from the edge servers 1n
the staggered manner described with reference to FIG. 3
above. Specifically, when the statistics server aggregates a
data structure contaiming one or more statistical data <iden-
tifier:value> pairs, the statistics server identifies the customer
to which the data structure pertains and the edge server that
provided the data structure. The customer 1s 1dentified based
on the customer 1dentifier that 1s included 1n the data struc-
ture. The edge server that provides the data structure 1s 1den-
tified based on the connection through which the data struc-
ture 1s passed. In some embodiments, the connection 1s
associated with an IP address and the IP address 1dentifies a
particular edge server from the set of edge servers of the
distributed platform. Once the customer and edge server are
identified, the statistics server parses the values from the data
structure and updates a performance statistics table with the
parsed values.

10

15

20

25

30

35

40

45

50

55

60

65

12

In some embodiments, the performance statistics table 1s
an internal data structure that the statistics server maintains
for each customer of the distributed platform. The perfor-
mance statistics table stores current values for a set of granu-
lar performance statistics that the statistics server updates 1n
real-time and that were included 1n the data structures that
were most recently aggregated from the set of edge servers. In
some embodiments, the performance statistics table 1s imple-
mented as a hash table, object class, or as records 1n a data-
base. It should be apparent that alternative implementations
may also be used for the performance statistics table without
loss of functionality.

Based on the current values for the statistical data stored to
the performance statistics table, the statistics server derives in
real-time values for the performance reports. These derived
values sum or otherwise represent the totality of the set of
statistical data for a set of performance metrics compiled for
a particular customer. Moreover, these derived value detail
the performance realized for the customer across the distrib-
uted platiform irrespective of whether the customer’s configu-
ration(s) 1s deployed to one or more edge servers that are
operated by one or more CDNs. As new data structures con-
taining updated statistical data are continually aggregated via
the staggered aggregation described above, the statistics
server continually updates the stored entries 1n the perfor-
mance statistics and with each update, the statistics server
derives updated values for the performance reports.

FIG. § conceptually 1llustrates a set of performance statis-
tics tables 1n accordance with some embodiments. The figure
illustrates three separate performance statistics tables 510,
520, and 530. It should be apparent that the performance
statistics tables may internally be stored as a single data
structure even though they are conceptually represented as
separate tables i FIG. 5.

Each performance statistic table 510, 520, and 530 stores
statistical data for different customers of a distributed plat-
form, wherein the statistical data has been aggregated from
different edge servers of the distributed platform. Each row
represents a different performance statistic. Each column rep-
resents the real-time statistical data that has been aggregated
from a particular edge server that 1s mvolved 1n delivering
content or executing some service on behalf of a customer to
which the performance statistics table relates. The last col-
umn of each table 510, 520, and 530 contains the derived
values for the performance reports. Specifically, each row
entry in the last column 1s derived from the sum or total of the
statistical data that 1s 1n the same row.

Whenever the statistics server aggregates a new data struc-
ture from an edge server, the statistics server i1dentifies the
customer or customer configuration to which the statistical
data of the data structure relates, the statistics server accesses
the performance statistics table for that customer, the statis-
tics server 1dentifies the column in which the statistical data
for that particular edge server i1s stored, the statistics server
updates the values 1n the 1dentified column with the statistical
data of the aggregated data structure, and the statistics server
turther updates any derived values that are in the same row as
any statistical data entry that has been updated as a result of
the statistical data of the aggregated data structure. For
example in FIG. 5, when a data structure for customer 4321 1s
aggregated from edge server ES3, the statistics server updates
column 540 of performance statistics table 530 using the
statistical data 1n the data structure.

Dernving the values for the performance reports in the
optimized manner above affords several efficiency advan-
tages to other techniques employed in the prior art. Firstly, the
statistics server incrementally and 1n real-time updates the




US 8,510,807 Bl

13

derived values for the performance reports such that the
derived values are never stale. As a result, the derived values
for the performance reports are truly derived 1n real-time by
virtue of them being updated with every new aggregated piece
ol statistical data. Other techniques wait the full recurring
interval time until all edge servers have reported the statistical
data before updating the derived values for the performance
reports. The statistics server for the embodiments described
herein therefore derives the values for the performance
reports 1n O(1) time, whereas other techniques require O(N)
time with N representing the time interval 1n which all edge
servers are required to report. Secondly, by incrementally
updating the derived values for the performance reports as a
result of the staggered statistical data aggregation, the load on
the statistics server to derive the real-time values for the
performance reports 1s reduced. Specifically, for the deriva-
tion of any value of the performance reports, the statistics
server 1s at most required to store two values: (1) the current
value for a particular statistic as stored in a performance
statistic table and (2) the current derived value for the perfor-
mance statistic. As a new value for the current value 1s
obtained from an aggregated data structure, the statistics
server computes the delta value or difference between the new
value and the current value, then the statistics server updates
the derived value by summing the delta value to the derived
value. In this manner, the derived values for the performance
reports can be incrementally updated with simple arithmetic
operations and the computational and memory loads for per-
forming the incremental updates 1s proportionally distributed
over the recurring time interval as the statistical data updates
arrive 1n the staggered manner described above.

The optimizations further allow the statistics server to sup-
port more granular reporting. This includes the ability to
provide real-time reporting for greater numbers of perfor-
mance statistics, some of which are listed in Table 1 above.
This also includes the ability to i1dentity different granular
views for the realized performance across the distributed
platform. For example, the statistical data in a performance
statistics table can be used to identily the realized perfor-
mance for a customer 1n a particular geographic region as
opposed to the entire distributed platform. To do so, the sta-
tistics server 1solates the columns 1n the appropriate perior-
mance statistic table that store the statistical data for the edge
servers that are located 1n the particular geographic region.
The statistical data in those columns can then be used to
present the performance realized in the particular geographic
region and thereby provide a different granular view.

It should be noted that the performance statistics tables of
some embodiments do not maintain a historic log of past
reported values or past derived values for the performance
reports. Instead, the historic logging of values 1s offloaded to
the user client as 1s described 1n the subsection below refer-
encing the portal of the reporting system. In so doing, the
amount ol memory and/or storage that 1s consumed 1n updat-
ing the performance statistics tables and 1n deriving the values
for the performance reports 1s greatly reduced. In fact, 1n
many instances, the performance statistics tables can be
wholly retained in main memory of the statistics server as
opposed to secondary storage of the statistics server. As a
result, the statistics server does not waste computational
cycles while waiting to transition data from slower secondary
storage to faster main memory. In some embodiments, the
performance statistics tables are modified to store a small set
ol past values such that a brief historic log can be provided to
a customer upon request without compromising the above
described efficiency gains.

10

15

20

25

30

35

40

45

50

55

60

65

14

In some embodiments, the statistics server performs a
cleansing routine to ensure that the derived values for the
performance statistics are accurate even when one or more of
the edge servers: (1) cease to report a particular performance
statistic 1n the dynamic data structure, (2) begin reporting a
new performance statistic 1n the dynamic data structure, or (3)
tail to provide the data structure to the statistics server during
a particular interval as a result of a network failure or edge
server failure.

The pseudo code below summarizes the cleansing routine
for a dertved value for a particular performance statistic 1n
accordance with some embodiments:

(1)
(2)
(3)
(4)
(3)
(6)

If New Value (N) for an existing Current Value (C) 1s received
Then Derived Value (DV) =DV + (N - C)

If N for a non-existing C 1s received
Then DV =DV + N

If no N is received for an existing C
Then DV =DV + (0 - C)

A New Value (N) represents a value for a particular statistic
that 1s stored 1n an <identifier:value> pair of a data structure
aggregated from an edge server. The Current Value (C) rep-
resents a stored value 1n a performance statistics table for the
particular statistic identified by the New Value. The Derived
Value (DV) represents the value that was derived based on the
compiled set of statistical data reported by the edge servers
for the particular statistic.

Steps 1-4 of the cleansing routine are performed for each
<1dentifier:value> pair 1n an aggregated data structure. Steps
5> and 6 of the cleansing routine are performed for the stored
values 1n the performance statistics table where a value for the
corresponding statistic was omitted from the aggregated data
structure. In other words, steps 5 and 6 are performed when
the data structure does not contain an <identifier: value> that
updates a stored value 1n the performance statistics table.

FIG. 6 conceptually illustrates the cleansing routine in
accordance with some embodiments. At 610, the figure 1llus-
trates a performance statistics table prior to it being updated
with statistical data of data structure 620. At 630, the figure
illustrates the performance statistics table after it has been
updated with the statistical data of data structure 620. The
bolded entries at 630 1llustrate which entries were updated.

The data structure 620 1s aggregated from edge server
“BES3”. Therelfore, the <adentifier:value> pairs in the data
structure 620 are used to update column 640 of the perfor-
mance statistics table. For performance statistic 6350, updated
statistical data 1s included i1n the data structure 620, but a
current value does not exist in the performance statistics table
at 610. Therefore, the statistical data 1s used as a new value
which gets stored to the appropriate row 1n column 640 and
the derived value 660 1s modified to incorporate the new
value. For performance statistic 670, a new value 1s not
present 1n the data structure 620, but a current value was
stored 1n the performance statistics table at 610 and used 1n
the derivation of the dernived value 680. Accordingly, the
current value 1s removed from the performance statistics table
at 630 and the derived value 680 1s updated to reflect the
omission of the reporting of that value from edge server ES3.

To further optimize the processing of the aggregated sta-
tistical data, some embodiments alter the statistical data that
1s reported in the dynamic data structures. In some such
embodiments, the aggregated statistical data includes delta
values for each of a set of performance statistics instead of the
actual values. Aggregating delta values further reduces the
memory and processing overhead at the statistics server. Spe-




US 8,510,807 Bl

15

cifically, the delta values for a particular statistic represent
changes 1n that statistic without the statistics server having to
compute the change and without the statistics server having to
store a current actual value and a new actual value 1n order to
compute the change. Instead, the computation of the change
(1.., the delta value) 1s offloaded to the distributed set of edge
servers that then incorporate the delta value into the data
structure that 1s passed to the statistics server. Each edge
server 1s therefore modified to retain a current actual value
while a new actual value for each reported statistic 1s pro-
duced. The edge server computes the difference between the
new value and the current value and the resulting delta value
1s populated 1n the data structure that 1s passed to the statistics
server. Upon recerving the delta value, the statistics server
merely needs to add the delta value to the derived value for the
performance report of the corresponding performance statis-
tic 1 order to perform a real-time update of that value.

B. Portal

With reference back to FIG. 2, the portal 220 of the report-
ing system 1s the interface through which customers or system
administrators of the distributed platform can log 1n to view
the performance reports. The portal 220 1s accessible with a
standard web browser client that 1s pointed to the portal site
(e.g., www.distributedplatiorm.com/performance). Standard
web browser clients include Microsoit’s Internet Explorer,
Mozilla’s Firefox, and Google’s Chrome. It should be appar-
ent that in some embodiments, the portal 220 may be accessed
using other tools such as a standalone application.

In some embodiments, the portal 220 performs an authen-
tication process when 1t 1s {irst accessed by a customer of the
distributed platiorm. In other words, the authentication pro-
cess 15 performed when a customer connects to the portal 220
and an existing session does not exist for that customer. The
authentication process 1s performed to 1dentily the customer
and 1dentity which performance reports the customer 1is
allowed to view. FIG. 7 presents an authentication process
700 performed by the portal in accordance with some
embodiments.

The process 700 begins when the portal 1s accessed by a
customer and the customer does not have an existing session
with the portal. The process presents (at 710) a login interface
for the customer to enter login information such as a user-
name and password. The process obtains (at 720) the login
information and authenticates (at 730) the customer against
the reporting system database (see database 230 of FIG. 2). In
some embodiments, the database maintains various records
for mapping the obtained login information to an i1dentifier
that 1s used in the distributed platform to 1dentily customers.

When the login information 1s valid and the authentication
information 1s obtained, the process proceeds to present the
performance reports for the customer. To do so, the process
queries (at 740) the statistics server using the authentication
information for the customer and in response, the process
obtains (at 750) the performance reports for the identified
customer. In some embodiments, the query mvolves passing
the customer 1dentifier to the statistics server and the statistics
server returns the derived values for the performance report
by 1dentifying the appropriate performance statistic table for
the customer based on the customer 1dentifier.

The process maintains (at 760) a session with the custom-
er’s client and the statistics server such that whenever a
derived value in the performance report 1s updated at the
statistics server, the process forwards the updated derived
values to the customer client. In this manner, the updated
performance reports are presented to the customer. The pro-
cess 700 ends when the customer closes the client or logs out
from the portal.

10

15

20

25

30

35

40

45

50

55

60

65

16

By maintaining the session with the customer’s client and
providing the real-time updates to the performance reports,
the portal causes the customer client to compile historic trend
data. The longer the customer client maintains the session, the
greater the history for a particular performance report. By
compiling the historic trend data on the customer’s client, the
statistics server 1s offloaded from having to store more than
the current derived values for each performance statistic of
the performance reports. This greatly reduces the memory
and storage overhead for the statistics server such that it can
support real-time granular statistics reporting for larger num-
ber of customers.

In some embodiments, the portal provides one or more
interactive tools to alter the presentation of the performance
reports. One such tool allows the customer to increase or
decrease the rate with which the performance reports are
updated on the customer client. As noted above with refer-
ence to FIG. 3, the staggered aggregation and incremental
updating of the performance reports enable the reporting
system the ability to update and present the performance
reports with a igher frequency than the recurring intervals in
which statistical data from all edge servers 1s aggregated.
Consequently, the granularity for the real-time refresh rate 1s
customer specifiable and adjustable to a high frequency
refresh rate that 1s otherwise unsupported by other reporting
systems. Another interactive tool allows the customer to
adjust the granularity of the derived values presented 1n the
performance reports. For example, the customer can use the
tool to view a performance report for all deployed configura-
tions of the customer or a performance report for a single
deployed configuration of the customer. As another example,
the customer can use the tool to view the performance real-
1zed for its configuration across the entire distributed plat-
form or, more granularly, to view the performance realized at
a particular geographic region or POP.

C. Database

The database 1s the storage repository for the reporting
system. As noted above, the reporting system database 1s used
for authentication purposes to store customer login informa-
tion and the mapping between the login information and the
customer 1dentifiers used 1n the distributed platform. In some
embodiments, the database also stores mapping information.
When the reporting system 1s integrated with the Open CDN
platform, mapping may be required to convert between inter-
nal customer 1dentifiers of the CDNs and global customer
identifiers used in the Open CDN platform. This 1s so statis-
tical data can be compiled and reported even when a custom-
er’s configuration 1s deployed across two different CDNs that
internally assign different customer identifiers to that cus-
tomer. Accordingly, the reporting system can store the map-
pings between the internal CDN customer 1identifiers and the
global Open CDN platform customer 1dentifiers. Addition-
ally mappings may be stored in the reporting system database
to facilitate the data cleansing and normalization of statistical
data that 1s formatted differently by different CDNs. In some
embodiments, the reporting system database stores the map-
ping for identifying which edge servers a customer’s configu-
ration1s deployed to and therefore which edge servers contain
the statistical data that 1s needed to produce the performance
reports for a given customer.

II. Reporting System Framework

FI1G. 2 above illustrates a framework 1n which the reporting,
system can be integrated 1n a distributed platform. FIGS. 8-14
illustrate other frameworks 1n which the reporting system of
some embodiments can be mtegrated with other distributed
platforms.




US 8,510,807 Bl

17

FIG. 8 illustrates a framework for scaling the statistics
servers ol the reporting system in accordance with some
embodiments. This figure includes two statistics servers 810
and 820 that aggregate the same statistical data from the set of
edge servers 830. The figure further includes the portal 840,
database 850, load balancer 860, and users 870.

In this framework, when user requests come 1n to the portal
840, the portal 840 forwards the requests to the load balancer
860. The load balancer 860 distributes the requests across the
two statistics servers 810 and 820 such that the load on each
statistics server 810 and 820 1s balanced. Moreover, the load
balancer 860 can compensate for a statistics server failure
such that if one of the statistics server 810 or 820 becomes
unreachable, all requests can be forwarded to the other sta-
tistics server that 1s operational. Accordingly, the framework
of FIG. 8 may be provided for purposes of redundancy and
scalability. In some embodiments, the load balancing func-
tion performed by the load balancer 860 can be integrated 1nto
the portal 840.

FIG. 9 illustrates an alternative framework for scaling the
statistics servers of the reporting system 1n accordance with
some embodiments. The components of FIG. 9 mirror those
of FIG. 8 and include two statistics servers 910 and 920, a set
of edge servers 930, portal 940, database 950, load balancer
960, and users 970. However 1n this figure, the statistics server
910 aggregates different statistical data than the statistics
server 920. A distribution algorithm may be used to aggregate
statistical data for a first set of customers to the first statistics
server 910 and to aggregate statistical data for a different
second set of customers to the second statistics server 920. In
some embodiments, the distribution algorithm 1s configured
on the statistics servers 910 and 920 when the statistics serv-
ers 910 and 920 pull the statistical data from the set of edge
servers 930. In some embodiments, the distribution algorithm
1s configured on the set of edge servers 930 when the set of
edge servers 930 push the statistical data to the statistics
servers 910 and 920. In still some other embodiments, the
distribution algorithm 1s stored to the database 950 where 1t 1s
accessible by the other components 910-940 and 960 of the
reporting system. The distribution algorithm can be defined
such that all customers having a customer 1dentifier falling 1n
a first range of values have their statistical data aggregated to
the first statistics server 910 and all customers having a cus-
tomer 1dentifier falling in a second range of values have their
statistical data aggregated to the second statistics server 920.
The distribution algorithm can also be defined using a variety
of hashing techniques including Caching Array Routing Pro-
tocol (CARP) hashing. It should be noted that a particular
edge server may provide statistical data for a first customer
configuration to the statistics server 910 while providing sta-
tistical data for a second customer configuration to the statis-
tics server 920.

The distribution algorithm 1s also configured on the load
balancer 960 so that incoming users requests to view perior-
mance reports are forwarded from the portal 940 to the proper
statistics server 910 or 920 that aggregates the statistical data
needed to derive the performance reports for the requesting
user. In some embodiments, the load balancer 960 1dentifies
which statistics server 910 or 920 stores the performance
reports for a particular user by querying the database 950 with
the customer 1dentifier for that user. Alternatively, the portal
940 may 1dentity which statistics server stores the perfor-
mance reports for a particular user when the portal authenti-
cates the particular user with the database 950 such that the
load balancer 960 can be omitted from the platform without
loss of functionality.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

FIG. 10 1llustrates a hybrid framework for scaling and
providing redundancy in the reporting system 1n accordance
with some embodiments. In this figure, the reporting system
includes a back-end load balancer 1010, two interoperating
statistics servers 1020 and 1030, a front-end load balancer
1040, database 1050, and portal 1060. The back-end load
balancer 1010 proportionally distributes the aggregated sta-
tistical data across the statistics servers 1020 and 1030. The
distribution can be controlled with a simple round-robin
scheme or intelligent hashing scheme. The statistics servers
1020 and 1030 then broadcast the aggregated statistical data
to one another such that the aggregated statistical data 1s
replicated locally. By replicating locally, the edge servers can
avold having to redundantly pass the same statistical data over
more expensive, slower, and more error-prone data network
connections that communicably couple the edge servers to
the statistics servers 1020 and 1030. The local replication
alfords redundancy 1n the event one of the statistics server
1020 or 1030 becomes unreachable. The front-end local bal-
ancer 1040 balances the customer load across the statistics
server 1020 and 1030 and provides failover in the event one of
the statistics servers 1020 and 1030 fails.

The scalability and efficiency of the reporting system of
some embodiments lends 1itself 1deal for integration n an
Open CDN platform. As described 1n Umted States provi-
sional patent application entitled “Open Content Delivery
Network Platform with Capacity Exchange” with Ser. No.
61/524,294, the Open CDN platform facilitates the sharing of
capacity between different CDN service providers (CDNSPs)
to allow any CDNSP to (1) dynamically scale 1ts capacity
without incurring additional infrastructure costs, (2) expand
the reach of 1ts CDN 1nto previously untapped geographic
regions without physically establishing points of presence
(POPs) at those geographic regions, and (3 ) reduce sunk costs
associated with unused capacity of already deployed infra-
structure by selling that unused capacity to other CDNSPs
that are 1n need of additional capacity.

To do so, the Open CDN platform provides a capacity
exchange to which CDNSPs can publish and sell excess
capacity and CDNSPs 1n need of additional capacity can
acquire desired capacity that meets their qualifications. In this
manner, the Open CDN platform facilitates a collaboration
and synergy of existing CDNSPs infrastructure and capacity,
thereby enabling each CDNSP participating in the Open
CDN platform to achieve a truly global presence 1rrespective
of the mirastructure limitations of any individual CDNSP.

However, reporting 1n an Open CDN platform 1s particu-
larly complicated because of the amount of statistical data
that 1s to be aggregated and processed. The Open CDN plat-
form combines the infrastructures of multiple CDNs. As a
result, the reporting system for the Open CDN platform needs
to be highly scalable in order to support data aggregation from
edge servers of more than one CDN and 1n order to support
real-time granular reporting for customers of more than one
CDN. The efficiency and scalability optimizations for statis-
tical data aggregation and performance reporting described
above lend the reporting system of some of the embodiments
described herein especially well suited for integration with
the Open CDN platform.

In some embodiments, the reporting system integrates at
different levels of the Open CDN platiorm depending on the
Open CDN platform implementation. FIG. 11 1illustrates a
first framework for integrating the reporting system of some
embodiments mto an Open CDN platform. This figure 1llus-
trates a first set of edge servers 1110 that are operated by a first



US 8,510,807 Bl

19

CDNSP, a second set of edge servers 1120 that are operated
by a second CDNSP, statistics server 1130, portal 1140, and

database 1150,

In this figure, the reporting system provides performance
statistic reporting for both CDNSPs through the portal 1140.
To do so, the statistics server 1130 aggregates statistical data
from the first set of edge servers 1110 and the second set of
edge server 1120. In a first implementation, the statistics
server 1130 may be configured with the addressing informa-
tion of each edge server 1n the first 1110 and second 1120 sets
of edge servers so that the statistical data 1s pulled from the
edge servers at different staggered windows within a recur-
ring time interval. In a second implementation, each edge
server in the first 1110 and second 1120 sets of edge servers 1s
configured to forward 1ts statistical data to the statistics server
1130 at a specified window within the recurring time interval.

By aggregating the statistical data from the edge servers of
the two CDNs centrally at the statistics server 1130, the
reporting system can produce performance reports for a cus-
tomer configuration that 1s deployed to at least one edge
server 1n the first set of edge servers 1110 and at least one edge
server 1n the second set of edge servers 1120.

In some embodiments, the statistics server 1130 performs
a mapping to produce normalized statistical data when aggre-
gating statistical data from the edge servers of the different
CDNs. This mapping 1s performed when the statistical data
aggregated from each CDN 1s formatted differently or con-
tains different fields. Therefore, to ensure commonality in
performance reports derived for the Open CDN platiorm, the
statistics server 1130 prunes, cleans, and standardizes the
statistical data from the different CDNs. In some embodi-
ments, data pruning and data cleaning nvolves removing,
extraneous or proprietary statistical data 1n order to derive a
common set of statistical data for all CDNs participating 1n
the Open CDN platform. In some embodiments, data stan-
dardization involves converting the collected statistical data
to the same timeframe, scale, and units as some examples.

FI1G. 12 illustrates an alternative framework for integrating,
the reporting system of some embodiments into an Open
CDN platform. In this figure, a first set of edge servers 1210
operated by a first CDNSP provides its statistical data to a
statistics forwarding server 1220 of the first CDNSP and a
second set of edge servers 1230 operated by a second CDNSP
provides 1ts statistical data to a statistics forwarding server
1240 of the second CDNSP. Accordingly, each CDNSP
aggregates statistical data as 1t would i1 operating 1ndepen-
dent of the Open CDN platform. This figure further includes
the statistics server 1250, database 1260, and portal 1270 of
the reporting system 1280 of some embodiments.

The integration of the reporting system 1280 with the Open
CDN platform allows for a customer configuration to be
deployed inter-CDN (1.e., to an edge server of the first
CDNSP and an edge server of the second CDNSP). Without
the reporting system 1280, each statistics forwarding server
1220 and 1240 will have incomplete statistical data to report
on an inter-CDNSP deployed customer configuration. This 1s
because each statistics forwarding server 1220 and 1240
aggregates statistical data from only the set of edge servers
that are operated by 1its CDNSP. As a result, statistics forward-
ing server 1220 of the first CDNSP will not have access to the
statistical data produced by any of the edge servers 1n the
second set of edge servers 1230 operated by the second
CDNSP and the statistics forwarding server 1240 of the sec-
ond CDNSP will not have access to the statistical data pro-

duced by any of the edge servers 1n the first set of edge servers
1210 operated by the first CDNSP.

10

15

20

25

30

35

40

45

50

55

60

65

20

To facilitate mter-CDN reporting, the reporting system
statistics server 1250 1s configured to aggregate statistical
data from each of the statistics forwarding servers 1220 and
1240. In some embodiments, the statistics forwarding servers
1220 and 1240 automatically forwards statistical data that
they have aggregated to the reporting system statistics server
1250. However, the statistics forwarding servers 1220 and
1240 need not be implemented with such functionality.

The statistics server 1250 processes the aggregated statis-
tical data to produce the performance reports for the customer
configurations of each of the first and second CDNSPs. In
some embodiments, processing the aggregated data involves
mapping and normalization. In some embodiments, mapping
includes translating between internal customer 1dentifiers of
cach of the CDNSPs to an Open CDN customer 1dentifier.
This translation allows the statistics server 1250 to match
statistical data for a particular customer when each CDNSP
produces statistical data for that particular customer using
their internal customer 1dentifiers that are inconsistent with
one another. In some embodiments, the database 1260 stores
the mapping between the internal CDNSP i1dentifiers and the
Open CDN identifiers. In some embodiments, each CDNSP
1s enhanced with an Open CDN application programming
interface (API) that performs the customer 1dentifier transla-
tion when the statistical data 1s passed from the internal sta-
tistics server (1.e., servers 1220 and 1240) to the statistics
server 1250 of the reporting system 1280. As before, the
portal 1270 provides the interface through which users are
authenticated and presented with the performance reports.

FIG. 13 1llustrates an alternative framework for integrating
the reporting system of some embodiments into an Open
CDN platform. In this figure, a separate statistics server of the
reporting system 1s integrated with each CDNSP. The set of
edge servers 1310 operated by the first CDNSP provide sta-
tistical data to the statistics server 1320 of the reporting sys-
tem 1370 and the set of edge servers 1330 operated by the
second CDNSP provide statistical data to the statistics server
1340 of the reporting system 1370. When a customer request
1s recerved at the portal 1350, the portal 1350 accesses the
database 1360 to determine where performance reports for
that customer reside. In other words, the portal 1350 accesses
the database 1360 to determine which edge servers are
involved 1n the deployment of that customer’s configuration
and as a result, which of the statistics servers 1320 and 1340
have aggregated statistical data for that customer configura-
tion. The portal 1350 then acquires the performance reports
from (1) the statistics server 1320 when the customer’s con-
figuration 1s wholly deployed to the first CDNSP, (2) the
statistics server 1340 when the customer’s configuration 1s
wholly deployed to the second CDNSP, and (3) both the
statistics servers 1320 and 1340 when the customer’s con-
figuration 1s deployed to both the first and second CDNSPs. It
should be apparent that the framework of FIG. 13 can be
modified such that the statistics servers 1320 and 1340 are
operated by the respective CDNSP 1instead of the reporting
system without loss of functionality.

FIG. 14 illustrates yet another framework for integrating,
the reporting system of some embodiments into an Open
CDN platform. This figure includes a first set of edge servers
1410 and a statistics server 1420 operated by a first CDNSP,
a second set of edge servers 1430 and a statistics server 1440
operated by a second CDNSP, and the reporting system 1480
comprising a statistics server 1450, portal 1460, and database
1470.

In this figure, statistical data from the first set of edge
servers 1410 1s aggregated at the statistics server 1420 when
the statistical data 1s produced as a result of a configuration




US 8,510,807 Bl

21

that 1s associated with a customer of the first CDNSP and at
the statistics server 1450 when the configuration does not
belong to a customer of the first CDNSP. Similarly, statistical
data from the second set of edge servers 1430 1s aggregated at
the statistics server 1440 when the statistical data 1s produced
as a result of a configuration that 1s associated with a customer
of the second CDNSP and at the statistics server 1450 when
the configuration does not belong to a customer of the second
CDNSP.

When a user request 1s received at the portal 1460, the
portal 1460 authenticates the user and determines whether the
user 1s associated with a customer configuration that has been
deployed to a single CDNSP or multiple CDNSP. Such infor-
mation 1s retained in the database 1470. Then based on the
determination, the portal 1460 i1dentifies where to retrieve the
performance reports for that customer.

I1II. Server System

Many of the above-described processes and components
are implemented as software processes that are specified as a
set of 1nstructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these instructions are executed by one or more com-
putational element(s) (such as processors or other computa-
tional elements like ASICs and FPGASs), they cause the com-
putational element(s) to perform the actions indicated 1n the
istructions. Server, computer, and computing machine 1s
meant 1n 1ts broadest sense, and can include any electronic
device with a processor including cellular telephones, smart-
phones, portable digital assistants, tablet devices, laptops,
notebooks, and desktop computers. Examples of computer
readable media include, but are not limited to, CD-ROMs,
flash drives, RAM chips, hard drives, EPROMs, efc.

FI1G. 15 1llustrates a computer system or server with which
some embodiments are implemented. Such a computer sys-
tem 1ncludes various types of computer readable mediums
and interfaces for various other types of computer readable
mediums that implement the various processes and modules
described above (e.g., statistics server, portal, and database).
Computer system 1500 includes a bus 1305, a processor
1510, a system memory 1515, a read-only memory 1520, a
permanent storage device 1525, input devices 1530, and out-
put devices 1535.

The bus 1505 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
ous internal devices of the computer system 1500. For
instance, the bus 1505 communicatively connects the proces-
sor 1510 with the read-only memory 1520, the system
memory 15135, and the permanent storage device 1525. From
these various memory units, the processor 1310 retrieves
instructions to execute and data to process 1n order to execute
the processes of the ivention. The processor 1510 15 a pro-
cessing device such as a central processing unit, integrated
circuit, graphical processing unit, etc.

The read-only-memory (ROM) 1520 stores static data and
instructions that are needed by the processor 1510 and other
modules of the computer system. The permanent storage
device 1525, on the other hand, 1s a read-and-write memory
device. This device 1s a non-volatile memory unit that stores
instructions and data even when the computer system 1500 1s
off. Some embodiments of the invention use a mass-storage
device (such as a magnetic or optical disk and 1ts correspond-
ing disk drive) as the permanent storage device 1525.

Other embodiments use a removable storage device (such
as a tlash drive) as the permanent storage device Like the
permanent storage device 1525, the system memory 151515 a
read-and-write memory device. However, unlike storage
device 1525, the system memory 1s a volatile read-and-write

5

10

15

20

25

30

35

40

45

50

55

60

65

22

memory, such a random access memory (RAM). The system
memory stores some of the instructions and data that the
processor needs at runtime. In some embodiments, the pro-
cesses are stored 1n the system memory 1515, the permanent
storage device 1525, and/or the read-only memory 1520.

The bus 1505 also connects to the input and output devices
1530 and 1535. The input devices enable the user to commu-
nicate nformation and select commands to the computer
system. The mput devices 1530 include alphanumeric key-
pads (including physical keyboards and touchscreen key-
boards), pomting devices (also called “cursor control
devices™). The mput devices 1530 also include audio mput
devices (e.g., microphones, MIDI musical instruments, etc.).
The output devices 1535 display 1mages generated by the
computer system. The output devices include printers and
display devices, such as cathode ray tubes (CRT) or liquid
crystal displays (LCD).

Finally, as shown in FIG. 15, bus 1503 also couples com-
puter 1500 to a network 1565 through a network adapter (not
shown). In this manner, the computer can be a part of a
network of computers (such as a local area network (“LAN"),
a wide area network (“WAN”), or an Intranet, or a network of
networks, such as the internet. For example, the computer
1500 may be communicably coupled through the network
1565 to an ingest server, mid-tier server, edge server, content
provider streaming server, or end user device.

As mentioned above, the computer system 1500 may
include one or more of a variety of ditlerent computer-read-
able media. Some examples of such computer-readable
media include RAM, ROM, read-only compact discs (CD-
ROM), recordable compact discs (CD-R), rewritable com-
pact discs (CD-RW), read-only digital versatile discs (e.g.,
DVD-ROM, dual-layer DVD-ROM), a variety of recordable/
rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW,
etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD
cards, etc.), magnetic and/or solid state hard drives, ZIP®
disks, read-only and recordable blu-ray discs, any other opti-
cal or magnetic media, and floppy disks.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art wall
recognize that the invention can be embodied 1n other specific
forms without departing from the spirit of the invention. Thus,
one of ordinary skill in the art would understand that the
invention 1s not to be limited by the foregoing illustrative
details, but rather 1s to be defined by the appended claims.

We claim:
1. A method for providing real-time granular statistics
reporting in a distributed platform, the method comprising:

aggregating statistical data for a plurality of customer con-
figurations from different sets of servers that are oper-
ated by a plurality of different content delivery networks
(CDNs), wherein each customer configuration of the
plurality of customer configurations 1s deployed to at
least one server of the different sets of servers;

from the aggregated statistical data, grouping a subset of
statistical data for a particular customer configuration
that 1s deployed to at least one server that 1s operated by
a first CDN of the plurality of CDNs and to at least one
server that 1s operated by a second CDN of the plurality
of CDNs; and

deriving a set of values from the grouped subset of statis-
tical data to identily performance realized for the par-
ticular customer configuration across said first CDN and
said second CDN.

2. The method of claim 1 further comprising incrementally

updating the derived set of values 1n real-time as statistical



US 8,510,807 Bl

23

data for the particular customer configuration 1s aggregated
from any server to which the particular customer configura-
tion 1s deployed.

3. The method of claim 1 turther comprising presenting the
derived set of values 1n real-time to a customer associated
with the particular customer configuration.

4. The method of claim 1 further comprising updating the
derived set of values in real-time by continually aggregating
statistical data from the different sets of servers at each recur-
ring interval, by grouping a subset of statistical data for the
particular customer configuration at each recurring interval,
and by modifying the derived set of values based on newly
agoregated statistical data for the particular customer con-
figuration at each recurring interval.

5. The method of claim 4, wherein continually aggregating,
statistical data comprises aggregating statistical data from
different servers of the different sets of servers at different
staggered windows 1n the recurring interval, and wherein
moditying the derived set of values comprises incrementally
moditying the derived set of values at each window 1n the
recurring interval in which statistical data 1s aggregated from
a server to which the particular customer configuration is
deployed.

6. The method of claim 1, wherein each customer configu-
ration of the plurality of customer configurations 1s deployed
to at least one server of the different sets of servers that
performs at least one of content distribution and service
execution as specified by said customer configuration.

7. The method of claim 1, wherein aggregating statistical
data comprises aggregating statistics that a server of the dii-
ferent sets of servers produces for each customer configura-
tion that 1s deployed to said server.

8. For a distributed platform comprising a plurality of
servers that produce statistical data, a reporting system com-
prising:

a statistics server communicably coupled to the plurality of
servers, said statistics server comprising a processor
operating to (1) aggregate said statistical data from the
plurality of servers 1n a staggered manner during a recur-
ring interval and (11) incrementally update a real-time
performance report for a particular customer of the dis-
tributed platform as statistical data 1s aggregated 1n the
staggered manner from edge servers of a first content
delivery network (CDN) and edge servers of a second
CDN that are simultaneously deployed with a configu-
ration of the particular customer and that produce statis-
tical data for the particular customer as a result of per-
forming at least one of content distribution and service
execution on behalf of the particular customer, wherein
the plurality of servers comprises the edge servers of the
first and second CDNs; and

a portal server comprising a processor operating to present
said performance report to the particular customer as it 1s
derived in real-time.

9. The reporting system of claim 8, wherein said statistics
server aggregates said statistical data 1n the staggered manner
by aggregating statistical data from at least a first set of the
plurality of servers at a first window of the recurring interval
and a second set of the plurality of servers at a second window
of the recurring interval, wherein servers 1n the first set of
servers differ from servers i1n the second set of servers,
wherein the first window 1s a different instance in time in the
recurring interval than the second window, and wherein sta-
tistical data from all the plurality of servers 1s aggregated
during each recurring time 1nterval.

10. The reporting system of claim 8, wherein the statistics
server aggregates the statistical data by pulling the statistical

10

15

20

25

30

35

40

45

50

55

60

65

24

data from the plurality of servers in the staggered manner
based on a configuration file that identifies which servers of
the plurality of servers to pull statistical data from at different
windows of the recurring time interval.

11. The reporting system of claim 8, wherein the statistics
server aggregates the statistical data by configuring the plu-
rality of servers with a configuration file that specifies when in
the recurring time interval each server of the plurality of
servers 1s to push statistical data to the statistics server.

12. The reporting system of claim 8, wherein said proces-
sor of the portal server further operates to maintain an active
session with a client of the particular customer 1n order to pass
the performance report to the client as 1t 1s updated.

13. The reporting system of claim 12, wherein said proces-
sor of the portal server further operates to generate a historic
log of the performance report at the client based on passing
the performance report to the client as 1t 1s updated and
causing the client to store a set of previously passed updates
for presentation.

14. The reporting system of claim 8 further comprising a
database for authenticating the particular customer to 1dentity
the performance report that the particular customer 1s allowed
to view when the particular customer accesses the portal
Server.

15. The reporting system of claim 8, wherein the particular
customer 1s a first customer, the performance report 1s a first
performance report, and the processor of the statistics server
turther operates to (111) der1tve a second performance report for
a second customer of the distributed platform based on sta-
tistical data that 1s aggregated from a different set of the
plurality of servers that performs at least one of content dis-
tribution and service execution on behalf of the second cus-
tomer and (1v) update said second performance report in
real-time as said statistical data 1s aggregated from each
server ol the different set of the plurality of servers 1n the
staggered manner during the recurring interval.

16. The reporting system of claim 8, wherein said statistics
server and said portal server are operated by at least one of the
first CDN and the second CDN.

17. The distributed platform of claim 8, wherein said sta-
tistics server and said portal server are operated by a third
party independent of the first CDN and the second CDN.

18. A method for providing real-time granular statistics
reporting 1n a distributed platform, the method comprising;

aggregating at least one data structure from at least one

different server of a plurality of servers at different win-
dows within a recurring time interval, wherein said data
structure comprises statistical data;

as each particular data structure 1s aggregated, processing,

the statistical data of the particular data structure to

incrementally update 1n real-time at least one value for a

performance report that 1s derived using statistical data

that 1s aggregated from a set of at least two servers at
different windows of the recurring time interval,
wherein processing the statistical data comprises:

(1) 1dentifying a particular server from which the particu-
lar data structure 1s aggregated,

(1) 1dentifying a current value aggregated from the par-
ticular server in a preceding time interval that was
used 1n deriving the value of the performance report,

(111) 1dentifying a new value for the current value from
the particular data structure,

(1v) computing a difference between the new value and
the current value and summing said difference with
the value of the performance report to incrementally
update the performance report when the new value 1s
identified and the current value 1s 1dentified,




US 8,510,807 Bl

25

(v) adding the new value to the value of the performance
report to incrementally update the performance report
when the new value 1s 1dentified and the current value
1s not 1dentified, and

(v1) subtracting the current value from the value of the
performance report to incrementally update the per-
formance report when the new value 1s not identified
and the current value 1s identified; and

passing the performance report as i1t 1s updated in real-time

to a client while a connection 1s maintained with the

client.

19. The method of claim 18, wherein aggregating at least
one data structure comprises aggregating a data structure that
a particular server dynamically populates with different sta-
tistical data at different instances of the recurring time inter-
val.

20. The method of claim 19, wherein the particular server
dynamically populates the data structure with different sta-
tistical data based on statistical data that the particular server
produces during a current interval of the recurring time inter-
val.

21. The method of claim 18, wherein passing the updated
performance report comprises producing historic trending at
the client based on each update of the performance report.

¥ ¥ # ¥ ¥

10

15

20

25

26



	Front Page
	Drawings
	Specification
	Claims

