12 United States Patent

Georgieva et al.

US008510717B2

(10) Patent No.: US 8.510.717 B2

(54) METHOD AND SYSTEM FOR TESTING
APPLICATION MODULLES USING STATIC

(75)

(73)

(%)

(21)
(22)

(65)

(60)

(1)
(52)

(58)

(56)

TESTS FROM A TEST SUITE

Inventors: Violeta Georgieva, Sofia (BG); Nikolai

Dokovski, Sofia (BG)

Assignee: SAP AG, Walldort (D.

N
2)
S

Notice: Subject to any disclaimer, the term of this

patent 1s extended or

adjusted under 35

U.S.C. 154(b) by 1130 days.

Appl. No.: 12/112,888

Filed: Apr. 30, 2008

Prior Publication Data

US 2008/0270992 Al Oct. 30, 2008

Related U.S. Application Data
Provisional application No. 60/926,989, filed on Apr.

30, 2007.

Int. CI.
GO6F 9744 (2006.01)

U.S. CL

USPC e 717/126;717/124

Field of Classification Search

USPC e e 717/124
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

45) Date of Patent: Aug. 13,2013
2002/0133806 Al* 9/2002 Flanaganetal. 717/123
2006/0123332 Al1* 6/2006 Bergetal. 715/512
2007/0006041 Al1* 1/2007 Brunswigetal. 714/38
2007/0089092 Al1* 4/2007 Schmudtetal. 717/126
2008/0127070 Al1l* 5/2008 Barciaetal. 717/116

OTHER PUBLICATIONS

U.S. Appl. No. 10/637,453, filed Aug. 2003, Chelf et al.*

Jan Newmarch, Foundations of Jin1 2 Programming, Apress 2006, p.
434 *

Using Annotations to Check Structural Properties of Classes by
Michael Eichberg, Thorten Schafer, and Mira Mezini (hereafter
Eichberg), M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 237-252,
2003, Springer-Verlag Berlin Heidelberg 2005.*

* cited by examiner

Primary Examiner — Lewis A Bullock, Ir.

Assistant Examiner — Hau H Hoang

(57) ABSTRACT

A method and a system for validating a plurality of files via
static tests from a test suite are described. The method
includes selecting a plurality of static tests from a test suite,
executing the plurality of static tests on a plurality of files to
validate the plurality of files, and storing records aiter execut-
ing the plurality of static tests to record the validation of the
plurality of files. The system includes an application, a plu-
rality of files 1nside the application, the plurality of files to
describe and configure the application, a plurality of static
tests to validate the plurality of files, and a framework to apply
the plurality of static tests to the plurality of files.

6,684,387 B1* 1/2004 Ackeretal. 717/126
7,627,671 B1* 12/2009 Palmaetal. 709/224
7,711,551 B2* 5/2010 Lopez-Barquilla et al. 704/9 29 Claims, 3 Drawing Sheets
DEVELOPMENT BUILD APPLICATION
ENVIRONMENT 160 INFRASTRUGCTURE 170 SERVER 180

TEST FRAMEWORK 110

CORE COMPONENTS 120

MODULE_1 130

MODULE_2 140

MODULE-
SPECIFIC
TEST 130A

|

— MODULE-
SPECIFIC
l TEST 140A

* o 0 MODULE_N 150

MODULE-
SPECIFIC
TEST 120A

L —

U.S. Patent Aug. 13,2013 Sheet 1 of 3 US 8,510,717 B2

DEVELOPMENT | BUILD APPLICATION
ENVIRONMENT 180 INFRASTRUCTURE 170 SERVER 180

' TEST FRAMEWORK 110

| CORE COMPONENTS 120

\ l MODULE_1 130 I MODULE_2 140 l i I MODULE_N 150

MODULE-

SPECIFIC
TEST 150A

MODULE-
SPECIFIC
TEST 140A

MODULE-
SPECIFIC
TEST 130A

FIG. 1

U.S. Patent Aug. 13,2013 Sheet 2 of 3 US 8,510,717 B2

APPLICATION SERVER 200_|
i TESTS TESTS
ALL 241 242

| :
TEST FRAMEWORK 110

TEST SUITE LIBRARY 240

. . | TESTS
244

TESTS
243

DEPLOY SERVICE

LIBRARY 230

220

| CLIENT 210 |

FIG. 2

U.S. Patent Aug. 13,2013 Sheet 3 of 3 US 8,510,717 B2

310
360

SELECT TESTS FROM

TEST SUITE 120 CHECK FOR
ANNOTATIONS
370
CREATE A TEST
330 VERIFY EXISTENCE
OF AFILE
380
ADD TEST TO THE
TEST SUITE 340
CHECK PROPERTIES
OF A RESOURCE
EXECUTE TESTS IN 390
ORDER 250
STORE RECORDS OF
VALIDATION
ALIDATE SYNTAX OF

FILES

FIG. 3

US 8,510,717 B2

1

METHOD AND SYSTEM FOR TESTING
APPLICATION MODULES USING STATIC
TESTS FROM A TEST SUITE

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority from Provisional Applica-
tion No. 60/926,989 entitled “Web Container et al.” and filed
on Apr. 30, 2007.

BACKGROUND

1. Field of Invention

Embodiments of the invention relate generally to the soft-
ware arts, and, more specifically, to a method and a system to
test and verily application modules using static tests from a
test suite.

2. Background

A programmer can make an error (mistake), which pro-
duces a defect (fault, bug) 1n the code, in software or a system,
or 1n a document. If a defect 1n code 1s executed, the system
will fail to do what 1t should do (or do something it 1s not
supposed to), causing a failure. Defects 1n software, systems
or documents may result in failures. A fault can also turn into
a failure when the environment 1s changed. Examples of these
changes 1n environment include the software being run on a
new hardware platform, alterations in source data or interact-
ing with different software.

Soltware testing 1s the process used to assess the quality of
computer soltware. Solftware testing 1s an empirical technical
investigation conducted to provide stakeholders with infor-
mation about the quality of the product or service under test,
with respect to the context in which 1t 1s intended to operate.
This includes, but 1s not limited to, the process of executing a
program or application with the mtent of finding software
bugs. Software testing may be viewed as an important part of
the software quality assurance (SQA) process. In SQA, soft-
ware process specialists and auditors take a broader view on
software and 1ts development. They examine and change the
soltware engineering process 1tself to reduce the amount of
faults that may increase the defect rate.

There are many approaches to software testing. Reviews,
walkthroughs or inspections are considered static testing,
whereas actually runming the program with a given set of test
cases at a given development stage 1s referred to as dynamic
testing. Software testing 1s used 1n association with verifica-
tion and validation. In general, validation 1s the process of
checking 11 something satisfies a certain criterion. In a quality
management system, validation usually relates to confirma-
tion that the needs of an external customer or user of a prod-
uct, service, or system are met. Verification 1s usually an
internal quality process of determining compliance with a
regulation, standard, or specification.

A common practice of software testing 1s performed by an
independent group of testers after the functionality 1s devel-
oped before it 1s shipped to the customer. This practice often
results in the testing phase being used as buffer to compensate
for project delays, thereby compromising the time devoted to
testing. Another practice 1s to start software testing at the
same moment the project starts and continue the process until
the project finishes.

SUMMARY OF THE INVENTION

A method and a system for validating a plurality of files via
static tests from a test suite 1s described. The method includes

10

15

20

25

30

35

40

45

50

55

60

65

2

selecting a plurality of static tests from a test suite, executing
the plurality of static tests on a plurality of files to validate the
plurality of files, and storing records after executing the plu-
rality of static tests to record the validation of the plurality of
files.

The system includes an application, a plurality of files
inside the application, the plurality of files to describe and
configure the application, a plurality of static tests to validate

the plurality of files, and a framework to apply the plurality of
static tests to the plurality of files.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention 1s 1llustrated by way of example and not by
way of limitation 1n the figures of the accompanying drawings
in which like references indicate similar elements. It should
be noted that references to “an” or “one” embodiment 1n this
disclosure are not necessarily to the same embodiment, and
such references mean at least one.

FIG. 1 1s a block diagram of an embodiment of a test
framework that includes a plurality of static tests.

FIG. 2 1s a block diagram of an embodiment for executing,
a plurality of static tests from a test suite via a test framework
in an application server.

FIG. 3 1s a flow diagram of an embodiment of the invention
for executing a plurality of static tests from a test suite to
validate a plurality of files.

DETAILED DESCRIPTION

Embodiments of the mvention relate to a method and a
system for validating a plurality of files via static tests from a
test suite. The static tests help developers of different appli-
cations to verily and validate whether their applications are
buildable, deployable, and tulfill given specifications, such as
the Sun’s Java Enterprise Edition (EE) specifications and
standards. Development groups use these tests to be sure that
every application will be verified during development or
deployment time not only for structural correctness but
semantic correctness as well. Therefore, the test suite needs to
assure correctness of a plurality of files against Sun’s Java EE
specifications and against proprietary standards such as SAP
NetWeaver’s specifications.

In one embodiment, the test suite with the static tests can be
integrated mnto a development environment or build infra-
structure and thus to provide correct and verified applications
to any application server. In other embodiments, the test suite
can be integrated into both, the application server and the
development environment or only into the application server.
Having the test suite integrated into an application server,
enables static checks to be performed for particular standards
compliance on the application server 1tself. These checks are
executed just before deployment of the applications.

The static tests are written once and can be executed 1n all
environments: development environment, build infrastruc-
ture, application server, etc. The application developer
receives exactly the same result from each environment i1t the
tests are the same. The static tests are grouped 1n a test suite.
New static tests can be easily included by adding them to the
existing test suite. New custom static tests can be created for
different modules of an application server and added to the
test suite. The test suite 1s then archived and integrated in the
application server or the development environment. The out-
put of the static tests can be persisted and used later 11 needed.

In one embodiment, the static tests can be integrated and
executed via a test framework. Such framework is the JLin
tool developed by SAP and imtegrated in SAP NetWeaver.

US 8,510,717 B2

3

JL1n 1s a tool for static analysis of Java design-time artifacts.
Using a plurality of tests (or checks), it identifies and signals
potential error sources, checks internal consistency, enforces
coding conventions, evaluates statistics and metrics, enforces
architectural patterns.

The JLin tool enables application developers to investigate
the properties of Java source files and check the syntax of their
semantics. Checks or tests for metrics, conventions, compat-
ibilities, authorizations, and language restrictions, {for
example, are delivered as standard. In addition, separate cus-
tom checks can be created and performed by specilying a set
of check parameters. Thus, a check run can include several
single checks, which can be performed on one or more source
code files. After the check run 1s completed, the system dis-
plays a list containing the test results as information, warn-
ings, or errors, along with location of the problem 1in the
source code. Thus JLin 1s a suitable development tool that can
be called either 1n a Java program or as a separate plug-in.

Static tests part of a test suite can be invoked and executed via
the JLin tool.

It should be noted that the test suite with a plurality of static
tests may be packed 1n an archive file and therefore, can be
invoked and executed by any test framework; the JLin tool 1s
only an example of such framework.

FIG. 1 1s a block diagram of an embodiment of a test
framework that includes a plurality of static tests. Test frame-
work 110 executes tests on a plurality of files. Test framework
110 includes core components 120 that provide the function-
ality of the framework. Test framework 110 also includes a set
of modules such as module_1 130, module 2 140, and mod-
ule_n 150. For each module, there are standard module-spe-
cific tests. For module_1 130, these are module-specific tests
130A; for module_2 140, these are module-specific tests
140A; and for module_n 1350, these are module-specific tests
150A. The modules with the corresponding tests check par-
ticular files, for example module_1 130 may check Java docu-
mentation files, module 2 140 may check Java EE deploy-
ment descriptor files, and module_3 150 may execute
performance checks when accessing a SQLJ database. Test
framework 110 can be integrated as plug-in in development
environment 160. Thus, any plurality of source files devel-
oped 1n development environment 160 can be tested via the
module-specific tests. Test framework 110 can also be inte-
grated in build infrastructure 170 and application server 180.
This provides validation and verification of the plurality of
source files when building applications and before deploying
the applications on the application server 180.

FI1G. 2 1s a block diagram of an embodiment for executing,
a plurality of static tests from a test suite via a test framework
in an application server. Application server 200 1s a standard
application server that supports a number of specifications
and standards including but not limited to Sun’s Java EE
specification. Application server 200 1s used for deployment
and execution of different applications. In one embodiment,
this application may be an enterprise application. An enter-
prise application 1s an application that conforms to the Sun’s
Java 2 Platform, Enterprise Edition, specification and also to
the Java EE 3 specification. The enterprise application (or just
application) can consist of the following: zero or more EJB
modules, zero or more Web modules, zero or more applica-
tion client modules, and any combination of the above, as
long as 1t contains at least one module. The application 1s
represented by, and packaged in, an enterprise archive (EAR)
file. This EAR file 1s passed, when a user wants to deploy the
application on an application server, such as application

server 200.

10

15

20

25

30

35

40

45

50

55

60

65

4

A Web module represents a Web application. It 1s used to
assemble servlets and JavaServer Pages (ISP) files, as well as
static content such as Hyper Text Markup Language (HTML)
pages, into a single deployable unit. Web modules are stored
in Web archive (WAR) files, which are standard Java archive
files. A Web module contains the following: one or more
servlets, JSP files, and other files, and a deployment descrip-
tor, stored 1n an eXtensible Markup Language (XML) file.
This file, named web.xml, declares the contents of the mod-
ule. It contains mformation about the structure and external
dependencies of Web components 1 the module and
describes how the components are to be used at run-time.

Retferring back to FIG. 2, to deploy an application, user
sends a deploy request for a particular application via a client
device 210. Client device 210 may be an administrator tool
with Graphical User Interface (GUI) part. The deploy request
1s forwarded to deploy service 220. Deploy service 220 man-
ages the deployment of applications and the distribution of
their modules (Web modules, EJB modules, or application
client modules) to the corresponding application server com-
ponents. Deploy service 220 checks 11 the application 1s writ-
ten 1n compliance with the Java EE 5 specifications by check-
ing its version. I the version of the application 1s Java EE 3,
then deploy service 220 invokes library 230. Library 230
returns a tree structure containing all annotations for this
application according to the Java EE 35 standard. An “annota-
tion”, 1n the Java computer programming language, 1s a spe-
cial form of syntactic metadata that can be added to Java
source code. Classes, methods, variables, parameters and
packages may be annotated. Unlike JavaDoc tags, Java anno-
tations are embedded 1n class files generated by a compiler
and may be retained by the Java Virtual Machine to be made
retrievable at run-time.

Deploy service 220 passes to test framework 110 the
received annotations, the modules of the application, and
global information for the application. Test framework 110
invokes test suite library 240. Test suite library 240 contains
a plurality of static tests separated 1n groups such as tests-all
241, tests 242, tests 243, and tests 244. Tests-all 241 contains
tests that are valid for and executed on all available modules
of an application. Tests 242, tests 243, and tests 244 contain
tests that are valid for and executed on a specific application
module. For example, 1 the application to be deployed 1s a
Web application, 1t will contain a Web module. Therelore,
deploy service 220 will send the test framework 110, anno-
tations for this application, the Web module, and global infor-
mation for the enterprise archuve file (EAR) of the applica-
tion. Then, test framework 110 will invoke test-all 241 tests
and afterwards the specific tests applicable for Web modules,
for example tests 242.

Test framework 110 first invokes static tests-all 241 from
test suite library 240. First test of tests-all 241 checks 11 the
deployment descriptor file (for example, web.xml) of the
application is Java EE 5 version. If the deployment descriptor
file 1s not, then the test converts the XML file into Java EE 5
XML file. The second test of the test-all 241 group parses the
deployment descriptor to validate the XML file against
schema and check the syntax of the file. Then, next test checks
if the application module (e.g., Web module) contains anno-
tations and verifies the syntax of the annotations. If these tests
are successful, test framework 110 builds a model that
describes the deployment descriptor and annotation informa-
tion of the corresponding module of the application 1n Java
source code mstead of XML structure. After the model 1s
successiully built, test framework 110 sends the model to the
corresponding applicable group of tests for executing mod-
ule-specific tests. For example, 11 a Web model 1s built from

US 8,510,717 B2

S

Web modules descriptor XML files and annotations for this
Web module, this Web model 1s sent to the group of tests that
are specific and applicable for Web modules.

The module-specific tests, such as tests 242, 243, and 244,
check for file existence, specific properties of a resource, if
the resource implements a specific interface, 1f the resource
extends a specific class, 1 the resource 1s 1n the application
class path, and so on. Some of the tests can be mandatory;
others can be omitted for performance reasons. A new static
test can be created 1f a desired test 1s not present in the
plurality of tests and added to the test suite. Records are stored
in the form of log files after executing the plurality of static
tests to record the validation of the plurality of files of the
application. This verification and validation of an application,
ensures that the application 1s correctly bult, all elements are
present, and all descriptor files are semantically and structur-
ally correct. If all tests are passed successiully, then deploy
service 220 deploys the particular application on application
server 200.

FI1G. 3 1s a flow diagram of an embodiment of the invention
for executing a plurality of static tests from a test suite to
validate a plurality of files. The test suite with the static tests
1s packed 1n a library or an archive file and can be imported 1n
an application server, development environment, or build
infrastructure. Thus, all static tests become available for use.
At block 310 a plurality of static tests are selected from a test
suite. At block 320, a new static test 1s created 11 a desired test
1s not present in the plurality of tests. The created static test 1s
added to the test suite at block 330. At block 340 all tests are
executed 1n specific order. First, at block 350, a validation test
1s executed for each of the plurality of files to validate syntax
against a particular specification. In one embodiment, this test
provides XML validation of all XML files against schema
specification and standard.

At block 360 a test 1s executed to check if the plurality of
files contains annotations and verifying the syntax of the
annotations. Referring to FIG. 2, this corresponds to mnvoca-
tion of tests-all 241. After these two tests are executed, then
the rest of the static tests applicable for this application from
the test suite are executed without the need of a specific order.
At block 370, a test 1s run that verifies that a file specified in
another file 1n the plurality of files exists inside an application.
Atblock 380, a set of static tests are executed to check specific
properties of a resource stored inside an application and
defined 1n a particular file of the plurality of files. These tests
check if the resource implements a specific interface, if the
resource extends a specific class, and if the resource 1s 1n the
application’s class path.

At block 390, records are stored after executing the plural-
ity of static tests to record the validation of the plurality of
files. These records may be stored in the form of log files. The
test suite with the plurality of static tests can be executed
during each of a development phase, a deployment phase, and
a test phase of an application. One test in the suite may depend
from another test, that 1s a first test my require execution of a
second test prior to the first test’s execution.

Some applications, for example JavaServer Faces (ISF)
applications, depend on correctly 1nitialized environment to
run properly. The environment of these applications can be
configured using XML configuration files bundled with the
applications. The configuration {files have XML syntax that
should be valid according an XML schema defined 1n a speci-
fication. Although XML validation 1s a form of check it can-
not guarantee the proper configuration of these applications.
A test suite with a plurality of static tests 1s a resource efficient
and extendable option that guarantees correct ISF application
configuration.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

ISF applications can be extended with user interface (UI)
components. Those components should be described 1n the
application’s XML configuration file by adding a specific tag
in the XML configuration file. The XML may be valid but 1f
the component described does not extend “UlComponent”™
interface defined 1n the corresponding JSF specification, the
JSF runtime environment of the application server will not be
able to use 1t. That form of validation cannot be handled by
XML wvalidation tools. In most cases, if such checks are
skipped this could lead to non-configured JSF runtime envi-
ronment 1n the application server. Those additional checks
guarantee that the application developer will be notified dur-
ing deployment time that the application may not work as
expected.

A test environment, such as the JLin tool, inspects the JSF
application configuration and builds a verification manager
that holds a group of tests (verifiers) that should be executed
for that application. Once constructed, the verifiers are
executed sequentially. The exact set of verifiers 1s determined
during JSF application validation process and it 1s a resource
elficient process, since 1t depends on the content of the JSFE
application configuration. For example, 11 a JSF application
does not add UI components, the corresponding verifier 1s not
part of the validation process.

In some embodiments, there are three types of verifiers
ComponentVerifier, ComponentClassVerifier and MBean-
Verifier. The ComponentInterfaceVerifier checks whether the
tested resource implements a specific interface. For instance,
any custom PhaseListeners should implement javax.faces.ev-
ent.Phaselistener interface. The ComponentClassVerfier
checks whether the tested resource extends a specific class.
For instance, any custom Ul component should extend jav-
ax.faces.component.UIComponent abstract class. The
MBeanVerifier checks whether the tested resource can be
found 1n the application class path. Verifiers use predefined
set of checks to implement their test logic. The checks pro-
vided include: interface existence check, correct class path
check, and class existence check. If additional test logic 1s
needed, i1t can easily be supplied by adding additional checks.
These checks are static tests that can be part of a test suite.

Elements of embodiments may also be provided as a
machine-readable medium for storing the machine-execut-
able 1nstructions. The machine-readable medium may
include, but 1s not limited to, flash memory, optical disks,
CD-ROMs, DVD ROMs, RAMs, EPROMs, EEPROMs,
magnetic or optical cards, or other type of machme-readable
media suitable for storing electronic mstructions. The mven-
tion may be downloaded as a computer program, which may
be transferred from a remote computer (e.g., a server) to a
requesting computer (e.g., a client) by way of a communica-
tion link (e.g., a modem or network connection).

It should be appreciated that reference throughout this
specification to “one embodiment” or “an embodiment”
means that a particular feature, structure or characteristic
described 1n connection with the embodiment 1s included 1n at
least one embodiment of the present invention. Therefore, 1t1s
emphasized and should be appreciated that two or more ret-
erences to “an embodiment” or “one embodiment” or “an
alternative embodiment™ 1n various portions of this specifi-
cation are not necessarily all referring to the same embodi-
ment. Furthermore, the particular features, structures or char-
acteristics may be combined as suitable 1n one or more
embodiments of the mvention.

In the foregoing specification, the invention has been
described with reference to the specific embodiments thereof.
It will, however, be evident that various modifications and
changes can be made thereto without departing from the

US 8,510,717 B2

7

broader spirit and scope of the invention as set forth 1n the
appended claims. The specification and drawings are, accord-
ingly, to be regarded 1n an 1llustrative rather than a restrictive
sense.

The mvention claimed 1s:

1. A computer-implemented method comprising:

selecting, by a processor of the computer, a plurality of

static tests from a test suite:

based on the selected plurality of static tests, determining,

by the processor of the computer, validity of a plurality

of files inside an application, wherein determining valid-

ity of the plurality of files includes:

executing, by the processor of the computer, a first sub-
set of the plurality of static tests on the plurality of
f1les for checking the plurality of files inside the appli-
cation;

based on a result of execution of the first subset of the
plurality of static tests, building, by the processor of
the computer, a model including annotation informa-
tion and deployment descriptor of the application;

forwarding the built model to a second subset of the
plurality of static tests, from a plurality of file type
specific tests, corresponding to a file type of the plu-
rality of files; and

executing, by the processor of the computer, the second
subset of the plurality of static tests on the built model;
and

storing, 1n a memory of the computer, records including the

validity of the plurality of files determined based on a
result of execution of the first and the second subset of
the plurality of static tests.

2. The computer-implemented method of claim 1 further
comprising;

creating, by the processor of the computer, a static test

when a desired test 1s not present 1n the plurality of tests;
and

adding, by the processor of the computer, the desired test to

the test suite.

3. The computer-implemented method of claim 1, wherein
executing the first subset of the plurality of static tests com-
Prises:

verilying, by the processor of the computer, the syntax of

the plurality of files against a specification; and

checking, by the processor of the computer, whether the 45

plurality of files contain annotations and verifying the
syntax of the annotations.

4. The computer-implemented method of claim 1, further
comprising;

storing, 1n the memory of the computer, the plurality of 50

tests 1n a library on an application server.

5. The computer-implemented method of claim 1, further
comprising;

applying, by the processor of the computer, the plurality of

tests during at least one of a development phase, a 55
deployment phase, and a test phase of the application.

6. The computer-implemented method of claim 1, further
comprising:

defimng, by the processor of the computer, a dependence

from a first test of the plurality of static tests to a second
test of the plurality of static tests.

7. The computer implemented method according to claim
1, wherein determining validity of the plurality of files com-
Prises:

verilying, by the processor of the computer, that another of 65

the plurality of files specified in one of the plurality of
files exists mside the application.

10

15

20

25

30

35

40

60

8

8. The computer implemented method according to claim
7, wherein executing the second subset of the plurality of
static tests comprises:

checking, by the processor of the computer, properties of a

resource stored 1nside the application and defined 1n the

one of the plurality of files.

9. The computer-implemented method of claim 8, wherein
the checking properties of the resource comprises:

checking, by the processor of the computer, whether the

resource 1implements a specific interface;

checking, by the processor of the computer, whether the

resource extends a specific class; and

checking, by the processor of the computer, whether the

resource 1s in an application class path.

10. The computer implemented method of claim 1, further
comprising;

analyzing, by the processor of the computer, an application

configuration of the application;

based on the analysis, determining, by the processor of the

computer, the plurality of static tests to be executed for

checking the plurality of files; and

building, by the processor of the computer, a verification

manager including the determined plurality of static

tests.

11. The computer implemented method of claim 1,
wherein executing the first subset of the plurality of static
tests comprises:

in a pre-specified order, executing, by the processor of the

computer, the first subset of the plurality of static tests.

12. The computer implemented method of claim 1,
wherein executing the second subset of the plurality of static
tests comprises:

in a non-specified order, executing, by the processor of the

computer, the second subset of the plurality of static

tests.

13. A computing system comprising:

a processor; and

a memory coupled to the processor storing program code,

the program code comprising:

an application;

a plurality of files 1nside the application, the plurality of
files to describe and configure the application;

a first subset of a plurality of static tests to execute the
plurality of files for checking the plurality of files
inside the application;

a model including annotation information and deploy-
ment descriptor of the application, wherein the model
1s built based on result of execution of the first subset
of the plurality of tests;

a second subset of the plurality of static tests configured
to execute the built model, wherein the built model 1s
torwarded to the second subset of the plurality of
static tests, from a plurality of file type specific tests,
corresponding to a file type of the plurality of files;
and

a framework to apply the plurality of static tests to the
plurality of files.

14. The computing system of claim 13, further comprising;:

an application server having a library storing the plurality

of static tests.

15. The computing system of claim 13, wherein the first
subset of the plurality of static tests comprises:

at least a test to verily syntax of the plurality of files against

a specification, and a test to check whether the plurality

of files contain annotations and to verily the syntax of

the annotations.

US 8,510,717 B2

9

16. The computing system of claim 13, wherein a first test
ol the plurality of static tests can be dependent on a second
test of the plurality of static tests.

17. The computing system of claim 13, wherein the second
subset of the plurality of static tests comprises:

a test to check properties of a resource stored inside the

application, the resource defined 1n the first file.

18. The computing system of claim 17, wherein the test to
check properties comprises:

at least a test to check whether the resource implements a

specific interface, a test to check whether the resource
extends a specific class, and a test to check whether the
resource 1s 1n the application class path.

19. The computing system of claim 13, further comprising:

a verification manager including the plurality of tests to be

executed for checking the plurality of files, the plurality
of files being determined based on analysis of an appli-
cation configuration of the application.

20. A non-transitory machine-readable medium having
instructions therein that when executed by the machine, cause
the machine to:

select a plurality of static tests from a test suite;

based on the selected plurality of static tests, determine

validity of a plurality of files inside an application,

wherein steps to determine validity of the plurality of

files includes:

execute a first subset of the plurality of static tests on the
plurality of files for checking the plurality of files
inside the application;

based on a result of execution of the first subset of the
plurality of static tests, build a model including anno-
tation information and deployment descriptor of the
application;

forward the built model to a second subset of the plural-
ity of static tests, from a plurality of file type specific
tests, corresponding to a file type of the plurality of
files; and

execute the second subset of the plurality of tests on the
built model; and

store records including the validity of the plurality of
files determined based on a result of execution of the
first and the second subset of the plurality of static
tests.

21. The non-transitory machine-readable medium of claim
20 having structions that when executed further cause the
machine to:

create a static test when a desired test 1s not present 1n the

plurality of tests; and

add the desired test to the test suite.

22. The non-transitory machine-readable medium of claim
20, wherein 1nstructions causing the machine to execute the
first subset of the plurality of static tests comprise instructions
causing the machine to:

10

15

20

25

30

35

40

45

50

10

verily the syntax of the plurality of files against a specifi-
cation; and

check whether the plurality of files contain annotations and
verilying the syntax of the annotations.

23. The non-transitory machine-readable medium of claim
20 having instructions that when executed further cause the
machine to:

store the plurality of tests 1n a library on an application
Server.

24. The non-transitory machine-readable medium of claim
20 having instructions that when executed further cause the
machine to:

apply the plurality of tests during at least one of a devel-
opment phase, a deployment phase, and a test phase of
the application.

25. The non-transitory machine-readable medium of claim
20 having instructions that when executed further cause the
machine to:

define a dependence from a first test of the plurality of static
tests to a second test of the plurality of static tests.

26. The non-transitory machine-readable medium of claim
20, wherein 1nstructions causing the machine to determine
validity of the plurality of files comprise instructions causing,
the machine to:

verily that another of the plurality of files specified 1n one
of the plurality of files exists inside the application.

277. The non-transitory machine-readable medium of claim
26, wherein 1nstructions causing the machine to execute the
second subset of the plurality of static tests comprise instruc-
tions causing the machine to:

check properties of a resource stored inside the application
and defined 1n the one of the plurality of files.

28. The non-transitory machine-readable medium of claim
277, wherein 1nstructions causing the machine to check the
properties of the resource comprise istructions causing the
machine to:

check whether the resource implements a specific inter-
face;

check whether the resource extends a specific class; and

check whether the resource 1s 1n the application class path.

29. The non-transitory machine-readable medium of claim
23 having instructions that when executed further cause the
machine to:

analyze an application configuration of the application;

based on the analysis, determine the plurality of static tests
to be executed for checking the plurality of files; and

build a verification manager including the determined plu-
rality of static tests.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

