US008505031B2
12 United States Patent (10) Patent No.: US 8.505,031 B2
Klissner 45) Date of Patent: Aug. 6,2013
(54) METHOD FOR SHARING DATA 7.424,710 B1* 9/2008 Nelsonetal.ccoeven..... 718/1
7,593,930 B2* 9/2009 Braunetal. /1
(75) Tnventor: - Paul Kendel Klissner, San Mateo, CA 50050031772 AL* 12005 Shedrinsky -1 709/228
(US) 2005/0198308 Al* 9/2005 Hoylandetal. ... 709/227
2006/0080402 Al1* 4/2006 Hanetal. 709/217
(73) Assignee: Oracle America, Inc., Redwood City, 2006/0129981 Al™* 6/2006 Dostertetal. ... 717/114
CA (US) 2008/0155103 A ¥ 6/2008 B:;_llley 709/227
2009/0083756 Al* 3/2009 Kimetal. 719/312
_ _ _ _ _ 2013/0067031 Al1* 3/2013 Shedrinsky 709/217
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 1388 days.
Primary Examiner — Diem Cao
(21) Appl. No.: 12/193,312 Assistant Examiner — Willy W Huaracha
(74) Attorney, Agent, or Firm — Brooks Kushman P.C.
(22) Filed: Aug. 18, 2008
_ o (57) ABSTRACT
(65) Prior Publication Data A method for sharing data includes creating a socket serviced
US 2010/0042722 Al Feb. 18, 2010 by a server application executing within a central operating
system environment and creating another socket serviced by
(31) Int. Cl. a client application executing within a virtualized operating
Gool 5/00 (2006.01) system environment. The central operating system environ-
GOoF 9/455 (2006.01) ment and virtualized operating system environment run on a
(52) U.S.CL single computer and are separated by a secure boundary. The
USPC e, 719/313; 718/1 central operating system environment has administrative con-
(58) Field of Classification Search trol over the virtualized operating system environment. The
USPC 719/311, 312, 313, 314; 718/1, 100, method also includes establishing a communication link
718/101 across the secure boundary and between the sockets, request-
See application file for complete search history. ing at least one element of a server array existing 1n a memory
space ol the server application and passing the at least one
(56) References Cited element to the client application via the communication link

to mirror the server array 1into a memory space of the client

15 Claims, 2 Drawing Sheets

U.S. PATENT DOCUMENTS application.
5,845,068 A * 12/1998 WiInigeroooevvvvvvvnennn, 726/3
7,188,120 B1* 3/2007 Leonard etal. 707/769
/-zs
28
-
3 3
! A
e e I
P e)
Reming (2= L]
N
™ e — — —] m
(Sﬂﬁkﬂ)\/*#
—32
\
_ _)
4
(Socket ¥
’/-35 0
== [0]
e [1]
e BT}
Fatching f’é_:’:EZ:::::: [f]
? m‘:ﬁ::}:: ----- - .
48 Ry [n]
<

U.S. Patent Aug. 6, 2013 Sheet 1 of 2 US 8,505,031 B2

CREATE AND
BIND SOCKET 10

LISTEN FOR INCOMING

CONNECTIONS 12
create socket and
establish connection 14
ACCEPT CONNECTION 16
request element of (9
array
READ AND VALIDATE

REQUEST 20

RETRIEVE AND RETURN
REQUESTED ELEMENT 22

recelve and store element
n mirrored array 24

Fig-1

U.S. Patent Aug. 6, 2013 Sheet 2 of 2 US 8,505,031 B2

26

28

Retuming

Fetching

30

US 8,505,031 B2

1
METHOD FOR SHARING DATA

BACKGROUND

Virtual memory gives an application the impression that it
has contiguous working memory, while 1n fact 1t may be
physically fragmented and may even overflow on to disk
storage. Systems that use virtual memory may make more
elficient use of physical memory, e.g. RAM.

A memory-mapped file 1s a segment of virtual memory
which has been assigned a direct byte-for-byte correlation
with some portion of a file or file-like resource. This resource
may be a {ile that 1s physically present on-disk, but may also
be a device, shared memory object or other resource that an
operating system may reference through a file handle. Once
present, this correlation between the file and the memory
space permits applications to treat the mapped portion as 1f 1t
Wwere primary memory.

Memory mapping a file may increase I/O performance,
especially when used on small files. Accessing memory
mapped files may be faster than using direct read and write
operations: (1) a system call may be orders of magnitude
slower than a sitmple change of a program’s local memory; (2)
in most operating systems, the mapped memory region may
be the kernel’s file cache—no copies need to be created in
user space.

Certain application level memory-mapped file operations
may perform better than their physical file counterparts.
Applications, for example, may access and update data in a
file directly, as opposed to seeking from the start of the file or
rewriting the entire edited contents to a temporary location.
Because a memory-mapped file may be handled internally 1n
pages, linear file access may require disk access only when a
new page boundary 1s crossed and may write larger sections
of the file to disk 1n a single operation.

Memory-mapped files may permit “lazy loading” which
uses small amounts of RAM even for very large files. Loading,
the entire contents of a file (that 1s significantly larger than the
amount of memory available) may cause thrashing as the
operating system reads from disk into memory and simulta-
neously pages from memory back to disk. Memory-mapping
may not only bypass the page file completely, but the system
may only need to load the smaller page-sized sections as data
1s being edited.

Memory mapping processes may be handled by a virtual
memory manager, which may also be responsible for page
files. Memory mapped files may be loaded into memory one
entire page at a time. The page size may be selected by the
operating system for maximum performance.

Memory mapped {ile I/O may be chosen for performance
reasons. This approach, however, may result in page faults if,
for example, a piece of data 1s not actually loaded by the
operating system. Memory mapped file I/O may be slower
than standard file I/O. For example, when reading 1n large
files, most of the data may not be cached by the kernel: page
faults may occur when reading uncached data.

Memory-mapped files may be used 1n an operating system
process loader. When a process 1s started, the operating sys-
tem may use a memory mapped file to bring an executable
file, along with any loadable modules, mnto memory for
execution. Some memory-mapping systems use a technique
referred to as “demand paging” 1in which a file 1s loaded 1nto
physical memory 1n subsets only when that page 1s actually
referenced. In the specific case of executable files, this may
permit the operating system to selectively load only those
portions of a process image that need to execute.

10

15

20

25

30

35

40

45

50

55

60

65

2

Memory-mapped {files may be used to share memory
between multiple processes. In some modern protected mode
operating systems, processes are generally not permitted to
access memory space that i1s allocated for use by another
process. Two or more applications, however, may simulta-
neously map a single physical file into memory and access
this memory. For example, certain operating systems provide
a mechanism for applications to memory-map a shared seg-
ment of the system’s page file and share data via this section.

SUMMARY

A method for sharing data includes creating a socket ser-
viced by a server application executing within a central oper-
ating system environment and creating another socket ser-
viced by a client application executing within a virtualized
operating system environment. The central operating system
environment and virtualized operating system environment
run on a single computer and are separated by a secure bound-
ary. The central operating system environment has adminis-
trative control over the virtualized operating system environ-
ment. The method also includes establishing a
communication link across the secure boundary and between
the sockets, requesting at least one element of a server array
existing 1n a memory space ol the server application and
passing the at least one element to the client application via
the communication link to mirror the server array into a
memory space of the client application.

A method for sharing data includes creating a socket ser-
viced by a server application executing within a central oper-
ating system environment and creating another socket ser-
viced by a client application executing within a virtualized
operating system environment. The central operating system
environment and virtualized operating system environment
run on a single computer and are separated by a secure bound-
ary. The central operating system environment has adminis-
trative control over the virtualized operating system environ-
ment. The method also 1ncludes establishing a
communication link across the secure boundary and between
the sockets, and passing at least one changed element of a
server array existing in a memory space of the sever applica-
tion to the client application via the communication link to
mirror the server array into a memory space ol the client
application.

While example embodiments in accordance with the
invention are 1llustrated and disclosed, such disclosure should
not be construed to limit the invention. It 1s anticipated that
various modifications and alternative designs may be made
without departing from the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a tlow chart depicting a method for sharing data
according to an embodiment of the invention.

FIG. 2 1s a block diagram of a computer having global and
local operating systems.

DETAILED DESCRIPTION

The Solaris Zones partitioning technology may be used to
virtualize operating system services and provide an 1solated
and secure environment for running applications. A zone 1s a
virtualized operating system environment created within a
single istance of the Solaris Operating System. When a zone
1s created, an application execution environment 1s produced
in which processes are 1solated from the rest of the system.
This 1solation prevents processes that are running 1n one zone
from momitoring or aifecting processes that are running in
other zones. Even a process running with superuser creden-
tials cannot view or atfect activity in other zones.

US 8,505,031 B2

3

A zone may also provide an abstract layer that separates
applications from the physical attributes of the machine on
which they are deployed. Examples of these attributes include
physical device paths.

In certain circumstances, the upper limit for the number of >

zones on a system 1s 8,192. The number of zones, however,
that may be effectively hosted on a single system 1s deter-
mined, for example, by the total resource requirements of the
application software running 1n all of the zones.

Zones may be 1deal for environments that consolidate a
number of applications on a single server. The cost and com-
plexity of managing numerous machines may make 1t advan-
tageous to consolidate several applications on larger, more
scalable servers.

Zones may enable more ellicient resource utilization on a

system. Dynamic resource reallocation permits unused
resources to be shifted to other containers as needed. Fault
and security 1solation mean that poorly behaved applications
do notrequire a dedicated and under-utilized system. With the
use of zones, these applications can be consolidated with
other applications.

Zones may allow the delegation of some administrative
functions while maintaining overall system security.

A non-global zone may be thought of as a box. One or more
applications may run in this box without interacting with the
rest of the system. Solaris zones 1solate soitware applications
or services by using flexible, software-defined boundaries.
Applications that are running in the same instance of the
Solaris Operating System may then be managed indepen-
dently of one other. Thus, different versions of the same
application may be run in different zones to match the
requirements of the desired configuration.

A process assigned to a zone may mampulate, monitor and
directly communicate with other processes that are assigned
to the same zone. The process cannot perform these functions
with processes that are assigned to other zones 1n the system
or with processes that are not assigned to a zone. Processes
that are assigned to different zones are able to communicate
through network APIs.

Solaris systems may contain a global zone. The global zone
may have a dual function. The global zone may be both the
default zone for the system and the zone used for system-wide
administrative control. All processes may run 1n the global
zone 11 no non-global zones, referred to sometimes as simply
zones, are created by a global administrator.

The global zone may be the zone from which a non-global
zone may be configured, installed, managed or uninstalled.
The global zone may be bootable from the system hardware.
Admuinistration of the system infrastructure, such as physical
devices, routing in a shared-IP zone or dynamic reconfigura-
tion may only be possible 1n the global zone. Appropriately
privileged processes running in the global zone may access
objects associated with other zones.

Unprnivileged processes 1n the global zone may be able to
perform operations not allowed to privileged processes 1n a
non-global zone. For example, users 1n the global zone may
view information about every process in the system. Access,
however, may be restricted to the global zone.

Each zone, including the global zone, may be assigned a
zone name. The global zone, however, typically has the name
global. Each zone may also be given a unique numeric 1den-
tifier, which may be assigned by the system when the zone 1s
booted. Each zone may also have a node name that 1s com-
pletely independent of the zone name. The node name may be
assigned by an administrator of the zone. Each zone may have
a path to its root directory that 1s relative to the global zone’s

10

15

20

25

30

35

40

45

50

55

60

65

4

root directory. The scheduling class for a non-global zone
may be set to the scheduling class for the system by default.

A global administrator may have super user privileges or a
primary administrator role. When logged 1 to the global
zone, the global administrator may monitor and control the
system as a whole.

A non-global zone may be adminmistered by a zone admin-
istrator. The global administrator may assign a zone manage-
ment profile to the zone administrator. The privileges of a
zone administrator are confined to a non-global zone.

The global administrator may use the “zonecig” command
to configure a zone by specilying various parameters for the
zone’s virtual platform and application environment. The
zone 1s then nstalled by the global administrator, who uses
the zone administration command “zoneadm™ to 1nstall soft-
ware at the package level into the file system hierarchy estab-
lished for the zone. The global administrator may log into the
installed zone by using the “zlogin” command. At first login,
the internal configuration for the zone 1s completed. The
“zoneadm” command 1s then used to boot the zone.

Solaris Trusted Extensions may enforce a mandatory
access control policy on all aspects of an operating system,
including device access, file, networking, print and window
management services. This may be achieved by adding sen-
sitivity labels to objects, thereby establishing explicit rela-
tionships between these objects. Only appropriate (and
explicit) authorization allows applications and users read and/
or write access to the objects.

Solaris Trusted Extensions 1s an optionally-enabled layer
of secure labeling technology that allows data security poli-
cies to be separated from data ownership. This approach
allows, for example, the Solaris Operating System to support
both traditional Discretionary Access Control (DAC) policies
based on ownership, as well as label-based Mandatory Access
Control (MAC) policies.

The label-based policies for file systems and networks are
light-weight and have been implemented within the Solaris
kernel, services and utilities. Unless the Trusted Extensions
layer 1s enabled, all labels are equal so the kernel 1s not
configured to enforce the MAC policies. For efficiency, a
Boolean value 1s maintained 1n the kernel to indicate whether
labeling comparisons should be used in policy enforcement.
When the label-based MAC policies are enabled, all data
flows are restricted based on a comparison of the labels asso-
ciated with the subjects requesting access and the objects
containing the data. Like other multilevel operating systems,
Trusted Extensions meets the requirements of the Common
Criteria Labeled Security Protection Profile (LSPP) and the
Role-Based Access Protection Profile (RBAC). The Trusted
Extensions implementation, however, may provide high
assurance, while maximizing compatibility and minimizing
overhead.

To support compatibility between applications, the entire
application environment 1s virtualized for each label through
the use of Solaris Containers (zones). This approach may be
referred to as polyinstantiation because there may be an
instance of each resource and service available at each label.
There may also be a single system 1mage which may be
applied to the entire operating environment.

As discussed above, all the zones may be centrally admin-
istered from a protected global zone which manages the
Trusted Computing Base (1CB) known as the Trusted Path.
The zones may share a single LDAP directory 1in which net-
work-wide policy 1s defined, as well as a single name service
cache daemon for synchronizing local databases. All labeling
policy and account management may be done from within the
Trusted Path. MAC policy enforcement may be automatic 1n
labeled zones and may apply to all their processes, even those
running as root. Access to the global zone (and hence Trusted

Path applications) may be restricted to administrative roles.

US 8,505,031 B2

S

Minimal overhead may be achieved by moving access con-
trol checks to a higher level of enforcement. For example,
instead of maintaiming labels on fine-grained objects like files
and directories, Trusted Extensions associates labels with

6

To prevent configuration errors and to simplily system
administration, there are no interfaces for specitying the
labels of mount points. Instead, the kernel determines the
labels of all mount points based on host and zone labels, and

SOlfilﬂS Conta.iners, aﬂfl _D?WOI'k endpoits. Each Z0ne 1S 5 ensures that the MAC policy is correctly implemented.
assigned a unique sensitivity label and may be customized By default each labeled zone is completely isolated from
with its own set of file systems and network resources. Bach 411 other labeled zones because their labels are required to be
Elouni[ed hﬁle system maydbeTiutt%lilatlcally lalb]ilel’d by ﬂ];e unique. No process 1n a zone may view or signal processes
ernel when 1t 1s mounted. 1he file system label may be running in other zones. There are no privileges available for
derived from the label of the zone or host which 1s sharing 1t. 10 . :
. . . any process 1n a labeled zone to write to lower-level files.
All files and directories within the mounted file system may . . .
. . .3 Such policies as reading from files 1 lower-level zones,
have the same label as their mount point. Because no explicit

: : exporting directories to higher-level zones and moving files
extensions to the file or file system structure are required, any . hioher level b " Wled b _
file system that works on Solaris will work when Trusted mJFO 1}% 1= e:&ie zones,il Exlwever,, nillay c enlil e 31;8peccll-
Extensions label enforcement 1s enabled. 15 fylng t_ © PHVIIEEEs dVdlldble to eac £01C Wlel it 15 ooted.

Processes are uniquely labeled according to the zone in Privileges available to a zone may, 1n turn, be assigned to
which they are executing. All processes within a zone (and processes in the zone. A zone’s privilege limit, however, 1s an
their descendants) should have the same label, and are com- upper bound that applies to all processes (even root-owned)
pletely 1solated from processes in other zones. Unlike other that are run 1n the zone. All policies which affect multiple
virtualization technologies, there is no performance penalty 20 zones, such as sharing of directories, may be administered via
for executing within a zoned environment as there 1s no emu- the Trusted Path.
lation required for a container. Labeled zones may be 1nstan- Labels may include hierarchical components referred to as
tiated quickly by, for example, cloning a copy of a default classifications (or levels) and non-hierarchical components
zone. Disk usage may be minimized by Sharing immutable referred to as compartments (or Categoﬂes)_ The mapping of
instances ot most system files and by utilizing copy-on-write 25 pames to classifications and compartments may be specified
technology for the rest. | in a database which is private to the Trusted Path. The internal

A zone’s local file Systems are Wﬂtabl? at the zone’s label, structure of labels may be opaque to users and applications.
but may be shared with labeled zones via loopback or NFS At least 256 classifications and 256 compartment bits may be
mounts. Loopback mounts are used between zones running, supported.
on the same host, and multi-level NFS is used for access ° When two labels are compared, the first label may be
between hosts. File systems that are shared by all zones on a greater than, less than, equal to or disjoint from the second
system are typically mounted read-only. This policy provides label. Classifications may be compared as integers, and com-
both confidentiality and integrity protection. partments may be compared as bit masks. Labels are disjoint

File sharing between sets of Trusted Extensions systems ,. when each contains at least one compartment bit which 1s not
using NFS may be symmetric. Corresponding zones on each present in the other. A label range may be specified by an
system (with matching labels) may have read-write access to upper bound (referred to as a clearance) and a lower bound.
each other’s shared file systems. Zones which dominate (have Administrative roles may use the Trusted Path to assign label
higher labels) than the owning zone may be granted read-only ranges to users, network attributes, workstations and allocat-
access (depending on per-zone policy settings). 40 able devices.

Writing up to higher-level regular files may not be possible Remote hosts may be single level or multilevel. Single
because such files are typically not visible within a labeled level hosts may have an implicit label assigned to them based
zone. Writing up, however, may be possible using named on their network or IP address. Non-label aware systems may
pipes which are loopback mounted 1nto higher-level zones. be assigned a specific label for communications purposes.
This unidirectional conduit may be useful for implementing 45 Multilevel hosts are trusted to operate at a range of labels, and
one-way guards and for tamper-proof logging. explicitly specity the label of every network packet when

Table 1 lists an example of labels assigned to the mount communicating with other trusted systems. Packet labels may
points 1n a zone called “needtoknow” and whose label 1s be specified using the Commercial IP Security Option
“CONFIDENTIAL: NEED TO KNOW.” It dominates two (CIPSO) which encapsulates a sensitivity label as an IP
zones, “internal” and “public.” option.

TABLE 1
Mount Point Access Sensitivity Label
/ Read/Write CONFIDENTIAL : NEED TO KNOW
/kernel Read Only ADMIN_LOW
/lib Read Only ADMIN_LOW
fopt Read Only ADMIN_LOW
/platform Read Only ADMIN_LOW
/sbin Read Only ADMIN_LOW
fusr Read Only ADMIN_LOW
/var/tsol/doors Read Only ADMIN_LOW
/tmp Read/Write CONFIDENTIAL : NEED TO KNOW
fvar/run Read/Write CONFIDENTIAL : NEED TO KNOW
/home/gfaden Read/Write CONFIDENTIAL : NEED TO KNOW
/zone/public/export/home/gfaden Read Only PUBLIC
/zone/internal/export/home/gfaden Read Only CONFIDENTIAL : INTERNAL USE ONLY

US 8,505,031 B2

7

When specitying the labeling policy for network attributes,
both label ranges and sets of disjoint labels may be enumer-
ated. This ability to precisely define the labeling policy may
be required to support various multilevel configurations
including guards, NFS servers, Sun Ray servers, name serv-
ers, print servers, workstations and high-assurance grid com-
puting. An administrator may also assign a label range to a
router even 1f the router does not interpret labels. Although
zones may have unique labels, specific multilevel services
may be configured for each zone.

The network attributes database may be maintained in an
LDAP directory and shared by all trusted systems comprising
a network of multilevel systems. Internet Protocol Security
(IPsec) may be used to authenticate the source IP addresses
associated with incoming network packets. IPsec enforces
integrity protection, and may be used to encrypt data on
multilevel networks.

Zones may be configured to share a single IP address, or
they may be assigned unique IP addresses. Similarly, they
may share the same physical network interface, or may be
configured to use separate network interfaces. Both shared
and per-zone IP addresses may be used concurrently, with
different labeling policies for each IP address. Solaris Zones
technology may allow multiple zones to share a single net-
work interface through the use of virtual interfaces.

Sharing of IP addresses 1s possible in Trusted Extensions
because each packet 1s implicitly or explicitly labeled. When
a packet 1s received, the kernel may use the label of the packet
to determine the appropriate zone to which 1t should be deliv-
ered. Sharing a single IP address for all zones may be conve-
nient for workstations and laptops, especially when DHCP 1s
used. This may simplity deployment into infrastructures with
limited IP addresses.

Using per-zone IP addresses may be required when sepa-
rate networks are 1n use, and may be appropriate when mul-
tilevel services are being provided. To enable multilevel ser-
vices, a database of multilevel ports may be maintained via
the Trusted Path. A multilevel port 1s a reserved port whose
multilevel semantics are administratively controlled. For
cach IP address, a range of labels, as well as explicit labels
outside of that range may be configured for use by multilevel
services. A privileged server may bind to a multilevel port
using any IP addresses that are assigned to the server’s zone.
The server may receive requests at these labels and reply to
any request. For multilevel TCP services, the reply 1s auto-
matically sent using the label of the request without requiring
any special programming in the server. For multilevel UDP
services, the server may set a socket option to indicate the
label of the reply. In either case, the server may query the
kernel to determine the label of each request and then restrict
the reply accordingly.

Users may log 1n via the Trusted Path and may be autho-
rized to select their multilevel desktop preference. Once
authenticated, they may be presented with an option to select
an explicit label or a range of labels within their clearance and
the label range of their workstation or desktop unit. A window
system may 1nitiate a user session in the zone whose label
corresponds to the user’s default or minimum label.

The window system may provide menus for interacting
with the Trusted Path to change the label of the current work-
space or to create additional labeled workspaces. For each
selected label, the window system may start another user
session 1n the corresponding zone. All of these user sessions
may run concurrently and are subjects of the user’s 1dentity
that was established during the initial authentication. Each
window may be visibly labeled according to the zone or host
with which 1t 1s associated. Although users may simulta-

10

15

20

25

30

35

40

45

50

55

60

65

8

neously interact with windows running 1n multiple zones, the
applications themselves remain 1solated.

Attempts to cut and paste data, or drag and drop files
between clients runming 1n different zones are mediated by the
Trusted Path. Specific authorizations may be required for
upgrading or downgrading selections and files, and may be
prohibited by default.

By using the Trusted Path menu, authorized users may
assume one or more roles which they have been assigned. For
cach assumed role, a secondary authentication may be
required. Once authenticated, the window system may create
a new administrative workspace for the role and may start
another session. These administrative workspaces are pro-
tected from interference by, for example, untrusted clients
and non-role user logins. For roles that are cleared for all

labels, their sessions are initiated as Trusted Path processes.
Each role may have a limited set of RBAC rights which
restrict its access. Typically, two or more cooperating roles
may be used to configure the system. For example, a system
administrator role may create accounts and zones, while a
security administrator may assign labels to them. Roles with
suificient rights may configure aspects of the MAC and DAC
policies that apply to one or more Zones.

Devices may represent a security threat because they may
be used to import and export data from the system. In Trusted
Extensions, removable media devices are administered
through the Trusted Path menu. The window system provides
a Trusted Path interface for device allocation which provides
fine-grained access to specific devices based on user autho-
rizations and label ranges. For example, a user may be autho-
rized to allocate an audio system (speaker and microphone) at
a single level. Hot pluggable devices, such as USB flash
memory drives, may also be managed by the Trusted Path
user interface. An authorized user may request to have such
devices mounted 1nto a zone whose label 1s within the user’s
label range and the device’s label range. As an extra security
measure, the raw device may not be available within the
labeled zone. This capability may protect the integrity of the
mounted file system and may prevent unauthorized access.

Trusted Extensions may require additional administrative
steps to facilitate the export of memory-mapped files from the
global zone to a non-global (local) zone. The secure bound-
ary, for example, between these zones may need to be com-
prised to enable such export.

Requests to convey status information via a socket, how-
ever, may be used within the context of, for example, a
machine running Solaris and Trusted Extensions. (Of course,
such requests may be made 1n other suitable contexts.)

In one example, a port, e.g., “well-known port” 1n UNIX,
may have been assigned an arbitrary number within an
allowed range. This port may have been specifically config-
ured by Trusted Extensions as a multilevel port (MLP), such
that the port 1s made available from the global zone to be
contacted by applications 1n local zones. (Without configur-
ing a port as an MLP 1n Trusted Extensions, there may be no
way for an application in a local zone to contact an application
in the global zone over a network connection.) The port
specified as an MLP 1s the same port mentioned below. Addi-
tionally, clients know that the MLP 1s the agreed upon port
over which a server daemon running in the global zone 1s to be
contacted.

Referring now to FIG. 1, the server daemon running in a
central operating system environment creates a socket and
binds 1t to the internet address of the local machine specified
as a port number as indicated at 10. In TCP/IP for example, a
machine has a local IP address known as a loopback IP

US 8,505,031 B2

9

address which 1s 127.0.0.1 in IPV4 (and ::1 in IPV6). The
loopback IP address 1s a network address that refers to the
current computer.

As ndicated at 12, the server enters a loop wherein it listens
for incoming connections, letting the operating system queue
up icoming requests until the server can pull them from the
queue and process them. At the top of the loop, the server may
wait until an imcoming socket connection 1s made (from a
client) 11 no connections are already on the queue. The server
daemon, 1n this example, cannot detect whether a connection
has been queued or just arrived, only whether or not a con-
nection 1s found by the server daemon when the server dae-
mon attempts to accept (potentially waiting in the process) for
a new connection.

As indicated at 14, a client application, running in a virtu-
alized operating system on the same machine as the server,
creates a socket and establishes a connection to the server’s
socket (as i1llustrated, the actions performed by the client are
written 1n lower case, the actions performed by the server are
written 1n upper case). This connection may be established by,
for example, specifying the IP address of the local computer
(since they both exist on the same machine), and the port
number specified by the server daemon.

As indicated at 16, when a client connection arrives (or has
been queued by the operating system), the server accepts the
connection and then waits until data 1s sent over the new
connection from the client.

As indicated at 18, when the client detects that the server
has accepted 1its connection request (indicating a two-way
connection 1s established), the client sends a request to the
server via this connection (using a protocol mutually agreed
upon by the server and client) to send the contents of an
clement of a particular array that the client 1s mirroring. For
example, the request may be a “FETCH” command, followed
by an mndex of an array element of interest. The client may
then wait for data to be returned from the server over the
socket.

As indicated at 20, when data sent by the client over the
newly established connection arrives at the server, the server
reads the request and parses 1t to validate proper format and
determines what 1s being requested by the client. I1 the client
drops the connection for any reason, or 1f an error occurs 1n
the communication link or transmission of data over that link,
or if the client sends an unrecognized request, the server may
close the client connection and resume listening for new
socket connections from clients.

As indicated at 22, after the server parses the client request
and determines 1t, for example, 1s a “FETCH” command, the
server may use the index provided with the client’s “FETCH”
command and access the array in the server’s memory to
retrieve the contents of the requested element of the array. The
server may then return that data over the socket.

As indicated at 24, the client receives the data returned by
the server and stores 1t 1n a mirrored array in the client’s local
memory space, placing the data receirved from the server at
the same 1ndexed element as requested 1n order to match the
server’s array. By repeating such requests for each element of
the array, the client may maintain a consistent view of the
contents of the array held by the server.

In other embodiments, the client may request all data ele-
ments from the server sequentially, the client may request
clements 1n non-specific order, or on an on-demand or as-
needed basis. If the data returned by the server does not arrive
in tact or there 1s an error 1n the communication, the client
may report an error and may either retry the request or abort.

Still other embodiments may permit a two-way exchange
of array updates to keep, for example, the server-side and

10

15

20

25

30

35

40

45

50

55

60

65

10

client-side arrays in common. For example, the server may
query the client over the connection with a “FETCH” com-
mand including an index. The client may reply with the con-
tents of the specified element of the array. The server may
then update the specified element of its mirrored array
accordingly. Such a scheme may include a protocol that
specifies that each side take turns passing commands on the
pipeline.

To handle full-duplex two-way traific, two socket-pairs,
e.g., two network connections, may be used. In this case, the
server may send commands to the client over one socket (with
the client listening on the other end of that connection), and
the client may send commands to the server with the other
socket (with the server listening on the other end). Alterna-
tively, each side may send a “CHANGE” command to indi-
cate that an array element changed (rather than the other side
requesting the information). An index may be sent along with
the data. For example, the server may send: “CHANGE <n>
<data>" to the client and vice versa. The receiving side of the
command may immediately update the specified element <n>
of the array with <data>.

Referring now to FIG. 2, a computer 26 has a global oper-
ating system 28 and a local operating system 30 separated by
a security wall 32. A server application 34 1s running in the
global operating system 28 and a client application 36 is
running in the local operating system 30. The server applica-
tion 34 and client application 36 maintain respective arrays
38, 40 1n memory.

As discussed above, sockets 42, 44 have been created and
a communication link 46 established. A fetching function 48
of the client application 36 may request an element of the
array 38 via the communication link 46. A returning function
50 may return the requested element via the communication
link 46. Once returned, the element may be stored 1n the array
40 to mirror the array 38.

While embodiments of the invention have been 1llustrated
and described, i1t 1s not intended that these embodiments
illustrate and describe all possible forms of the invention. The
words used in the specification are words of description rather
than limitation, and it 1s understood that various changes may
be made without departing from the spirit and scope of the
invention.

e

What 1s claimed 1s:

1. A method for sharing data comprising:

creating a socket serviced by a server application executing
within a central operating system environment;

binding the socket to an Internet Protocol (IP) address of a
computer specified as a port number;

creating another socket serviced by a client application
executing within a virtualized operating system environ-
ment, the central operating system environment and vir-
tualized operating system environment running on the
computer and separated by a secure boundary, the cen-
tral operating system environment having administra-
tive control over the virtualized operating system envi-
ronment;

establishing a communication link across the secure
boundary and between the sockets by speciiying the IP
address and the port number;

requesting at least one element of a server array existing 1n
a memory space of the server application; and

passing the at least one element to the client application via
the communication link to mirror the server array into a
memory space of the client application.

2. The method of claim 1 wherein the sockets comprise

network sockets.

US 8,505,031 B2

11

3. The method of claim 1 wherein the sockets comprise
inter-process communication sockets.
4. The method of claim 1 wherein the communication link

comprises a network connection.
5. The method of claim 1 wherein the communication link
comprises an inter-process communication connection.
6. A method for sharing data comprising:
creating a socket serviced by a server application executing
within a central operating system environment;
binding the socket to an Internet Protocol (IP) address of a
computer specified as a port number;
creating another socket serviced by a client application
executing within a virtualized operating system environ-
ment, the central operating system environment and vir-
tualized operating system environment running on the
computer and separated by a secure boundary, the cen-
tral operating system environment having administra-
tive control over the virtualized operating system envi-
ronment,
establishing a communication link across the secure
boundary and between the sockets by speciiying the IP
address and the port number; and
passing at least one changed element of a server array
ex1isting 1n a memory space of the server application to
the client application via the communication link to
mirror the server array into a memory space of the client
application.
7. The method of claim 6 wherein the sockets comprise
network sockets.
8. The method of claim 6 wherein the sockets comprise
inter-process communication sockets.
9. The method of claim 6 wherein the communication link
comprises a network connection.

10

15

20

25

30

12

10. The method of claim 6 wherein the communication link
comprises an nter-process communication connection.

11. A method for sharing data between a server application
executing within a central operating system environment and
a client application executing within a virtualized operating
system environment, the central operating system environ-
ment and virtualized operating system environment runnmng
on a computer and separated by a secure boundary, the central
operating system environment having administrative control
over the virtualized operating system environment, the
method comprising:

creating a socket serviced by the server application;

binding the socket to an Internet Protocol (IP) address of

the computer specified as a port number;

creating another socket serviced by the client application;

establishing a communication link across the secure

boundary and between the sockets by specitying the IP
address and the port number;

requesting at least one element of an array existing 1n a

memory space of the server application; and

passing the at least one element to the client application via

the communication link to mirror the array in a memory
space of the client application.

12. The method of claim 11 wherein the sockets comprise
network sockets.

13. The method of claim 11 wherein the sockets comprise
inter-process communication sockets.

14. The method of claim 11 wherein the commumnication
link comprises a network connection.

15. The method of claim 11 wherein the communication
link comprises an inter-process communication connection.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

