US008499354B1
12 United States Patent (10) Patent No.: US 8.499,354 B1
Satish et al. 45) Date of Patent: Jul. 30, 2013

(54) PREVENTING MALWARE FROM ABUSING (56) References Cited

APPLICATION DATA
U.S. PATENT DOCUMENTS

(75) Inventors: Sourabh Satish, Fremont, CA (US); 5074549 A * 10/1999 Gol 796/93
William E. Sobel, Stevenson Ranch, CA 7.814.544 B1* 10/2010 Wilhelm T ey
(US) 2004/0237071 Al1* 11/2004 Hollanderetal. 717/124
2006/0150256 Al* 7/2006 Fantonetal. ..o.ooooeviivin.. 726/27

(73) Assignee: Symantec Corporation, Mountain View,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 116 days.

(21) Appl. No.: 13/048,810

(22) Filed: Mar. 15, 2011
(51) Int. CL.
Gool’ 12/14 (2006.01)
GO6F 11/00 (2006.01)
GO6F 12/16 (2006.01)
GOSB 23/00 (2006.01)
(52) U.S. CL
USPC ..o, 726/25;°726/22;726/23; 726/27
(58) Field of Classification Search
None

See application file for complete search history.

400

HOOK 410

APPLICATION

ANALYZE
PARAMETERS OF CALL

EXPLOIT

ATTEMPTED
ls

YES

* cited by examiner

Primary Examiner — Shin-Hon Chen
(74) Attorney, Agent, or Firm — Fenwick & West LLP

(57) ABSTRACT

An attempted exploit of a vulnerability of an application
executed by a computer 1s detected. The exploit attempts to
call an application programming interface (API) and abuse
application data through a malicious parameter of the call.
The API of the application 1s hooked and momitored for a call
made to the hooked API. A parameter of the call 1s analyzed
to determine whether the parameter has a malicious charac-
teristic indicating an attempt to use data within an address
space ol the application to execute malicious software. A
remediation action 1s taken responsive to determining that the
parameter has a malicious characteristic.

19 Claims, 4 Drawing Sheets

RETURN CONTROL
FLOW TO 420
APPLICATION

REPORT 416

U.S. Patent Jul. 30, 2013 Sheet 1 of 4 US 8.499.354 B1

102

118

DISPLAY

PROCESSOR

106

MEMORY

CONTROLLER
IUB

GRAPHICS
ADAPTER

MEMORY

122 16

10
CONTROLLER
HUB

NETWORK
ADAPTER

STORAGE
DEVICE

108

KEYBOARD '
POINTING DEVICE

FIG. 1

U.S. Patent Jul. 30, 2013 Sheet 2 of 4 US 8.499.354 B1

Computer
100

SECURITY MODULE
210

Monitoring Module
212

Analysis Module
214
Malware Detection Module
216

Remediation Module
218
Application
220

FIG. 2

U.S. Patent Jul. 30, 2013 Sheet 3 of 4 US 8,499,354 B1

Analysis Module
214

Location Module
310

Substring Module
312

Relation Module
314

File Existence Module
316

U.S. Patent Jul. 30, 2013 Sheet 4 of 4 US 8,499,354 B1

=
-

HOOK
APPLICATION 410
ANALYZE 119
PARAMETERS OF CALL

414

EXPLOIT RETURN CONTROL

ATTEMPTED FLOW TO 420
7 APPLICATION

REPORT 410

FIG. 4

US 8,499,354 Bl

1

PREVENTING MALWARE FROM ABUSING
APPLICATION DATA

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention pertains in general to computer security and
in particular to detecting attempted exploits of vulnerabilities
of applications and other programs executing on a computer.

2. Description of the Related Art

Applications executed on modern computers are often sus-
ceptible to a wide variety of attacks. Web browsers, for
example, are particularly susceptible to attacks because
browsers receive large amounts of content from the Internet.
Other types of applications are also vulnerable. For example,
email programs and even word processors provide interfaces
that are vulnerable to attack.

Malicious attackers can compromise such applications by
crafting specially-formulated mputs that exploit vulnerabili-
ties 1n the applications. Such an input contains data that, when
received by an application, gives the attackers control over the
application and allows them to perform malicious acts such as
capturing keystrokes, sending messages on the network,
deleting files, installing malicious software (malware) such as
spyware and adware, etc. Specifically, this type of attack
exploits an application’s vulnerability 1n order to 1nject or
otherwise write malicious code 1nto the application’s address
space. The application then executes the malicious code and
gives the attacker control of the application.

To stop these sorts of attacks, modern security products
monitor address spaces used by applications to detect behav-
1ors that signify malicious code being written to the address
space. Attackers have thus turned to new techniques that use
data already present in an application’s address space to carry
out an attack. Since these new techniques do not write data
into an application’s address space, they are not detected by
the security products.

BRIEF SUMMARY

The above and other 1ssues are addressed by a method,
computer system, and computer-readable storage medium for
detecting an attempted exploit of a vulnerability of an appli-
cation executed by a computer. An embodiment of the method
comprises hooking an application programming interface
(API) of the application and monitoring for a call made to the
hooked API. The method further comprises analyzing a
parameter of the call to determine whether the parameter has
a malicious characteristic indicating an attempt to use data
within an address space of the application to execute mali-
cious software (malware). The method additionally com-
prises performing a remediation action responsive to a deter-
mination that the parameter has the malicious characteristic.

An embodiment of the computer system comprises a non-
transitory computer-readable storage medium storing execut-
able computer program modules for performing steps. The
steps comprise hooking an application programming inter-
tace (API) of the application and monitoring for a call made
to the hooked API. The steps further comprise analyzing a
parameter of the call to determine whether the parameter has
a malicious characteristic indicating an attempt to use data
within an address space of the application to execute mali-
cious soiftware (malware). The steps additionally comprise
performing a remediation action responsive to a determina-
tion that the parameter has the malicious characteristic. The
computer system also comprises a computer processor for
executing the computer program modules.

10

15

20

25

30

35

40

45

50

55

60

65

2

An embodiment of the medium comprises a non-transitory
computer-readable storage medium storing executable com-
puter program modules for detecting an attempted exploit of
a vulnerability of an application executed by a computer. The
modules perform hooking an application programming inter-
tace (API) of the application and monitoring for a call made
to the hooked API. The modules further perform analyzing a
parameter of the call to determine whether the parameter has
a malicious characteristic indicating an attempt to use data
within an address space of the application to execute mali-
cious software (malware). The modules additionally perform
a remediation action responsive to a determination that the
parameter has the malicious characteristic.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11s ahigh-level block diagram 1llustrating an example
ol a computer for executing a security module 1n accordance
with one embodiment.

FIG. 2 1s a high-level block diagram showing modules
within the computer according to one embodiment.

FIG. 3 1s a high-level block diagram 1llustrating a detailed
view of the analysis module of the security module according
to one embodiment.

FIG. 4 1s a flowchart illustrating steps performed by the
security module to provide security to the computer 100
according to one embodiment.

The figures depict an embodiment of the present invention
for purposes of illustration only. One skilled in the art will
readily recognize from the following description that alterna-
tive embodiments of the structures and methods illustrated
herein may be employed without departing from the prin-
ciples of the invention described herein.

DETAILED DESCRIPTION

FIG. 11s ahigh-level block diagram 1llustrating an example
of a computer 100 for executing a security module 1n accor-
dance with one embodiment. The computer 100, for example,
can be a personal computer such as a desktop computer,
laptop computer or tablet computer, or another network-ca-
pable device like a personal digital assistant (PDA), mobile
telephone, pager, or television “set-top box.” In one embodi-
ment, the computer 100 1s used by one or more users.

The 1llustrated computer 100 includes at least one proces-
sor 102 coupled to a chipset 104. The chipset 104 includes a
memory controller hub 120 and an input/output (I/0) control-
ler hub 122. A memory 106 and a graphics adapter 112 are
coupled to the memory controller hub 120, and a display
device 118 1s coupled to the graphics adapter 112. A storage
device 108, keyboard 110, pointing device 114, and network
adapter 116 are coupled to the 1/O controller hub 122. Other
embodiments of the computer 100 have different architec-
tures. For example, the memory 106 1s directly coupled to the
processor 102 1in some embodiments.

The storage device 108 1s a non-transitory computer-read-
able storage medium such as a hard drnive, compact disk
read-only memory (CD-ROM), DVD, or a solid-state
memory device. The memory 106 holds istructions and data
used by the processor 102. The pointing device 114 1s used in
combination with the keyboard 110 to mput data into the
computer 100. The graphics adapter 112 displays images and
other information on the display device 118. In some embodi-
ments, the display device 118 includes touch screen capabil-
ity for receiving user input and selections.

The network adapter 116 couples the computer system 100
to a network such as the Internet. For example, the network

US 8,499,354 Bl

3

may connect the computer 100 to a security server that pro-
vides and updates a security module. The network may also
connect the computer 100 to a variety of servers that provide
websites and other functionality.

Some embodiments of the computer 100 have different
and/or other components than those shown i FIG. 1. For
example, the computer 100 can be formed of multiple blade
servers and lack a display device, keyboard, and other com-
ponents.

The computer 100 1s adapted to execute computer program
modules for providing functionality described herein. As
used herein, the term “module” refers to computer program
instructions and other logic used to provide the specified
functionality. Thus, a module can be implemented 1n hard-
ware, firmware, and/or software. In one embodiment, pro-
gram modules formed of executable computer program
instructions are stored on the storage device 108, loaded into
the memory 106, and executed by the processor 102.

In addition, this description uses the term “application” to
refer to a program executed by the computer 100. The appli-
cation can be part of an operating system executing on the
computer, or independent of the operating system. The appli-
cation 1s formed of one or more files that typically reside on
the storage device 108 and are loaded into memory 106 when
executed. At least one of the files loaded into memory 106 1s
referred to as the “executable 1mage” and 1s executed as a
process. The process includes an application programming,
intertace (API) having functions (including methods) that can
be called by other processes executing on the computer. A
valid function call includes zero or more parameters that are
passed to the called process for use by the called function.

FIG. 2 1s a high-level block diagram showing modules
within the computer 100 according to one embodiment. The
modules include a security module 210 and an application
module 220 (referred to herein as just an “application™) such
as a web browser, email program, word processor, spread-
sheet, image viewer, or music player. Other embodiments can
include different and/or other modules than those described
here.

Assume that the application 220 has an interface for
executing content received from a server via the network,

stored on a local disk, or located elsewhere. In a common
example, the application 220 1s a web browser such as
MICROSOFT INTERNET EXPLORER or MOZILLA
FIREFOX that includes functionality for downloading web
pages from a server and executing downloaded content.

The computer 100 may be attacked by recerving malware
shell code within a malicious script on a seemingly-innocu-
ous web page. When the script 1s executed by the computer
100, the shell code exploits a vulnerability of the browser or
another application 220 to compromise the computer. Once
the shell code gains control of the computer 100, 1t performs
additional malicious actions such as downloading malware to
the computer 100 from the network and/or executing malware
previously downloaded to the computer.

In a particular exploit, the malware stores malicious code in
a file on the computer 100 having a file name that 1s a sub-
string of a string within the address space of the process for
the application 220. The shell code calls a function 1n the API
of the application 220 and passes a set ol parameters to the
application. A parameter references the substring within the
address space of the application 220, and causes the applica-
tion to load and execute the malicious code 1n the file. Thus,
the malware exploits the vulnerability of the application with-
out 1jecting or otherwise writing malicious code into the

10

15

20

25

30

35

40

45

50

55

60

65

4

application’s address space because the substring exists
within the address space of the process for the application 220
betore the call 1s made.

For example, 1f the application’s address space contains the
string “ntdll.dll,” the malware stores malicious code 1n a file
on the computer 100 named “dll.dll.” The shell then makes a
call to the application 220 that includes a parameter referenc-
ing a string starting at the third character of “ntdll.dll,” 1.e.,
“dll.dll.” As aresult of this call, the application 220 loads and
executes the malicious code 1n the “dll.dll” file. The malicious
code can then perform other malicious actions on the com-
puter 100.

The security module 210 executes on the computer 100 to
detect and report malware using a variety of techniques. In
one embodiment, the security module 210 1s configured to
detect and block attacks that reference data within the address
space of an application 220 like those described above. The
security module 210 may also use malware definitions that
describe signature strings and/or behaviors that, if detected on
the computer 100, indicate the presence of malware. The
security module 210 thus provides protection by preventing
malware from compromising the computer 100.

In some embodiments the security module 210 1s incorpo-
rated into an operating system executing on the computer 100
while 1n other embodiments the security module 1s a standa-
lone application or part of another product. As shown, the
security module 210 1tself includes multiple modules. Those
of skill 1n the art will recognize that other embodiments of the
security module 210 can have different and/or other modules
than the ones described here, and that the functionalities can
be distributed among the modules 1n a different manner.

A monitoring module 212 within the security module 210
hooks APIs of applications 220 to enable transier of control
flow from the applications to the security module 210 at
certain points during the applications’ executions. In one
embodiment, the monitoring module 212 identifies applica-
tions 220 on the computer 100 that have vulnerabilities that
can be exploited by malicious code 1n content recerved via a
network or from other sources. The monitoring module 212
hooks tunction calls in the APIs of these applications at loca-
tions which allow the security module 210 to detect malware
exploiting the applications’ vulnerabilities.

The specific APIs and functions hooked by the monitoring,
module 212 vary in different embodiments. An embodiment
of the monitoring module 212 receives a list of applications,
exploitable vulnerabailities, and hooking locations from the
developer of the security module 210 and/or from another
source and compares the applications in the list with the
applications installed on the computer 100. The monitoring
module 212 hooks the specified locations of the installed
applications. In another embodiment, the monitoring module
212 hooks any API functions that can be called to pass param-
eters to an application.

In one embodiment, the monitoring module 212 1nstalls a
hook by replacing one or more instructions in the applica-
tion’s instruction stream with a jump nstruction or other
similar instruction that redirects control flow to the security
module 210. In one embodiment, executing the hook causes
the momitoring module 212 to save the state of the computer
100, including the parameters of the hooked function call, for
subsequent analysis. IT the analysis fails to detect malware, an
embodiment of the monitoring module 212 restores the origi-
nal state of the computer 100 and transfers the control flow
back to the hooked application 220 by executing the original
instructions that were replaced when the hook was installed.

An analysis module 214 analyzes the parameters ot hooked
function calls for evidence that malware 1s attempting to

US 8,499,354 Bl

S

exploit vulnerabilities of applications 220. In one embodi-
ment, the analysis module 214 1s activated when a hooked
function 1s called by another process. The analysis module
214 determines whether the parameters being passed to the
function by the calling process have characteristics indicating
an attempt to use data within the called application’s address
space to execute malware.

A malware detection module 216 uses the results from the
analysis module 214 to determine 1f the process that called the
hooked function 1s malware. In one embodiment, the malware
detection module 216 makes the determination based on
results from multiple different types of analyses. For
example, the malware detection module 216 can also con-
sider the reputation of the process that called the hooked
function, whether the process engaged in other suspicious
behaviors, whether the process 1s digitally signed, whether
the process 1s on a whitelist of known legitimate applications,
and/or whether a string signature of known malware 1s found
within the process. Based on these considerations, the mal-
ware detection module 216 declares the calling process mali-
cious or legitimate.

A remediation module 218 performs one or more remedia-
tion actions for detected malware. The remediation actions
vary in different embodiments. In one embodiment, the reme-
diation module 218 performs an action that blocks the mal-
ware from compromising the computer 100. These actions
may include terminating the calling and/or called process,
and deleting a malicious file stored on the computer. The
remediation actions may also 1include reporting the malware
detection to a user of the computer and/or to a security server
via the network.

FI1G. 3 1s a high-level block diagram illustrating a detailed
view of the analysis module 214 of the security module 210
according to one embodiment. In FIG. 3, the analysis module
214 contains a location module 310, a substring module 312,
a relation module 314 and a file existence module. These
modules use various techniques to analyze aspects of API call
parameters to determine 11 the call 1s attempting to exploit a
vulnerability. Other embodiments can include different and/
or other modules for analyzing API call parameters.

The location module 310 determines whether a parameter
ol the call references an abnormal location 1n the called appli-
cation’s address space. Normally, a parameter that supplies a
string will reference a location 1n the resource or string sec-
tions of the address space (1.e., of the portable executable file
loaded 1nto the address space as the executable image), or
pass the string on the processor stack. An attacker, in contrast,
may reference a string in an abnormal location, such the
header section, perhaps because the string required for the
attack 1s found only in that location. If the call parameter
references an abnormal location, the location module 310
flags the call as having a suspicious characteristic.

The substring module 312 determines whether a parameter
of the call references a location in the called application’s
address space holding substring of a full string. In one
embodiment, strings stored 1n the address space, on the stack,
and elsewhere are bounded by null characters. The substring
module 312 thus determines whether the string contained
within the location referenced by the parameter has bounding
null characters. If the characters bounding the string are not
null, the location module 312 flags the call as having suspi-
cious characteristics.

The relation module 314 determines whether a parameter
of the call references data at a location having no apparent
relationship with the called application. Typically, the data
referenced by a parameter 1s located either within the execut-
able image of the called application, or within another related

10

15

20

25

30

35

40

45

50

55

60

65

6

module used by the application (e.g., withina DLL file loaded
into the address space by the application). It 1s unusual for a
parameter to reference data from a different location. There-
fore, 1f the parameter references data at a location having no
apparent relationship with the called application, the relation
module 314 tlags the call as having suspicious characteristics.

The file existence module 316 determines whether a
parameter of the call references a data string having the same
name as a file on the storage device 108 of the computer 100.
In one embodiment, the file existence module 316 interacts
with the substring module 312 to determine whether the data
string referenced by the parameter 1s a substring of a full
string. If the data string 1s a substring, the file existence
module 316 determines whether a file having the same name
as the full string exists on the storage device 108 of the
computer 100. If the file exists, the file existence module 316
flags the call as having suspicious characteristics because it 1s
unusual for a call parameter to reference only part of the name
of a file stored by the computer 100 and it 1s likely that the call
1s attempting to load malware.

In one embodiment, the file existence module 316 deter-
mines whether a file having the same name as the substring 1s
stored on the storage device 108. 11 the file with the substring
name exists, the file existence module 316 examines the file
for characteristics indicating whether 1t 1s malicious. For
example, the file existence module 316 may determine the
creation date of the file. If the file was created recently, this
characteristic indicates that the file 1s potentially malicious
because 1t might have been created by malware that recently
entered the computer 100. On the other hand, i1 the file cre-
ation was not recent, this characteristic suggests that the file 1s
not malicious.

The check of whether the file with the substring name
ex1sts can serve as a lalse positive mitigation test for the file
existence module 316. IT a file with the full string name exists,
and the file with the substring name exists and lacks malicious
characteristics, an embodiment the file existence module 316
does not flag the call as having suspicious characteristics
because the file with the substring name might be legitimate.

FIG. 4 1s a flowchart illustrating steps performed by the
security module 210 to provide security to the computer 100
according to one embodiment. Other embodiments perform
the illustrated steps 1n different orders, and/or perform ditfer-
ent or additional steps. Moreover, some or all of the steps can
be performed by modules other than the security module 210.

The security module 210 hooks 410 function calls 1n the
API of an application 220 on the computer 100. In one
embodiment, the security module 210 hooks the application
when the executable image 1s loaded into memory by the
computer 100. The hook transiers control flow to the security
module 210 11 a hooked function 1s called. In one embodi-
ment, when a hook 1s followed and control tlow passes to the
security module 210, the security module saves the state of
the computer 100, including the parameters of the hooked
call.

In one embodiment, the analysis module 214 of the secu-
rity module 210 analyzes 412 the parameters of the hooked
call for evidence indicating that a vulnerability in the appli-
cation 220 1s being exploited. This analysis 412 may include
determining whether a parameter references data 1n an abnor-
mal location 1n the application’s address space and whether a
parameter references a substring of a full string 1n the address
space. The analysis 412 may also include determining
whether a parameter of the call references data at a location
having no apparent relationship with the called application,
and whether files having the substring and/or full string
names are stored by the computer 100. In one embodiment,

US 8,499,354 Bl

7

the security module 210 combines the results of the call
analyses with results of other analyses of the computer 100 to
determine 414 whether the function call 1s malicious (i.e.,
attempting to exploit a vulnerability of the application). If the
security module 210 determines that the call 1s not malicious,
the security module returns 420 control tlow to the applica-
tion. On the other hand, 11 the security module 210 determines
that the call 1s malicious, 1t performs one or more remediation
actions such as blocking the exploit and notitying the com-
puter user.

Some portions of above description describe the embodi-
ments 1n terms of algorithmic processes or operations. These
algorithmic descriptions and representations are commonly
used by those skilled in the data processing arts to convey the
substance of their work effectively to others skilled 1n the art.
These operations, while described functionally, computation-
ally, or logically, are understood to be implemented by com-
puter programs comprising instructions for execution by a
processor or equivalent electrical circuits, microcode, or the
like. Furthermore, 1t has also proven convenient at times, to
refer to these arrangements of functional operations as mod-
ules, without loss of generality. The described operations and
their associated modules may be embodied 1n software, firm-
ware, hardware, or any combinations thereof.

As used herein any reference to “one embodiment™ or “an
embodiment” means that a particular element, feature, struc-
ture, or characteristic described in connection with the
embodiment 1s included in at least one embodiment. The
appearances of the phrase “in one embodiment™ in various
places 1n the specification are not necessarily all referring to
the same embodiment.

Some embodiments may be described using the expression
“coupled” and *“‘connected” along with their dertvatives. It
should be understood that these terms are not intended as
synonyms for each other. For example, some embodiments
may be described using the term “connected” to indicate that
two or more elements are in direct physical or electrical
contact with each other. In another example, some embodi-
ments may be described using the term “coupled” to indicate
that two or more elements are 1n direct physical or electrical
contact. The term “coupled,” however, may also mean that
two or more elements are not 1n direct contact with each other,
but yet still co-operate or interact with each other. The
embodiments are not limited 1n this context.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having” or any other varia-
tion thereot, are intended to cover a non-exclusive inclusion.
For example, a process, method, article, or apparatus that
comprises a list of elements 1s not necessarily limited to only
those elements but may include other elements not expressly
listed or inherent to such process, method, article, or appara-
tus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B 1s satisfied by any one of the
following: A 1s true (or present) and B 1s false (or not present),
A 1s Talse (or not present) and B 1s true (or present), and both
A and B are true (or present).

In addition, use of the “a” or “an” are employed to describe
clements and components of the embodiments herein. This 1s
done merely for convenience and to give a general sense of the
disclosure. This description should be read to include one or
at least one and the singular also 1ncludes the plural unless 1t
1s obvious that 1t 1s meant otherwise.

Upon reading this disclosure, those of skill in the art will
appreciate still additional alternative structural and functional
designs for a system and a process for discovering documents
sharing common underlying structures in a large collection of

10

15

20

25

30

35

40

45

50

55

60

65

8

documents and processing the documents using the discov-
ered structures. Thus, while particular embodiments and
applications have been illustrated and described, 1t 1s to be
understood that the present mnvention 1s not limited to the
precise construction and components disclosed herein and
that various modifications, changes and variations which will
be apparent to those skilled in the art may be made 1n the
arrangement, operation and details of the method and appa-
ratus disclosed herein without departing from the spirit and
scope as defined 1n the appended claims.

The mvention claimed 1s:

1. A method for detecting an attempted exploit of a vulner-
ability of an application executed by a computer, comprising:

hooking an application programming interface (API) of the

application;
monitoring for a call made to the hooked API;
analyzing a parameter of the call to identily data existing
within the address space of the application before the
call 1s made referenced by the parameter of the call;

analyzing the referenced data existing within the address
space of the application to determine whether the param-
cter has a malicious characteristic indicating that the call
1s an attempt to use the data existing within the address
space of the application to execute malicious software
(malware); and

performing a remediation action responsive to a determi-
nation that the parameter has the malicious characteris-
tic.
2. The method of claim 1, wherein hooking the API of the
application comprises altering control flow of a function 1n
the API to call a security module executing on the computer.
3. The method of claim 1, wherein analyzing the referenced
data comprises:
determining whether the referenced data are at an abnor-
mal location 1n the application’s address space; and

determining that the parameter has the malicious charac-
teristic responsive to a determination that the referenced
data are at the abnormal location.

4. The method of claim 3, wherein the abnormal location
comprises a header of a portable executable file loaded 1n the
address space.

5. The method of claim 1, wherein analyzing the referenced
data comprises determining whether the referenced data are a
substring of a full string 1n the address space of the applica-
tion.

6. The method of claim 5, wherein determining whether the
referenced data are a substring of a full string comprises
determining whether a string contained within a location
referenced by the parameter 1s bounded by null characters.

7. The method of claim 5, further comprising:

determining whether a file stored by the computer has a

same name as the full string; and

determiming that the parameter has the malicious charac-

teristic responsive to the file stored by the computer
having the same name as the full string.

8. The method of claim 1, further comprising;

determinming whether a second parameter of the call refer-

ences data at a location having no apparent relationship
with the application; and

determining that the second parameter has the malicious

characteristic responsive to the second parameter refer-
encing data at the location having no apparent relation-
ship with the application.

9. The method of claim 1, further comprising:

determining whether a file stored by the computer has a

same name as a data string referenced by the parameter.

US 8,499,354 Bl

9

10. The method of claim 9, further comprising analyzing
the file stored by the computer for malicious characteristics.

11. The method of claim 1, wherein performing a remedia-
tion action comprises:

blocking the attempt to execute malware.

12. A computer system for detecting an attempted exploit
ol a vulnerability of an application executed by a computer,

comprising;
a non-transitory computer-readable storage medium stor-

ing executable computer program modules for perform-

Ing steps comprising;:

hooking an application programming interface (API) of
the application;

monitoring for a call made to the hooked API;

analyzing a parameter of the call to 1dentily data existing
within the address space of the application before the
call 1s made referenced by the parameter of the call;

analyzing the referenced data existing within the address
space of the application to determine whether the
parameter has a malicious characteristic indicating
that the call 1s an attempt to use the data existing
within the address space of the application to execute
malicious software (malware); and

performing a remediation action responsive to a deter-
mination that the parameter has the malicious charac-
teristic; and

a computer processor for executing the computer program

modules.
13. The computer system of claim 12, wherein analyzing
the referenced data comprises:
determining whether the referenced data are at an abnor-
mal location 1n the application’s address space; and

determining that the parameter has the malicious charac-
teristic responsive to a determination that the referenced
data are at the abnormal location.

14. The computer system of claim 12, wherein analyzing
the referenced data comprises determining whether the ref-
erenced data are a substring of a full string in the address
space of the application.

5

10

15

20

25

30

35

10

15. The computer system of claim 12, further comprising;:
determining whether a file stored by the computer has a
same name as a data string referenced by the parameter.

16. A non-transitory computer-readable storage medium
storing executable computer program modules for detecting
an attempted exploit of a vulnerability of an application
executed by a computer, the modules executable to perform
steps comprising:

hooking an application programming interface (API) of the

application;
monitoring for a call made to the hooked API;
analyzing a parameter of the call to identily data existing,
within the address space of the application before the
call 1s made referenced by the parameter of the call;

analyzing the referenced data existing within the address
space of the application to determine whether the param-
eter has a malicious characteristic indicating that the call
1s an attempt to use the data existing within the address
space of the application to execute malicious software
(malware); and

performing a remediation action responsive to a determi-
nation that the parameter has the malicious characteris-
tic.
17. The medium of claim 16, wherein analyzing the refer-
enced data comprises:
determining whether the referenced data are at an abnor-
mal location 1n the application’s address space; and

determiming that the parameter has the malicious charac-
teristic responsive to a determination that the referenced
data are at the abnormal location.

18. The medium of claim 16, wherein analyzing the refer-
enced data comprises determining whether the referenced
data are a substring of a full string 1n the address space of the
application.

19. The medium of claim 16, Further comprising:

determining whether a file stored by the computer has a

same name as a data string referenced by the parameter.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

