12 United States Patent

Carteri et al.

US008490023B2

US 8,490,023 B2
Jul. 16, 2013

(10) Patent No.:
45) Date of Patent:

(54) NAVIGATING UML DIAGRAMS

(75) Inventors: Francesco Maria Carteri, Rome (IT);
Alessandro Donatelli, Rome (IT);

Claudio Marinelli, Latina (IT); Luigi
Pichetti, Rome (IT)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 932 days.

(21) Appl. No.: 12/062,886

(22) Filed: Apr. 4,2008

(65) Prior Publication Data
US 2008/0229253 Al Sep. 18, 2008

(30) Foreign Application Priority Data

Oct. 7,2005 (EP) i 05109308

(51) Int.CL
GOG6F 3/048

(52) U.S.CL
USPC oo, 715/854; 717/101; 715/853

(58) Field of Classification Search
USPC ...l 715/853, 834;°717/100, 101, 102

See application file for complete search history.

(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS
6,145,000 A * 11/2000 Stuckmanetal. 700/219
6,157.364 A * 12/2000 Kohler T15/855
6,205,575 Bl 3/2001 Sherman et al.
2001/0054089 A1* 12/2001 Tsoetal. ...oovvvvvvvinininn.. 700/219
2003/0222890 Al1* 12/2003 Salesinetal.oovinn.. 345/629

FOREIGN PATENT DOCUMENTS

JP 2002-157120 A 5/2002
WO 01/86483 A3 11/2001
OTHER PUBLICATIONS

Mark H. Walker and Nanette Faton, Microsoft Office Visio 2003
Inside Out, Nov. 19, 2003, Microsofit Press, pp. 133-151 and 527-

554 %

Mark H. Walker and Nanette Eaton, Microsoft Office Visio 2003
Inside Out, Nov. 19, 2003, Microsoft Press, pp. 318-335.%

IMU Office of Information Technology: “Microsoft PowerPoint
Tutorials—Creating a Custom Slideshow” [Online], XP002401883
(Sep. 1, 2004); http://www.jmu.edu/computing/ittraining/tutorials/
microsoft/'powerpoint/lesson7.shtml.

Notification of Transmittal of the International Search Report and the
Written Opinion of the International Searching Authority for PCT
Application No. PCT/EP20061063043, mailing date of Oct. 27,
2006, Furopean Patent Office, Ryyswijk, Netherlands.

Written Opinion of the International Searching Authority for PCT
Application No. PCT/EP2006/063043, Apr. 7, 2008, European

Patent Office, Munich, Germany.

(Continued)

Primary Examiner — Matt Kim
Assistant Examiner — William Trapanese
(74) Attorney, Agent, or Firm — Thomas E. Lees, LLC

(57) ABSTRACT

A solution for navigating UML diagrams (200) 1s proposed.
For this purpose, a graphical interface 1s implemented for
defining multiple navigation paths (NAV,) along correspond-

ing sequences of diagrams (DIA, ;-DIA..). The definition of
those navigation paths 1s stored 1into a dedicated file (without
modifying the definition of the diagrams). A home bar for
invoking the navigation paths 1s then added to the graphical
representation of the diagrams. Once a reader has selected a
specific navigation path, its first diagram (DIA,,; DIA, <) 1s
retrieved and displayed. At the same time, anavigation bar for
moving throughout the sequence 1s dynamically generated
and added to the graphical representation of each diagram
that 1s traversed.

19 Claims, 5 Drawing Sheets

US 8,490,023 B2
Page 2

OTHER PUBLICATIONS Hideki Tai, Takashi Nerome, Mari Abe and Kohici Ono; “A Way to

. . _ | | Increase the Efficiency of Web Application Development”, PROVI-
Notification Concerning Transmittal of Copy of International Pre- SION, Japan, IBM Japan, Ltd. Oct. 29, 2004, vol. II, No. 4, pp. 62 to

limimary Report on Patentability for PCT Application No. PCT/ 68.
EP2006/063043, Apr. 8, 2008, the International Bureau of WIPO,

Geneva, Switzerland. * cited by examiner

U.S. Patent Jul. 16, 2013 Sheet 1 of 5 US 8,490,023 B2

— 100

115

105

T
e
-

110

| m——

FIG.1

U.S. Patent Jul. 16, 2013 Sheet 2 of 5 US 8,490,023 B2

B o o e = - - - . e " O O By . - O O O R O S R s e e - AN . N I I . i O A bk ol mik o gk e e A B T W B W EE

DIA,;

B bl misk e Wy VI R B BN Y . N Iy SR g S o P Y EF T EE - AN . g Sy mh mis e wis v ws W - - S S] N N S EAy iy ey ol W W

. L RS 0" RSN U L MOD;

DIAj,

In on o o - =n - e W W S S S . R EE S kel - o . a i . .. L o gl g g A EEE e - W W S S EE S B .

lh B i miin s o T S A AT TS A AT . L e A sl ek ek e e N . [— - EE . . - - Oy I e PEE P Pl WY T Y e T T T O

B pom oo o - - WS T O WS EE Lo B L R AR ik iele gl o - W S I I T . - EE A . gy o S o Sy AT Y W BT B W

DIAs;

e i o oa o o Em Em R R SR M R W o e B BN T BN BN B BN B S S ST BT A i e ml M TN TN M WE W Em Em M Emy RN WS I RN WY BN WY B B BN BN W AN M I BN B B BN BN N A

U.S. Patent Jul. 16, 2013 Sheet 3 of 5 US 8,490,023 B2

305
‘(,_.

CMD, CMD;

310

FIG.3a s

DIA;

307

320 325 330

NAV;

FORWARD BACKWARD

315

FIG.3b P

DIA»;
307

320 325 330

NAV,

ROOT FORWARD BACKWARD

315

FI1G.3¢

US 8,490,023 B2

*VId

¢S e e e — e e o
vid [$VIid

mgHQ o e — e e o e e)

mmiﬁ— .

'"vid

2 3R RERRAERRAERRRRRIRRRRRRAEFRARRESDERIERRARRERERERT],]

Sheet 4 of S

tvid “

A I . A T EE Y Y N e e EE w e wis e b e e s wilk e v i D e gk B W S A Bk b miv gl ois s e EE b e s el shi- b B B D DD DD OB DD B Gl sk el oo weih ek inkh sk Dy inh min gy S B PEE P T T SN Ty EE EEy =Sy

'*“VId

lli'tlllllllllllII'III'I'---I"IIIII'lllllllll'llIlllllllllllIIIIIIIIIIIIIIIE

'—--—-—--q

I N<HAH

Jul. 16, 2013

IAERESEEE RN EEREER AN A ER ARSI NN NN EEEENEEERNNERRREN

mau_m.m G ~<~Q I ~<HQ

AVN uonesIABN SweIsei(]
SIv Olv
S0P

U.S. Patent

U.S. Patent Jul. 16, 2013 Sheet 5 of 5 US 8,490,023 B2

520 510

515

500

Definition

Ta
5 wizard

file

530

Processing avigatio
engine file
505
575 Model
manager
515

540

550

Rendering module

Monitor
drive

333

FI1G.S

US 8,490,023 B2

1
NAVIGATING UML DIAGRAMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of International Appli-
cation No. PCT/EP2006/063043, filed Jun. 9, 2006 entitled
“METHOD, SYSTEM AND COMPUTER PROGRAM
FOR NAVIGATING UML DIAGRAMS”, which claims pri-
ority to EP 05109308.6, filed Oct. 7, 2003.

10

FIELD OF THE INVENTION

The present invention relates to the information technology
field. More specifically, the present invention relates to the
navigation of graph structures.

15

BACKGROUND ART

: : 20
Graphs are commonly used 1n computer science to repre-

L [T

sent a number of different structures. Informally, a graph
consists of a set of objects (nodes or vertices) with corre-
sponding connections (arcs or edges). Each arc may also be
assigned a direction; in this case, the arc 1s used to move from 55
a (source) node to a (target) node.

An example of structure that can be represented as a graph
1s the complex of models that are generally defined during the
process of developing computer software (such as large soft-
ware applications). Each model consists of an abstraction, 30
which provides a simplified representation of the correspond-
ing real artifact to be built. Preferably, the models are defined
by using the Unified Modeling Language (UML). The UML
1s a standard modeling language, which provides the (graphl-
cal and textual) syntax and the underlying semantic for speci- 35
tying all the aspects relating to the development process (es-
pecially for computer soitware of the object-oriented type).
Several modeling tools are available 1n the art for this pur-
pose; generally, a modeling tool provides an Integrated
Development Environment (IDE) for supporting the various 40
phases relating to the building of each software application
(for example, 1ts requirement definition, architectural design,
code specification, and the like). A very popular example of
commercial modeling tool 1s the “Rational Rose” by IBM
Corporation. 45

The models aid software developers to master the inherent
complexity of the development process. Particularly, in this
way 1t 1s possible to visualize, assess and communicate the
soltware application before 1ts actual realization (so as to
reduce the risks of the corresponding development). More- 50
over, the models may be used to create and maintain the code
of the software application 1n a very simple, safe and time
elifective manner.

A problem 1n the modeling of computer software 1s the
proliferation of artifacts that are generated during the devel- 55
opment process. Indeed, a complex software application gen-
erally imnvolves the definition of multiple models, typically
based on the contributions of different developers (such as
functional models, object models, or dynamic models). In
turn, each model 1s represented by a number of diagrams 60
(such as use case, class, object, deployment, sequence, activ-
ity, collaboration, or statechart diagrams). As a result, the
available information may be very confusing.

In order to help readers to move among the diagrams, most
modeling tools generally allow inserting hyperlinks 1nto the 65
diagrams. Each hyperlink 1n a generic diagram automatically
tetches another diagram and then causes its displaying. In this

2

way, the diagrams may be organized into a graph (which may
be traversed from one diagram to another by means of the
available hyperlinks).

However, each diagram will generally include several
hyperlinks (to diagrams of either the same model or other
models) that have been inserted by the different developers
(such as end-users, architects, designers, and programmers).
Therefore, the resulting structure 1s very chaotic.

In any case, the hyperlinks must be hard-coded in the
desired diagrams. Therelfore, this operation 1s time-consum-
ing; moreover, any change requires updating the definition of
the corresponding diagram and 1t 1s then prone to errors.

Those drawbacks are particularly acute 1n the development
process of complex software applications, which are intended
to run 1n a multi-tier and heterogencous environment (for
example, with distributed architecture or to be integrated 1n
other systems).

All of the above reduces the effectiveness of the modeling
process. This may have a detrimental impact on the yield of
the whole development process (thereby increasing its length
and cost) and on the quality of the resulting software appli-
cations.

SUMMARY OF THE INVENTION

According to the present mvention, the idea of defining
different ways of navigating the graph structure 1s suggested.

Particularly, an aspect of the mnvention proposes a method
for navigating a graph structure. The graph structure includes
a plurality of nodes, each one having a graphical representa-
tion. The method starts with the step of defining a plurality of
navigation paths (each one along a corresponding sequence
including a set of nodes). One of the navigation paths 1s then
selected. The method continues by traversing the nodes of the
selected navigation path. The graphical representation of
cach traversed node 1s then displayed.

In a preferred embodiment of the invention, this result 1s
achieved by displaying a navigation structure (with one or
more navigation commands for traversing the corresponding
sequence) 1n addition to the graphical representation of each
traversed node.

Typically, the navigation commands include a forward
command (for moving to a next node) and/or a backward
command (for moving to a preceding node).

In a specific implementation, for this purpose a navigation
bar 1s added to a window used to represent the graphical
representation of each traversed node.

Preferably, the definitions of the graph and of the naviga-
tion paths are stored in distinct memory structures.

In a preferred embodiment of the invention, the navigation
bar 1s added dynamically to the graphical representation of
cach traversed node.

As a further improvement, the defimition of the navigation
paths 1s obtained by means of a graphical interface.

For example, the proposed solution finds application with
respect to UML diagrams.

Another aspect of the invention proposes a computer pro-
gram for performing this method.

A further aspect of the invention proposes a corresponding
system.

The characterizing features of the present invention are set
forth in the appended claims. The invention itself, however, as
well as further features and the advantages thereof will be best
understood by reference to the following detailed description,

US 8,490,023 B2

3

given purely by way of a non-restrictive indication, to be read
in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a pictorial representation of a computer 1n which
the solution according to an embodiment of the invention can
be implemented;

FIGS. 2, 3a-3¢ and 4 are schematic representations of
exemplary applications of the solution according to an
embodiment of the invention; and

FIG. 5 shows the main software components that can be
used to practice the solution according to an embodiment of
the 1nvention.

DETAILED DESCRIPTION

With reference 1n particular to FIG. 1, a computer 100 (for
example, a PC) 1s shown. The computer 100 includes a central
unit 105, which houses the electronic circuits controlling its
operation (such as a microprocessor and a working memory).
The computer 100 15 also provided with a hard-disk and a
drive for CD-ROMs 110. A monitor 115 1s used to display
images on a screen 120. Operation of the computer 100 1s
controlled by means of a keyboard 125 and a mouse 130,
which are connected to the central unit 105 1n a conventional
manner. The above-described computer 100 1s used to model
soltware applications. Preterably, the models are defined 1n
the UML format. Particularly, the UML supports functional
models (specifying the operation of the software applications
from the point of view of 1ts end-users), object models (speci-
tying the structure of the software applications in object-
oriented terms), and dynamic models (specitying the behav-
1ior of the software applications); typically, those models are
represented graphically by means of corresponding dia-
grams. For example, use case diagrams show the interactions
between the end-users and the soitware applications (for the
functional models). Likewise, class diagrams show the
classes of the software applications with their relations,
object diagrams show the corresponding instances, and
deployment diagrams show the hardware/software compo-
nents of the software applications (for the object models). At
the end, sequence diagrams show the interactions over time
between different components of the software applications,
activity diagrams show the sequence of activities performed
by the components, collaboration diagrams show the interac-
tions between the components over time, and statechart dia-
grams show the states of the components with their transitions
(for the dynamic models).

For example, as shown in FIG. 2, a generic software appli-
cation has been defined with five models MOD, (with 1=1-5).
Each model MOD), 1n turn includes multiple diagrams DIA,,
cach one represented with a circle (with 1=1-5, 1=1-9, 1=1-5,
J=1-3, and j=1-5, respectively). The diagrams DIA, are con-
nected among them by means of corresponding hyperlinks,
cach one represented with an arrow (unidirectional or bi-
directional). A generic hyperlink 1s denoted with HYP,, ..
wherein the first pair of indexes 17 indicates a source diagram
DIA,; and the second pair of indexes 1) indicates a target
diagram DIA, ; for example, the hyperlink HYP;5_,; shownin
the figure connects the diagram DIA . (in the model MOD,)
and the diagram DIA, ; (in the model MOD,,).

This organization of the models MODi results in a graph
200 (wherein the diagrams DIA,; are the nodes and the hyper-
links HYP,, ;; are the arcs). As a consequence, any reader can
move trom one diagram DIA,; to another diagram DIA, ; either
in the same or in another model MOD.. As can be seen,

10

15

20

25

30

35

40

45

50

55

60

65

4

however, the graph 200 1s very complex and chaotic. The
structure becomes unmanageable 1n a real scenario, wherein
the graph 200 may include hundreds of models MOD, that are
represented with thousands of diagrams DIA, .

In the solution according to an embodiment of the iven-
tion, different navigation paths NAV, (with k>=2) are defined
on the graph 200. Each navigation path NAV, 1s specified by
a set of selected diagrams DIA ;, which are ordered in a
desired sequence. The navigation paths NAV, provide alter-
native views of the graph 200. For example, a navigation path
NAV, touches the diagrams DIA;; (in the different models
MOD1) that are relevant for a management of the develop-
ment process; conversely, anavigation path NAV , touches the
diagrams DIA, that are relevant for an architectural definition
ol the software application.

Theretore, each navigation path NAV, strongly facilitates
the reading of the graph 200 (guiding the reader among the
available information, like an Ariadne’s thread). Particularly,
the navigation paths NAV, allow moving in the graph 200
according to different contingent needs. For example, 1t 1s
possible to define different navigation paths NAV, for devel-
opers, clients, executives, and the like (each one providing an
overview of the software application under development at
different levels of detail). In other words, with the solution
described above any reader may traverse the graph 200 1n a
very simple way, only touching the diagrams DIA,; that are
really of interest to him/her. Therefore, the consultation of the
models MOD), 1s not hindered by information that 1s not rel-
evant for the specific purpose.

Moving to FIG. 3a, the models MOD, are graphically rep-
resented 1 a window 305. Particularly, the window 303
shows a graphical representation of each diagram DIA,,
together with different commands for 1ts management (such
as create, edit, and the like). In addition, the window 305 also
includes a home bar 310. The home bar 310 shows a selection
button CMD, for each available navigation path NAV,; 1n the
example at 1ssue, a selection button CMD, 1s associated with
the navigation path NAV,, and a selection button CMD, 1s
associated with the navigation path NAV,

Whenever the reader clicks (with the mouse) on a specific
selection button CMD,, a first diagram DIA ; of the corre-
sponding navigation path NAV_ 1s retrieved and displayed.
For example, as shown 1n FIG. 35, 1t the reader chooses the
selection button CMD,, the graphical representation of the
first diagram DIA, 1n the navigation path NAV, (denoted with
307) 1s shown 1n the window 305. At the same time, the home
bar 1s replaced with a navigation bar 315. The navigation bar
315 includes a root button 320 for moving to the first diagram
DIA, , directly, a forward button 325 for advancing to a next
diagram DIA,;, and a backward button 330 for returning to a
previous diagram DIA, .. In this way, the reader can traverse
the diagrams DIA ; of interest (in the selected navigation path
NAV) with simple and immediate commands. For example,
if the reader clicks on the forward button 325, the graphical
representation 307 of the next diagram (DIA,, 1n this case) 1s
retrieved and displayed in the window 305, as shown 1n FIG.
3c. Moreover, once the current navigation path NAV, has
been completed, the corresponding navigation bar 315 1s
closed automatically and replaced with the home bar; for
example, this result 1s achueved by clicking on the forward
button 325 1n a last diagram (DIA., 1n this case), by clicking
on the backward button 330 in the first diagram DIA, |, or by
closing the navigation bar 315 directly.

Considering now FIG. 4, the navigation paths NAV, are
typically defined graphically by using a window 405. Particu-
larly, the window 405 includes a diagram frame 410, which 1s
used to depict each available diagram DIA;; by means of a

US 8,490,023 B2

S

corresponding graphical object (a circle 1n the example at
issue); preterably, the graphical objects of the diagrams DIA,
for each model MOD, are condensed mnto a further corre-
sponding graphical object that may be expanded on request.
In addition, the window 405 also includes a definition frame
415. The definition frame 415 includes a selection box 420,
which 1s used to create a new navigation path or to edit a
preexisting one (such as the navigation path NAV, 1n the
example at 1ssue). The remaining part of the defimition frame
415 shows the graphical objects of the diagrams DIA
included 1n the selected navigation path NAV, (according to
their order 1n the corresponding sequence). The developer can
now define the navigation path NAV, by simply manipulating,
the graphical objects ot the diagrams DIA, . For example, 1t 1s
possible to select the graphical object ot a diagram DIA,; in
the frame 410, and then drag this graphical object to the
definition frame 415 (in the desired position); moreover, it 1s
also possible to move the graphical object of a diagram DIA,,
in the definition frame 415 to another position, or to delete the
graphical object of a diagram DIA,; 1n the same definition
frame 4135.

This operation generates a series of tags, which define the

position of each diagram DIA,; in the different navigation
paths NAV . Preterably, the definition ot each diagram DIA,,
1s specified 1n the Extensible Markup Language (XML),
which allows the creation of customized tags for any desired
purpose. In the specific case, the definition of the diagram
DIA,; starts with a tag “nodeName” (for a mnemonic name
thereot) and a tag “1d” (for its unique 1dentifier DIA). For
each navigation path NAV,_ passing through the diagram
DIA,;, a tag “navigatorld” specifies its unique identifier
NAV ., and a tag “position” indicates the position of the dia-
gram DIA,; in the corresponding sequence. The definition of
the diagram DIA, ends with a tag <\nodeName>. For
example, the diagram DIA,, shown in FIG. 2 will be defined

by the tags:

<nodeName="Diagram DIA,,” 1d=DIA, >
<navigatorld=NAV ;" position=3>
<navigatorld=NAV,” position=2>
<\nodeName>

The above-described tags can then be converted automati-
cally into the XML representation of all the navigation paths
NAV . For this purpose, the definition of each navigation path
NAV, starts with a tag “Navigator name” ({or a mnemonic
name thereot) and a tag *“1d” (for i1ts unique identifier NAV,).
For each diagram DIA,; included in the navigation path NAV,,
a tag “nodeName” 1s used to i1dentily 1t; the hyperlink for
moving to the first diagram in the sequence 1s enclosed
between the tags <homeName> and <\homeName>, the
hyperlink for moving to the next diagram 1s enclosed between
the tags <nextName> and <\nextName™>, and the hyperlink
for moving to the previous diagram 1s enclosed between the
tags <prevName> and <\prevName> (when available). The
definition of the navigation path NAV , ends with a tag <\Navi-
gator>. For example, the navigation path NAV, shown in FIG.
2 will be defined by the tags:

<Navigator name="Navigation path NAV " 1d=NAV >
<nodeName=DIA >
<rootName><\rootName>
<nextName>DIA,,<\nextName>

10

15

20

25

30

35

40

45

50

55

60

65

6

-continued

<prevName><\prevName>
<nodeName=DIA,,>
<rootName>DIA <\rootName>
<nextName>DIA, <\nextName>
<prevName>DIA <\prevName>

<nodeName=DIA; >
<rootName>DIA <\rootName>
<nextName><\nextName>

<prevName>DIA , <\prevName>
<\Navigator>

It should be noted that the definition of the navigation paths
NAV, 1s completely mndependent and separate from the defi-
nition of the models MOD,. Therefore, the desired result may
be achieved without the need of updating the diagrams DIA, ..
This makes the maintenance of the navigation paths NAV,
very simple (without the risk of introducing any error into the

models MOD,).

Moving now to FIG. 5, the main software components that
run on the computer to implement the above-described solu-
tion are denoted as a whole with the reference 500. The
information (programs and data) 1s typically stored on the
hard-disk and loaded (at least partially) into the working
memory of the computer when the programs are running,
together with an operating system and other application pro-
grams (not shown 1in the figure). The programs are initially
installed onto the hard disk, for example, from CD-ROM.

Particularly, the computer includes a modeling tool (for

example, the above-mentioned “Rational Rose™). The core
module of this tool 1s a model manager 505, which 1s used to
define a series of models MOD), (in the UML format) for each
soltware application under development. The defimition of the
models MOD, with the corresponding diagrams DIA_ (for
cach software application) 1s stored 1into a repository 5310. The
model manager 505 loads the graphical representation of a
current diagram DIA,; from the model repository 510 into a
working area (denoted with 5135).

In an embodiment of the present mnvention, the modeling
tool has been extended with a plug-in for implementing the
proposed navigation functionality. For this purpose, a defini-
tion wizard 515 accesses the model repository 510. The defi-
nition wizard 515 implements a graphical user interface,
which 1s used to define the diflerent navigation paths NAV, as
described above. The tags so obtained for each diagram DIA
(o1 the model repository 5310) are stored 1into a corresponding,
file 520. A processing engine 523 reads the tag file 520, and
converts 1t into the defimition of the available navigation paths
NAV .. This information 1s then saved 1nto a navigation file
530.

A browser 335 interprets the content of the navigation file
530. First of all, the browser 335 generates the definition of
the home bar (denoted with 540); particularly, the home bar
will include a selection button for each navigation path NAV
defined 1n the navigation file 530. Moreover, for each diagram
DIA,; that1s traversed along a selected navigation path NAV,
the browser 535 dynamically generates the definition of the
associated navigation bar (denoted with 545); particularly,
the navigation bar will include the root button (associated
with the hyperlink to the first diagram DIA), the forward
button (associated with the hyperlink to the next diagram
DIA,), and the backward button (associated with the hyper-
link to the previous diagram DIA), as specified in the corre-
sponding portion of the navigation file 530.

A rendering module 550 receives the graphical represen-
tation of the current diagram 5135 (from the model manager

US 8,490,023 B2

7

505); moreover, the rendering module 550 also receives the
definition of the home bar 540 or the definition of the current
navigation bar 545 (from the browser 535). The rendering
module 550 assembles the recerved information 1nto the win-
dow of the modeling tool as described above. Particularly, at
the beginning the rendering module 550 will add the defini-
tion of the home bar 540 to the graphical representation of the
current diagram 3515. As soon as the reader selects a specific
navigation path NAV, (by clicking on the corresponding
selection button shown 1n the home bar), the hyperlink asso-
ciated with this selection button 1s mvoked. In response
thereto, the model manager 505 automatically loads the
graphical representation of the first diagram DIA;; of the
corresponding sequence (into the working area 513). At the
same time, the browser 535 generates the definition of the
associated navigation bar 545 according to the relevant infor-
mation available 1n the navigation file 530. In this way, the
rendering module 550 can now add the definition of the
required navigation bar 545 to the graphical representation of
the new current diagram 515. In any case, the graphical rep-
resentation of the current diagram so updated 1s then supplied
to a monitor drive 553 for 1ts displaying.

The same operations are continually repeated until all the
diagrams DIA,;; ot the selected navigation path NAV, have
been traversed. At this point, the rendering module 350 adds
the definition of the home bar 540 again to the graphical
representation of the current diagram 515. The same process
may then be reiterated for any other navigation path NAV, .

Naturally, in order to satisfy local and specific require-
ments, a person skilled 1n the art may apply to the solution
described above many modifications and alterations. Particu-
larly, although the present invention has been described with
a certain degree of particularity with reference to preferred
embodiment(s) thereot, 1t should be understood that various
omissions, substitutions and changes in the form and details
as well as other embodiments are possible; moreover, 1t 1s
expressly intended that specific elements and/or method steps
described 1n connection with any disclosed embodiment of
the invention may be mcorporated 1n any other embodiment
as a general matter of design choice.

For example, similar considerations apply 1t the computer
has another structure or includes similar elements (such as a
cache memory temporarily storing the programs or parts
thereot to reduce the accesses to the hard disk during execu-
tion); 1n any case, it 1s possible to replace the computer with
any code execution entity (such as a PDA, a mobile phone,
and the like). Although 1n the preceding description reference
has been made to a single computer for the sake of simplicity,
it should be readily apparent that the proposed solution may
also be applied 1n a data processing system with distributed
architecture; 1n this case, each developer works on a corre-
sponding workstation, with the results of the modeling pro-
cess that are collected on a central server for different readers.

In any case, the principles of the invention should not be
limited to the described examples (with the same solution that
can find application with any other models, diagrams, hyper-
links, and navigation paths); more generally, the graph may
be defined by any equivalent nodes and/or arcs (even not
consisting of hyperlinks).

Moreover, nothing prevents the implementation of the
home bar and/or navigation bar with similar structures (for
example, a pull-down menu). It should also be apparent that
the provision of the navigation bar with explicit commands
for traversing the selected navigation path 1s not strictly nec-
essary; for example, 1t 1s also possible to move from each
diagram to the next one 1n the sequence automatically (after a
predefined time-out).

10

15

20

25

30

35

40

45

50

55

60

65

8

Different commands for traversing the selected navigation
path are also tenable (such as the forward command only).
Similar considerations apply if the home bar and/or the

navigation bar have different appearances.

It should be readily apparent that the reference to the XML
format 1s merely 1llustrative. Indeed, the tag file and/or the
navigation file may also be defined with other formalisms; in
any case, the possibility of generating the definition of the
navigation paths directly (without any intermediate tag file) 1s
contemplated.

Alternatively, the navigation paths may be defined by
means ol another graphical interface. For example, 1n a more
sophisticated implementation it 1s possible to have sub-se-
quences of the diagrams that are common to multiple navi-
gation paths (so as to facilitate their definition); moreover,
whenever a new diagram 1s iserted 1nto a specific navigation
path, the defimtion wizard may automatically determine the
closest diagrams 1n the other navigation paths, so as to suggest
its insertion 1n a similar position. However, a different imple-
mentation wherein the navigation paths are defined 1n a dii-
ferent way (even by means of a text editor) 1s within the scope
of the mvention.

The technical 1dea of the invention may also be applied 1n
an embodiment wherein the different buttons for traversing
the selected navigation path are directly inserted into the
definition of the relevant diagrams (instead of adding a sepa-
rate navigation bar).

Even though 1n the preceding description reference has
been made to a specific modeling tool with the supported
UML diagrams, this 1s not to be mtended as a limitation.
Indeed, similar considerations apply to whatever modeling
tool or to any other UML diagrams. Alternatively, the tech-
nical idea of the mvention has equal application to different
formalisms for defining the models (such as Petr1 networks).

More generally, the same solution may also find applica-
tion 1n other fields. For example, the proposed technique 1s
usetul to define preferred navigation paths through selected
web pages 1n the Internet (for example, to move throughout a
complex web site according to different needs). Another pos-
sible application of the same solution 1s 1n a presentation tool.
In this case, 1t 1s possible to define a set of slides for different
presentations; each presentation 1s then specified by a corre-
sponding navigation path through selected slides. In this way,
different presentations for corresponding groups of people
may be generated automatically.

Similar considerations apply 1f the program (which may be
used to implement the 1invention) 1s structured 1n a different
way, or if additional modules or functions are provided; like-
wise, the memory structures may be of other types, or may be
replaced with equivalent entities (not necessarily consisting,
of physical storage media). Moreover, the proposed solution
lends itself to be implemented with an equivalent method
(having similar or additional steps, even 1n a different order).
In any case, the program may take any form suitable to be
used by or 1n connection with any data processing system,
such as external or resident software, firmware, or microcode
(erther 1n object code or 1n source code). Moreover, the pro-
gram may be provided on any computer-usable medium; the
medium can be any element suitable to contain, store, com-
municate, propagate, or transier the program. Examples of
such medium are fixed disks (where the program can be
pre-loaded), removable disks, tapes, cards, wires, fibers,
wireless connections, networks, broadcast waves, and the
like; for example, the medium may be of the electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-

tor type.

US 8,490,023 B2

9

In any case, the solution according to the present invention
lends 1tself to be carrnied out with a hardware structure (for
example, integrated 1n a chip of semiconductor material), or
with a combination of software and hardware.

What 1s claimed 1s:

1. A method for navigating Unified Modeling Language
(UML) diagrams, the method comprising:

identifying a graph structure that represents a software

application including at least one model, the graph struc-
ture further including at least one Unified Modeling
Language diagram, where each Unified Modeling Lan-
guage diagram defines a node 1n a plurality of nodes of
the graph, wherein the plurality of nodes 1s intercon-
nected by a plurality of predetermined hyperlinks;
identifying a plurality of navigation paths that are both
independent of each other and independent of the pre-
determined hyperlinks, each navigation path defined by:
selecting, based upon user input, a set of nodes from the
plurality of nodes;
ordering, based upon user input, the selected set of nodes
in a desired sequence; and
defining a single path along the sequence such that:
a root node 1n the sequence connects to only one other
node 1n the sequence,
a last node 1n the sequence connects from only one
node 1n the sequence, and
remaining nodes 1n the sequence connects from only
one node 1n the sequence and connects to only one
node 1n the sequence;

enabling a user to select one of the plurality of navigation

paths; and

cnabling a user to interact with the graph structure at the

nodes along the selected navigation path by:

traversing the nodes along the sequence of the selected
navigation path;

displaying, within the software modeling environment,
the Unified Modeling Language diagram of the tra-
versed node; and

enabling a user to edit the displayed Unified Modeling
Language diagram while traversing the nodes.

2. The method according to claim 1, wherein for each
traversed node, the method turther comprises:

displaying a navigation structure in addition to the Unified

Modeling Language diagram of the traversed node, the
navigation structure including at least one navigation
command for traversing the nodes of the selected navi-
gation path.

3. The method according to claim 2, wherein the at least
one navigation command includes a forward command for
moving to a next node of the selected navigation path and/or
a backward command for moving to a preceding node of the
selected navigation path.

4. The method according to claim 2, wherein: the graphical
representation of each traversed node 1s displayed 1n a win-
dow, and displaying the navigation structure comprises dis-
playing a command bar including the at least one navigation
command to the window.

5. The method according to claim 1, wherein:

a definition of the graph structure 1s stored independently

from definitions of the navigation paths.

6. The method according to claim 5, wherein:

the definitions of the navigation paths are stored indepen-

dently from each other.

7. The method according to claim 5, wherein displaying the
navigation structure in addition to the Unified Modeling Lan-
guage diagram of the traversed node includes:

10

15

20

25

30

35

40

45

50

55

60

65

10

retrieving the defimition of the Unified Modeling Language

diagram of the traversed node,

obtaining a defimition of the corresponding navigation

structure from the definition of the selected navigation
path,
updating the definition of the Unified Modeling Language
diagram of the traversed node by nserting the definition
of the corresponding navigation structure, and

rendering the updated definition of the Unified Modeling
Language diagram of the traversed node.

8. The method according to claim 3, wherein:

a graphical object 1s associated with each node, and

defining the navigation paths further comprises:

displaying at least part of the graphical objects,

arranging the graphical objects associated with the
nodes of each navigation path according to the corre-
sponding sequence,

determining the definition of each navigation path from
the corresponding arrangement of the graphical
objects, and

storing the definition of each navigation path into the
second memory structure.

9. The method according to claim 1, wherein enabling a
user to interact with the graph structure at the nodes along the
selected navigation path further comprises enabling a user to
Tump from any node within the path to the root node.

10. A non-transitory computer-usable storage medium
embodying a computer program, the computer program when
executed on a data processing system for navigating Unified
Modeling Language (UML) diagrams, comprising:;

identifying a graph structure that represents a software

application including at least one model, the graph struc-
ture further including at least one Unified Modeling
Language diagram, where each Unified Modeling Lan-
guage diagram defines a node 1n a plurality of nodes of
the graph, wherein the plurality of nodes 1s intercon-
nected by a plurality of predetermined hyperlinks;
identifying a plurality of navigation paths that are both
independent of each other and independent of the pre-
determined hyperlinks, each navigation path defined by:
selecting, based upon user input, a set of nodes from the
plurality of nodes;
ordering, based upon user mput, the selected set of nodes
in a desired sequence; and
defining a single path along the sequence such that:
a root node 1n the sequence connects to only one other
node 1n the sequence,
a last node 1n the sequence connects from only one
node 1n the sequence, and
remaining nodes 1n the sequence connects from only
one node 1n the sequence and connects to only one
node 1n the sequence;
enabling a user to select one of the plurality of naviga-
tion paths; and
enabling a user to interact with the graph structure at the
nodes along the selected navigation path by:
traversing the nodes along the sequence of the
selected navigation path;
displaying, within the software modeling environ-
ment, the Unified Modeling Language diagram of
the traversed node; and
enabling a user to edit the displayed Unified Modeling
Language diagram while traversing the nodes.

11. The non-transitory computer-usable storage medium
according to claim 10, wherein for each traversed node, the
computer program product further comprises:

US 8,490,023 B2

11

displaying a navigation structure in addition to the Unified
Modeling Language diagram of graphical representa-
tion of the traversed node, the navigation structure
including at least one navigation command for travers-
ing the nodes of the selected navigation path.

12. The non-transitory computer-usable storage medium
according to claim 11, wherein the at least one navigation
command 1ncludes a forward command for moving to a next
node of the selected navigation path and/or a backward com-
mand for moving to a preceding node of the selected naviga-
tion path.

13. The non-transitory computer-usable storage medium
according to claim 11, wherein:

the Unified Modeling diagram of graphical representation

of each traversed node 1s displayed 1n a window, and

displaying the navigation structure comprises displaying a

command bar including the at least one navigation com-
mand to the window.

14. The non-transitory computer-usable storage medium
according to claim 11, wherein:

a definition of the graph structure 1s stored independently

from definitions of the navigation paths.

15. The non-transitory computer-usable storage medium
according to claim 14, wherein displaying the navigation
structure 1n addition to the Unified Modeling Language dia-
gram ol the traversed node includes:

retrieving the definition of the Unified Modeling Language

diagram of the traversed node,

obtamning a defimtion of the corresponding navigation

structure from the definition of the selected navigation
path,

updating the definition of the Unified Modeling Language

diagram of the traversed node by inserting the definition
of the corresponding navigation structure, and

5

10

15

20

25

30

12

rendering the updated definition of the Unified Modeling
Language diagram of the traversed node.

16. The non-transitory computer-usable storage medium
according to claim 14, wherein:

a graphical object 1s associated with each node, and

defining the navigation paths further comprises:

displaying at least part of the graphical objects,

arranging the graphical objects associated with the
nodes of each navigation path according to the corre-
sponding sequence,

determining the definition of each navigation path from
the corresponding arrangement of the graphical
objects, and

storing the definition of each navigation path into the
second memory structure.

17. The non-transitory computer-usable storage medium
according to claim 10, wherein the computer program prod-
uct further implements: a home bar for selecting one of the
navigation paths, a navigation bar for traversing the nodes of
the selected navigation path, and a window for displaying the

Unified Modeling Language diagram of each traversed node.

18. The non-transitory computer-usable storage medium
according to claim 10, wherein the computer program prod-
uct further implements: an interface that enables a user to
create a new Unified Modeling Language diagram within the
navigation path.

19. The non-transitory computer-usable storage medium
according to claim 10, wherein enabling a user to interact
with the graph structure at the nodes along the selected navi-
gation path further comprises enabling a user to jump from
any node within the path to the root node.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

