12 United States Patent
Wong

US008489898B2

US 8,489,898 B2
Jul. 16, 2013

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
INCLUDING ARCHITECTURE FOR
PROTECTING MULTI-USER SENSITIVE
CODE AND DATA

(75) Inventor: Daniel W, Wong, Cupertino, CA (US)

(73) Assignee: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 115 days.

(21) Appl. No.: 12/975,555

(22) Filed: Dec. 22, 2010
(65) Prior Publication Data
US 2012/0102333 Al Apr. 26, 2012

Related U.S. Application Data

(60) Provisional application No. 61/405,043, filed on Oct.
20, 2010, provisional application No. 61/405,054,
filed on Oct. 20, 2010.

(51) Int.CL

GO6rl 21/00 (2006.01)
(52) U.S. CL

USPC .., 713/192; 713/2; 726/3; 726/21
(58) Field of Classification Search

USPC i, 713/2, 189, 192; 726/3, 21

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,380,775 B2 6/2008 Birmuwal et al.
2002/0184046 Al 12/2002 Kamada et al.
2006/0015748 Al 1/2006 Goto
2006/0090084 Al* 4/2006 Buerccooooviiinnnnnn 713/189

3/2008 Shimizu

1* 6/2008 Bueretal. 380/270
9/2008 Shin et al.

11/2008 Beals
2/2009 Armstrong et al.

10/2009 Schmudt et al.

12/2009 Feudo et al.

2011/0066835 A1* 3/2011 Kotharietal. 713/2

2012/0102307 Al1*™ 4/2012 Wongccooevvviiiinnininnn.n. 713/2

FOREIGN PATENT DOCUMENTS

EP 1548537 Al 6/2005
EP 1826701 A2 8/2007
WO 199705551 Al 2/1997
WO 2006082988 A2 8/2006

OTHER PUBLICATIONS

2008/0065547
2008/0152142
2008/0229117
2008/0282345
2009/0037682
2009/0249222
2009/0327703

AN A A AN

Copy of International Search Report from PCT Application No.

PCT/US2011/056895 dated Feb. 8, 2012.
Copy of International Search Report from PCT Application No.
PCT/US2011/056902 dated Mar. 2, 2012,

* cited by examiner

Primary Examiner — Hadi Armouche
(74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.

(57) ABSTRACT

A secure execution environment for execution of sensitive
code and data including a secure asset management unit
(SAMU) 1s described. The SAMU provides a secure execu-
tion environment to run multiple instances of separate pro-
gram code or data code associated with copy protection
schemes established for content consumption. The SAMU
architecture allows for hardware-based secure boot and
memory protection and provides on-demand code execution
for multiple 1instances of separate program code or data pro-
vided by a host processor. The SAMU may boot from an
encrypted and signed kernel code, and execute encrypted,
signed code. The hardware-based security configuration
facilitates the prevention of vertical or horizontal privilege
violations.

22 Claims, 5 Drawing Sheets

La)

O

f?
r————————+——————9

SAMU Driver

Vi Ol

US 8,489,898 B2

0T
\f,
- NWYS
3
7 p,
er,
=
2 ZoT ™
= 10559201 50T
—_ shg
10T
WS]SAS

U.S. Patent

US 8,489,898 B2

Sheet 2 of S

Jul. 16, 2013

U.S. Patent

Memory I/F 190

¥0T

M-AES 150

dl Ol

Alowaw Jejnboy

- 0T ayoed-(-
0ST ayoed-]

09T

1DJIIRA AJLIbaju]

0Tt
WOY 1009

MMU 120

G8T
IUIDY 2INJ9S

0T
S10]R.ID|900Y

A1IND3S

Processor Core 180

US 8,489,898 B2

Sheet 3 of 5

Jul. 16, 2013

U.S. Patent

N o _ H_ a.n|iej-pajepijea Jou G8T [2uJdd) 2.n23s Aq

uonieaId IXBIU0D 10J IPUIRY NINVS AQ

GQT uonedjidde NNVYS paunbyuod dde NWVS

08¢

10} Ay uondAlda(g

ON

¢ uonepi|eA

[PUIDY NINVYS 03 uoneoidde AJlub2]ul 10} pajepl|eA N1SSB0DNS
NINYS 24NJ3S SJUISD.d s1 uoneaiidde NWYS I SOA pasodxa JDIAIDS
NWVYS OU-pajepl|eA
G9¢ 0L¢ G/ T J0U [SUID) NINVS
ON
S
01T INOY) 4

SIDIAIDS 19sn
AIN23s NINYS SozI|in AQ pauounej

pue s1o9)9p

09¢

j00q AQ paJnbljuod
Aleulq pajdAnus SoA
10) Ay uondAidag

GGZ 052 0P

¢ uonepieA

s/uoneoijddy uonediddy INJSS220NS

2.empley

12)ndwod /WR]SAS Jasn 0] pajuasald
LUO pajjeisul 321 S| Aleuiq pa]dAIdus

pue S]00q Wa)SAS

Gcc 0EC Gedl

paddiys aJe uonedijdde 100} bulubis NNYS
21ND3S B pue [3u3) 31nd3s B Ul uoneauab 10] pajetauab

OTT INOY 100Q B Ag
Al1bul 10} pajepl|eA
si Aleuiq pa1dAioug

B pue NYVS 410 pajdAlous salleulg A wopuey salleulg

0Z¢ Y N4 0T¢

US 8,489,898 B2

Sheet 4 of S

Jul. 16, 2013

U.S. Patent

00¢

0S¢

£ Ol

IDLLID) - 08e
24NJ9S

10SS2204d

S9p0D 1IX3 e1eQ

1AL NINVS I/omm

10SS320.d |/on
1SOH

0 TANAIN F4NOIS S
NOLLVOI'1ddV NIAVS VS

US 8,489,898 B2

BIeP NS
all
all
- <
= A 5
o TXNE T VS
P
3 OXNE T VS a
7 eIep 1 VS v
3p0D T VS T M_H_u NS
!) ba P A3
. @ [T e3ep ¢ VS e €S
mﬂ w_uOU N <m Nﬁ_ W\nu
~ e \ A8y 1Q
= . 0AS) 0Q
= 21Ep MS \
< aoeds
ssaippe
soeds 07T ﬂl\ NINVS
SSalppe 0T+
_ DINDQ
0z

U.S. Patent

US 8,489,898 B2

1

METHOD AND APPARATUS FOR
INCLUDING ARCHITECTURE FOR
PROTECTING MULTI-USER SENSITIVE
CODE AND DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. provisional
applications 61/405,045 and 61/405,054, both filed Oct. 20,
2010, the contents of which are hereby incorporated by ret-
erence herein.

FIELD OF INVENTION

This application 1s related to hardware-based security
execution environments.

BACKGROUND

A robust technological enforcement of digital rights man-
agement (DRM) licenses assumes that prevention of direct
access to the raw bit stream of decrypted digital content and
that license enforcement mechanisms themselves 1s possible.
However, this 1s difficult to achieve on an open computing

platform such as a personal computer (PC).

PCs have been found to be difficult to make robust for
maintaining confidentiality of sensitive code and data. Cur-
rent methods of maintaining confidentiality of code or secur-
ing data include existing soitware based solutions that rely on
anti-debugging, mtegrity monitoring, and obfuscation tech-
niques to deter reverse engineering and tampering. Another
technique mvolves authenticating software code and/or data
constants that the system wishes to execute at load-time dur-
ing a secure boot process. This may be accomplished, for
example, via a signature verification technique as recognized
by those having ordinary skill in the art. But load-time authen-
tication techniques also suifer from drawbacks. For example,
in this technique, the authentication only takes place once,
during the secure boot process. Thus, a system utilizing a
load-time authentication technique 1s susceptible to program-
ming attacks and/or data corruption at run-time, where run-
time 1s recognized as being the time period immediately
following load-time (1.¢., after the secure boot process).

Existing computing systems often attempt to protect the
integrity of data stored 1n registers by implementing a creden-
tial-based security system. In such a system, access 1o regis-
ters (1.e., locations in memory that can be read/written) 1s
restricted to those functions (i.e., soltware programs) whose
credentials are verified. This verification may be accom-
plished by logic within the computing system. However, cre-
dential-based security systems suffer from a number of draw-
backs. For example, credential-based security systems are
only capable of enforcing one data-access policy. Specifi-
cally, a function with viable credentials will be permaitted to
access the data within the register while a function without
viable credentials will be denied access to the data. Because
these systems rely solely on credential-based verification as a
mechanism for data access, they are susceptible to a scenario
where a rogue function improperly obtains viable credentials
and 1s therefore permitted to access the data sought to be
protected. Furthermore, these systems assume that creden-
tial-based data access 1s the appropriate security policy for all
types of data sought to be protected. However, it 1s often
desirable to protect different types of data with different
access policies.

10

15

20

25

30

35

40

45

50

55

60

65

2

Known techniques, such as those discussed above, are
frequently not suificient for use 1n DRM systems when they
are implemented in software targeted to run on a regular PC.
There are many tools available to make reverse engineering
possible.

Additionally, 1n a PC, the protection architecture and the
access control model of operating systems makes them cum-
bersome for use as a platform for a DRM content rendering
client, because it 1s difficult to protect sensitive software code
with an open architecture. Current methods to maintain con-
fidentiality have been proven to be ellective against casual
hackers at the expense of high computational and power
overhead. But high value assets are still difficult to guard
against proiessional hackers. Therefore, there 1s a need to
provide a secure execution environment 1n a personal com-

puting environment for the execution of sensitive code and
data.

SUMMARY OF EMBODIMENTS

Embodiments described herein include a security configu-
ration provided for a hardware-based protected execution
environment that allows multiple applications or on-demand
sensitive code to be loaded into the secure execution environ-
ment at the same time. Run-time generated data may be
securely protected even when stored 1in external memory.
Each memory context 1s separately managed, insuring confi-
dentiality between the respective contexts. The execution
environment includes architectural details of a secure asset
management unit (SAMU). The SAMU provides a secure
execution environment for program code or data by offload-
ing code or data from a host processor 1n an encrypted format
for authenticating and for maintaining confidentiality of the
code or data. The SAMU reduces power consumed by pro-
viding a platform for tamper resistant software, and reduces
frequency of revocation of valid software. Also, the SAMU 1s
non-intrusive to honest users but provides a protected execu-
tion environment to make reverse engineering ol sensitive
code difficult. The hardware-based security configuration

facilitates the prevention of vertical or horizontal privilege
violations.

BRIEF DESCRIPTION OF THE DRAWINGS

A more detailed understanding may be had from the fol-
lowing description, given by way of example 1n conjunction
with the accompanying drawings wherein:

FIG. 1A shows a host system in accordance with one
embodiment where sensitive code 1s oftloaded from a proces-
sor to a secure asset management unit (SAMU);

FIG. 1B shows a SAMU top level architecture;

FIG. 2 1s a flow diagram for a multi-application SAMU
run-time context setup;

FIG. 3 shows a SAMU software stack; and

FIG. 4 shows an example of run-time memory manage-
ment.

DETAILED DESCRIPTION OF EMBODIMENTS

It 1s noted that this application incorporates the entirety of
U.S. Nonprovisional application Ser. No. 12/964,278 as if
tully set forth herein.

The term “processor” as used herein refers to any of: pro-
cessor, processor core, central processing unit (CPU), graph-
ics processing unit (GPU), digital signal processor (DSP),
field programmable gate array (FPGA), or stmilar device. The
processor may form part of another device, e.g., an integrated

US 8,489,898 B2

3

north bridge, an application processor (Apps Processor), a
CPU, a DSP, or the like. A processor core as used herein may
be an x86, RISC, or other instruction set core.

A secure asset management unit (SAMU) 1s a component
configured eirther within a processor core or 1s a separate
component configured to perform in tandem with a processor
core. When configured 1n a processor core or as a separate
component from the processor core, a SAMU may be config-
ured to perform at least one of: oftloading sensitive code from
a host processor or encrypting sensitive code or data in
memory.

The SAMU may be implemented in hardware to provide a
hardware-based protected execution environment. In such an
environment, sensitive code and data may be protected 1n a
secure memory and may be stored 1n plaintext form only 1n
caches or embedded memory. Furthermore, debugging 1is
completely disabled on production parts; and a secure kernel
“owns’” and controls the execution environment, and access to
memory and resources are all controlled. The SAMU may
share a memory with the processor or 1t may have a dedicated
memory.

FIG. 1A shows a host system 101 1n accordance with one
embodiment where sensitive code 1s offloaded from a proces-
sor to a SAMU. FIG. 1A shows a system 101 including a
processor 102 and a SAMU 104 connected via a system bus or
internal bus 105. The system 101 1s used to perform oftload-
ing of secure code from the processor 102 to the SAMU 104.
The system 101 may be any computer system capable of
exchanging data with a peer. Further, the system 101 may
include one or more applications (not shown) thatuse a secure
protocol to transier data between the processor 102 and the
SAMU 104. The applications may be running in kernel space
Or user space.

The processor 102 1s configured to operate 1mn a system
kernel (not shown). The processor 102 interfaces with exter-
nal devices to retrieve encrypted data and messages (1.e.,
packets) from a content source (e.g., content media such as a
Blu-ray™ disc, from the Internet, etc.). The processor 102
may provide encrypted data to the SAMU 104 for decryption
and processing. Some data sets, for example, navigation data,
may be returned from the SAMU 104 to the processor 102 to
control the overall media consumption process. The SAMU
104 may also send data back to the processor 102 1 re-
encrypted format when protection 1s required.

In one embodiment, the SAMU 104 includes a processing
stack configured to enable processing of data sent to and
received from an external device. Thus, when the system 101
establishes a connection with the external device or the Inter-
net, rather than the host processor 102 processing the packets
sent and recerved, the SAMU 104 provides this processing
functionality via the processing stacks implemented on the
SAMU 104.

In another embodiment, the SAMU 104 may be a part of
processor 102.

The architecture for the SAMU 104 1s explained 1n greater
detail with respect to FIG. 1B. The SAMU 104 1ncludes a
secure boot read only memory (ROM) 110, a memory man-
agement umt (MMU) 120, an instruction cache (I-Cache)
130, a data cache (D-Cache) 140, a memory Advanced
Encryption Standard (M-AES) component 150, an integrity
verifier (IV) 160, security accelerators 170, a processor core
180, a secure kernel 185, and a memory interface 190. The
security accelerators 170 are configured to implement at least
one of: 128b/192b/256b AES; Secure Hash Algorithm (SHA -
1/-2); Rivest, Shamir and Adleman (RSA) cryptography:;
clliptic curve cryptography (ECC) arithmetic; Data Encryp-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion Standard (DES); 3DES; Rivest Cipher 4 (RC4); 1024b/
2048b/3072b modular exponentiation; or provide a true ran-
dom number generator.

The SAMU 104 may support multiple processor modes,
including a mode for boot code 1n silicon. Other processor
modes may be defined by secure kernel 1835, including for

example: kernel core functions; kernel services; in-house
developed SAMU 104 applications; third-party developed
SAMU 104 applications; signed but in-the-clear SAMU 104

applications; or unsigned in-the-clear SAMU 104 applica-
tions.

The boot ROM 110 1s configured to execute boot code 1n
silicon form to perform debug management, to check for
integrity of a given kernel, and to set up memory AES, and
then pass control to the kernel (that passed integrity check),
wherein the embedded processor comes out of reset config-
ured to run the boot code. The boot code 1s further configured
to configure or re-configure debugging facilities based on
e-Tuse technology (e.g., disable access to all debug facilities
for production parts or an e-fused pattern 1njected at manu-
facturing that involves etching or hard-coding computer logic
onto a chip that cannot be changed after the chip 1s manufac-
tured); wait for SAMU 104 kernel initialization, where a
SAMU driver presents the secure kernel 185 for loading; and
employ the integrity verifier (IV) hardware 160 to validate the
integrity of a given image. The IV hardware 160 may be
configured to generate a hash code from a given image and
compare that hash code with the hash code attached to the
image. If the generated hash code and the attached hash code
match, the IV hardware 160 provides a PASS report, other-
wise, reports a FAILURE.

The boot ROM 110 i1s further configured to prepare an
environment for secure kernel 185 after successiul integrity
check, and pass control to the secure kernel 185. The secure
kernel may use the same IV hardware 160 to revalidate 1tself
periodically.

The boot ROM 110 may be provided as part of the chip 1n
s1licon form or stored securely in external ROM. The secure
kernel 185 (encrypted and signed) may be provided as part of
a SAMU dniver, wherein the secure kernel 185 1s configured
to provide control access to resources 1n the SAMU (security
policy); control access to SAMU cycles (job scheduling);
connect the SAMU driver running on a host or on a SAMU
application running on the SAMU; and construct/deconstruct
SAMU memory or other contexts on demand.

To provide maximum code protection, different SAMU
codes from different applications run on different contexts.
Each code image 1s encrypted and hashed differently by a
signing tool, wherein an encryption key i1s randomly gener-
ated during signing. Additionally, an integrity check 1is
applied on the encrypted image before accepting an image for
execution.

The M-AES 150 provides modulated (with additional pro-
prictary scrambling in hardware) AES decryption on read,
and modulated AES encryption on write (contents in cache or
in embedded internal memory are in plaintext); there may
also be a bypass mode as a pass-through for regular memory
access (configured via the MMU). Memory AES keys may be
generated by the boot ROM code or the secure kernel 185 and
are provided to hardware for protecting sensitive code and
data going through the memory interface. Content 1s plaintext
only 1n the 1mnstruction cache 130, the data cache 140, or 1n an
internal embedded memory. The sharing of code and data
keys for the same context may also be possible. The secure
kernel 185 may also use random bits to initialize data keys at
context creation time to thwart replay attacks.

US 8,489,898 B2

S

Sensitive data established at run-time 1s usually protected
by run-time generated random keys. The random keys may be
protected 1n two ways. In one way, the sensitive data, intended
for external consumption (e.g., host or decode accelerator 1n
a processor), 1s encrypted 1n standard AES. In a second way,
the sensitive data, intended to stay iside the secure execution

environment, 1s encrypted by the M-AES 150. The M-AES
operation involves modulation with hardware generated
modulations before and after the otherwise standard AES

Processes.

In an alternate embodiment for providing additional secu-
rity, to protect memory traific coming from the SAMU, the
M-AES 150 applies further modulation with additional pro-
prietary scrambling 1in hardware before and after the other-
wise standard AES operations, which makes reverse engi-
neering difficult. Sensitive code and data may therefore be
stored and protected 1n existing frame buffer memory or
system memory. Different random keys may be generated for
protection of data segments and there may be no sharing of
code and data keys.

In another embodiment for providing additional security,
cach code image 1s encrypted and hashed by a signing tool,
wherein an encryption key 1s randomly generated during
signing (this part of the process occurs at the vendor or third-
party software provider). The decryption key for secure ker-
nel 185 1s computed and restored by the boot code 1n boot
ROM 110, and the decryption key for a SAMU application 1s
computed and restored by the kernel. Additionally, an integ-
rity check 1s applied (on the encrypted version) by the IV 160
before accepting an 1image for execution.

Context or memory management 1s performed by the
secure kernel 185 with the help of the MMU 120. The MMU
120 1s configured to perform address translation logic that
maps the processor 180 virtual address space to device
address space (e.g., a graphics processor, a digital signal
processor, or an FPGA). The MMU 120 supports up to 16
non-overlapping address segments with four AES keys. One
possible arrangement 1s to assign two keys for secure kernel
185 (one for code and one for data) and the other two keys for
a SAMU application (one each for code and data). In this
configuration, all data segments belonging to the same con-
text that need to be memory AES protected can only be
protected with the same data key. Each segment may be
independently configured for: memory size; memory AES
protection, whether or not 1t 1s executable (e.g., a no execution
flag); and access control (minimum processor mode for read/
write access). Fach memory segment must be contiguous in
virtual address space. Not all segments are protected by
memory AES encryption. In particular, buffers for commu-
nication between the SAMU 104 and the external devices or
the Internet may only be protected by standard AES and
therefore should be configured with the M-AES 150 turned
off.

The secure kernel 185 1s the only agent allowed to config-
ure the MMU 120. Before switching to a new context (to
serve the next SAMU operation or application), the secure
kernel 185 unmaps all segments that belong to the previous
context from MMU 120, and reconfigures MMU 120 to map
all segments that belong to a target context. To perform this
process, the secure kernel 185 may need to flush the data
cache to commit all cache data back to memory and update
the memory AES keys with those for the target context.

Access to memory 1s via memory interface 190. The
SAMU 104 and 1ts respective components are treated as a
regular client from the perspective of the device (e.g., proces-

sor including a CPU, a GPU, a DSP, or an FPGA or other

10

15

20

25

30

35

40

45

50

55

60

65

6

similar devices). The SAMU 104 relies on the M-AES 150 to
provide memory protection to sensitive code and data.

The secure kernel 185 may include additional security
services to provide the following coverage: establish a secure
tunnel with external components; key exchange with a Digital
Rights Management (DRM) block; unwrap a license key,
device key or a content key; demultiplex bit-streams; decrypt
or re-encrypt bitstreams; operate as a Virtual Machine, for
example, BD+, a component of the Blu-ray™ disc DRM
system; or data submission for audio/video (A/V) accelera-
tion using existing paths.

The secure kernel 185, once loaded and in control, 1s
responsible for the SAMU execution environment. In case
security services are loaded on demand (instead of being an
integral part of the kernel), the kernel 1s also responsible for
checking the integrity of the on-demand code and setting up
the right decryption key for these on-demand services. The
key derivation process for on-demand code 1s determined by
kernel engineering processes and may change from product/
device generation or manufacturing technology. (A product/
device generation 1s the scale at which a device 1s manufac-
tured. For example, a processor may be manufactured using
90 nanometer (nm) or 65 nm technologies.) But each time the
kernel changes 1ts key dertvation algorithm, the offline sign-
ing tool for user code must be modified to match that flow 1n
the encryption process.

The processor, coming out of reset, boots from ROM code
in silicon. Boot strap code 1s constructed to inspect for integ-
rity of a given encrypted kernel before restoring the decryp-
tion key and transferring control to 1t. Integrity verification 1s
performed by dedicated hardware logic 1n the integrity veri-
fier 160. The oflline signing tool for the secure kernel has a
cryptographic setup that matches the integrity verification
hardware as well as the key restoration mechamism hardcoded
in the boot ROM 110. The choice of hash function for encryp-
tion or key generation 1s not critical and may be based on
chaining of one-way AES operations.

The architecture of the SAMU 104 1s such that it 1s capable
of executing millions of instructions per second (MIPS), with
cipher requirements, and may support cipher acceleration
including the AES, DES, SHAI1, and other algorithms. The
SAMU 100 architecture supports all or a subset of the fol-
lowing: a true random number generator and a pseudo ran-
dom number generator, secure timer, a instruction/data cache
with memory management, multiple execution modes (or
protection levels), address range enforcement (configured by
the kernel), boot-strap code validation, and additional devel-
opmental tools.

Having a hardware-based page table improves both secu-
rity and performance. But 1t may be expensive for a system to
support the four kilo (K)-byte page size typically used by
most operating systems as additional dedicated memory 1s
required. This support 1ssue 1s justified by the secure execu-
tion unit described herein. In one embodiment, a one mega
(M)-byte page size 1s used as a starting point. The hardware
page table mechanism may support any power-oi-2 page
sizes from one M-byte to four giga (G)-byte. Alternately,
other page sizes may be supported (e.g., 4K-byte, 8K-byte,
16K-byte and other power-of-2 page sizes).

The page table may include other security properties in
addition to address translation. For example, 1t may include a
data structure to indicate one or more of the following:
whether a page entry 1s active or disabled, whether a page
contains data or code, separate read access and write access
controls, a cipher tlag to turn on or oiff memory AES, or a key
index when memory AES 1s needed.

US 8,489,898 B2

7

Page table information indicating whether a page (or seg-
ment) contains code or data 1s mostly a security 1ssue and may
not be essential to support multiple contexts. By informing
the kernel that a page 1s intended for data storage, the kernel
may trap any attempt to execute code from that page. This
information also helps to facilitate effective mechanisms to
trap builer-overrun attacks.

Read and write access controls, defined on a per page (or
segment) basis, specifies the minimum protection ring within
which code 1s executing, before read and/or write access to
that page (or segment) may be granted. This prevents a ver-
tical privilege violation, which occurs when an application
(e.g., a user application) assigned at a lower privilege gains
read/write access to pages belonging to another process (for
example, the kernel) running at a higher privilege. Typical
processor architectures utilize various levels of protection/
privileges to separate and control functions and processes
(e.g., a process must have a certain (predefined) protection
level to access a certain data structure or code segment).

A cipher flag denotes whether the cache to memory inter-
face may turn on the M-AES 150 or not. The M-AES 150 has
hardware modulation applied before and after AES opera-
tions. Information protected by the M-AES 150 1s intended
for consumption inside the SAMU-sensitive code to be
executed by the secure execution environment and/or sensi-
tive data used only by confidential functions running inside
that environment. For pages marked with the cipher flag set in
the page table entry, the hardware automatically applies
decryption for all memory read operations 1nto the instruction
cache or the data cache, and applies encryption for memory
writes as cache lines are flushed.

Different page entries in MMU 120 may be associated with
different cipher keys. In one embodiment, four active cipher
keys may be supported at any point 1n time (1n alternative
embodiments, any number of keys may be supported). Each
page entry may specily the index of the key hardware that
may be used for both encryption and decryption. This allows
kernel code/data and user code/data to be protected with
independent keys. Boot code 1s responsible for restoring the
kernel code key, while the kernel 1s responsible for restoring,
the user code key. The kernel 1s also responsible for runtime
generation of all data keys.

In an alternate embodiment, the code keys are connected
with a signature in an ntegrity verification mechanism by
having both of these functions take e-fused values as part of
their inputs. By connecting the decryption key with the integ-
rity verification mechanism, SAMU tampering 1s rendered
difficult.

Ultimately, the configuration space of all these resources—
page table entry and memory AES keys—have to be con-
trolled. Read/write access to the configuration 1s guarded by
separate access control fields 1n the control status register.
Code may need to be 1n the proper protection ring before 1t
may modily these configuration settings.

This hardware-based virtual memory support and the asso-
ciated security setup described provides a robust solution for
protecting sensitive code and data for use together with mod-
ern PC-based operating systems. This eliminates the compu-
tation and power/thermal overhead associated with software-
based tamper proofing and obfuscation.

FI1G. 2 1s a flow diagram for a single application when using,
the SAMU architecture. Binaries are generated for the SAMU
(step 210). A random key 1s generated 1n the signing tool (step
215). The binaries are encrypted for the SAMU (step 220) and
include shipping a secure kernel as a part of a GPU’s display
driver, for example. A user may 1nstall the driver and the
application on the user’s computer/system bringing the

10

15

20

25

30

35

40

45

50

55

60

65

8

secure kernel (display drivers) and the secure application
together (step 225). At boot time, the secure kernel 185 1s
presented to the SAMU hardware (step 230). The secure
kernel 1s verified and validated for integrity by the boot ROM
110 (step 235). The boot ROM 110 validates the secure kernel

185 integrity (step 240) before configuring the decryption key
in the memory AES (to perform on-demand decryption of the
encrypted code) and passing control to the secure kernel 185.
It the secure kernel fails validation (step 245), no SAMU

service 1s exposed and the application falls back on a soft-
ware-based protection scheme. Upon successiul validation, a

decryption key for the secure kernel 1s configured by the boot
ROM 110 (step 250).

An application 1s launched by a user (step 2535). When the
application 1s launched, the application detects the presence
of SAMU services (step 260) and prepares itself to take
advantage of the protected execution environment offered by
the SAMU. The application presents a secure SAMU appli-
cation to the secure kernel for context creation (step 265). The
SAMU application 1s validated for integrity by the secure
kernel 185 (step 270). The secure kernel 183 configures the
IV hardware 160 to check for integrity of the SAMU appli-
cation (step 275). A decryption key for the SAMU application
1s configured by the secure kernel 183 after a successiul
integrity validation (step 280). If the IV hardware 160 1s not
able to validate the SAMU application (step 275), the SAMU
application 1s not accepted to run and a corresponding failure
message 1s returned to the application (step 285). In this case,
the application may choose to fall back to software-based
protection techniques.

Offloading code or data to the SAMU for hardware accel-
eration as described above 1s similar to decode oitloads and
3D rendering offloads. For example, applications use APIs to
offload well-defined work items to a GPU.

The SAMU 104 provides a secure execution environment

by providing a secure boot, integrity check, execution
encrypted code, memory protection for sensitive data used by
sensitive functions; and disabling debugging for production
chips. There are at least two different kinds of code within the
secure environment, for example, kernel code or application
code, and boot strap code.
The boot strap code 1s stored encrypted 1n a secure storage
and 1s shipped along with the final chip. It offers three major
services at boot: disabling debugging for production chips,
checking the integrity of the kernel image provided by the
SAMU driver, and computing the decryption key for the
given kernel before passing control to the kernel.

The decryption key 1s computed as part of the boot process,
and 1s done only after a successtul verification of the integrity
of the kernel image. The decryption key 1s a function of
multiple inputs: an e-fused pattern injected at manufacturing,
that involves etching or hard-coding computer logic onto a
chip that cannot be changed after the chip has been manutac-
tured, a random pattern generated at the kernel binary signing
(stored as part of the signed kernel image), and software
parameters provided at boot time by the SAMU driver. Com-
puting of the kernel decryption key also ivolves access to
secret functions embedded in silicon which may include
secret multipliers, DSP blocks, processors, high speed 10
logic, and embedded memories.

The kernel code serves as the manager for the SAMU 104
and provides services to the SAMU driver. The kernel code
may include a manufacturer kernel certificate and 1s integrity
enforced by a boot-loader. It controls SAMU resources and
has register level access to both the SAMU and the processor.
It can also load additional application code to offer on-de-

US 8,489,898 B2

9

mand services at runtime. The secure kernel 1835 handles
driver calls and invokes firmware routines accordingly.

FIG. 3 describes the SAMU software stack 300. A host
application 310 and a SAMU drniver 320 reside on the host
processor 360 (e.g., a personal computer, smart phone, etc.).

Based on requests coming irom the host application 310, the
SAMU driver 320 1ssues commands 330, and transfers cor-
responding data 340 to the secure kernel 380 of the SAMU
processor 370 (e.g., 1n the processor core or 1n a GPU). The
secure kernel 380 may receive data from multiple application
processes, such as a SAMU application. This data may
include code, application data, and the respective keys and
signatures (embedded by the signing tool). The secure kernel
380 may pass processed data 340 back to the SAMU driver
320, which 1 turn passes the information to the host appli-
cation 310. Alternatively, the secure kernel 380 may pass exit
codes 350 to the SAMU driver 320 which will ultimately be
passed to the host application 310 for processing.

FIG. 4 shows an example of run-time memory manage-
ment in the SAMU architecture. A SAMU virtual address 410
1s mapped to a virtual address page table entry (D0-D15) 1n
the MMU 120, which then maps the address to an entry in
device address space 420 (e.g., GPU memory, a DSP memory,
a FPGA memory, or other similar device).

In one embodiment, the virtual address page table 1s stored
in hardware registers of the MMU 120 and 1s accessible only
to the processor 180, instead of relying on external storage.
One feature of this scheme 1s that multiple applications may
be simultaneously managed. In this example, SA2 (in the
SAMU address space 410 and device address space 420) and
SA1 (in device address space 420) represent at least two
applications, with SA2 being the active context serviced by
the SAMU at that time.

Application of the page table entry 1s now described. The
notation of a page table entry as being active or 1nactive, 1s
used for hardware-based page translation. Different contexts
typically consume a different number of page table entries,
because 1t 1s too restrictive, from a software development
perspective 1f all contexts must use the same number of
memory segments. The per-entry flags provide flexibility to
the kernel 1n memory management. The per-entry flags may
also prevent a horizontal privilege violation, which occurs
when two contexts assigned the same protection ring (the ring
value 1s stored 1n a SAMU ring buffer as shown in the SAMU
address space 410, SRB) gain access to pages belonging to
another context.

The embodiments described herein use a SAMU to offload
sensitive code from a host processor. The processor feeds
sensitive data in protected form to the sensitive code running
onthe SAMU. For handling high-value premium content, the
SAMU may provide content copy protection, demultiplex-
ing, and extraction of audio and/or video packets, construc-
tion of audio and/or video elementary streams, and applica-
tion of re-encryption before passing back control to the host
and/or codec decoders for further processing.

The secure execution environment provided by the SAMU
may be used to run sensitive code associated with copy pro-
tection schemes established for premium content consump-
tion. An example of an environment where secure execution
may be required 1s a Blu-ray™ disc player or Blu-ray™
player application running on a host. The Blu-ray™ disc
player may be a part of a personal computer or a user device.
A software vendor requires a secure execution environment
for running a Blu-Ray™ disc, because the discs come with
robust copy protection schemes that content creators rely
upon for securing the content. The SAMU provides such an
environment. The Blu-ray™ player may offload content pro-

10

15

20

25

30

35

40

45

50

55

60

65

10

tection functions (such as AACS and BD+ functions) to run
on the secure environment. The protected Blu-ray™ content
1s loaded from an optical disc, but relies on AACS and BD+
functions in the secure environment to perform decryption
and demultiplexing operations. A video bitstream may be
re-encrypted with AES 1nside the secure environment for
consumption by a video decoder. Audio bitstreams and other
navigation data can be re-encrypted with AES for consump-
tion by the player.

However, 1t should be clear to those skilled 1n the art that
the application of the SAMU 1s not limited to Blu-ray™ disc
players. The SAMU may be used 1in other hardware platforms
including mobile phones, handheld accessories, positioning
systems, and the like.

The SAMU 1s, 1n the described embodiments, a processor
centric security platform. The processor may form part of
another device—e.g., an mtegrated north bridge, an applica-
tion processor, a central processing unit, a digital signal pro-
cessor, or the like. Because the SAMU 1s a part of a processor,
which offers codec acceleration, the key(s) for protecting the
bitstream exiting from the SAMU may be used as input mnto
the codec accelerator, and may travel from the SAMU to the
codec accelerator without leaving the processor. This con-
struction and operation may also improve security for pre-
mium content consumption.

The execution of sensitive code may be moved from a
processor to the SAMU by detecting and utilizing security
services provided as part of the SAMU kernel. Alternatively,
sensitive code may be moved from a processor to the SAMU
by presenting the code to an authorized driver from a semi-
conductor manufacturer as signed firmware. The SAMU may
also beused 1n offloading other cryptographic operations, like
authentication and the creation of digital signatures where
access to a private key 1s needed. By moving these operations
to the SAMU, the private key can be stored in encrypted form
in the host system, and the plaintext value of the private key 1s
only restored and consumed 1n the protected execution envi-
ronment.

Use of the SAMU may improve overall system robustness
and power efficiency. The SAMU provides a single point of
trust verification 1n a processing architecture, such as within
a processor, a GPU, a CPU, a DSP, or an FPGA. The SAMU
only boots from encrypted and signed kernel code, and only
executes encrypted and signed code. The SAMU hardware
may run unsigned and in-the-clear (1.e., unencrypted) code.
The SAMU 1s provided with a hardware-based secure boot
and memory protection and 1s capable of executing on-de-
mand code provided by a host processor.

A power eflicient and cost effective secure execution envi-
ronment 1s established by integrating, 1n one embodiment, a
32-bit RISC processor 1n the device (for example, the GPU
platform) and adding security logic to 1t. Binaries for execu-
tion 1n this environment are encrypted with a randomly gen-
erated key and are signed at the same time by an oitline tool.
Protected binaries are provided in encrypted form with a
driver and/or application and will stay 1n that form even when
loaded in memory. Decryption 1s performed “on the fly” when
sensitive code 1s loaded on demand 1nto the instruction cache.
This arrangement allows the use of existing memory available
in a PC to store confidential information.

Sensitive code 1s protected by the offline signing tool.
There are at least two kinds of sensitive code: the kernel that
manages resource access, and user code that provides actual
security related functions to host applications. The SAMU
manufacturer may own the kernel, but the user code may
come from either the SAMU manufacturer or external soft-

US 8,489,898 B2

11

ware vendors (who build applications for the SAMU). Sepa-
rate signing tools may also be developed for these kinds of
sensitive code.

Also, core functionalities of the SAMU may be provided to
soltware vendors where the SAMU manufacturer provides
development tools to software vendors, or where both the
SAMU manufacturer and the soiftware vendors develop a
partitioning scheme and related APIs. In these situations,
either the SAMU manufacturer or software vendor may gen-
erate on-demand firmware code.

Additionally, the embodiments described herein reduce
randomization of research and development resources, alle-
viate retail pressure from returns, and enables premium
broadcast on a personal computer platform. The premium
content may include, for example, digital video broadcast-
handheld, ARIB, etc. The embodiments described herein
reduce power consumed on obfuscated and tamper resistant
soltware usage, reduce frequency of revocation of valid soft-
ware, and satisty content owners by causing relatively low or
little inconvenience to customers.

The embodiments described herein may be implemented in
a processor core, which may be embodied in a CPU, a DSP, an
FPGA, a GPU, or any combination thereof. Those skilled 1n
the art would appreciate that the processor core may form part
ol another device, e.g., an integrated north bridge, an appli-
cation processor, a CPU, a DSP, or the like.

Suitable processors include, by way of example, a general
purpose processor, a special purpose processor, a conven-
tional processor, a digital signal processor (DSP), a plurality
ol microprocessors, one or more miCroprocessors 1 associa-
tion with a DSP core, a controller, a microcontroller, Appli-
cation Specific Integrated Circuits (ASICs), Field Program-
mable Gate Arrays (FPGAs) circuits, any other type of
integrated circuit (IC), and/or a state machine.

Additionally, the present invention may be embodied 1n
hardware, software, firmware, or any combination thereof.
Embodiments of the present imnvention or portions thereof
may be encoded in many programming language such as a
hardware description language (HDL), assembly language, C
language, netlists, etc. For example, an HDL, e.g., Verilog,
may be used to synthesize, simulate, and manufacture a
device, e.g., a processor, application specific integrated cir-
cuit (ASIC), and/or other hardware element, that implements
the aspects of one or more embodiments of the present inven-
tion. Verilog code may be used to model, design, verity,
and/or implement a processor that 1s capable of application of
the SAMU.

Verilog, for example, may be used to generate a register
transier level (RTL) description of logic that can execute
instructions for application of a SAMU. The RTL description
of the logic may then be used to generate data, e.g., graphic
design system (GDS) or GDS II data, used to manufacture the
desired logic or device. The Verilog code, the RTL descrip-
tion, and/or the GDS II data may be stored on a computer
readable medium. The instructions executed by the logic to
perform aspects of the present invention may be coded 1n a
variety of programming languages, such as C and C++, and
compiled into object code that can be executed by the logic or
other device.

Aspects of the present invention may be stored, in whole or
in part, on a computer readable media. The instructions stored
on the computer readable media can adapt a processor to
perform the mvention, 1n whole or 1 part, or be adapted to
generate a device, e.g., processor, ASIC, or other hardware,
that 1s specifically adapted to perform the invention 1n whole
or 1n part. These mstructions may also be used to ultimately
configure a manufacturing process through the generation of

10

15

20

25

30

35

40

45

50

55

60

65

12

maskworks/photomasks to generate a hardware device
embodying aspects of the mvention described herein.

What 1s claimed 1s:

1. A method for providing a secure execution environment
for multiple instances of separate program code or data, com-
prising:
olfloading multiple imnstances of separate code or data from

a host processor to a secure asset management unit
(SAMU) 1n an encrypted format for authenticating and
for maintaining confidentiality of the multiple instances
of separate code or data where the multiple instances are
related to multiple applications and the SAMU simulta-
neously manages the multiple applications, wherein the
host processor 1nitially retrieves the code or data in
encrypted format from a content source via an interface
with an external device; and

returning data from the SAMU to the host processor 1n
re-encrypted format when protection 1s required and in
decrypted format when protection 1s not required.

2. The method of claim 1, wherein the offloading includes
creating an encrypted binary boot image with a random key
generated 1n a signing tool for each instance of the multiple
instances of separate code or data.

3. The method of claim 2, wherein the encrypted binary
boot 1mage 1s encrypted for the SAMU and 1s provided as a
secure kernel and a secure application for the SAMU.

4. The method of claim 3, wherein a user installs the
encrypted binary boot image and presents the encrypted
binary boot image to the SAMU on demand.

5. The method of claim 4, further comprising:

validating the encrypted binary boot image for integrity
before configuring a decryption key for use with the
SAMU using a boot read only memory (ROM).

6. The method of claim 5, further comprising;

generating a decryption key at the boot ROM for use with
the SAMU:; and

passing control to the encrypted binary boot image 1n
response to a positive validation.

7. The method of claim 6, wherein in response to a positive
validation and execution of the secure kernel, an application
for providing access to content detects availability of the
SAMU hardware and the secure kernel generates a context for
the application and validates the itegrity of the application.

8. The method of claim 7, wherein a code decryption key
for each of the multiple instances of separate code or data for
the application 1s restored by the secure kernel 1n response to
a positive validation for use with the context created with a
kernel image.

9. The method of claim 8, further comprising:

generating a data cipher key randomly for the application at
the secure kernel for each of the multiple instances of
separate code or data 1n response to a positive validation
of the kernel image.

10. The method of claim 5, wherein no SAMU service 1s
exposed 1n response to a negative validation, and the appli-
cation reverts to a software-based protection scheme.

11. A system for providing a secure execution unit for
multiple mnstances of separate program code or data, compris-
ng:

a host processor configured to execute a plurality of appli-
cations including code or data and to retrieve code or
data 1n encrypted format from a content source via an
interface with an external device; and

a secure asset management umt (SAMU) configured to
execute program code, wherein the SAMU 1s connected
to the host processor and 1s configured to offload mul-
tiple stances of separate code or data from the host

US 8,489,898 B2

13

processor 1n an encrypted format for authenticating and
for maintaining confidentiality of the multiple instances
of separate code or data, where the multiple instances are
related to multiple applications and the SAMU simulta-
neously manages the multiple applications, the SAMU
further configured to return data to the host processor in
re-encrypted format when protection 1s required and in
decrypted format when protection 1s not required.

12. The system of claim 11, wherein the SAMU 1s further
configured to create an encrypted binary boot image with a
random key generated 1n a signing tool as part of the offload-
ing multiple instances of separate code or data.

13. The system of claim 12, wherein the encrypted binary
boot 1mage 1s encrypted for the SAMU and provided as a
secure kernel and a secure application for SAMU.

14. The system of claim 12, wherein a user 1installs the
encrypted binary boot image and presents the encrypted
binary boot image to the SAMU on demand.

15. The system of claim 14, wherein the SAMU 1s further
configured to validate the encrypted binary boot image for
integrity before configuring a decryption key for use with the
SAMU using a boot read only memory (ROM).

16. The system of claim 15, wherein the boot ROM 1s
turther configured to generate a decryption key for use with
the SAMU and to pass control to the encrypted binary boot
image 1n response to a positive validation.

17. The system of claim 16, wherein 1n response to a
positive validation and execution of the secure kernel, an
application for providing access to content detects availabil-
ity of the SAMU hardware and the secure kernel generates a
context for the application and validates the integrity of the
application.

18. The system of claim 17, wherein a code decryption key
tor each of the multiple instances of separate code or data for

10

15

20

25

30

14

the application 1s restored by the secure kernel 1n response to
a positive validation for use with the context created with a
kernel image.

19. The system of claim 18, further configured to:

generate a data cipher key randomly for the application at

the secure kernel for each of the multiple instances of
separate code or data 1n response to a positive validation
of the kernel image.

20. The system of claim 15, wherein no SAMU service 1s
exposed 1n response to a negative validation, and the appli-
cation falls back on software based protection scheme for
authentication.

21. A non-transitory computer-readable storage medium
storing a set of instructions for execution by one or more
processors to facilitate manufacture of a secure asset manage-
ment unit (SAMU), the SAMU configured to:

execute program code;
offload multiple instances of separate code or data from a

host processor in an encrypted format to authenticate
and to maintain confidentiality of the multiple instances
of separate code or data, where the multiple instances are
related to multiple applications and the SAMU simulta-
neously manages the multiple applications, wherein the
content source for the oitloaded code or data 1s an exter-
nal device having an interface with the host processor;
and

return data to the host processor 1n re-encrypted format

when protection 1s required and in decrypted format
when protection 1s not required.

22. The computer-readable storage medium of claim 21,
wherein the instructions are hardware description language
(HDL) 1nstructions used for the manufacture of a device.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

