12 United States Patent

US008489759B2

(10) Patent No.: US 8.489,759 B2

Parham et al. 45) Date of Patent: Jul. 16, 2013
(54) SERVICE DISCOVERY AND PUBLICATION (56) References Cited
(75) Inventors: Jeffrey B. Parham, Redmond, WA U.S. PATENT DOCUMENTS
(US)(;UCl;arles R. Reeves, Snohomish, 5.893,107 A 4/1999 Chan et al.
WA (US); Lawrence A. Buerk, 6,067.568 A 5/2000 Li et al.
Issaquah, WA (US); Angela Mills, g’iggjggg E lgggg% gheﬂg et al. |
. I : : 1 ngstrom et al.
E{Edgon&; AW%SJ_ Sé’ R“;hlzr.dl?' HI‘:Sha’ 6.584.459 Bl 6/2003 Chang et al.
cattle, WA (US); Gopal Krishna R. 6,594,653 B2 7/2003 Colby et al.
Kakivaya, Sammamish, WA (US); 6,631,371 Bl 10/2003 Lei et al.
Andrew D. Millican, Redmond, WA 6,959,262 B2 10/2005 Curry, III
(US) (Continued)
(73) Assignee: Microsoft Corporation, Redmond, WA FOREIGN PATENT DOCUMENTS
(US) JP 2001282488 A 10/2001
JP 2003091553 3/2003
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
The Canadian Office Action mailed Aug. 19, 2011 for Canadian
(21) Appl. No.: 12/774,879 patent application No. 2501718, a counterpart foreign application of
_ U.S. Appl. No. 10/693,653, 3 pages.
(22) Filed: May 6, 2010
(Continued)
(65) Prior Publication Data
/ Primary Examiner — Jungwon Chang
US 20100217782 A1 Aug. 26, 2010 74) Attorney, Agent, or Firm — Lee & Hayes, PLLC
ey, Ag y
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. 10/693,653, filed on A system and methqu for SELVITE dlscmfery and publication
Oct. 24. 2003 Pat No. 7716357 are disclosed. Application programs write requests for ser-
ol < , HOW Bl INO. /7, 120,297 vice discovery, publication, and subscription to a service dis-
51 Tt CI covery application programming interface. The service dis-
(51) Int. Cl. H covery application programming interface invokes one or
GO6F 15/16 (2006'0;*) more lower-level protocols to satisty the discovery, publica-
GOGF 9/46 (2006'0;‘) tion and/or subscription request. Service 1nformation
GO6F 17/30 (2006.01) retrieved from lower-layer protocols 1s formatted into a con-
yerp
(52) U.S. Cl sistent data model and returned to the client application. In
USPC .., 709/231; 707/803; 719/328 addition, service information may be stored in a persistent
(58) Field of Classification Search data store managed by a discovery persistence service coms-
USPC 709/231, 225, 224, 208, 203, 227,

709/201, 246; 719/3135, 328; 7077/803
See application file for complete search history.

200

municatively connected to the service discovery API.

9 Claims, 19 Drawing Sheets

— 210 — 212
- N - N
Application Programs Discovery Persistence Service [—m
\.. / . J
1 e
4 N
Service Discovery AP
. J
~ | T = Eg) L [oD
B 5 5 B e e e B
O L LA o O o e o
- o o 0 - - -)
9 S ° = © o © =
e [AN o 0 Al 0 s
220 J 202 3 I 224 T 226 —T 228 —T 230) 1 232 —T 234 -T
I 236 2
]

240 ~] pata
Store

US 8,489,759 B2
Page 2

U.S. PATENT DOCUMENTS

7,085,814 B1* 82006 Gandhietal. 7009/208

7.401.338 Bl 7/2008 Bowen et al.

7,716,357 B2* 5/2010 Milligan etal. 709/231
2002/0099814 Al1* 7/2002 Mastrianni 7009/224
2002/0112058 Al1l* &/2002 Weismanetal. 7009/227
2003/0135628 Al 7/2003 Fletcher et al.

2003/0140119 Al 7/2003 Acharya et al.
2004/0010590 Al 1/2004 Manzano
2004/0111525 Al1* 6/2004 Berkland etal. 7009/231
2004/0120344 Al 6/2004 Sato et al.
2004/0133896 Al1* 7/2004 Lymetal. 719/315
2004/0139151 Al1* 7/2004 Flurryetal. 709/203
2004/0162871 Al1* &/2004 Pablaetal. 709/201
2004/0210630 A1 10/2004 Simonnet et al.
2004/0213409 A1 10/2004 Murto et al.
2004/0261086 A1 12/2004 Jensen et al.
2005/0080768 Al 4/2005 Zhang et al.
2005/0091374 Al1* 4/2005 Ganesanetal. 7009/225
FOREIGN PATENT DOCUMENTS
JP 2003223449 Al 8/2003
RU 2143183 12/1999
WO WOO0190883 11/2001
WO WO003083676 A1 10/2003
OTHER PUBLICATIONS

Translated Japanese Office Action mailed Jul. 29, 2011 for Japanese
patent application No. 2006-536562, a counterpart foreign applica-

tion of US patent No. 7,716,357, 4 pages.

Maruyama, et al., “Realizing Dynamic Electronic Commerce by
Using Web Services, -SOAP/WSDL/UDDI-” IPSJ Magazine, vol.
42, No. 7, pp. 643-647, Information Processing Society of Japan,
Japan, Jul. 15, 2001.

Sato, “FTP Site Search Tool, archiesrv-1.2, archie.cgi, xarchie-2.0.
10, c-archie-1.4.1, archieplex,” Solaris Review, No. 2, pp. 130-137,
IDG Japan, Inc., Japan, Oct. 1, 2000.

The Korean Office Action mailed Nov. 2, 2011 for Korean patent
application No. 10-2011-7016088, a counterpart foreign application
of US patent No. 7,716,357, 2 pages.

Translated Japanese Office Action mailed Feb. 4, 2011 for Japanese
Patent Application No. 2006-536562, a counterpart foreign applica-
tion of US Patent No. 7,716,357, 5 pages.

The Korean Office Action mailed Mar. 11, 2011 for Korean Patent
Application No. 10-2005-7008290, a counterpart foreign application
of US Patent No. 7,716,357, 5 pages.

Bott E, Siechert K., Effective work: Windows XP, St-Ptsb. Piter,
2004, p. 1021. (the Translation of the book: Ed Bott, Carl Siechert,
Microsoft Windows XP Inside Out, Microsoft Press, 2001).
Guttman, “Service Location Protocol: Automatic Discovery of IP
Network Services”, Jul./ Aug. 1999;pp. 71-80; http://computer.org/
internet.

The Supplementary Search Report mailed Sep. 14, 2012, for Euro-
pean patent application No. 04778869.0,6 pages.
Hoschek, “A Unified Peer-to-Peer Database Framework for

XQueries Over Dynamic Distributed Content and Its Application for
Scalable Service Discovery”, PhD Thesis, Mar. 1, 2002, Technical
University of Vienna, Austria, retrieved from the internet at https://

acs.lbl.gov/hosceck/publications/phd2002-hoschek.pdf, retrieved
on Sep. 4, 2012.

The Indian Office Action mailed Sep. 4, 2012 for Indian patent
application No. 1817/ DELNP/2005, a counterpart foreign applica-
tion of US patent No. 7,716,357, 2 pages.

Jasune, “A Service Browser for the Service Location Protocol Ver-
sion 2 (SLPv2)”, Proceedings of the Eunice Open European Sum-
mary School and the IFIP Workshop on IP and ATM Traffice Man-
agement (WATM), Sep. 3, 2001, Panis, France, retrieved from the
internet at http://bettstetter.com/publications/jasund-2001 -eunice-
slpbrowser.pdf, retrieved on Sep. 4, 2012.

Kempt, et al., “An API for Service Location”, Jun. 1, 1999,

Sedov, et al.,, “Time and Energy Efficient Service Discovery In
Bluetooth™, V'TC 2003, Spring, Proceedings of the 57th IEEE Semi-
annual Vehicular Technology Conference, Jeju, Korea, Apr. 22-25,
2003, IEEE, New York, NY, USA, vol. 1, pp. 418-422.

Hoschek, “A Unified Peer-to-Peer Database Framework for
XQueries Over Dynamic Distributed Content and Its Application for
Scalable Service Discovery”, PhD Thesis, Mar. 1, 2002, Technical
University of Vienna, Austria, retrieved from the internet at https://
acs.lbl.gov/hosceck/publications/phd2002-hoschek.pdf, retrieved
on Sep. 4, 2012, 166 pages.

Jasune, “A Service Browser for the Service Location Protocol Ver-
sion 2 (SLPv2)”, Proceedings of the Eunice Open European Sum-
mary School and the IFIP Workshop on IP and ATM Traffice Man-
agement (WATM), Sep. 3, 2001, Panis, France, retrieved from the
internet at http://bettstetter.com/publications/jasund-2001-eunice-
slpbrowser.pdf, retrieved on Sep. 4, 2012, 6 pages.

Translated Japanese Office Action mailed Oct. 2, 2012 for Japanese
patent application No. 2010-288262, a counterpart foreign applica-
tion of US patent No. 7,716,357, 8 pages.

Kempt, et al., “An API for Service Location”, Jun. 1, 1999, 92 pages.
Korean Office Action mailed Jan. 31, 2012 (and redacted English
translation) for Korean patent application No. 10-2005-7008290, a
counterpart foreign application of US patent No. 7,716,357, 5 pages.
Translated Japanese Office Action mailed May 22, 2012 for Japanese
patent application No. 2010-288262, a counterpart foreign applica-
tion of US patent No. 7,716,357, 20 pages.

Eugster, et al., “The Many Faces of Publish/Subscribe”, Computing
Surveys, vol. 35, Issue 2, pp. 114 to 131, ACM, U.S., Jun. 2003.
Nagao, “Architecture Networking Household Electrical Appliance,
the Whole Picture of Universal Plug and Play, the Third Round, UPnP
Programming in Windows XP”, Interface, vol. 29, No. 9, pp. 176 to
187, CQ Publishing Co., Ltd., Japan, Sep. 1, 2003.

* cited by examiner

US 8,489,759 B2

Sheet 1 0of 19

Jul. 16, 2013

U.S. Patent

--.

!

|

L \\

TP Y S S TN, W, W, W

BE
nE

\ MM == vovs ewwy/voeu)is [~— 00|

NV'I

zlL —

9oBLIBU]
YIOMION |

HOd

leueg

~

x.
I

.......... ",

/

__...f

soepelu|
9SNON

/pieogAay

- Y ..._

-— . e—

N@ _‘ Im

~ 09}

Sa|NPON
1BY1O

mEE,,mE&
UoleoIi|ddy

¢4l | welboid

e

8vL

I

—_
.I.r -
\
A
.
T T T R ‘

r

— -~
-

Jeidepy
OOPIA

S AR T AR AL TR T RAR T WAL L WA NIT T WA WAL LW L SR . AR L AR AR T AR I

T L. NI LT TP T

F

el —

L L T L R T

P R
\.SI-.-.S.- Lo L e L R) St S Wk R e AR e S A e A - R L) S W A e A e R

S AN T TR T WA v L wa e

791 H,
B1e(] weiboid

,,...ff ~
-
S S

c9L so|npoN
weiboid joyio

091 sweiboid
uonesiddy

. a

e
—_—

meﬁllmlim::lﬂ, .,..,,,
- walsAg bunessdQ

o0

o
=
O
x

AIOWDN WBISAS

L T T | P T T T R s L T T s Ca L LA L T 1Y

L I T L

o o owa e

U.S. Patent Jul. 16, 2013 Sheet 2 of 19 US 8,489,759 B2

ﬂ) .
O |
c P
@ 8 [000J01d K >
) |
N - i
‘Eg |
N F
D / |00010J <] > 0
3 - A
o | N
o |
G>J .
o > g 0001044 K
w |
0 = |
<{ |
>, |
<t Q G 1090]0.1d N A
g = |
N & |
- 0N | g @
| 5 | - > o 2
@ | SR
O 7 [000]0ld K >
S |
€D
)

-
.q-
N

T g —

210

. ¢ 0001014 3 >

)
-
S
. —
O
&
0
-
O
m
O
0.
.
e

|| 10001014 <3 >

-

22

US 8,489,759 B2

Sheet 3 0f 19

Jul. 16, 2013

U.S. Patent

“seA

GCt

05€
s108lq0 Au3

1 eo1A18G LINYY |

_wc_mw_@ooi
Jeyun 4

Sd(Ul 8i0)g

sj08lqO Anu3
90IAJOS 1eulOo

-MOT 81N08X3

ON

(SdQ u
S|qeA|oSaY

E@:U@W_
yoiessg asied

laV

SI[ED IV 19797 |

LVE

GVE

Ove

Get
_Alii.iii...ii

0CC

——— .Y

buisses0.id

JOYHN 4

1sonboy
yoeasg

1914 sule(

9d09g suls]

uoleolddy

- GGE

02t

-Gle

Ol

US 8,489,759 B2

Sheet 4 of 19

Jul. 16, 2013

Ovv

U.S. Patent

0Sv

SdQ Ul 8103

S|IeD IdV 19A9T
-MOT] 8JNdaX3

osled

e
uoneol|gnd

dV

Mmmsvmm
uonesi|gqng

sajledold
ouUla(]

H:_oavcm_
aulje(

adA |
90INIDG ubissy

Aay| ubissy

108lqo Auz
90IAI8G aula(

uoleoiddy

GEY

- LY

- 07

- 6T

- 0CP

-GLy

- 0Lt

q::dm

US 8,489,759 B2

Sheet S 0of 19

Jul. 16, 2013

U.S. Patent

4494

094G

0PS -

LO11BULIOJU|
Sdd AJipo

S|[eD |dV [9AST
-MO7] 9)N08X]

1sanbay

uona|a(q es.ted |

|dV

|

|

|

T TTTTTTTh
:
|

1sanbay 91919 |

9d00g aula(

Aay) Alioadg

108lq0 Au3

90IAI8S Bula(

uoifjeoiddy

- Q2%

GG

01G

US 8,489,759 B2

Sheet 6 0of 19

Jul. 16, 2013

U.S. Patent

0t9

069

108lg0 Anu3

Sdd Ul 84015

100fqO Anu3

S|[ED IdV 19AS97
-MQO™ 8JnNJaxg

1s8nbay
uoniduosgng
osled

|V

90IAIOG LIMSY |

9JIAIDS 1BWIIO |

—- §E9

$¥9

Ov9

puissanoid
Jauun4

1sanbay
uonduosgng

uolouN 4

Moeq|ed suys(|

18|14 suyaQ

2d00g aula

uoneslday

G49

GC9

0C9

- G619

0L9

US 8,489,759 B2

Sheet 7 0f 19

Jul. 16, 2013

U.S. Patent

05/ Sr. — Ot. GE L 0€.

|000]014S80IAa(]
= 2d00g

alinbuijianlesippn
|0001044Yjo01en|g

~ 09, ‘0o0j0iddep

|090}01q | G1°9N

= 9000G = 9000% = 8d00g
SOUNSA Ujoolan|gd 141oN dv(J17'2d0oS8}8i0u0) = 20098
20d00$918.10U0D) s QoomBEocoo 5009521810107 __Dm_: 2d00g8)210U0N
GCL 07/
Eo:m._:m_v_coow _ [uoienbiuon] uoneinbiyuon]

AUIUORINE20T 0d02K])0BNSAY J0Upy adooglorisqy osudisiug adoogloensqQy GlL/

Eo:ml_:mu:oou_
IV 2000K10BNSAY | 0L/

//-dRy,, ‘|loo0j0idIPPN

{) BUINMBIUAA'BJOSLOD
{ASM88 + ,, :A8Y,,) BUIBIUAN B|OSUDYD

{

;

((0<iunod sjuiodpuz-es) R ([INu=jsjuiodpuz-es)) j|
(Uonduosa(les + , :uonduosacy,) suldIUAA B|OSU0)
(BLUBN'8S + , :BWEBN,,,) BUITTSILUAN BJOSUDN

(ssaippylp]siuiodpuy as + , :SSIPPY,,) SUITBILANB|OSU0D

US 8,489,759 B2

}

([Jl0D8s Ul 88 AJUTBIAIBS) Lors1o)

w (JUNODNI0DSBS + ,, . PUNOH SIINSAY,,) SUITSILIAN B|OSUON
- S)|Nsa. Joday //
-
- o
- () IIWPUI"PUIJAIBS = [|0DSS UOIS||I0DAIUTSDIAISS
.m 2doos sy} ulyIm Jayy 8y Bulyojew ssnnus |l puld //
7 p,
(.06, Sinulwiadsabed,) ppy saipadold sy
(. aN¥L. ‘Jojoojuld,) ppy seladoid el
U0 yoljew 0] saiadold ay) asenaq //
—
~ Joyy = Jo)fi4 puidAies
gl
- J91UIIH SadA | 92IAI8QUOWILIOND = 9dA | 80IAI8G 1311}
= () 18)14a1duwis mau = Ja)iy Je)I4e|dwis
M. sisyuld AJuo Jog 184 //
-

((Iinu
‘09, ‘|0001014 (1Y ed0ag8e1aiou0n)) 9doosa1aIou0) Mau) ppy sadoog puldAIas

bojejed |eqo|b ayj ul Aiojoaldiq aAlloy buisn yoieas 0) Ajloadsg J/

‘()19pUI4O2IAIBG MBU = PUIJAIBS 18DPUI{3DIAIBG AISADISI(] LWUBISAS
19pPUI4a2IAIBG B alede(//

;

()avieni4e|dwig pioA de)s

U.S. Patent

() SUIMBIUAA 8lOSUOND
{(Aoy'8S + , (A8Y,) SUIBIUAN B|OSUOD

{

1
((0<iunodsjuiodpuges) g9 (|INu=jsjujodpu-as)))l
A&Emz.mm + | ”mEmZL SUIMDILAA B|OSUOD

}

([|l0DBS Ul 8S ANJUZJ82IAIOS) Yoraio]
(JUNOYY||I0NBS + , :PUND4 SJNSSY,,) BUIMBLUAN BJOSUO0N
s]nsad uoday //

(ssaJippy olsiuiodpugas + , |SS3UPPY,,) SUITSILANSI0SUOD

US 8,489,759 B2

() IVpuUI4"puI4AIesS = |J0D8S UOI08[I0DANUT80INSS
2doos ayj uiyum isyy ayy buiyojew senue e puld //

Sheet 9 0f 19

J8)|lY = JOYI4"puIdAIeS

l
0ZA6PY6Peg}-/BQ8-1ZG-€Z9P-00PF(L 0BIPINN, = SDBMSJU|ISOINISS pue Wweylige, = aweu JadIAIaggap,)
IB)|I4YOrY MaU = Ja}|y J8)|I4yory
2N Anbui:Bio-1ppn, [9PON} //
ay) "a’1 aoeLiaul oii0ads B uswa|dwl jey) //
weMlge4 pauleu sa2iAles gapn Ajuo Joyg Jay|iq //

Jul. 16, 2013

{(JInu © 21N bul/Wod JosoLaIWppnTIsay /. diy,,
‘10001044 PPN 8d00891910U0 D)) 2d0IS8)aI0U0D) MaU) PPV SBd0IS PUIJAISS
ANsIBay ssaulsng |C1C1N LOSOIOIN 8U) JO UOISISOA 1S8) J/
ayl ul joootold |1 N eyl buisn yoiesas 0} Ajinvedg //

() J8puUI4a0IAIag MBU = PUIJAISS JapuUl{adiAIag
8P| 480IAIBS B lk|0a(] //

}

() 1aanJsiI4yoiy pioA oljels

U.S. Patent

)
aa
A {
\f)
~ d
w (Asy 88 + , :ABY,,) SUITSUHIAN B|OSUOND
{
“m., , {(ssalippvy [p]jsiuiodpug as + , :SS8JPPY,,) SUIMSIIAA S|OSUCH
7» &U h
- Q \ f m ((0<iunogsjuiodpuges) B ([INu=jsjutodpuz as))
{(uondiosac]'es + , (uoIdiiosa(],) SUIMSHIAN 9|OSU0D
(BWEN'8S + , :DWEN,) SUIBIIAA S|0SUOND
}

(JJoD8s ul 8s AlugasInBeS) yoealuol

N (JUNODY'[|0D8S + , (pUNDH SYINSAY,,) SUIMBILIAA B|0SUOND

y— .

= s}nsai poday //

= () IYPUId pUIdAIBS = [[0D8S UOOD|[0DAIIUTODIAISS

,_w '2d00s 8y} uiyum a8yl sy) Buiyojew ssniue (e puly //

=

¥ p, Em:m = 19}|| 4 PUIJAIDS
(.dZa6pP6poeg)-/BR8-1ZG-£29P-00p0 Lo pInn,

e)PPy S80BLBIU|8DIAIDS IS}

= () J9)1481dwiIS mau = 18}l 18}|I48(dwiIS

& WA Ainbul:Bio-ippn, [9pOA} 8Y3 "8t /f

“m,. ‘BoBlBUI O1j1Dads e Juswa|dwl 1B8Y] S8DIAI8S A|UO 10 18I //

m ((JInu “ Bainbul/woo yosoidwrippn//:dny,

‘100010441pPN 2d02g818JoU0)D)
90d00$8)aJ0U0) MBU) PPy $adodg pul{AIaS
‘apou Alisibay ssauisng |C1C1N BOSOLIN //
ay) Wi [020104d 11N 2U) Buisn yoieas 0] Ajioadg //

() JOpUI4O2IAIES MBU = PUIJAIDS JOpUI4ODIAIBG AIBA0ISI(] WBISAS
'JOpUI4O2IAIRG B ale|da(] //

;

() laansenidoduwis ploA dness

U.S. Patent

laganJsyide|duwig, gng puj

28 1XoN

’ \&0 (Aay'as g , A3y, JBUITSNIAA BIOSUOD)
\ ’ Jl pu3

(ssaJppy(Q)siulodpug as ¥ |, (SSaIPPYV,,)SUI8ILAA 9|0SU0ND
uayy 0 < junodsjuiodpuzas os|ypuy (BuiyloN s| sjulodpu3 as) 10N 4
(uonduosa@as ¥ ,, .uonduosaq,)eura)IAA B|0SU0N)
(BWEBN9S 3 , ‘SWEN, JBUIT8lIAA B|0SuU0)
JI0D3s U] 9s yose3 1o
ANUJa0IAIBG SY 89S Wi

US 8,489,759 B2

&N
— (JUNOD'I0D8s B, :PUNO4 SHNSBY,,)OUITRIIAA B|OSUOD
- ‘S)Insal Joday
—
= ()IIPUld"puUIdAIas = UOOD||0DANUTBDIAIBS SY ||0D8S WIC
2 '2d00s 8y} ulyIm 19y Y3 Buiyojew saiiue e puld
)
19)| = 1o} puldAIes
(,.a296P¥6Poeg)-/B8R-1ZSH-E29P-00PF0 L 0B pInN,
— ")PPy S80epalUI0IAISS 1o}
¢ i8)|i48|dwigS MeN sy Jeyy wid
< ‘oA Anbur:Bio-ippn, 19po1 8y} "8t ,
y— ,momtmucm o_momn_w e EmEm_aEm jey] S20IAIDS \m_co A0} i18}]id
=
- ((BulyioN ‘,8linbui/wiod yosoloiurippn//:diuy,

‘|10001014IPP N 2d0088}810U0D))8d0058]a10uU0D) MBN)PPY $8d00S puUl4AIsS
‘apou Aisibay ssauisng |QgnN HOSOIoIN |
ayl ui j0o010.d [N 2yl buisn yoiesas 0] Ajoadg

18pUI4a2IAIBG MBN = PUI{AISS WI(]
'1apUI4ODIAIOG B aleda(
Oraandeyi4edus gns

U.S. Patent

US 8,489,759 B2

Sheet 12 0of 19

Jul. 16, 2013

U.S. Patent

(Aay oS + , :A8y,) BUINTSILIAN'B|OSUOD
{
{(ssaippy[plsiuiodpu-es
+ . :SSBIPPY,,) BUITSILIAA"BIOSUOD
}

((0<iunogsjuiodpuz-as) R (lINu=jsjuiodpuz-as))il
(BWEBN8S + ,, :BWEN],) BUINSILIAA'8|OSUOY)
}
([lon8s ul as AlUTa2IAIeS) Yoralo)
QUNODYNI0DBS + , PUNO- SHNS3YH,,) SUITBLLIAA OIOSUON
S]NsaJ Loday //

() IIVPUI4 PUIJAIBS = [JODSS UOII3||0DAIIUTIIAIDS
'2d00s 8y} uIyym Jayy ey} buiyolew seniue |le puld //

I8l = Jal|I 4 puljAles

([J81Ulid 80140, 9Y1] sweu lisjulid,

) 19)114UOr MaU = I8}l J8}|I4YOIY
'JOlULd 90O, UIM suibaq sweu ay} alaym siayuud 1o} 18y //

{|Inu “,:09,, 10901014y 2d0058]1810uU0)
) d02S8}810U0D) MBU) PPV $adoog puUIJAISS
‘Boe1es 1eqolb ayj ui Alo)oali Ay buisn youeas 0} Ajnads 4

‘() JOPUIJOOIAIOG MBU = PUIJAISS JOPUI{ODIAIOG
'JI9pUIJBDIAIBG B ale|da(] //

}

() avis)i4yory pioa oljess

US 8,489,759 B2

Sheet 13 0f 19

Jul. 16, 2013

U.S. Patent

g) DL

AVv4eiIqUoY, gng pu4

89S IX&8N
(Aay'as B . ADY JBUIIBJIAA BlOSUON)
PU-d
(ssalppy (p)siulodpug-es R . (SSaIPPY, JaUlTSIAN B|OSUC)
usy |
0 < Junod'sjuiodpu3 as os|ypuy (BuiyloN s| sjuiodpu3'as) JON 4|
(6WIBN8S ¥ , :8WEBN,, JaUITeIIAN 8|OSU0D
[J0D8S U] 88 yoe Jo4
ANUgaoIAIeg Sy 89S Wi
(JUNODY'||0DBS B , (PUNO4 S)NSBY,)aUITBILAA BJOSUOD
S)|NsSaJ uoday

OIVPUI pUI4AIBS = UONDB||0DANUTBDIAISS SY ||0D8S WIC
‘odoos ay} ulypim Jayjy ey} buiyodlew sanius e puld

Jo|y = Ja}|l4"puIJAIasS

(.l 421U 821, &i] dWeu Lsjulid,)18}i4Uory MaN Sy 48} wi(]
181Ul 2210, Ulim suibag sweu ay) alaym siauild 104 J8)i4 .

((BuiyioN *,:09, ‘|020j0IdAY 8d0088}8I0U0]
~ }8d00g81810U00) MAN)PPY SOC0IS pUIJAISS
‘Bojeied |eqolb syl ul Asojoali(] oAy buisn youeas 0] Ajnadg .

JOPUI430INISS MBN SY PUI4AISS WI(
"I2PUIJODIAIOG B aJeoa(.
()awv4syi4yory ans

US 8,489,759 B2

{
()aARgG 80IAIeS
’ &Q ‘ado0os paljioads ay} oul //
\ , A|SNOUOIUDUAS UOiBuIOUl 831AI9S 8] usiland //
(do)ppy sjuiodpug adiales
(|INU ‘sWweNSsuUlyde|N TUBWIUOHAUT Jjulodpug mau = da juiodpul]
b '90IAIBS 8y} bulssador 10} SSalppe ay) 0) 8dusialal Jutodpus ue ppy //
Coje
=
< { odA] aoiniaga|dwes)aorLBlU|BDIAIBRS MBU = 9dA | 80IAIDG 90IAISS
- ‘Alladoid adA | adiAleg ay] //
.mn...w buias Ag paijloads St 8dIAI8S 8U] JO adAl ay | //
7.
‘AeyjeoInBega|dwes = A9y 89iAles
‘8uo a)eisuab Aew sj000301d awos ‘Aay anbiun e ubissy //
er)
= {
—
) ([000104ddpsS ad0oga)aioun)))adoogal1aiouo)) Mau)ppy sadoog aolAles
“m,, ‘olul Anue as1A18s siyl usgnd o1 8doas aul ppy //
M ‘()AnugesiAIeg mau = a2IAIes ANJUadIAIeS
'109[q0 ANUTE2IAIBS MaU B a)enueIsu| //
}

()JoABS PIOA Djjels

()bumso | (O)pinoymaN pIng) = Aayaoialage|dwes buls onels
WWPZLLLYL603-0836-v P-4 .3-aV81P44G L, = 9dA] 801989 dwes Bulls Jsuod

U.S. Patent

SAES, dng pud

US 8,489,759 B2

()OABG BDIAISS
'‘2d09os paijioads ay) ojul ,
A|SNOUOJIYIUAS UOiBLIIOUI 82IAJ8S BY] Usliand ,

(da)ppy sjuiodpug adIAIas
(BUIUION ‘slueNauIyoe JuswuoJiAug uiodpug meN sy de wi(

=N
- "80IAJ8S 8] BUISSao0e 10} Ssalppe ay) 0] aousuajal Juiodpus ue ppy ,

=
nk (adA | &o1nIaSe|dwes)aorllalu|90iAIag MaBN = 80A | 80IAIBG 80IAI8S
P> ‘Alledoud adA | @oiaieg ayl .
m Bumes AQ paijioads s1 821A18S au) Jo adAl By | .
Aayaointagaldwes = A9y adIAIeS
‘aU0 ajesauab Aew $|020104d BWOS ‘A anbiun e ubissy |

er)
m ({]0001014dpsS 8d00go1240u0N) }8d0agB18I0uU0N) MAN)PPY $S8d0DS 82IAI8S
< "OJUl AJJUd 921AJS SiYl ysljgnd 0) 8doos ay)} ppy .

o
M. AJJU80IAI8S MBN SY 90IAJ8S WIQ

108[00 A)JUT80IAIBS MBU B dlenuelsuy| .
(JoAes gng paleys

()bungo L OpinomaN pIng) = DULIG Sy Adyeoialage|dwes paieus
WANZAN R R AN
-0836-7¥Py-1L2.3-9V8r44S L. = Bung sy adA eoiniage|dwes Jsuod

U.S. Patent

US 8,489,759 B2

&N
y—
= {
= ‘(Yoro19(q" 901AIBS
,_w ‘2d092Ss paijioads ay) wolj //
7 A|SNOUOJYDUAS uonewIoUl 831A18S 8U) a19le(] //
(
e (10001044dpPsS '2d02S01210U0))2d02K818JO0U0D) MBU)PPV SOd0IS 9DIAIBS
~ 'LUOJ) B2IAIBS SIU) 8)9|ap 0] 2d0oas ay) ppy //
NG
H. Aayjooiniaga|dwes = A8y 92IAI8S
= '919|9p 0] 82IAI8S 8Y) Jo Aay anbiun ay) Ajioadg //

)AnuJeoIAIBS MaU = 92IAI8S AJJUT82IAIeS
"108lqo Alju3e2IAIeg Mau e ajenue)sul //

}

()@1e19Q pIoA dnjels

U.S. Patent

US 8,489,759 B2

N
A
Cof
-
~ a)9leQ, ans pu3
&
m ()o18]9(] @21AI8S
‘2d02s paijioads ay] wolj
A|SNOUOJYOUAS UOIBWIOJUI 82IAI8S BU) 819]8(] ,
o
m ((]0001014dpsS 2d0088)810U01))8d0288)8J0U0)
& MBN)PPV S8d00G 90IAIB8S
= LUOJ} 82IAISS SIU) a18|ep 0) 8doos syl ppy ,
-

Aayjediniaga|dwes = Aay'8dIAI8S
'9]8|8p 0] 92IAI8S 8U] Jo Aay anbiun ay) Alioedg ,

AJJUTB2IAIBS MBN SY 99IAI8S Wi
'108[qo AlJUge2IAI8S MBU B 8leljueIsu| ,

()elele@ ans

U.S. Patent

{
{ Aay'[o |seoinieg e ‘adA | a1epdne

WL l=Aevn{oredA L e1epdn,,)uUIT@lIANB|0SUOYD)
‘2Ja ajepdn a2iAISS au] J|pueH //

’ (
% \ &“ o sbiyiuaagalepdnaoialeg ‘1apuss 109[g0 Js|pueH PIOA 211elIS a)jeAld

.mummm_mU oU] UMM ﬁm__._mwummmmw.m SEM JEU] UOIIOUN} Yoeq||eo 24l St sS4l //

US 8,489,759 B2

‘1o|puey =- 8)epdnseoirieg iapul)
'se1epdn a0I1AJes J0] alebalep ay) Wod) JB|pUBY INC 8AOWSY //

N
- b
Cof
= (Yaquosgnsun pIoA 211e1s ognd
0
A
= {
& J9|puey =+ aepdnesiAieg iapull
@nu ‘sajepdn 821AJ8S J0) 81ebajep ayjl 01 Ja|puBy Jno ppY //
{ JJOMIBNBWOM sadA | 801AIaGUOWILLON
18]I 48|dWIS Mau = I8)ji4"18pull
o { (10201014dpsSS 8d00881840U07)
m y2d00g81810U0) MBU PPy sadoog iapull
& 'SYJOM]BU SLIOY B|1SBD, 10} YOO0| 0] Japuil aul azi|eniu| //
— ;
= (Jequosgng ploa oie)s olgnd
-

‘()18DUI{O2IAIBS MBU = JBpUI) JOPUIJaDIAISG D11B]S a)eAld

'(JB|puRH Jg|puBHIUSATSlRPdNS2IAIBS JOPUIJadIAIOS MBU
= Jo|puiey Jo|pueHiusAgeIepdNBIIAISS IopUIJ82IAIaS 21)e]S B)eAld
'SIN000 80IAIege|dWES 8Yy] uo |jepdn //
Ue JO UOIEDIIoU B 8] yoes pajed aq ||Im ayebsalap siy] //

J

a|dweguondiuosgng sse|o pajess oljgnd

U.S. Patent

a|dweguonduosgng, sse|n pul

19|pUEeH, gng puj
(Aay(0)saoinieg e ‘adA | aepdns
~u(Lki=ASN), B qelaA g ,101edA | 81epdn,)aulTelIAN@I0SUOD
‘2Joy ajepdn aJIAIes al] a|pueH ,

US 8,489,759 B2

(sbiylusAage1epdnediAIeg SY 9 |[eAAY

— 108lq0 sy Japuas [eAAG)IS|pUBH NS paleyS BleAlld
‘o1eBolap oyl Uum palalsibal sem jey) uoloung yoeq||es ayl st siy|

N\
m 2quosgnsun, ans pug
Iy I8|puBH 1OSSsalppy ‘01epdnodlAleg Iapull JO|PUBHOAOLUSN
H ‘salepdn aoinias 1o} ajebalap ay) Woldp Jajpuey JNo sAOWSaY |
5 (Jequosqnsun gns paJteys dlqnd
m_.\nu
aquasgng, gng pu4
I8|pueH JOSSalppy ‘elepdnedineg ispul) Js|pueHppy
‘sajepdn a21A19S 10} 81ebalep ayj 0} Ja|puey o pPpy
er;
= (MJOMIBNBWO}"SBdA | BoIAIEGQUOWILIOY))iB]I48ldwig MmBN = J8]|I4 J8apul)
2.,_ ((]000)044dpPsS 8d00581840U00))8d00581840U0N
= MBN)PPV S2d00G IBpul)
— 'SYJOMIBU BLUOY B|ISED J0J MO0O0| 0} J8pulj 8yl azijeniu
= (Jagquosgng gqng pateys allgnd

JOpUI{80IAIBS MBN SY Japull paleys a)eAlld

'SIND00 aoIAlags|dwes ay) uo ayepdn ,
ue JO Uo)EoYIloU B awWil yora pa||eo aq ||Im ajebsajep siy| ,

s|dweguonduosgns sse|n a|gejlayuioN 21lgnd

U.S. Patent

US 8,489,759 B2

1
SERVICE DISCOVERY AND PUBLICATION

RELATED APPLICATIONS

This application 1s a Continuation of, and claims priority
to, co-pending application Ser. No. 10/693,653, filed Oct. 24,
2003, entitled “Service Discovery and Publication,” which 1s
incorporated herein by reference.

TECHNICAL FIELD

The described subject matter relates to digital computing,
and more particularly to service discovery in computing
devices and computing networks.

BACKGROUND

Application programs that execute on computing devices
and computer networks may require the use of services pro-
vided by other physical or logical devices connected to the
computing device or network. Presently, application pro-
grams use a wide range of application programming inter-
taces (APIs), protocols, and object models to discover, enu-
merate, and describe services and devices on a local
computing device or across a plurality of devices 1n a com-
puter network. The mechanisms available to discover, enu-
merate, and describe services and devices differ significantly,
even when the services and devices involved are conceptually
similar.

For example, consider a situation 1n which an application
seeks to enumerate available printers. When executing within
an administered, corporate environment, the application may
need to use Lightweight Directory Access Protocol (LDAP)
to communicate with a Microsoft Active Directory® direc-
tory service store to discover registered corporate printers,
NetBT to discover print queue servers, and Bluetooth to dis-
cover personal area network printers. In addition, the appli-
cation might have to invoke device management APIs to
discover direct attached printers, and UPnP™ APIs to dis-
cover UPnP printers. Each of these mechanisms requires
understanding of a particular API, protocol, and query seman-
tic.

The number of APIs and protocols required to for an appli-
cation to discover, enumerate, and describe services compli-
cates the task of software development.

SUMMARY

Implementations described and claimed herein address

these and other problems by providing a uniform interface
that simplifies discovery and publication tasks. The uniform
interface permits underlying protocols to be leveraged and
climinates the need for application developers to understand
low-level protocols. The uniform interface provides a consis-
tent, high-level abstraction of services and associated opera-
tions that targets the discovery and publication of service
details over a wide range of lower-level APIs, protocols,
stores, and network environments.

In one exemplary implementation, a method for discover-
ing services available in a computing environment 1s pro-
vided. The method comprises: 1 an application program,
defining a discovery scope; defining a discovery filter; and
initiating a search request to a first application programming
interface; and 1n the first application programming interface:
parsing the search request; retrieving service information cor-

10

15

20

25

30

35

40

45

50

55

60

65

2

responding to the requested discovery scope and discovery
filter; and returning the service information to the application

program.

In another exemplary implementation, a method for pub-
lishing services available 1n a computing environment 1s pro-
vided. The method comprises, 1n an application program:
defining a service entry object; defining a publication scope;
assigning a unique key to the service; assigning a service
type; defining properties for the service; and defining end-
points for the service; and initiating a publication request to a
first application programming interface; and in the first appli-
cation programming interface: parsing the search request;
and executing at least one low-level API call to publish the
Service.

In another exemplary implementation, a method for delet-
ing a published service 1n a computing environment 1s pro-
vided. The method comprises, 1n an application program:
defining a service entry object; specilying a key correspond-
ing to the published service; defining a deletion scope; and
initiating a deletion request to a {first application program-
ming interface; and in the first application programming,
interface: parsing the search request; and executing at least
one low-level API call to delete the service.

In another exemplary implementation, a method of sub-
scribing to service events 1 a computing environment 1s
provided. The method comprises, in an application program:
defining a scope; defining a filter; defining a callback func-
tion; and 1nitiating a subscription request to a first application
programming interface; and in the first application program-
ming interface: parsing the search request; and executing at
least one low-level API call to subscribe to service events; and
returning information from service events to the application
program.

In another exemplary implementation, a system for man-
aging information about services available 1n a computing
environment 1s provided. The system comprises a first appli-
cation programming interface configured to accept service
queries from an application, wherein the first application
programming interface receives service queries 1n a first ser-
vice query protocol, processes the service queries, and
launches at least one corresponding service query to a second
protocol; a discovery persistence service communicatively
connected to the first application programming interface,
wherein the discovery persistence service receives service
information from the first application programming interface
and stores the service information in a data store.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic 1llustration of an exemplary comput-
ing device;

FIG. 2 1s a block diagram 1llustrating an exemplary soft-
ware architecture;

FIG. 3 1s a flowchart illustrating operations for service
discovery;

FIG. 4 1s a flowchart illustrating operations for service
publication;

FIG. 5 1s a flowchart illustrating operations for service
deletion;

FIG. 6 15 a flowchart illustrating operations for subscribing
to service events:

FIG. 7 1s a block diagram illustrating the relationship
between concrete scopes and abstract scopes

FIG. 8 1s pseudo-code 1llustrating how to use the C# pro-
gramming language to locate color printers that print 50
pages per minute using a SimpleFilter object on the Active
Directory protocol;

US 8,489,759 B2

3

FIG. 9 1s pseudo-code illustrating how to use the C# pro-
gramming language to locate Web services;

FIG. 10 1s pseudo-code illustrating the use of the C# pro-
gramming language to find services supporting a specific
tModel interface using a SimpleFilter object and the UDDI
protocol;

FIG. 11 1s pseudo code 1llustrating the use of Visual Basic.
NET to find services supporting a specific tModel interface
using a SlmpleFllter object and the UDDI protocol;

FIG. 12 1s pseudo-code 1llustrating the use of the C# pro-
gramming language to locate a printer with a name like Office
Printer using the RichFilter with Active Directory;

FI1G. 13 1s pseudo-code illustrating the use of Visual Basic.
NET to locate a printer with a name like Office Printer using
the RichFilter with Active Directory;

FI1G. 14 1s pseudo-code illustrating the use of the C# pro-
gramming language to publish a service of a specific type,
identified by a specific unique i1dentifier, using the SSDP
protocol;

FI1G. 15 15 pseudo-code 1llustrating the use of Visual Basic.
NET to publish a service of a specific type, 1dentified by a
specific unique i1dentifier, using the SSDP protocol;

FIG. 16 1s pseudo-code 1llustrating the use of the C# pro-
gramming language to delete a service from the SSDP pro-
tocol;

FI1G. 17 1s pseudo-code 1llustrating the use of Visual Basic.
NET to delete a service from the SSDP protocol;

FIG. 18 1s pseudo-code illustrating the use of the C# pro-
gramming language to use a SimpleFilter to register for
events of a specific type that use the SSDP protocol. The
registered callback function will be invoked for every event
that matches the filter and the corresponding ServiceEntry
object will be provided to that handler; and

FI1G. 19 1s pseudo-code 1llustrating the use of Visual Basic.
NET to use a SimpleFilter to register for events of a specific
type that use the SSDP protocol.

DETAILED DESCRIPTION

Described herein are exemplary methods and software
architecture for service discovery and publication. The meth-
ods described herein may be embodied as logic instructions
on a computer-readable medium. When executed on a pro-
cessor, the logic 1nstructions cause a general purpose com-
puting device to be programmed as a special-purpose
machine that implements the described methods. The proces-
sor, when configured by the logic instructions to execute the
methods recited herein, constitutes structure for performing,
the described methods.

Exemplary Operating Environment

FI1G. 1 1s a schematic illustration of an exemplary comput-
ing device 130 that can be utilized to implement one or more
computing devices in accordance with the described embodi-
ment. Computing device 130 can be utilized to implement
various 1mplementations i1n accordance with described
embodiments.

Computing device 130 includes one or more processors or
processing units 132, a system memory 134, and a bus 136
that couples various system components including the system
memory 134 to processors 132. The bus 136 represents one or
more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accel-
erated graphics port, and a processor or local bus using any of
a variety of bus architectures. The system memory 134
includes read only memory (ROM) 138 and random access
memory (RAM) 140. A basic mput/output system (BIOS)
142, containing the basic routines that help to transter infor-

10

15

20

25

30

35

40

45

50

55

60

65

4

mation between elements within computing device 130, such
as during start-up, 1s stored 1n ROM 138.

Computing device 130 further includes a hard disk drive
144 for reading from and writing to a hard disk (not shown),
a magnetic disk drive 146 for reading from and writing to a
removable magnetic disk 148, and an optical disk drive 150
for reading from or writing to a removable optical disk 152
such as a CD ROM or other optical media. The hard disk drive
144, magnetic disk drive 146, and optical disk drive 150 are
connected to the bus 136 by an SCSI interface 134 or some
other appropriate interface. The drives and their associated
computer-readable media provide nonvolatile storage of
computer-readable instructions, data structures, program
modules and other data for computing device 130. Although
the exemplary environment described herein employs a hard
disk, a removable magnetic disk 148 and a removable optical
disk 152, 1t should be appreciated by those skilled 1n the art
{
C

hat other types of computer-readable media which can store
lata that 1s accessible by a computer, such as magnetic cas-
settes, flash memory cards, digital video disks, random access
memories (RAMs), read only memories (ROMs), and the
like, may also be used 1n the exemplary operating environ-
ment.

A number of program modules may be stored on the hard
disk 144, magnetic disk 148, optical disk 152, ROM 138, or
RAM 140, including an operating system 158, one or more
application programs 160, other program modules 162, and
program data 164. A user may enter commands and informa-
tion 1nto computing device 130 through input devices such as
a keyboard 166 and a pointing device 168. Other input devices
(not shown) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input
devices are connected to the processing unit 132 through an
interface 170 that 1s coupled to the bus 136. A monitor 172 or
other type of display device 1s also connected to the bus 136
via an interface, such as a video adapter 174. In addition to the
monitor, personal computers typically include other periph-
eral output devices (not shown) such as speakers and printers.

Computing device 130 commonly operates 1n a networked
environment using logical connections to one or more remote
computers, such as a remote computer 176. The remote com-
puter 176 may be another personal computer, a server, a
router, a network PC, a peer device or other common network
node, and typically includes many or all of the elements
described above relative to computing device 130, although
only amemory storage device 178 has been 1llustrated 1n FI1G.
1. The logical connections depicted in FIG. 1 include a local
area network (LAN) 180 and a wide area network (WAN)
182. Such networking environments are commonplace 1n
ollices, enterprise-wide computer networks, intranets, and
the Internet.

When used 1n a LAN networking environment, computing,
device 130 1s connected to the local network 180 through a
network interface or adapter 184. When used 1n a WAN net-
working environment, computing device 130 typically
includes a modem 186 or other means for establishing com-
munications over the wide area network 182, such as the
Internet. The modem 186, which may be internal or external,
1s connected to the bus 136 via a serial port interface 156. In
a networked environment, program modules depicted relative
to the computing device 130, or portions thereof, may be
stored 1n the remote memory storage device. It will be appre-
ciated that the network connections shown are exemplary and
other means of establishing a communications link between
the computers may be used.

Generally, the data processors of computing device 130 are
programmed by means of instructions stored at different

US 8,489,759 B2

S

times 1n the various computer-readable storage media of the
computer. Programs and operating systems are typically dis-
tributed, for example, on floppy disks or CD-ROMs. From
there, they are 1installed or loaded 1nto the secondary memory
ol a computer. At execution, they are loaded at least partially
into the computer’s primary electronic memory. The mven-
tion described herein includes these and other various types of
computer-readable storage media when such media contain
instructions or programs Jfor implementing the steps
described below 1n conjunction with a microprocessor or
other data processor. The invention also includes the com-
puter itsellf when programmed according to the methods and
techniques described below.

Exemplary Software Architecture Overview

FIG. 2 1s a block diagram of an exemplary software archi-
tecture 200 for service discovery that may reside 1n system
memory 134 of FIG. 1. In this implementation, system
memory 134 may comprise a plurality of application pro-
grams 210. In a networked environment the application pro-
grams may function as client programs, while 1n a PC envi-
ronment the applications may execute as stand-alone
programs. The particular nature of the application programs
1s not critical.

Application programs 210 invoke service discovery API
214 to discover services available 1n the computing environ-
ment. Service discovery API 214 provides a high-level gram-
mar for expressing discovery queries. The grammar may be
implemented 1n OPath, a natural query language used for
expressing discovery queries. This high-level grammar pro-
vides software developers a more conceptual mechanism to
express the service(s) the developer 1s looking for, rather than
requiring a more granular and protocol-specific expression
that may be required by the underlying protocols 220-234.
The developer can construct a query using the high-level
grammar, which may then be forwarded to either a specific set
of protocols, referred to as a number of “concrete scopes”, or
use an “abstract scope” which 1s a predefined or configured
set of concrete scopes. In addition to supporting service dis-
covery, the system supports service publication/deleting, and
monitoring for events.

Service discovery API 214, in turn, invokes one or more
underlying protocols, represented in the diagram by Protocol
1 220 through Protocol 8 234. The particular number of
underlying protocols 1s not important. Certain of the proto-
cols 220-234 may be directory-backed protocols such as, e.g.,
LDAP, Universal Description, Discovery and Integration
(UDDI), and Domain Name System (DNS) Server. Other
protocols may be ad-hoc protocols such as, e.g., Bluetooth,
UPnP, and NetBT. One or more of the underlying protocols
220-234 uses a communication connection 236 to communi-
cate with other components or services available 1n the com-
puting environment.

In response to the discovery request, the service discovery
API returns a collection of ServiceEntry objects that repre-
sent matching services discovered either on the local machine
or on the network. A ServiceEntry object 1s a generalized data
structure that can represent much of the relevant detail
returned by the underlying protocols that system supports.
Each ServiceEntry object corresponds to a single instance of
a service. In one implementation, the ServiceEntry object
provides descriptive and 1dentifying properties including: (1)
a service name; (2) a service description; (3) endpoints, which
typically contain a network address(es) for the service; (4) a
key, that identifies the service imstance; (5) properties, €.g., an
extensible list of name-value pairs for service or device char-
acteristics; and (6) a provider, e.g., an identifier that identifies
the entity that provides the service.

10

15

20

25

30

35

40

45

50

55

60

65

6

A discovery persistence service 212 communicates with
service discover API 214. Among other things, discovery
persistence service 212 registers for announcement events
over ad-hoc protocols. The discovery persistence service 1s
notified when an announcement event 1s detected, and the
discovery persistence service copies mformation about the
service announcement mto a memory location in data store
240. Storing service details 1n a memory location enables
discovery of services that may be currently unavailable. For
example, even 1f a printer 1s currently switched off details
about the printer may be registered in the memory location
and can be discovered. In addition, service queries are not
restricted to the protocol that communicates with the service.
Moreover, the performance of querying the memory location
may be much better than 1ssuing a broad network discovery
query.

Exemplary Operations

In an exemplary implementation, the service discovery
API 214 provides methods for service discovery, service pub-
lication, and subscribing to service event notifications. FI1G. 3
1s a flowchart illustrating operations 300 for service discov-
ery. At operation 310 an application defines a scope, at opera-
tion 3135 the application defines a filter, and at operation 320
the application 1ssues a search request. The service discovery
API 214 recerves the search request and, at operation 325, the
service discovery API 214 parses the search request. At
optional operation 330, the service discovery API 214 deter-
mines whether the search request 1s resolvable using infor-
mation stored in the discovery persistence service 212. Inone
implementation, information managed by the discovery per-
sistence service 212 includes a time-of-life indicator that
specifies the lifespan of the mmformation in the discovery
persistence service 212. Depending upon control and con-
figuration, the service discovery API 214 may query the dis-
covery persistence service 212 to determine whether the dis-
covery request can be satisfied using information the
discovery persistence service 212 manages on the data store
240. If the discovery request 1s resolvable using the discovery
persistence service 212, then control passes to operation 350,
and the service entry objects retrieved from the discovery
persistence service 212 are returned to the application.

By contrast, if the discovery request 1s not resolved or
resolvable using information managed by the discovery per-
sistence service 212, then control passes to operation 335, and
the service discovery API 214 executes the low-level API
call(s) required to fulfill the discovery request. At operation
340 the service information returned from the low-level API
calls 1s formatted 1nto service entry objects, and at optional
operation 345 the service entry objects are forwarded to the
discovery persistence service, which may store the service
entry objects on data store 240. At optional operation 347
turther processing and filtering of the service entry results
such as duplicate detection and removal may be performed.
At operation 350 the service entry objects are returned to the
application for turther processing, at operation 353. The par-
ticular details of the further processing performed by the
application are not important.

FIG. 4 1s a flowchart illustrating operations for service
publication. At operation 410 an application defines a service
entry object for the service publication. At operation 415 the
application defines the scope for the service publication. At
operation 420 the application assigns a unique key to the
service publication, and at operation 4235 the application
assigns a service type to the service publication. At operation
430 the application defines endpoints for the service publica-
tion, at operation 432 the application defines properties for
the service publication and at operation 435 the application

US 8,489,759 B2

7

generates a publication request. The steps performed may
vary according to the detail of information that 1s to be pub-
lished and the low-level API that will be used.

The service discovery API 214 recerves the publication
request and, at operation 440, parses the publication request.
At operation 450 the service discovery API 214 executes the
low-level API calls to execute the service publication request.
At optional operation 4355 the service publication 1s stored in
the discovery persistence service 212.

The service publication facilities of the service discovery
API 214 can also be used to delete a published service. FIG.
5 1s a tlowchart 1llustrating operations for service deletion. At
operation 510 an application defines a service entry object for
the service publication. At operation 515 the application
specifies the unique key for the service. At operation 520 the
application defines a scope for the service deletion. At opera-
tion 530 the application generates a service deletion request.

The service discovery API 214 receives the deletion
request and, at operation 540, parses the deletion request. At
operation 550 the service discovery API 214 executes the
low-level API calls to execute the service deletion request. At
optional operation 355 the service publication 1s deleted from
the discovery persistence service 212.

The service discovery API 214 can also be used to allow
applications to be notified of service events, such as the arrival
or departure of a new service or device of a particular type.
FIG. 6 1s a tflowchart illustrating operations 600 for subscrib-
ing to service events. At operation 610 an application defines
a scope that specifies the particular low-level protocol to
monitor. At operation 615 the application defines a filter that
specifies the type of event. At operation 620 the application
defines a callback function that will recerve ServiceEntry
details as matching events occur. At operation 625 an appli-
cation generates a subscription request, which i1s forwarded to
the service discovery API 214.

The service discovery request API 214 recerves the sub-
scription request and, at operation 630, parses the subscrip-
tion request. At operation 635 the service discovery request
executes the low-level protocol calls required to implement
the subscription service. When a service event occurs the
low-level protocol will provide the service discovery API
with a notification of the event. At operation 640 the event
notification 1s formatted into a service entry object. At
optional operation 645 the service entry object may be stored
in the discovery persistence service 212, and at operation 650
the service entry object 1s returned to the application using the
previously specified callback function. At operation 655 the
application performs further processing on the service entry
object. The particular details of the further processing per-
tormed by the application are not important.

The system’s components and operations are discussed in
greater detail below.

API Classes
Filters

A Filter 1s a set of rules by which a service description can
be evaluated, resulting in true (i.e., service description
matches the filter) or false (i.e., service description doesn’t
match the filter). A filter can be expressed either as a simple
filter, which specifies particular properties, or as a rich filter,
which uses more expressive grammar. Whether expressed as
a sumple filter or a rich filter, queries can be specified and
executed over more than one protocol without modification,
subject to the capabilities of the underlying protocols. The
service discovery request API 214 manages the re-expression
of the higher level query into the correct format for the under-
lying low-level protocol. For example, the service discovery
request API 214 can receive a query for a particular service

10

15

20

25

30

35

40

45

50

55

60

65

8

type and express and evaluate 1t using LDAP for Active Direc-
tory and using the UDDI protocol for a UDDI Web service
registry. An application developer 1s not required to work
directly with the individual protocols.

In an exemplary implementation, the service discovery
request API 214 requires discovery modules to support a
simple filter, providing exact match semantics for provided
criteria, and a rich filter containing a query expressed in the
OPath grammar. It will be appreciated that each may also
support additional “native” filter types. Ditlerent discovery
modules may have protocol-specific native filter types, e.g.,
UPnP may use XPath filters, Active Directory may natively
use LDAP filters, and UDDI may natively use a UDDI filter.

The base level of OPath filter functionality across the mod-
ules further insulates applications from underlying discovery
protocols. The filter class exposes additional methods to parse
and interpret the filter 1n a way that 1s shared across the
modules.

A simple filter provides for expression of queries by speci-
tying a service type, services interfaces, and/or properties.
Any combination of these settings may be provided in a
search query, and services will be included 1n the resulting
service entry collection only 11 all of the criteria exactly
match.

The service type may be implemented as a string that
specifies the type that must match the service instances. A
common set of service types are predefined 1n the service
discovery request API 214. This set may be extended as key
entities within protocols and stores are identified. For
example, for printers 1n Active Directory, this would specity:
filter.ServiceType=CommonServiceTypes.Printer.

The service interfaces may be implemented as a string
collection that specifies 1dentifiers for interfaces that services
must match. As an example, for web services in UDDI, the
following tModel 1dentifiers could be specified: filter.Servi-

celnterfaces. Add(“vuid:ac104dcc-d623-4521-88a’/ -
18acd94d9b2b™); filter.Servicelnterfaces. Add(*“uud:
4d2aclca-e234-1421-e217-4d9b218acd9b™)

Properties may be implemented in a property dictionary
that specifies service characteristics that services must match.
As an example, for printers in Active Directory, the following
properties could be specified: filter.Properties. Add (“print-
color”, “TRUE”); filter.Properties.Add (“pagesperminute”,
“307)

A rich filter provides a mechanism for expressing signifi-
cantly richer query semantics using, ¢.g., the OPath grammar,
by setting a Query string property. As an example, for web
services 1n UDDI, the Query string would specily the
required name and a required supported interface:
filter.Query="WebService[name=‘Fabrikam’ and
Servicelnterface="uuid:ac104dcc-d623-4521-88a’/ -
18acd94d9b2b’]”

As a more expressive example to find printers 1n Active
Directory capable of printing more than 25 pages per minute
where A4 paper 1s not available: filter. Query="Printer[print-
PagesPerMinute>20+35 and not(printmediaReady=°"A4")]".

Since the capabilities of the underlying protocols and
stores are far from 1dentical, ranging from the basic NetBT to
the rich Active Directory query semantics, the ability to use
the more expressive constructs of OPath will depend upon the
scope (protocol) selected.

SCopes

A scope 1dentifies a query domain that can be searched,
usually coarse and by network location or administrative
boundary. Discovery queries are directed to one or more
scopes, and the query result includes a subset of the services
within those scopes, 1.e., the query result 1s the subset of all

US 8,489,759 B2

9

services within the scope that match the given filter. Exem-
plary scopes include workgroup, localmachine, and domain.

The service discovery API 214 accommodates concrete
scopes and abstract scopes. A concrete scope specifies a query
domain 1n three pieces. A Protocol identifier that identifies a
specific protocol, e.g., mapping to a single discovery module
such as ConcreteScope.NetBtProtocol. or ConcreteScope-
ADProtocol, an Address (optional) identifier that specifies a
server to which to direct operations on this scope such as
“http://intra-uddi/uddi/inquire.asmx” for an intranet UDDI
server, and a path identifier (optional) that identifies a parti-
tion of the module’s namespace, such as an LDAP search base
which could be set to “CN=joe-dev,CN=Computers,
DC=corp,DC=fabrikam,DC=com™, or a UPnPv2 scope
name.

The service discovery request API 214 passes concrete
scopes to modules. The service discovery request API 214
does not preclude modules from performing additional indi-
rection on concrete scopes such as, e.g., transmitting the
concrete scope over the wire to a second machine and passing
the concrete scope to a corresponding API on that second
machine.

An abstract scope 1s a moniker for one or more concrete
scopes and possibly further abstract scopes. Abstract scopes
provide a mechanism for targeting a query across a logical
predefined or configured concrete scope collection. This pro-
vides an additional abstraction that allows the developer to
target, for example, an “enterprise’ scope, without requiring
explicit protocol, address, and connection details for particu-
lar directory servers.

The mapping of abstract scopes to concrete scopes 1s
machine-wide and configurable. For example, an abstract
scope AbstractScope.Enterprise might map to include both of
the concrete scopes 1n Table 1.

TABL

(L]

1

protocol = ConcreteScope.ADProtocol

address = “ldap://dev.corp.fabrikam.com”™

path = null

protocol = ConcreteScope.UddiProtocol

address = “http://uddi.fabrikam.com/inquire.asmx™

path = null

FIG. 7 1s a block diagram 1llustrating an exemplary rela-
tionship between concrete scopes and abstract scopes. Con-
crete scopes 730-750 provide the specification of the domain
across which queries will be evaluated. Concrete scopes 730-
750 comprise protocol identification details and, as required,
specifics of a store or server to use, with the potential for
turther scoping within that store or server. Withun the service
discover API 214, these are specified in the Protocol, Address
and Path properties respectively.

Abstract scopes 710-7235 provide a higher level hierarchi-
cal abstraction over and above concrete scopes. Abstract
scopes are configured to include the concrete or abstract
scopes that make them up. This scope mapping will be avail-
able to system administrators, who can be able to configure
exactly how, for example, the AbstractScope.Enterpris-
eScope should be resolved.

Both concrete and abstract scopes can be used by a user of
the service discovery API 214. In the case where an abstract
scope 1s provided, the service discovery API 214 will resolve
this down, through the hierarchy, to a number of concrete
SCOpES.

Abstract scopes allow developers of application programs
210 to work at a relatively high level and include scope
identifying terms such as “AbstractScope.Enterprise” 1n

10

15

20

25

30

35

40

45

50

55

60

65

10

code. In this way, for example, the developer 1s notrequired to
hardcode the specifics of a particular UDDI server 1nto his
code. This abstraction provides for greater reuse and portabil-
ity of code. The same piece of code can be used 1n a variety of
enterprise environments without change or recompilation.
Only the abstract scope configuration would change between
environments.

There may be multiple hierarchies of abstract to concrete
scope mappings. In FIG. 7 AbstractScope.LocalMachine
does not map up into AbstractScope.All even though all of 1ts
constituents are included.

In an exemplary implementation the scope map configura-
tion may be manipulated through group policy by a system
administrator to control the use of the service discover API
214 1n the enterprise. By way of example, an administrator
could define one or more abstract scopes available 1n the
enterprise computing environment, or 1 a portion of the
enterprise computing environment. This permits a system
administrator to regulate the discovery and use of resources
by applications.

ServiceEntry Results

An application developer can select appropriate Scope and
Filter expression, which may then be set as properties on a
service finder object. The application can then use the Find-
One or FindAll methods to execute a discovery request. The
FindAll method returns all services matching the supplied
criteria, whereas the FindOne method returns a single match-
ing service. The methods may be executed using a synchro-
nous or an asynchronous calling pattern.

Assuming that there are services that match the provided
filter within the specified scope, the FindOne or FindAll
methods will return one, or a collection of, service entry
objects. The service entry object 1s an abstraction over the
various representations of services that the underlying proto-
cols can provide. Each service entry object corresponds to a
single mstance of a service and as such, offers descriptive and
identifying properties including those set forth 1 Table 2.

TABLE 2

Property Comments

Name Identifies Service Instance

Description Description of Service Instance

Endpoints The set of endpoints at which the
service 1nstance can be accessed

Key The 1dentifying key for the service
instance

Scopes The scopes that an entity was
discovered from or 18 to be published
into

Credentials Specifies the credentials that will be
used when publishing this service.

Provider References the “provider” (container) of
the service, if any

Expiration Time at which the service entry will

expire, based on a time-to-live

A public void Save() function 1s provided to create or
update the service entry representation in the scopes specified
in the scopes collection.

A public void Delete()method removes this ServiceEntry
object from the scopes specified 1n the Scopes property. An
exception will be thrown 1f the service 1s not already pub-
lished.

Pseudo-Code
FIGS. 8-19 illustrate pseudo-code for performing various
service discovery, publication, and subscription functions.

US 8,489,759 B2

11

FIG. 8 1s pseudo-code illustrating how to use the C# pro-
gramming language to locate color printers that print 50
pages per minute using a SimpleFilter object on the Active
Directory protocol.

FIG. 9 1s pseudo-code illustrating how to use the C# pro-
gramming language to locate Web services that implement
the uddi-org:inquiry_v2 interface and are named Fabrikam
using the RichFilter object over the UDDI protocol.

FI1G. 10 1s pseudo-code illustrating the use of the C# pro-
gramming language to find services supporting a specific
tModel interface using a SimpleFilter object and the UDDI
protocol.

FIG. 11 1s pseudo code 1llustrating the use of Visual Basic.
NET to find services supporting a specific tModel interface
using a SimpleFilter object and the UDDI protocol.

FI1G. 12 1s pseudo-code illustrating the use of the C# pro-
gramming language to locate a printer with a name like Office
Printer using the RichFilter with Active Directory.

FI1G. 13 1s pseudo-code illustrating the use of Visual Basic.
NET to locate a printer with a name like Office Printer using,
the RichFilter with Active Directory.

FI1G. 14 1s pseudo-code illustrating the use of the C# pro-
gramming language to publish a service of a specific type,
identified by a specific unique 1dentifier, using the SSDP
protocol.

FI1G. 15 15 pseudo-code 1llustrating the use of Visual Basic.
NET to publish a service of a specific type, identified by a
specific unique identifier, using the SSDP protocol

FIG. 16 1s pseudo-code illustrating the use of the C# pro-
gramming language to delete a service from the SSDP pro-
tocol.

FI1G. 17 1s pseudo-code 1llustrating the use of Visual Basic.
NET to delete a service from the SSDP protocol.

FI1G. 18 1s pseudo-code illustrating the use of the C# pro-
gramming language to use a SimpleFilter to register for
events ol a specific type that use the SSDP protocol. The
registered callback function will be invoked for every event
that matches the filter and the corresponding ServiceEntry
object will be provided to that handler.

FI1G. 19 15 pseudo-code 1llustrating the use of Visual Basic.
NET to use a SimpleFilter to register for events of a specific
type that use the SSDP protocol.

Exemplary OPath Syntax

Table 3 provides exemplary OPath syntax for various dis-

covery functions.

TABL

(L]
(o

OPath Refers to

Find all printers and print
queues.

Find all printers where the
name 1s Upstairs Printer.
Find all printers capable of
printing more than 25 pages
per minute and A4 paper 1s
not available.

Find all printers where the
name begins with Pri and
either the pages per minute
1s greater than 10 or letter
paper 1s available.

Printer
Printer[name = ‘Upstairs Printer’ |

Printer| printPagesPerMinute > 20 + 5 and
not(printmediaReady = ‘A4’)]

Printer[Properties.name like “Pr1’ and (
printPagesPerMinute > 10 or
printMediaReady = “letter’)]

Printer[supportsColor = true && Find all printers which
printerName like ‘Home’ or name like support color and the name
“Work’) | begins with Home or Work.
Service| Find all services which are

ServiceConnectionPoint
objects.

Servicelnterface=ServiceConnectionPoint]

10

15

20

25

30

35

40

45

50

55

60

65

TABLE 3-continued
OPath Refers to
Service[(servicelype = ‘Printer’ or Find all services, either
service Type= ‘Computer’) and name like printers or computers, that
“Work’ | have a name like Work.
Computer[operatingSystemVersion like Find all computers that are

“003790%"] running an operating system
whose version number
contains 3790.

Find all computers that are
running a particular
operating system. The
operatingSystem attribute

is not included in the

global catalog.

Computer]| operatingSystem="Windows

Server 20037]

Table 4 contains examples of OPath syntax that can be used
on the UDDI protocol.

TABLE 4

OPath Refers to

Find all Web services where the
name 1s Fabrikam.

Find all Web services where the
name starts with UDDI and that
supports the identified interface

(1.e. the tModel uddi-
org:mquiry_v2).

WebService| name = ‘Fabrikam’]

WebService[name = ‘UDDI%’
&& Servicelnterface =
‘unid:acl104dce-d623-4521-88a’7 -
f8acd94d9b2b’ |

Table 5 contains examples of OPath syntax that can be used
on the NetBT protocol.

TABLE 5
OPath Refers to
Workstation Find all workstations.
Service| ServiceType = Find all services of type
‘PrintQueueServer’ | PrintQueueServer.
Computer| servicelnterface = Find all domain controller
‘DomainController’ and computers running as a terminal

Servicelnterface = “TerminalServer’ | server.

Discovery Persistence Service

As described briefly above, the discovery persistence ser-
vice 212 manages a persistent data store for service informa-
tion. Periodically, or at predetermined events, such as startup,
the discovery persistence service registers to recerve ad-hoc
device/service announcements. As an example, when a new
UPnP device 1s introduced 1t will generate a device announce-

ment that will be handled by the UPnP protocol module. This
module will then surface details of that event (the device and

its services) to the discovery persistence service through the
service discovery API 214.

Using its persistent data store, the discovery persistence
service then determines whether this 1s a new device/service
or a returning device/service. If 1t 1s a new device/service, the
details of the device and 1ts services will be registered in the
per51stent data store. When another consumer of the service
discovery API 214 then attempts to find services, the service
discovery API 214 will be able to return services for ad-hoc
devices/services, even if the devices are not currently avail-
able. For the above example, 1n the case where the device/
service 1s currently available, depending upon the scope
specified, both the UPnP protocol module and the persistent
data store module may return results for the device. In addi-
tion to UPnP, this functionality applies to other ad-hoc dis-
covery mechanisms.

US 8,489,759 B2

13

Thus, the discovery persistence service 212, the service
discovery API 214, and the local database store 240 provide a
layer of abstraction over the various low-level protocols used
for device and service discovery. This additional layer of
abstraction establishes a common and improved search
semantic that application developers may use in developing
applications.

In addition, the discovery persistence service 212, the ser-
vice discovery API 214, and the local database store 240
provide a consolidated discovery model for services and
devices on a local machine, a home network(s), an enterprise
network(s), and the internet. Thus, application developers can
discover services 1n a wide variety of locations by writing to
a single, consistent API.

CONCLUSION

Although the described arrangements have been described
in language specific to structural features and/or method-
ological operations, 1t 1s to be understood that the subject
matter defined 1n the appended claims 1s not necessarily lim-
ited to the specific features or operations described. Rather,
the specific features and operations are disclosed as preferred
forms of implementing the claimed present subject matter.

What 1s claimed 1s:

1. A system for managing services available in a computing
environment, comprising:

a Processor;

a memory;

a first application programming interface, stored in the
memory and executed, at least in part, by the processor,
the first application programming interface configured
to accept from an application, service queries expressed
in a high-level grammar, the first application program-

5

10

15

20

25

30

14

ming interface configured to receive the service queries,
process the service queries, and launch at least one cor-
responding service query as a protocol-specific expres-
s101;

a discovery persistence service comprising a simple filter
and a rich filter communicatively connected to the first

application programming interface, the discovery per-
sistence service configured to recetve service informa-
tion from the first application programming interface
and store the service information in a data store.

2. The system of claim 1, wherein the {first application
programming interface provides an interface to at least one
directory-based protocol and at least one ad-hoc protocol.

3. The system of claim 1, wherein the simple filter provides
for expression of the service queries by service type, service
interface and/or service characteristics.

4. The system of claim 1, wherein the rich filter provides for
expression of the service queries using query semantics.

5. The system of claim 1, wherein the first application
programming interface discovers services available on alocal
computing device.

6. The system of claim 1, wherein the first application
programming interface discovers services available on a
remote computing device.

7. The system of claim 1, wherein the {first application
programming interface implements a scope map, and wherein
the scope map 1s configurable by a system admainistrator.

8. The system of claim 1, wherein the high-level grammar
comprises a natural query language used for expressing dis-
covery queries.

9. The system of claim 8, wherein the high-level grammar
1s implemented according to OPath.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

