US008489611B2
12 United States Patent (10) Patent No.: US 8.489.611 B2
Tofano 45) Date of Patent: Jul. 16, 2013
(54) DELTA CHUNKS AND DELTA HASHES 8,250,325 B2* 8/2012 Holdmanetal. 711/162
2007/0282829 Al* 12/2007 Fontouraetal. 707/5
: : 2011/0040728 Al1* 2/2011 Akwavetal. 707/634
(76) Inventor: Jfgrey Vincent Tofano, San Jose, CA 2011/0113012 Al* 52011 Gruhletal. ... 707/646
(US) 2011/0246741 Al1* 10/2011 Raymondetal. 711/170
2011/0276744 Al1* 11/2011 Senguptaetal. 711/103
(*) Notice: Subject to any disclaimer, the term of this 2011/0307447 Al1* 12/2011 Sabaaetal. 707/637
patent 1s extended or adjusted under 35 ¥ cited b .
U.S.C. 154(b) by 89 days. ciied by examiner
(21) Appl. No.: 13/182,495 Primary Examiner — Jay Morrison
(22) Filed: Jul. 14, 2011 (57) ABSTRACT
(65) Prior Publication Data Example apparatus, methods, and computers control process-
ing delta chunks with delta hashes. One example method
US 2012/0016882 Al Jan. 19, 2012 includes computing a first hash for a chunk for which a
(51) Int.Cl. duplicate determination 1s to be made. The first hash 1s suit-
GOGE 7/00 (2006.01) able for making the duplicate chunk determination. The
GO6F 17/30 (2006.01) method also 1includes computing a delta hash for the chunk.
(52) U.S.Cl The delta hash 1s suitable for making a delta chunk determi-
CPC .(}’06F 700 (2013.01): GO6F 17/30 (2013.01) nation. The method controls a de-duplication logic to process
USP(i ' 7 707/741: 707 /'7 17 the chunk as a duplicate upon determining that the first hash
(58) Field fCl """ _' ﬁt """ S """" h """ ’ matches a stored first hash. The method controls the de-
Nle OF LAASSITICATIon Statt duplication logic to process the chunk as a delta chunk upon
S;n: lication file for complete search histo determining that the first hash does not match a stored first
PP p t hash and that the delta hash matches a stored delta hash.
: Processing a chunk as a delta chunk may include storing a
56 Ref Cited . .
(56) cIeTenees LA reference to a stored chunk and storing delta hash informa-
U.S. PATENT DOCUMENTS tion.
8,140,821 B1* 3/2012 Raizenetal. 711/202
8,156,306 B1* 4/2012 Raizenetal. 711/202 9 Claims, 8 Drawing Sheets

Apparatus 100

Processor 11

[T —

Memory 120

Intertace 13

—

Hash Chunk Comparison Logic
Logic 142 150
Storage Logic
Puplicale 160
Logic 144
Transmission Logic
170
Delta-Index T
Logic 140
~ T, el T T TN
Crypm Delta Data Store
Hashes Hashes 100
180 190 T

U.S. Patent Jul. 16, 2013 Sheet 1 of 8 US 8,489,611 B2

Apparatus 100

Processor 110 Memory 120 '

Interface 130

Hash
Logic 142

Duplicate
Logic 144

l Delta-Index
LLogic 146

Figure 1

U.S. Patent Jul. 16, 2013

Sheet 2 of 8

Apparatus 100

Processor 110

US 8,489,611 B2

Memory 120

Interface 130

Hash
Logic 142

Duplicate
Logic 144

Delta-Index

L

Chunk Comparison Logic

150

Storage Logic
160

ikl

Logic 146

Transmission Logic

170

- - % .y

e

%

Delta Data St
Hashes Hashes 4 ?9 5 OrTe
180 190

e S—

Figure 2

U.S. Patent Jul. 16, 2013 Sheet 3 of 8 US 8,489,611 B2

C &) -

310

Compute First Hash

l 320

Compute Delta Hash(es) /

Yes

1irst Hash Matches
Stored Hash??

i 330
340 350
] Treat Chunk E‘IO _ Delta Hash Matches
As Duplicate stored Delta Hash?
360 I Yes
N Treat Chunk v
As Unique 370
I | Ireat Chunk As
Delta Chunk

Figure 3

U.S. Patent

«D

Jul. 16, 2013 Sheet 4 of 8
310
Compute ['1rst Hash /

I 315

Determine Number and Type |/
Of Delta Hashes

{ 320

Compute Delta Hash(es) !

Yes First Hash Matches | No
Stored Hash?
i 330
340 _
\ Treat Chunk _ __ Delta Hash Matches
As Duplicate Stored Delta Hash?
. Yes
360 : No
— T;ea;[jC.hunk] Byte Wise Compare
s Unique Threshold Satisfied?

370] Yes

US 8,489,611 B2

300

350

\ Treat Chunk As
Delta Chunk

Figure 4

U.S. Patent Jul. 16, 2013 Sheet 5 of 8 US 8,489,611 B2

| Jv 362
Byte-Wise /
Compare
364
Compute 0
Additional Hashes? —
y o8 366
Compute
Additional Delta /
Hashes |
. 368
No Delta Hashes
Match Stored
Delta Hashes?
360 y Yes 370
Ireat Chunk Ireat Chunk As /
As Unique Delta Chunk

Figure 5

U.S. Patent Jul. 16, 2013 Sheet 6 of US 8,489,611 B2

| 370
Treat Chunk As /
l Delta Chunk
372

Do Not Store Chunk /

l 374

Store Reference

i 376

| Store Difference Data

Figure 6

U.S. Patent Jul. 16, 2013 Sheet 7 of 8 US 8,489,611 B2

714] 16 e

Process

Computer 700
Processor Memory
702 704
I Bus 708 |
l]-St-C:;Gmponent 20d Component 3¢ Component
770 750 79 |

Figure 7

U.S. Patent Jul. 16, 2013 Sheet 8 of 8 US 8,489,611 B2

v o -
])]
n |] Er
] -]
] |] I
n N B
[|] | |
m) -
L |] | g
L L]]
n |] | |
[]]
| |] B
- L "o o
*
" 'i'l' L3 L -
»* P ¥ » s ¥, *
‘_p ‘i I & - » * -
.? ¢ r r " » - -
* + " % . *
. * a a
L L * *
a® o - ¥ » n o
® +* K ¥ -
- - n B > -
L . » i *
»* » - » * = * "
* 'li &) R] - *
- s ¥ r * B S *
- d -] L -]
»® «* . s o . .

308

o0

-

o
0
-
=
o0
-
)

|

X -y ! .o
= - [
| | |]
] ;]]
-] |]
= L »
] B -
| | | I
= " "
[] b | |
n | | "
] = -
= n]
" i — T T, — .
ﬂ-‘ = L | '.ﬁ n "F B [3
«® x i g ® ot 3 .t . "
a® - "l't -n.“" Te, o *
at® - o TS 'hg. -*" e -
'3 o B » * *
. - o’ }.lr Ty bt . "
e’ » wet? te, 1"‘1. : »
L .® T »® o *
- L o™ r - » a
3 st L " ¥y *
O] L - X
" ¥ r o 2
o " LA ta, s’ ey E *
* 2T - ¥ L] L
L - 13 * ¥ n -
-t ar ¥ > L -® » +*
. * Y L » By, _x* .".. -
~] - ‘1“ ¥ * e, »
) ';:"
8 12 f I 81 6

314 - 818

Figure 8

US 8,489,611 B2

1
DELTA CHUNKS AND DELTA HASHES

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority to United Kingdom Patent

Application No. 1012107.7 filed on Jul. 19, 2010, the disclo-
sure of which 1s incorporated herein by reference in its
entirety.

BACKGROUND

Conventional data de-duplication (dedupe) mnvolves 1den-
tifying whether two chunks of data are i1dentical. Identical
data does not need to be stored or transmaitted. Instead, infor-
mation (e.g., a reference) 1dentifying identical data can be
stored or transmitted. When the information about the data

consumes less space or transmission bandwidth than the data,
then space or transmission bandwidth 1s saved.

Conventional dedupe tends to operate in a binary manner.
Either a chunk 1s a duplicate or a chunk 1s not a duplicate.
Duplicate chunks are not stored, unique chunks are stored.
Additionally, conventional dedupe tends to rely on strong,
wide cryptographic hashes to determine whether chunks are
duplicates. Storing or transmitting strong, wide crypto-
graphic hashes consumes at least a part of the memory and/or
bandwidth that dedupe 1s trying to save. Furthermore, index-
ing chunks based on strong, wide cryptographic hashes can
consume limited random access memory (RAM). When a
large number of chunks are indexed with wide cryptographic
hashes, the index can consume more memory than is available
in an indexing machine.

Storage space for storing chunks and for storing indexing
material 1s limited. While plentiful storage (e.g., disk, tape)
may be suitable for storing chunks, less plentiful storage (e.g.,
random access memory (RAM)) may be suitable for storing
indexing material and/or fingerprints (e.g., cryptographic
hashes). Conventional indexes may have grown so large that
they overtlowed memory and required portions of the index-
ing material to be stored elsewhere (e.g., on disk). Storing
indexing material on disk can slow down duplicate determi-
nations. Attempts to store larger chunks may have lead to
tewer duplicate chunks being found. Attempts to store wide
cryptographic hashes may have increased the amount of
memory and/or disk space required to store indexing mate-
rial. Attempts to store smaller chunks may have lead to more
duplicate chunks being found, but at the expense of storing
more cryptographic hashes. Conventional systems may have
wrestled with competing goals of being able to quickly deter-
mine whether a chunk 1s a duplicate using 1n memory index-
ing material while at the same time storing less data and
indexing material.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate various
example methods, apparatuses, and other example embodi-
ments of various aspects of the invention described herein. It
will be appreciated that the illustrated element boundaries
(e.g., boxes, groups of boxes, other shapes) 1n the figures
represent one example of the boundaries of the elements. One
of ordinary skill in the art will appreciate that 1n some
examples one element may be designed as multiple elements
or that multiple elements may be designed as one element. In
some examples, an element shown as an internal component

10

15

20

25

30

35

40

45

50

55

60

65

2

of another element may be implemented as an external com-
ponent and vice versa. Furthermore, elements may not be
drawn to scale.

FIG. 1 illustrates an embodiment of an apparatus associ-
ated with delta chunks and delta hashes.

FIG. 2 illustrates an embodiment of an apparatus associ-
ated with delta chunks and delta hashes.

FIG. 3 illustrates an embodiment of a method associated
with delta chunks and delta hashes.

FI1G. 4 1llustrates an embodiment of a method associated
with delta chunks and delta hashes.

FIG. 5 illustrates an embodiment of a method associated
with delta chunks and delta hashes.

FIG. 6 1llustrates an embodiment of a portion of a method
associated with delta chunks and delta hashes.

FIG. 7 illustrates an embodiment of a computer configured
to control processing delta chunks using delta hashes.

FIG. 8 illustrates computing different delta hashes for a
chunk.

DETAILED DESCRIPTION

Example apparatus and methods produce multiple hashes
for an object (e.g., chunk) and then make duplicate determi-
nations and delta determinations based on the multiple
hashes. A duplicate determination concerns whether a chunk
being processed has been encountered before. A delta deter-
mination concerns whether a chunk being processed 1s simi-
lar to a chunk that has been encountered before. Example
apparatus and methods also selectively produce, store, and/or
transmit delta chunks for chunks that are not duplicates. A
delta chunk 1s a chunk that knows that it 1s different than a
stored chunk and also knows how 1t 1s different from a stored
chunk. A conventional chunk may have no self-awareness and
may simply be treated as a duplicate or as a unique chunk.

A delta chunk 1s not just a record of byte differentials
between two chunks. A delta chunk knows that 1t 1s similar to
a stored chunk and knows about rules that can be applied to
the stored chunk to create the delta chunk. Thus, 1n one
embodiment, a delta chunk stores a relerence to a stored
chunk and a rule for how to recreate the delta chunk from the
stored chunk. In one embodiment, data stored for a delta
chunk may also include a delta hash value and/or delta hash
identifier. The delta hash value and/or identifier may provide
insight into how the chunk came to realize that 1t was different
from but similar to a stored chunk. This 1nsight can guide
tuture duplicate and/or delta decisions for a chunk for which
a duplicate and/or delta determination 1s being made.

Example apparatus and methods may produce a strong,
wide cryptographic hash for an object. Example systems may
also produce more narrow, weaker hashes for portions of an
object. These additional hashes may be referred to as delta
hashes because they are used to determine whether a delta
chunk should be created, stored, and/or transmitted. By way
of illustration, a first narrow, weak delta hash may be com-
puted for the first half of a file and a second narrow, weak delta
hash may be computed for the second half of a file. Both the
strong cryptographic hashes and the more narrow, weaker
hashes may be compared to stored hashes to 1dentity dupli-
cate chunks and/or similar chunks. When two objects are
identical, the strong, wide cryptographic hashes will match. A
cryptographic hash match will lead to a chunk being treated as
a duplicate. When two objects are not i1dentical, the strong
wide cryptographic hashes will likely not match. Instead of
automatically treating the chunk as a new chunk, compari-
sons of delta hashes may reveal that the chunk 1s similar to a

US 8,489,611 B2

3

stored chunk. When a chunk 1s similar to a stored chunk, then
a delta chunk may be stored rather than treating the chunk as
a new chunk.

If two chunks only differ in a few locations, and 1f those
locations are confined to certain regions of the chunk, then
one or more of the delta hashes may match delta hashes
associated with stored chunks while other delta hashes may
not match. In one example, 11 a threshold number of delta
hashes match stored delta hashes, then the chunk may be
treated as a delta chunk. In another embodiment, subsequent
delta hashes may be computed based on comparisons of pre-
viously computed delta hashes to stored hashes. These addi-
tional delta hashes may then be compared for increasingly
smaller subsections of the non-matching portion. Delta
hashes may also be computed for other views of an object. In
one example, a delta hash may be computed for every other
character 1n an object, for every third character 1 an object,
and so on. In another example, a delta hash may be computed
for every 1 k block 1n an object. In another example, a delta
hash may be computed for each boundary delimited region in
an object. One skilled 1n the art will appreciate that a variety
of different hashes can be computed for an object.

In one example the different hashes can be computed when
an object 1s encountered. In another example, additional
hashes can be computed in an ongoing manner 1n response to
a match or mismatch of a previously computed hash. By way
of illustration, an object may first be divided mto quarters. If
the cryptographic hash for the entire object does not match,
but three of the four narrow hashes computed for the quarters
of the object do match, then the quarter for which there 1s a
narrow hash mismatch may be processed fturther. The further
processing may include further subdividing the quarter into
quarters and then repeating the division and hashing until a
similarity determination can be made. The additional pro-
cessing may involve performing comparisons (e.g., character
by character, byte by byte, bit by bit) to determine how alike
or how diflferent the portions are. Based on the further pro-
cessing, a decision may be made to classity the chunk as a
unique chunk and thus to store the chunk or a decision may be
made to classity the chunk as a candidate for delta storage.
While repeatedly subdividing into quarters 1s described, one
skilled 1n the art will appreciate that other divisions may be
employed.

Examining common data storage situations provides
insight 1into dedupe and how delta chunks can enhance con-
ventional dedupe. One classic wasteful data storage situation
involves storing an original word processor file and storing an
edited copy of the file that has exactly one edit. Considera 100
k word processor file that was missing one period at the end of
one sentence and that was edited to include the period. A
conventional system that worked with fixed 100 k block sizes
may store both the original 100 k file and the edited 100 k file
because the two objects are not identical. This conventional
system would store 200 k of data and two cryptographic
hashes.

One conventional dedupe system would likely break the
100 k file into smaller chunks (e.g., 1 k chunks). The conven-
tional dedupe system would not store duplicate 1 k chunks but
would store two versions of the edited 1 k chunk. Therefore
the conventional dedupe system would store 101 k of data.
However, this conventional dedupe system would also store
101 different cryptographic hashes. A wide cryptographic
hash may be, for example, 128 bits, 1 k bits, and so on. When
chunks get small and hashes stay large, the ratio of stored data
to stored hashes may lead to inefficiencies.

Example apparatus and methods may improve on the con-
ventional dedupe system described in the preceding para-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

graph. Instead of breaking a larger file (e.g., the 100 k file) into
smaller fixed size pieces (e.g., 1 k chunks), one example
method may logically break the larger file into smaller pieces
using delta hashes. A first delta hash may be computed for one
half of the file and a second delta hash may be computed for
a second half of the file. The delta hashes can then be used to
decide whether differences are confined to one half. If the
differences are confined to one half, then the identical halves
can be treated as duplicates. The half 1n which the edits appear
may then be divided again and again while differences can be
confined to certain regions. This example would store less
than 200 k of data but may store more than 101 k of data.
However, this example would store less than one hundred and
one wide cryptographic hashes. Instead, this example may
only store two wide cryptographic hashes and a small set of
narrow cryptographic hashes yielding a saving in data stored,
indexing complexity, and indexing area required.

A number of delta hashes may be computed for an object.
Example delta hashes may include, for example, hashes for
fixed portions of the object, hashes for patterns (e.g., alter-
nating characters) in the object, hashes for variable sized
portions ol the object, hashes for unique portions of an object,
hashes for overlapping portions of an object, and so on. Based
on the observation that the cryptographic hash does not match
a stored cryptographic hash and that therefore the two objects
are not 1dentical, a comparison of delta hashes may reveal that
the objects are similar 1n certain regions and differ in other

regions. Based on an analysis of how similar the objects are,
a different type of chunk known as a delta chunk may be
created and stored or transmitted. The delta chunk may
include a reference to a stored chunk and rules for creating a
chunk from a stored chunk.

The following includes definitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The examples
are not intended to be limiting.

References to “one embodiment™, “an embodiment”, “one
example”, “an example™, and other similar terms 1ndicate that
the embodiment(s) or example(s) so described may include a
particular feature, structure, characteristic, property, element,
or limitation, but that not every embodiment or example nec-
essarily includes that particular feature, structure, character-
1stic, property, element or limitation. Furthermore, repeated
use of the phrase “in one embodiment” or “in one example”
does not necessarily refer to the same embodiment or
example.

FIG. 11llustrates an apparatus 100. Apparatus 100 includes
a processor 110, a memory 120, and an interface 130 to
connect the processor 110, the memory 120, and a set of
logics. In one embodiment, the set of logics includes a hash
logic 142, a crypto-index logic 144, and a delta-index logic
146. In different embodiments, the logics may be, for
example, circuits, integrated circuits, application specific
integrated circuits (ASICs), and other entities.

In one embodiment, the hash logic 142 1s configured to
produce a duplicate hash for a chunk. The duplicate hash may
be, for example, a strong, wide cryptographic hash. The hash
logic 142 may also be configured to produce one or more delta
hashes for the chunk. The delta hashes may be more narrow
than the duplicate hash and may be less strong than the dupli-
cate hash. Thus, rather than compute a single cryptographic
hash and search an idex associated with cryptographic
hashes to determine whether a chunk 1s a duplicate based
solely on that single cryptographic hash, multiple hashes may

be computed. Since multiple hashes are computed, multiple

US 8,489,611 B2

S

different decisions can proceed, 1n some cases 1n parallel, to
facilitate determining whether a chunk 1s a duplicate, unique,
or delta chunk.

The crypto-index logic 144 may be configured to deter-
mine whether the chunk 1s a duplicate based on the duplicate
hash. The delta-index logic 146 may be configured to deter-
mine whether the chunk 1s to be processed as a delta chunk as
a Tunction of the one or more delta hashes. In one embodi-
ment, processing the chunk as a delta chunk includes not
storing the chunk as a unique chunk and not storing informa-
tion describing the chunk as a duplicate chunk but rather
storing 1information about the delta chunk. This information
may include, for example, location information for a stored
chunk from which the delta chunk can be recreated and rec-
reation information that describes how to produce the chunk
from the stored chunk. The recreation information can be
used recreate the chunk from a stored chunk referenced by the
location information. The recreation may be based, for
example, on a rule that describes edits to a stored chunk that
will produce the chunk.

In one embodiment, the hash logic 142 1s configured to
produce the duplicate hash and the one or more delta hashes
in parallel. Thus, a strong, wide cryptographic hash may be
produced at the same time as the delta hashes are produced.
Therefore a set of hashes rather than just a single hash may be
available to help characterize the chunk. The duplicate hash
facilitates determining whether the chunk 1s a duplicate while
the delta hashes facilitate determining whether the chunk 1s a
unique chunk or whether the chunk 1s similar enough to
another chunk to be processed as a delta chunk.

In one embodiment, the crypto-index logic 144 and the
delta-index logic 146 are configured to operate in parallel.
Thus, a duplicate determination and a delta chunk determi-
nation may proceed in parallel. A definitive answer in one of
the parallel searches facilitates early termination of other
searches 1n progress. The crypto-index logic 144 may access
one mndex while the delta-index logic 146 accesses a different
index or indexes. For example, the crypto-index logic 144
may access a primary index while the delta-index logic 146
may access a temporal index. The primary index and the
temporal index may reside in different memories.

FIG. 2 illustrates another embodiment of apparatus 100. In
this embodiment of apparatus 100, the crypto-index logic 144
1s configured to search an index 180 that stores crypto-hashes
(e.g., cryptographic hashes, fingerprints, wide hashes). The
index 180 may be stored 1n memory, on disk, and on a com-
bination thereof. In this embodiment of apparatus 100, the
delta-index logic 146 1s configured to search an index 190 that
stores delta hashes. The delta hashes may also be stored 1n
memory, on disk, and on a combination thereof. Duplicate
decision performance 1s enhanced when information upon
which a duplicate determination can be made can be found in
memory rather than on disk. Theretfore, the delta-index logic
146 may be configured to maintain the delta hashes 190 1n a
manner that increases the likelihood of finding delta hash
matches 1n memory. For example, finding a first delta hash
may cause related delta hashes to be moved from disk into
memory 1n anticipation of processing related chunks.

One embodiment of apparatus 100 includes a chunk com-
parison logic 150. Chunk comparison logic 150 1s configured
to 1dentily a difference between the chunk being processed by
apparatus 100 and a stored chunk. The chunk comparison
logic 150 may perform techniques including, but not limited
to, a byte by byte comparison, a bit by bit comparison, and a
block by block comparison. The stored chunk may be stored
in a data store 199. Since the crypto-index logic 144 and the
delta-index logic 146 can search different indexes 1n parallel,

10

15

20

25

30

35

40

45

50

55

60

65

6

a stored chunk may be first identified by the crypto-index
logic 144 and/or the delta-index logic 146. In one example, 1f
the crypto-index logic 144 1dentifies a stored chunk as being
a duplicate of the chunk being processed by apparatus 100,
then crypto-index logic 144 may cause the search of the delta
hashes to be terminated. Additionally, 1f the delta-index logic
146 determines that the chunk 1s similar to but not identical to
a stored chunk, then the delta-index logic 146 may cause the
search of the crypto hashes to be terminated. Therefore, hav-
ing the crypto-index logic 144 and the delta-index logic 146
operating 1n parallel can reduce the amount of time 1t takes to
make a duplicate/unique/delta determination. In one
example, a duplicate chunk may be treated as a delta chunk.
While this may lead to additional indexing space being con-
sumed, making the decision to treat the duplicate chunk as a
delta chunk may shorten duplicate determination time.

Apparatus 100 can also 1nclude a storage logic 160. Stor-
age logic 160 may be configured to store a delta chunk for the
chunk being processed by apparatus 100. Storing the delta
chunk can include storing a reference to a stored chunk,
storing a rule for recreating the chunk from a stored chunk,
and placing a delta hash into a delta hash index. Since the
delta hash 1s more narrow than the crypto-hash, placing the
delta hash into a delta hash index will consume less index
space than storing the crypto-hash 1n a crypto-hash index.
Additionally, storing the delta hash 1n a delta hash index may
complete more quickly than storing a crypto-hash 1n a crypto-
index. Thus, having apparatus 100 process delta chunks
facilitates saving storage space and index space, and also
facilitates making some duplicate determinations more
quickly.

In one embodiment, the crypto-index logic 144 and the
delta-index logic 146 are configured to control the storage
logic 160 to selectively store the chunk as a delta chunk. The
crypto-index logic 144 and the delta-index logic 146 base the
control decision on the crypto-index logic 144 search of the
index 180 that stores crypto-hashes and the delta-index logic
146 secarch of the index 190 that stores delta hashes. The
chunk may be stored as a delta chunk even in some cases
where the chunk 1s a duplicate chunk. In one embodiment, the
chunk comparison logic 150 may also be configured to con-
trol the storage logic 160 to selectively store the chunk as a
delta chunk based, at least 1n part, on differences identified
between the chunk and a stored chunk. In one example, 1f the
number of differences between a chunk and a stored chunk 1s
less than a threshold then the chunk comparison logic 150
may control the storage logic 160 to treat the chunk as a delta
chunk. However, 11 the number of differences between a
chunk and a stored chunk 1s greater than a threshold then the
chunk comparison logic 150 may control the storage logic
160 to treat the chunk as a unique chunk. However, it 1s not
merely the number of differences between chunks that can
control a delta chunk decision. A chunk may differ from a
stored chunk 1n every position but still be treated as a delta
chunk. Consider a chunk that differs from another chunk
simply because the first character has been deleted. Every
other character in the chunk may be similar. This chunk could
be stored as a delta chunk that points to the stored chunk and
includes a rule that says delete the first character of the stored
chunk to recreate the delta chunk.

Apparatus 100 may also include a transmission logic 170.
Recall that dedupe may be applied for both storage and trans-
mission. Therefore transmission logic 170 may be configured
to transmit a delta chunk for the chunk being processed by the
apparatus 100 rather than transmitting the whole chunk or
information identifying the chunk as a duplicate chunk. In
one embodiment, the crypto-index logic 144 and the delta-

US 8,489,611 B2

7

index logic 146 are configured to control the transmission
logic 170 to selectively transmit the chunk as a delta chunk.
The control decision may be based, at least 1n part, on the
crypto-index logic 144 search of the index 170 that stores
crypto-hashes and the delta-index logic 146 search of the
index 180 that stores delta hashes. In one embodiment, the
chunk comparison logic 150 1s also configured to control the
transmission logic 170 to selectively transmit the chunk as a
delta chunk based, at least in part, on differences between the

chunk being processed and a chunk indexed in the crypto-
hash index 180 or the delta-hash index 190. Recall that chunk

comparison logic 150 can consider not just the number of
differences between chunks but also the types of differences
and whether a rule(s) can be formulated to describe how to
create the chunk from a stored chunk.

Some portions of the detailed descriptions that follow are
presented 1n terms of algorithms and symbolic representa-
tions of operations on data bits within a memory. These algo-
rithmic descriptions and representations are used by those
skilled 1n the art to convey the substance of their work to
others. An algorithm, here and generally, 1s concerved to be a
sequence of operations that produce a result. The operations
include physical manipulations of physical quantities. Usu-
ally, though not necessarily, the physical quantities take the
torm of electrical or magnetic signals capable of being stored.,
transterred, combined, compared, and otherwise manipulated
in a logic. The physical manipulations transform electronic
components and/or data representing physical entities from
one state to another.

Example methods may be better appreciated with refer-
ence to flow diagrams. While for purposes of simplicity of
explanation, the illustrated methodologies are shown and
described as a series of blocks, 1t 1s to be appreciated that the
methodologies are not limited by the order of the blocks, as
some blocks can occur in different orders and/or concurrently
with other blocks from that shown and described. Moreover,
less than all the illustrated blocks may be used to implement
an example methodology. Blocks may be combined or sepa-
rated into multiple components. Furthermore, additional and/
or alternative methodologies can employ additional, notillus-
trated blocks.

FIG. 3 illustrates a method 300. Method 300 computes
multiple hashes for a chunk and then makes a duplicate/
unique/delta chunk determination as a function of informa-
tion derived from searches based on the multiple hashes.
Method 300 includes, at 310, computing a first hash for a
chunk for which a duplicate determination 1s to be made. The
duplicate chunk determination 1s a function of the first hash
being compared to a stored first hash. For example, 11 the first
hash matches a stored first hash then the chunk may be treated
as a duplicate. However, searching an index for a match on a
first hash may be time consuming. The amount of time it takes
to search for a match of the first hash may depend on the width
of the first hash.

Method 300 also includes, at 320, computing a delta hash
for the chunk. The delta chunk determination can be made as
a Tunction of the delta hash being compared to a stored delta
hash. While a single delta hash 1s described, multiple delta
hashes may be computed. In one example, the first hash 1s a
cryptographic hash having a first strength and a first width and
the delta hash has a second strength and a second width. The
first strength will be greater than the second strength and the
first width will be wider than the second width. Since the delta
hash will be more narrow (e.g., consume fewer bits) than the
first hash, an index of delta hashes may be searchable in less
time than an index of wide cryptographic hashes.

10

15

20

25

30

35

40

45

50

55

60

65

8

Method 300 also includes, at 330, making a determination
concerning whether the first hash matches a stored hash. It the
determination at 330 1s Yes, then method 300 may proceed, at
340, to process the chunk as a duplicate chunk. If the deter-
mination at 330 1s No, then method 300 may proceed, at 350,
to make a subsequent determination concerning whether the
delta hash matches a stored delta hash. I the determination at
350 1s No, then method 300 may proceed, at 360, to treat the
chunk as a umique chunk. If the determination at 350 1s Yes,
then method 300 may proceed, at 370, to treat the chunk as a
delta chunk.

The stored first hash may be stored 1n a first index and the
stored delta hash may be stored 1n a second, ditlerent index.
Since the first hash may be wider than the delta hash, the index
storing the stored delta hash may be searched more quickly
than the index storing the first hash. Additionally, since the
stored first hash and the stored delta hash may be stored 1n
different indexes, they may be searched in parallel, partially
in parallel, or using other non-serial techniques. This may
facilitate improving duplicate determination time.

In one example, when two or more different delta hashes
are computed for the chunk at 320, the determination at 350
may concern whether a threshold number of the two or more
delta hashes match stored delta hashes. For example, 11 more
than 50% of the delta hashes match, then a chunk may be
treated as a delta. Therefore, method 300 may include selec-
tively controlling the de-duplication logic to process the
chunk as a delta chunk when a threshold number of delta
hashes match stored delta hashes.

The two or more delta hashes can have different forms. For
example, a first delta hash may be computed for a first portion
of the chunk. The first portion may be less than the entire
chunk but all bytes in the portion may be being contiguous
within the chunk. A second delta hash may be computed for a
second portion of the chunk. The second portion may also be
less than the entire chunk and have all 1ts bytes be contiguous
within the chunk. The second portion may not overlap the first
portion. Examples of this first delta hash and second delta
hash are illustrated 1n FIG. 8. A chunk 800 may be divided
into quarters. The first delta hash 802 may be computed for a
first portion of chunk 800 while the second delta hash 804
may be computed for a second, non-overlapping portion of
chunk 800. Additional non-overlapping, contiguous delta
hashes 806 and 808 may also be computed.

A third delta hash may also be computed for a third portion
of the chunk. The third portion may also be less than the entire
chunk and have all 1ts bytes contiguous within the chunk.
However, the third portion may partially overlap the first
portion. Consider chunk 810 (FIG. 8). A first delta hash 812
may be computed and a partially overlapping third hash 814
may be computed. Additional partially overlapping hashes
816 and 818 may also be computed.

One skilled 1n the art will also appreciate that hashes may
be computed for non-contiguous portions of a chunk. For
example, a fourth delta hash may be computed for a fourth
portion of a chunk, where the fourth portion is less than the
entire chunk and where the bytes in the fourth portion are not
contiguous. Similarly, hashes for overlapping and non-over-
lapping portions that do not have contiguous bytes may be
computed. One skilled in the art will appreciate that different
types of delta hashes may be computed for different subsets of
a chunk.

In one example, a method may be implemented as com-
puter executable 1nstructions. Thus, 1n one example, a com-
puter readable medium may store computer executable
instructions that if executed by a computer (e.g., data reduc-
tion server) cause the computer to perform method 300.

US 8,489,611 B2

9

While executable instructions associated with method 300
are described as being stored on a computer readable
medium, 1t 1s to be appreciated that executable nstructions
associated with other example methods described herein may
also be stored on a computer readable medium.

“Computer readable medium”, as used herein, refers to a
medium that stores signals, instructions and/or data. A com-
puter readable medium may take forms, including, but not
limited to, non-volatile media, and volatile media. Non-vola-
tile media may include, for example, optical disks, and mag-
netic disks. Volatile media may include, for example, semi-
conductor memories, and dynamic memory. Common forms
of a computer readable medium may include, but are not
limited to, a floppy disk, a tlexible disk, a hard disk, a mag-
netic tape, other magnetic medium, an ASIC, a CD (compact
disk), other optical medium, a RAM (random access
memory), a ROM (read only memory), a memory chip or
card, a memory stick, and other media from which a com-
puter, a processor, or other electronic device can read.

FI1G. 4 1llustrates another embodiment of method 300. This
embodiment of method 300 also includes, at 315, selectively
determining a type of delta hash to compute based on
attributes including, but not limited to, chunk entropy, chunk
s1ze, chunk type, and a recently determinative delta hash. The
processing at 315 may also include selectively determining,
how many delta hashes to compute based on attributes includ-
ing, but not limited to, chunk entropy, chunk size, and chunk
type. Thus, method 300 can react to the size, type, and
attributes of a chunk before blindly computing delta hashes.
Different hashes may be more adept at identiiying similarities
and differences between chunks.

In one example, a hash type may be determined based on
chunk entropy. Entropy 1s a measure of uncertainty associated
with the randomness of data 1n an object to be data reduced.
The entropy of data that1s truly random 1s one. The entropy of
a long string of duplicate characters 1s nearly zero. The
entropy ol most data falls between these two limiting
examples. Diflerent types of delta hashes may be computed
based on different chunk entropy. For example, a chunk with
a high entropy may reveal its similarities to other chunks
using a first type of delta hash while a chunk with a low
entropy may reveal 1ts similarities to other chunks using a
second type of delta hash.

This embodiment of method 300 also 1includes additional
processing at 362 before a chunk 1s treated as a delta chunk.
Upon determining at 350 that the delta hash matches a stored
delta hash, this embodiment of method 300 may also perfo1 1n
a byte-wise comparison of a stored chunk to the mmcoming
chunk. While a byte-wise comparison i1s described, one
skilled 1n the art will appreciate that other types of compari-
sons may be performed. The comparison may i1dentily the
number and/or type of differences and/or similarities between
chunks. If the byte-wise comparison at 362 satisfies a thresh-
old, then the chunk may be treated as a delta chunk at 370.
Otherwise the chunk may be treated as a unique chunk at 360.

FIG. § illustrates an embodiment of a portion of method
300. In this embodiment additional delta hashes may be com-
puted based on information learned from comparing delta
hashes to stored hashes. A byte-wise compare at 362 may
provide information upon which a decision to compute addi-
tional hashes can be made at 364. If no additional hashes are
to be computed then method 300 may jump ahead to 368. IT
additional hashes are to be computed, then method 300 may,
at 366, compute those additional hashes. The additional
hashes may be wider than previous hashes, may be more
narrow than previous hashes, may concern different regions
in a chunk, may apply different patterns to a chunk, and so on.

10

15

20

25

30

35

40

45

50

55

60

65

10

A decision may then be made at 368 concerning whether the
delta hashes, including the newly computed delta hashes,
match stored delta hashes. In one example, a threshold num-
ber of matches may be required at 368 before a chunk will be
treated as a delta chunk at 370.

FIG. 6 illustrates an embodiment of a portion of method
300. FIG. 6 provides additional detail for action 370, treating
a chunk as a delta chunk. Treating a chunk as a delta chunk
may include controlling a de-duplication logic at 372 to not
store the chunk. While not storing a chunk is described, when
a dedupe decision 1s being made to control data transmission,
treating a chunk as a delta chunk may include controlling a
de-duplication logic to not transmit the chunk. Treating a
chunk as a delta chunk may also include controlling a de-
duplication logic at 374 to store a reference to a stored chunk
and at 376 to store a difference data. Once again, transmission
rather than storage may be controlled. The difference data
may describe how to create the chunk from the stored chunk.
Thus, 1n different examples, the difference data may describe
an addition to a stored chunk, a deletion from a stored chunk,
and other edits to a stored chunk.

FIG. 7 illustrates a computer 700. Computer 700 includes
a processor 702 and a memory 704 that are operably con-
nected by a bus 708. In one example, the computer 700 may
include a first component 770 that 1s configured to compute
multiple hashes for a chunk for which a de-duplication deci-
s1on 1s to be made. The computer 700 can include a second
component 780 that 1s configured to search for the multiple
hashes 1n multiple indexes for delta information upon which
the de-duplication decision can be made. The computer 700
can also 1clude a third component 790 that 1s configured to
selectively treat the chunk as a delta chunk based, at least 1n
part, on the delta information. The computer 700 may treat a
chunk as a delta chunk when the chunk 1s not a duplicate but
can be recreated from a stored chunk using rules that can be
stored along with a reference to the stored chunk.

Generally describing an example configuration of the com-

puter 700, the processor 702 may be a variety of various
processors including dual microprocessor and other multi-
processor architectures. A memory 704 may include volatile
memory (e.g., RAM (random access memory)) and/or non-
volatile memory (e.g., ROM (read only memory)). The
memory 704 can store a process 714 and/or a data 716, for
example. The process 714 may be a data reduction process
and the data 716 may be an object to be data reduced.
The bus 708 may be a single internal bus interconnect
architecture and/or other bus or mesh architectures. While a
single bus 1s illustrated, 1t 1s to be appreciated that the com-
puter 700 may communicate with various devices, logics, and
peripherals using other busses (e.g., PCIE (peripheral com-
ponent interconnect express), 1394, USB (universal serial
bus), Ethernet). The bus 708 can be types including, for
example, a memory bus, a memory controller, a peripheral
bus, an external bus, a crossbar switch, and/or a local bus.

While example apparatus, methods, and articles of manu-
facture have been illustrated by describing examples, and
while the examples have been described in considerable
detail, 1t 1s not the intention of the applicants to restrict or 1in
any way limit the scope of the appended claims to such detail.
It 1s, of course, not possible to describe every concervable
combination of components or methodologies for purposes of
describing the systems, methods, and so on described herein.
Therefore, the invention 1s not limited to the specific details,
the representative apparatus, and illustrative examples shown
and described. Thus, this application 1s intended to embrace
alterations, modifications, and variations that fall within the
scope of the appended claims.

US 8,489,611 B2

11

To the extent that the term “includes” or “including’ 1s
employed 1n the detailed description or the claims, i1t 1s
intended to be inclusive in a manner similar to the term
“comprising’” as that term 1s iterpreted when employed as a
transitional word 1n a claim.
To the extent that the term “or” 1s employed 1n the detailed
description or claims (e.g., A or B) it 1s intended to mean “A
or B or both”. When the applicants intend to indicate “only A
or B but not both™ then the term “only A or B but not both” will
be employed. Thus, use of the term “or’” herein 1s the 1nclu-
stve, and not the exclusive use. See, Bryan A. Garner, A
Dictionary of Modern Legal Usage 624 (2 d. Ed. 1993).
What 1s claimed 1s:
1. A computer readable medium storing computer execut-
able instructions that when executed by a computer control
the computer to perform a method, the method comprising;:
computing a first hash for a chunk for which a duplicate
determination 1s to be made, where the duplicate chunk
determination 1s a function of the first hash being com-
pared to a stored first hash, the stored first hash being
stored 1n a first index;
selectively determining a type of delta hash to compute
based on one or more of, chunk entropy, chunk size,
chunk type, and a recently determinative delta hash;

selectively determiming how many delta hashes to compute
based on one or more of, chunk entropy, chunk size, and
chunk type;

computing a delta hash for the chunk, where a delta chunk

determination 1s to be made for the chunk, where the
delta chunk determination 1s a function of the delta hash
being compared to a stored delta hash, the stored delta
hash being stored 1n a second, different index;

upon determining that the first hash matches a stored first

hash, controlling a deduplication logic to process the
chunk as a duplicate; and

upon determining that the first hash does not match a stored

first hash and that the delta hash matches a stored delta
hash, controlling the de-duplication logic to process the
chunk as a delta chunk,

where the first hash and the delta hash are computed 1n

parallel,

where determining that the first hash matches a stored first

hash and determining that the delta hash matches a
stored delta hash proceeds 1n parallel,

where a definitive answer concerning the first hash causes

termination of the determination proceeding 1n parallel
concerning the delta hash, and

where a defimitive answer concerning the delta hash causes

termination of the determination proceeding in parallel
concerning the first hash.

2. The computer readable medium of claim 1, where the
first hash 1s a cryptographic hash having a first strength and a
first width, and where the delta hash has a second strength and
a second width, the first strength being greater than the second
strength, the first width being wider than the second width.

3. The computer readable medium of claim 1, the method
comprising computing two or more difierent delta hashes for

the chunk, and upon determining that a threshold number of

10

15

20

25

30

35

40

45

50

55

12

the two or more delta hashes match stored delta hashes,
controlling the de-duplication logic to process the chunk as a

delta chunk.

4. The computer readable medium of claim 1, where con-
trolling the de-duplication logic to process the chunk as a
delta chunk comprises:

controlling the de-duplication logic to not store the chunk;
and

controlling the de-duplication logic to store a delta chunk,
where a delta chunk comprises a reference to a stored

chunk and difference data.

5. The computer readable medium of claim 4, where the

difference data describes how to create the chunk from the
stored chunk.

6. The computer readable medium of claim 4, where the
difference data describes one or more of, an addition to a
stored chunk, a deletion from a stored chunk, and an editto a
stored chunk.

7. The computer readable medium of claim 1, the method
comprising:

upon determining that the delta hash matches a stored delta
hash,

controlling the de-duplication logic to treat the chunk as a
delta chunk upon determining that a byte-wise compari-
son of the chunk and a stored chunk associated with the
delta hash satisfies a threshold.

8. The computer readable medium of claim 1, the method
comprising computing one or more subsequent delta hashes
based on information gathered from comparing the delta hash
to stored delta hashes and controlling the de-duplication logic
to process the chunk as a delta chunk as a function of the
subsequent delta hashes.

9. The computer readable medium of claim 3, the two or
more delta hashes comprising one or more of:

a first delta hash for a first portion of the chunk, the first
portion being less than the entire chunk, the first portion
being contiguous within the chunk;

a second delta hash for a second portion of the chunk, the
second portion being less than the entire chunk, the
second portion being contiguous within the chunk, the
second portion not overlapping the first portion;

a third delta hash for a third portion of the chunk, the third
portion being less than the entire chunk, the third portion
being contiguous within the chunk, the third portion
partially overlapping the first portion;

a fourth delta hash for a fourth portion of the chunk, the
fourth portion being less than the entire chunk, the fourth
portion not being contiguous within the chunk;

a {ifth delta hash for a fifth portion of the chunk, the fifth
portion being less than the entire chunk, the fifth portion
not being contiguous within the chunk, the fitth portion
not overlapping the fourth portion; and

a sixth delta hash for a sixth portion of the chunk, the sixth
portion being less than the entire chunk, the sixth portion
not being contiguous within the chunk, the sixth portion
partially overlapping the fourth portion.

¥ ¥ # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,489,611 B2 Page 1 of 1
APPLICATION NO. : 13/182495

DATED : July 16, 2013

INVENTOR(S) . Jeffrey Vincent Tofano

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specitfication:
In column 5, line 17, delete “used recreate” and imsert --used to recreate--.
In column &, line 33, delete “be being contiguous™ and 1nsert --be contiguous--.

In column 9, line 47, delete “perfo1 in” and insert --perform--.

Signed and Sealed this
Fifth Day of November, 2013

3

Teresa Stanek Rea
Deputy Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

