12 United States Patent

Tsai et al.

US008484734B1

US 8,484,734 B1
Jul. 9, 2013

(10) Patent No.:
45) Date of Patent:

(54) APPLICATION PROGRAMMING INTERFACE
FOR ANTIVIRUS APPLICATIONS

(75) Inventors: Ching Sung Tsai, Taipei (TW); Hui
Min Wang, Taipe1 (TW); Chi Huang
Fan, Taipei (TW)

(73) Assignee: Trend Micro Incorporated, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 2096 days.

(21) Appl. No.: 11/507,732

(22) Filed: Aug. 22,2006
(51) Imt. CL.
GO6F 21/00 (2006.01)
(52) U.S. CL
USPC e e 726/24
(58) Field of Classification Search
USPC .., 713/164, 188, 726/24
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
6,658,571 B1* 12/2003 O’Brienetal. 726/26
6,728,907 B1* 4/2004 Wangetal. 714/47
6,735,774 B1* 5/2004 Krishnaswamy 719/328
7,099,866 B1* 8/2006 Crosbieetal. 707/9
7,149,832 B2* 12/2006 Wieland etal. 710/269
2005/0149726 Al* 7/2005 Joshietal. 713/164
2007/0150956 Al1* 6/2007 Sharmaetal. 726/24
2007/0283192 Al* 12/2007 Shevchenko 714/39
OTHER PUBLICATIONS

Application programming interface (API) from Wikipedia, the free
encyclopedia; Jul. 2006, pp. 1-3 [retrieved on Aug. 14, 2006].

500 Antivirus

0S
KR interface

User Mode

Kernel Mode

Retrieved from the internet: http://en.wikipedia.org/wiki/ Applica-
tion_ programming__interface.

NtDeviceloControlFile Function, 2006 Microsoft Corporation, pp.
1-3 (retrieved on Aug. 15, 2006]. Retrieved from the internet: http://
msdn.microsoft.com/library/en-us/winui/winui/
windowsuserinterface/lowlevelclientsupport/misc/
ntdevicelocontrolfile,asp.

DeviceloControl, 2006 Microsofit Corporation, pp. 1-4 (retrieved on
Aug. 15, 2006]. Retrieved from the internet: http://msdn.microsoft.
convlibrary/en-us/devio/base/deviceiocontrol.asp?frame=true.
NtCreateFile, 2006 Microsoit Corporation, pp. 1-8 (retrieved on Aug.
14, 2006]. Retrieved from the internet: http://msdn.microsofit.com/
library/defaultasp?url=/library/en-us/devnotes/winprog/ntcreatefile.
asp.

James Butler and Sherr Sparks “Windows rootkits of 2005, part one”

Nov.4, 2005, pp. 1-9 (retrieved on Aug. 14, 2006]. Retrieved from the
internet: http://www.securityfocus.com/infocus/1850.

James Butler and Sherri Sparks “Windows rootkits of 2005, part two”
Nov. 17, 2005, pp. 1-1 (retrieved on Aug. 14, 2006]. Retrieved from
the internet: http://www.securityfocus.com/infocus/1851.

James Butler and Sherri Sparks “Windows rootkits of 2005, part
three” Jan. 5, 2006, pp. 1-10 retrieved on Aug. 14, 2006]. Retrieved

from the internet: http://www.securityfocus.com/infocus/1854.
* cited by examiner

Primary Examiner — Shaun Gregory
(74) Attorney, Agent, or Firm — Okamoto & Benedicto LLP

(57) ABSTRACT

In one embodiment, an antivirus uses a secure call path that
includes an antivirus system call table containing a reference

to an operating system kernel routine. The call path may also
include an antivirus device driver that has access to the anti-
virus system call table. The antivirus may send a service
request to the operating system kernel routine by way of the
call path to perform file manipulations for virus scanning, for

example. Advantageously, the call path gets around possible
rootkit infestations.

16 Claims, 5 Drawing Sheets

AV Kernel Components 504
Interface

05 AV Kernel
13 Kernel Routines (KR) Components I ~205

U.S. Patent Jul. 9, 2013 Sheet 1 of 5 US 8,484,734 B1

:
User Mode KR interface

Kernel Mode
OS 13
Kernel Routines (KR)

FIG. T
(PRIOR ART)

11

10

OS
KR interface
1 2
User Mode

Kernel Mode |
OS 13
Kernel Routines (KR)

FIG. 2
(PRIOR ART)

11

U.S. Patent Jul. 9, 2013 Sheet 2 of 5 US 8,484,734 B1

.

Createkile()

(1) NTCreateFile(user mode space)
(2) Interrupt 2e (software interrupt)

User Mode

Kernel Mode
OSSSDT 303

NTCreateFile
(kernel mode space)

304

FIG. 3
(PRIOR ART)

U.S. Patent Jul. 9, 2013 Sheet 3 of 5 US 8,484,734 B1

500‘_,\| Antivirus]— : j
OS 11 AV Kernel Components| cng
KR interface Interface =

1 2
User Mode
Kernel Mode
05 AV Kernel
13 Kernel Routines (KR) 505

FIG.4

US 8,484,734 B1

Sheet 4 of S

Jul. 9, 2013

U.S. Patent

§ Ol

0SS

£0G

|
1dSS AV
syusuodwod
€l S9UNINOY [PWIY SO — 205 |SUISY AY
SNPOW [BUIBY AY Z0GC
£O€ 13dss SO _

U] sjusuodwiod

€CGC |04IU0D) ISALIQ) [9U1SH AV vO5
g T
e I|NpPoW ueds 10C
wiaisAs bunerado shilAhue 93e}I31U)
KIowapw utew NOMISN Ja3ndwod
201 00§
€0l
JONIUON Ae|dsi S321A9(Q 010l $321A8(Induj Jasn 1055920144
eleg
40} 101

€0l 04§

U.S. Patent Jul. 9, 2013 Sheet 5 of 5 US 8,484,734 B1

501

scan module

AV CreateFile()

AV Kernel
Components Int.

Kernel32.dll
NTDLL.dII 302

NtDeviceloControlFile()

504

301

User Mode

AV Kernel Module 502
AV SSDT 503

NTCreateFile
(kernel mode space) 304

FIG.6

Kernel Mode

US 8,484,734 Bl

1

APPLICATION PROGRAMMING INTERFACE
FOR ANTIVIRUS APPLICATIONS

BACKGROUND OF THE

INVENTION

1. Field of the Invention

The present invention relates generally to data processing,
and more particularly but not exclusively to application pro-
gramming interfaces.

2. Description of the Background Art

Generally speaking, a computer operating system 1s a pro-
gram that manages computer resources and other programs,
which are referred to as “application programs.” A kernel 1s
the core of the operating system and provides basic services
tor all other components of the operating system and appli-
cation programs. Application programs and the kernel
employ different and distinct regions of computer memory.
Application programs are user-level programs and accord-
ingly run in user mode 1n user mode space of the memory. On
the other hand, the kernel runs 1n kernel mode 1n kernel mode
space of the memory, which i1s generally restricted to kernel
operations. Kernel mode 1s a privileged mode of processor
execution 1n that it typically grants access to all system
memory and all the processor’s instructions.

Operating systems typically provide an interface that
allows an application program in user mode to 1nvoke kernel
routines that perform low-level operations typically reserved
for the kernel. Examples of these kernel routines include
those for file manipulations, such as creating, reading, or
moditying files. An antivirus employs kernel routines to
detect and remove computer viruses. For example, an antivi-
rus may request the service of a kernel routine to open a file in
order to scan that file for computer viruses.

FIG. 1 shows a flow diagram schematically illustrating
how an antivirus 10 may request the service of a kernel
routine 13 by way of an OS kernel routine interface 11. The
OS kernel routine intertace 11, the OS kernel routines 13, and
other components preceded by “OS” or “operating system”
come standard with the operating system, and accordingly are
from the vendor of the operating system. In the example of
FIG. 1, the antivirus 10 1n user mode mnvokes the operating
system (OS) kernel routine interface 11, which may be part of
the OS application programming interface (API). In
response, the kernel routine interface 11 invokes the kernel
routine 13 of interest in kernel mode, which performs the
operation requested by the antivirus 10.

A rootkit comprises computer-readable program code
designed to conceal running processes, files, or system data.
Rootkits may be used to surreptitiously modity parts of the
operating system or install themselves as drivers or kernel
modules. Increasingly, rootkits are being used by virus coders
as malicious code or part of malicious code. FIG. 2 shows a
flow diagram schematically illustrating how a rootkit may
intercept service requests to kernel routines. The example of
FIG. 2 1s the same as that of FIG. 1 except that a rootkit 12
intercepts calls to the OS kernel routines 13. The rootkit 12
compromises the call path from the antivirus 10 to the OS
kernel routines 13. For example, the rootkit 12 may not per-
form the requested call to the OS kernel routines 13, thereby
rendering the antivirus 10 netiective.

SUMMARY

In one embodiment, an antivirus uses a secure call path that
includes an antivirus system call table containing a reference
to an operating system kernel routine. The call path may also
include an antivirus device driver that has access to the anti-

10

15

20

25

30

35

40

45

50

55

60

65

2

virus system call table. The antivirus may send a service
request to the operating system kernel routine by way of the
call path to perform file manipulations for virus scanning, for
example. Advantageously, the call path gets around possible
rootkit infestations.

These and other features of the present invention will be
readily apparent to persons of ordinary skill in the art upon
reading the entirety of this disclosure, which includes the
accompanying drawings and claims.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a flow diagram schematically illustrating
how an antivirus may request the service of a kernel routine
by way of an OS kernel routine 1nterface.

FIG. 2 shows a flow diagram schematically illustrating
how a rootkit may intercept service requests to kernel rou-
tines.

FIG. 3 shows a flow diagram schematically 1llustrating a
call path from a conventional antivirus program to an OS
kernel routine.

FIG. 4 shows a flow diagram schematically illustrating
how an antivirus may send a service request to an OS kernel
routine, 1n accordance with an embodiment of the present
invention.

FIG. 5 shows a schematic diagram of a computer 1n accor-
dance with an embodiment of the present invention.

FIG. 6 shows a flow diagram schematically 1llustrating a
call path from an antivirus operating 1n user mode to an OS
kernel routine 1n kernel mode in accordance with an embodi-
ment of the present invention.

The use of the same reference label 1n different drawings
indicates the same or like components.

DETAILED DESCRIPTION

In the present disclosure, numerous specific details are
provided, such as examples of apparatus, components, and
methods, to provide a thorough understanding of embodi-
ments of the invention. Persons of ordinary skill in the art will
recognize, however, that the invention can be practiced with-
out one or more of the specific details. In other instances,
well-known details are not shown or described to avoid
obscuring aspects of the invention.

Computer viruses, worms, Trojans, rootkits, and spyware
are examples ol malicious codes that have plagued computer
systems throughout the world. Although there are technical
differences between each type of malicious code, malicious
codes are collectively referred to herein as “viruses.”

FIG. 3 shows a flow diagram schematically 1llustrating a
call path from a conventional antivirus program to an OS
kernel routine. As used in the present disclosure, the term
“routine” refers to functions, procedures, subroutines and
other computer-readable program code that may be invoked
by other programs. In the example of FIG. 3, the antivirus 10
operates under the Microsoit Windows™ operating system
Win32 subsystem and requests the services of an OS kernel
routine for file manipulation, which 1s NTCreateFile 1in the
example (see 304). The antivirus 10 mitiates the service
request by mvoking the function CreateFile of Kernel32.dll
(see 301). This results 1 the Kernel32.dll calling into the
NTDLL.dll (see 302) to invoke the N'TCreateFile (referenced
by 1ts system service number) 1n user mode and then assert
soltware interrupt 2e to trap to kernel mode.

The OS System Service Descriptor Table (SSDT) 303, also
known as an “OS system call table,” 1s a kernel table that
contains the addresses of OS kernel routines in the Microsoft

US 8,484,734 Bl

3

Windows™ operating system. In the example of FIG. 3, the
service request by the antivirus 10 eventually reaches the OS
SSDT (see 303), which points to NTCreateFile in kernel
mode space (see 304). The N'TCreateFile executes and ser-
vices the request by the antivirus 10. A rootkit can maliciously
modily the call path from the antivirus 10 1n user mode to the
NTCreateFile in kernel mode, compromising the effective-
ness of the antivirus 10.

FIG. 4 shows a flow diagram schematically illustrating
how an antivirus 500 may send a service request to an OS
kernel routine, 1n accordance with an embodiment of the
present invention. In the example of FIG. 4, the antivirus 500
bypasses the OS kernel routine interface 11 to send a service
request to an OS kernel routine 13. To advantageously get
around rootkit infestations, the antivirus 500 uses a call path
that includes an antivirus (AV) kernel components interface
504 in user mode and an AV kernel components 505 1n kernel
mode. In operation, the antivirus 500 sends a service request
by making a call to the AV kermel components interface,
which forwards the service request to the OS kernel routine
13 of interest by way of the AV kernel components 505. This
allows the antivirus 500 to have a secure call path to OS kernel
routines 13. The secure call path does not include the OS
kernel routines interface 11, which i1s what the vendor of the
operating system originally provides for interfacing with OS
kernel routines 13. By not using the OS kernel routines inter-
face 11, the antivirus 500 may still operate correctly even 1f
the rootkit 12 intercepts calls from the OS kernel routines
interface 11 or even if the OS system service descriptor table
has been corrupted or modified by the rootkit 12.

Referring now to FIG. 5, there 1s shown a schematic dia-
gram of a computer in accordance with an embodiment of the
present invention. The computer shown in the example of
FIG. 5 may be employed as a client computer or a server
computer, for example. The computer of F1G. 5 may have less
or more components to meet the needs of a particular appli-
cation. As shown 1n FIG. 5, the computer may include a
processor 101, such as those from the Intel Corporation or
Advanced Micro Devices, for example. The computer may
have one or more buses 103 coupling its various components.
The computer may include one or more user mput devices
102 (e.g., keyboard, mouse), one or more data storage devices
103 (e.g., hard drive, optical disk, USB memory), a display
monitor 104 (e.g., LCD, flat panel monitor, CRT), a computer
network interface 105 (e.g., network adapter, modem), and a
main memory 108 (e.g., RAM). In the example of FIG. 5, the
main memory 108 includes software (1.e., computer-readable
program code) components ol an operating system 350 and
the antivirus 500. Components of the operating system 5350
and the antivirus 300 may be executed by the processor 101.

In one embodiment, the operating system 550 comprises
the Microsoit Windows™ operating system (e.g., Windows
XP™ Windows 2000™, and Windows 2003™ operating,
systems). The operating system 550 includes an OS applica-
tion programming interface (API) 551 for allowing applica-
tion programs executing 1n user mode to send service requests
to programs executing in kernel mode. The OS API 551
includes an OS kernel routines interface 11 and a driver
control 553. The OS kernel routines intertace 11 are APIs
specifically designed by the vendor of the operating system
550 to allow application programs to send service requests to
OS kernel routines 13. That 1s, the conventional call path
between an application program and an OS kernel routine 13
1s through the OS kernel routines interface 11. Conventional
application programs are thus configured to send service
requests to OS kernel routines 13 by calling into the OS kernel
routines interface 11 (see also FIG. 1).

10

15

20

25

30

35

40

45

50

55

60

65

4

The driver control 553 1s an API that allows application
programs 1n user mode to communicate with device drivers
executing 1n kernel mode. A device driver comprises com-
puter-readable program code for controlling a hardware
device. In the Microsoft Windows™ operating system, an
application may use a driver control 553 to send control codes
to a device drniver. An example driver control 5353 1n the
Microsolt Windows™ operating system 1s the NtDevicelo-
ControlFile function. As will be more apparent below, the
antivirus 500 may send a service request to an OS kernel
routine 13 by way of a call path through a driver control 553
and an antivirus system call table (1.e., AV SSDT 503), instead
of the conventional call path through an OS kernel routines
interface 11 and OS SSDT 303.

The antivirus 500 may comprise computer-readable pro-
gram code for detecting malicious code. The antivirus 500
may 1nclude a scan module 501, an AV kernel components
interface 504, and AV kernel components 505 (see also FIG.
4). The AV kernel components 5305 may comprise an AV
kernel module 502 and an antivirus System Service Descrip-
tor Table (AV SSDT) 503.

The scan module 501 may comprise computer-readable
program code for scanning data for computer viruses. The
antivirus 500 may scan the file 570 stored in a data storage
device 103, for example. The scan module 301 may employ a
suitable conventional algorithm for scanning data without
detracting from the merits of the present imvention. The
mechanics of scanning data for viruses, 1n general, 1s well
known and employed by antivirus products from a variety of
vendors 1including Trend Micro, Inc., for example.

The AV kernel components interface 504 may comprise
computer-readable program code configured to allow com-
ponents of the antivirus 500 operating 1n user mode to com-
municate with components of the antivirus 500 operating in
kernel mode. More specifically, in one embodiment, the AV
kernel components interface 504 works in conjunction with
the AV kernel components 505 to allow the scan module 501
to send service requests to an OS Kkernel routine 13. In one
embodiment, the AV kernel components interface 504 com-
prises a library for the Win32 subsystem of the Microsoit
Windows™ operating system. The library may comprise
functions that use the Kernel32.dll to call into NTDLL.dIl to
send driver control codes to the AV kernel module 502, which
1s configured as a device driver. Because the AV kernel com-
ponents interface 504 1s not part of the standard Microsoft
Windows™ operating system, the AV kernel components
interface 504 1s accessible only to the antivirus 500 and
related components. This advantageously prevents rootkits
and other programs from interfering with the operation of the
antivirus 300.

As shown 1n FIG. 5, the AV kernel components 505 may
comprise the AV kernel module 502 and the AV SSDT 503.
The AV kernel module 502 may comprise a device driver
operating in kernel mode. Unlike a conventional device
driver, the AV kernel module 502 1s configured to access the
AV SSDT 503 to mnitiate execution of the OS kernel routine 13
as per a service request by the scan module 501. In one
embodiment, the AV kernel module 3502 is registered as
device driver in Microsoit Windows™ operating system by
the Service Control Manager (SCM). This allows the AV
kernel module 502 to operate in kernel mode, allowing 1t to
access kernel data and mmformation. The AV kernel module
502 may be configured to allocate kernel memory space for
the AV SSDT 503 and buwild the AV SSDT 503 1n that kernel
memory space.

The AV SSDT 503 may comprise a system call table con-
taining a listing of pointers to addresses of OS kernel routines

US 8,484,734 Bl

S

13. The AV SSDT 503 may thus be used to mitiate execution
of an OS kernel routine 13. As shown 1n FIG. 5, the AV SSDT
503 is separate from the OS SSDT 303, which application
programs generally use to gain access to services o1 OS kernel
routines 13. In one embodiment, unlike the OS SSDT 303, the
AV SSDT 503 1s used exclusively by the antivirus 500 and
related components that have access to the AV kernel com-
ponents interface 504. That 1s, 1n one embodiment, the AV
SSDT 3503 1s not accessible to other application programs.
This advantageously prevents rootkits from moditying or
corrupting the AV SSDT 503.

In one embodiment, the AV SSDT 503 may be built in
kernel memory space as follows:

Step 1. The AV kernel module 502 queries the current

module list and gets the address of the win32 kernel
module file (ntoskrnl.exe).

Step 2. The AV kernel module 502 opens the win32 kernel
module file and reads 1ts contents into kernel memory
space.

Step 3. The AV kernel module 502 translates the physical
file contents of the win32 kernel module file 1n memory
into run-time system process memory layout to find the
pointer to the OS SSDT 1image. Note that this OS SSDT
image 1s from the win32 kernel module file that was
opened by the AV kernel module 502, and 1s the AV
SSDT 503 1n this example. Building the AV SSDT 503
from the win32kernel module file minimizes the chance
of rootkit-infected SSDT.

Step 4. The AV kernel components interface 504 retrieves
the pointer to the AV SSD'T 503 1n kernel memory space
by exporting information from the AV kernel module
502.

Step 5. The AV kernel components interface 504 verifies
the image exporting information 1s correct by 1ts export-
ing API name.

Step 6. The AV kernel components interface 504 gets the
pointers to the OS kernel routines 13 in the AV SSDT
503. Subtracting the base address of the AV SSDT 503
from the pointers gives the ofiset to each of the pointers.

Step 7. An OS kernel routine 13 may be accessed by 1ts
ollset plus the base address of the current win32 kernel
module.

FIG. 6 shows a tlow diagram schematically illustrating a
call path from an antivirus operating in user mode to an OS
kernel routine 1n kernel mode in accordance with an embodi-
ment of the present mvention. The example of FIG. 6 1s
explained using the Microsolt Windows™ operating system
and the components shown 1 FIG. 5 as an example, not
limitation.

Inthe example of FIG. 6, the scan module 501 opens the file
570 (see FIG. 5) for virus scanning by calling a function for
opening files. This function for opening files may be provided
as a library service by the AV kernel components interface
504. The function for opening the file 570 1s AV_CreateFile 1n
this example. In response to the function call by the scan
module 501, the AV kernel components interface 504 sends
control codes and parameters to the AV kernel module 502.
The control codes may include the pointer to the correspond-
ing OS kernel routine 13 corresponding to AV_CreateFile,
which 1s NtCreateFile in this example. The parameters may
be those accepted by NtCreateFile for opening a file (e.g.,
name of the file 570). In one embodiment, the AV kernel
components interface 504 sends the control codes and param-
cters to the AV kermel module 502 by calling into the
kernel32dll.dll (see 301), which invokes the NTDLL.dIl (see
302) to pass the control code and parameters to the AV kernel
module 502 executing 1n kernel mode as a device driver. In

10

15

20

25

30

35

40

45

50

55

60

65

6

one embodiment, the NTDLL.dll does so using the NtDevice-
loControlFile function, which 1s typically employed to com-
municate with device drivers in the Microsoit Windows™
operating system. The AV kernel module 502 receives the
control codes and parameters, and uses the control codes to
find the pointer to the NtCreateFile 1n the AV SSDT 503.
From the AV SSDT 503, the NtCreateFile executes to service
the request by the scan module 501 to open the file 570.
Thereatter, the scan module 501 scans the now opened file
570 for computer viruses.

While specific embodiments of the present invention have
been provided, 1t 1s to be understood that these embodiments
are for 1llustration purposes and not limiting. Many additional
embodiments will be apparent to persons of ordinary skill 1n
the art reading this disclosure.

What 1s claimed 1s:

1. A method to be performed by a computer running an
operating system, the method comprising;

building an antivirus system call table containing a refer-

ence to an operating system kernel routine, the antivirus
system call table being built separately from an operat-
ing system call table originally configured by a vendor of
the operating system to also have a reference to the
operating system kernel routine to allow application
programs to send service requests to the operating sys-
tem kernel routine;

sending a service request to open a file from an antivirus in

user mode to the operating system kernel routine 1n
kernel mode, the service request being sent to the oper-
ating system kernel routine by way of a call path that
does not include the operating system call table;

in response to the service request to open the file, initiating

invocation of the operating system kernel routine from
the antivirus system call table; and

scanning the file for computer viruses aiter the operating

system kernel routine services the service request to
open the file.
2. The method of claim 1 wherein the service request to
open the file goes through a call path that includes an antivirus
device driver 1n kernel mode and the antivirus system call
table.
3. The method of claim 2 wherein the antivirus device
driver builds the antivirus system call table 1n kernel mode
space.
4. The method of claim 1 wherein the operating system
comprises the Windows operating system.
5. The method of claim 1 wherein the operating system call
table comprises a system service descriptor table (SSDT).
6. The method of claim 1 wherein the operating system call
table has been corrupted by a rootkat.
7. The method of claim 1 wherein the antivirus system call
table 1s available exclusively to the antivirus and 1ts compo-
nents.
8. The method of claim 1 wherein the antivirus system call
table 1s built from a kernel module file.
9. A computer comprising;:
a scan module configured to scan data for computer
Viruses;

an antivirus system call table containing a pointer to an
operating system kernel routine, the antivirus system
call table being separate from an operating system call
table that application programs generally use to gain
access to service of the operating system kernel routine;
and

an antivirus device driver configured to allow the scan

module to gain access to service of the operating system
kernel routine by way of the antivirus system call table

US 8,484,734 Bl
7

using a call path that does not include operating system
call table, the antivirus device driver being configured to
run 1n kernel mode as a device driver.

10. The computer of claim 9 further comprising an antivi-
rus kernel components interface in user mode, the antivirus 53
kernel components interface being configured to allow the
scan module to mterface with the antivirus device driver.

11. The computer of claim 9 wherein the operating system
call table comprises a system service descriptor table (SSDT).

12. The computer of claim 9 wherein the operating system 10
call table has been corrupted by a rootkat.

13. A method to be performed by a computer, the method
comprising:

establishing a call path between an antivirus program and

an operating system kernel routine, the call path not 15
including an operating system call table provided by a
vendor of an operating system;

requesting the operating system kernel routine to open a

file for the antivirus program by way of the call path; and

scanning the file for computer viruses. 20

14. The method of claim 13 wherein the call path includes
a device driver 1n communication with an antivirus system
call table contaiming a pointer to the operating system kernel
routine.

15. The method of claim 14 wherein the antivirus system 25
call table 1s separate from the operating system call table that
also includes a pointer to the operating system kernel routine.

16. The method of claim 15 wherein the operating system
call table has been corrupted by a rootkat.

% x *H % o 30

	Front Page
	Drawings
	Specification
	Claims

