12 United States Patent

Hogan et al.

US008479202B2

US 8.479,202 B2
Jul. 2, 2013

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(1)
(52)

(58)

METHOD AND SYSTEM FOR AUTONOMIC
APPLICATION PROGRAM SPAWNING IN A
COMPUTING ENVIRONMENT

Natalie S. Hogan, Winchester (GB);
Andrew J. E. Menadue, Winchester
(GB); Thomas van der Veen, Eastleigh
(GB)

Inventors:

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 807 days.

Notice:

Appl. No.: 12/367,025

Filed: Feb. 6, 2009
Prior Publication Data
US 2010/0205617 Al Aug. 12,2010
Int. Cl.
GO6F 9/46 (2006.01)
U.S. CL
UuspC 718/100; 719/312: 719/318; 719/320
Field of Classification Search
None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0152372 Al 10/2002 Cole et al.

2003/0126335 Al 7/2003 Silvester

2003/0135769 Al* 7/2003 Loughran 713/310
2004/0225876 Al* 112004 Lamo.coovvvvvneieinnnnnnnn, 713/2
2005/0268301 Al* 12/2005 Kelleyetal. 718/100

* cited by examiner

Primary Examiner — Emerson Puente
Assistant Examiner — Dong Kim

(74) Attorney, Agent, or Firm — Kenneth L. Sherman, Esq.;
Michael Zarrabian, Esq.; Sherman & Zarrabian LLP

(57)

A method and system for self-managing an application pro-
gram 1n a computing environment, 1s provided. One 1mple-
mentation involves spawning a primary application for
execution 1n the computing environment; the primary appli-
cation monitoring status of the primary application and the
computing environment resources while executing; and upon
detecting a first status threshold, the primary application
spawning a secondary application in the computing environ-

ment, wherein the secondary application comprises a lower
functionality version of the primary application, and the pri-
mary application terminating.

ABSTRACT

17 Claims, 4 Drawing Sheets

/5

/-10

Application

‘Monitoring Function”Spawning Function\

Maximal application

13 11

‘Monitoring Function”Spawning Function\

Minimal application

12

Operating System

Memory Resources \
Storage Resources \

‘ Processing Resources ‘

Communication Resources
Networking Resources

Computing Environment

US 8,479,202 B2

Sheet 1 of 4

Jul. 2, 2013

U.S. Patent

uoleosliidde jewliulp

uonoun4 dulumedg|{uoioun BULIOJIUOA]

01l

L Ol

S921N0S9Y BuJOMION

S92IN0SaY uUoneIAIUNWWOoN
S821N0say buissaaold
S901N0Soy 0belo)1]

S92IN0SOY AIOWBN

WIB)SAg bunelsado

uoljedijddy

JuswiuoaAug bunndwon

uonesldde [ewixe

uoioun4 dbulumedg|uonoun BuLloliUO|A]

U.S. Patent Jul. 2, 2013 Sheet 2 of 4 US 8,479,202 B2

20

Application monitors system resources

Acceptable?
22
No
23 Build parameters

24 Build rules for respawn

Spawn minimal application with
25 minimal functionality
26 Terminate maximal appliction

FIG. 2

U.S. Patent Jul. 2,2013 Sheet 3 of 4 US 8,479,202 B2

/30

>
Application monitors against rules

Accepta ble?

Builld parameters
Re-spawn maximal application
Terminate minimal appliction

FIG. 3

U.S. Patent Jul. 2, 2013 Sheet 4 of 4 US 8,479,202 B2

100
/

Cursor Control Input Device Display

Device
116 114 112

Memory ROM Storage Device
106 108 110

BUS

102
130
Communication CPU
Interface 104
118
120
Client
120 Device
128 101
101 Local Network ROST
124
120 199
-
101 120 Server
130

Client

Computer (PC) Computer (PC)
Server 105 Client
10 s

FIG. 4

US 8,479,202 B2

1

METHOD AND SYSTEM FOR AUTONOMIC
APPLICATION PROGRAM SPAWNING IN A
COMPUTING ENVIRONMENT

BACKGROUND

1. Field of the Invention

The mvention relates generally to application program
management and in particular to application program man-
agement based computing system resources.

2. Background Information

In a typical computing environment, a computing system
includes an operation system which manages computing
resources (e.g., processor, memory, storage, communication
bandwidth) and execution of various processes such as appli-
cation programs. When running certain applications, the
operating system may come under pressure from other appli-
cations that want to use resources in the computing system.

The usual result 1s that as the operating system attempts to
manage execution of all applications given available
resources, execution speed of the applications degrades. The
computing system processor 1s loaded and the memory 1s
swapped to adisk. I there 1s an application running that needs
to process information by a certain time, then that application
may not be able to satisfy such timing requirements. An
example 1s an mnstant messaging system which may be 1n the
midst of facilitating an important communication and the
slow response time negatively impacts real-time performance
of such a system.

An approach that 1s most commonly used to address such
problems 1s to improve the computing system by replacing or
upgrading the system or adding more computing resources.
This can be costly and once the application programs manage
to use the new resources the original problem re-occurs. Such
approaches do not provide real-time solutions and require
human 1ntervention.

BRIEF SUMMARY

The invention provides a method and system for self-man-
aging an application program in a computing environment.
One embodiment comprises a self-managing process includ-
ing: the steps of spawning a primary application for execution
in the computing environment; the primary application moni-
toring status of the primary application and the computing
environment resources while executing; and upon detecting a
first status threshold, the primary application spawning a
secondary application 1n the computing environment,
wherein the secondary application comprises a lower func-
tionality version of the primary application, and the primary
application terminating.

The process may further include: the secondary application
monitoring status of computing environment resources while
executing; and upon detecting a second threshold status of
computing environment resources, the secondary application
re-spawning the primary application in the computing envi-
ronment, and the secondary application terminating.

The first status threshold may represent circumstances
under which the primary application may spawn the second-
ary application, and the second status threshold may represent
the circumstances under which the secondary application
may re-spawn the primary application.

The secondary application may require less numbers of
resources than the primary application and/or consume less of
cach resource compared to the primary application. The
application program includes said primary application and

10

15

20

25

30

35

40

45

50

55

60

65

2

said secondary application, wherein the secondary applica-

tion includes core functions of the primary application.
These and other features, aspects and advantages of the

invention will become understood with reference to the fol-

lowing description, appended claims and accompanying fig-
ures.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

For a fuller understanding of the nature and advantages of
the mnvention, as well as a preferred mode of use, reference
should be made to the following detailed description read 1n
conjunction with the accompanying drawings, in which:

FIG. 1 shows a functional block diagram of an application
program including a primary application component and sec-
ondary application component which 1s a reduced feature
version of the primary component, according to an embodi-
ment of the mvention.

FIG. 2 shows a flowchart of a process for spawning the
secondary application and terminating the primary applica-
tion based on available system resources, according to an
embodiment of the mvention.

FIG. 3 shows a flowchart of a process for re-spawning the
primary application and terminating the secondary applica-
tion based on available system resources, according to an
embodiment of the invention.

FIG. 4 shows a functional block diagram of an example
computing environment implementing an embodiment of the
invention.

DETAILED DESCRIPTION

The following description 1s made for the purpose of 1llus-
trating the general principles of the invention and 1s not meant
to limit the inventive concepts claimed herein. Further, par-
ticular features described herein can be used 1n combination
with other described features 1n each of the various possible
combinations and permutations. Unless otherwise specifi-
cally defined herein, all terms are to be given their broadest
possible interpretation including meanings implied from the
specification as well as meanings understood by those skilled
in the art and/or as defined 1n dictionaries, treatises, etc.

The invention provides a method and system for autonomic
application spawning in a computing environment under
resource availability pressure. One embodiment mvolves a
process wherein each application program detects that its
response time delay has increased (degraded) to a level that 1s
considered unacceptable, and such an application program
spawns a lower functionality application program version of
itself. The full functionality application program is then ter-
minated. The lower functionality application program pro-
vides fewer functional features than the full functionality
application program, utilizes fewer computing resources and
executes more rapidly. As a result, the lower functionality
application program enjoys a reduced response time delay. A
user may then use the lower functionality application pro-
gram to accomplish computing tasks.

For example, 1n the instant messaging computing system, a
full featured instant messaging application program that
detects increasing response time delay spawns a lower func-
tionality application program version (e.g., text-only applica-
tion program) of the full featured 1instant messaging applica-
tion program. The lower functionality application program
version does not include functionality that is not considered a
core feature of the instant messaging computing system (e.g.,
text-only version application program does not include fea-

US 8,479,202 B2

3

tures such as graphical user interface (GUI), voice, file trans-
mission, screen shots). A user can then continue with instant
messaging using the text-only version which provides
reduced response time delay then the full featured instant
messaging application program, rather than tolerating a slow
tull featured instant messaging application program that
awaits computing resources to be freed.

In one implementation of the invention, a full functionality
application program (primary program) includes a monitor-
ing module (e.g., application code) that monitors resource use
either directly or indirectly by measuring response times. A
reduced functionality version of the main primary 1s main-
tained such that i1t can be spawned to replace the main appli-
cation as described. The reduced functionality version 1s des-
ignated as secondary program hereimaiter. The operating
system reserves a set of resources (e.g., memory and proces-
sor capacity) suflicient for a secondary application to be
executed. This ensures that the secondary application can
execute at 1ts Tull speed and not be subject to resource pressure
(e.g., resource unavailability) problems that other applica-
tions have created.

Once the primary program detects that a response time
threshold has been reached, the main program instructs the
operating system to spawn the secondary program and termi-
nate the primary program.

Once the resource pressure 1s reduced below a threshold, as
monitored by the secondary program, the secondary program
may re-spawn the primary program, or the user may istruct
the operating system to re-spawn the primary program. The
secondary program 1s then terminated. Preferably, a delay
period 1s itroduced before the re-spawn of the primary pro-
gram to avoid circular spawmng because otherwise the
increased resource requirements of the re-spawned primary
program may trigger a response time delay increase beyond a
threshold and cause a spawn of the secondary application, and
SO On.

FIG. 1 shows an example implementation of a system 3
including an example application program 10 according to an
embodiment of the mvention. The application program 10
includes two components: a primary program (maximal
application 11) component and a secondary program (mini-
mal application 12) component, as described. The maximal
application 11 comprises a tull featured (1ull functionality)
application program and the minimal application 12 com-
prises a reduced feature (reduced functionality) version of the
tull featured application.

When the resources of a computing system executing the
maximal application 11 component of the application pro-
gram 10, are under heavy utilization (under pressure), the user
can continue working with the application program 10 using
the minimal application component. While the computing,
system 1s able to cope with resource demands of applications,
the maximal application 11 executes. Once the computing,
system cannot cope with the resource demands (e.g., the
application program (maximal application) detects increased
response time delay beyond a threshold), then parameters are
built describing the current process workload and spawning
rules for returning to the original state (1.e., computing system
can cope with the resource demands), are specified. The
parameters describe the task that the minimal application 1s to
take over. For example, 1n an 1mnstant messaging application,
the task would be the name(s) of the person(s) that are being,
conversed with. It may also include a chat history, but that 1s
not a necessary parameter.

The spawning rules 13 describe the circumstances under
which the maximal application 11 may spawn the minimal
application 12, and the circumstances under which the mini-

10

15

20

25

30

35

40

45

50

55

60

65

4

mal application 12 may re-spawn the maximal application 11.
Such circumstances may 1nclude: level of availability of one
or more resources (€.g., response time delay of the applica-
tion, amount of free memory, percentage of processor utili-
zation, number of application programs in a processing
queue, operating system operational status). Example cir-
cumstances/rules for spawning the minimal application 12
may include, for example: a measured response time 1s
greater than 3 seconds. Example circumstances/rules for re-
spawning the maximal application 11 may include, for
example, 1n the maximal application: time since minimal

spawn 1s greater than 5 minutes and free memory 1s greater
than 512 MB.

The minimal application 12 i1s spawned based on com-
mands from the maximal application 11 when the latter
detects increased response time delay beyond a threshold.
When the minimal application 12 1s spawned, the minimal
application 12 obtains status information about the current
computing system workload and when 1t may be acceptable to
re-spawn the maximal application 11 (such status informa-
tion can be made available by the operating system at 1nitial-
1ization of the minimal application). Once the minimal appli-
cation 12 1s executing, the maximal application 11 can be
terminated until computing system resources are available at
a level above a high threshold.

FIG. 2 shows a flowchart of an example process 20 imple-
mented by the primary application (e.g., maximal applica-
tion), including:

Step 21: Maximal application executing while monitoring

status of the maximal application (e.g., responsiveness,
ctc.) and status of computing system resources against a
first status threshold.

Step 22: If the status of the computing resources 1s an
acceptable level relative to the first status threshold (e.g.,
availability of memory, processor, etc.), then the process
proceeds back to step 21, otherwise the process proceeds
to step 23.

Step 23: Build parameters. In one example, the parameters
provide, as a minimum, sufficient information for the
minimal application to take over and continue the opera-
tion that the maximal application was performing. For
example, an 1nstant messaging client 1s provided with
the participants of the chat that was 1n progress, such as:
PARAMETERS=PARTICIPANTS(jdoe{@a.com,

psmithb.com).

Other parameters can also be provided, though not
required. The mimimal application 1s, by definition,
minimal and as such 1t may be unnecessary to include
code to handle non-essential parameters which may
increase the resource usage of the minmimal application.

Step 24: Build rules for re-spawn of the maximal applica-
tion. The rules for re-spawning the maximal application
can also be supplied to the minimal application. For
example:

RESPAWN=(EL>5 m) && (FM>312 MB),

where EL 1s a token that represents the elapsed time since
spawn of the minimal application and FM 1s a token that
represents the free memory (in megabytes) 1n the sys-
tem. The parentheses take their normal meaning of pre-
cedence mndication 1n the expression, and the && sym-
bol represents the logical AND operation. These are
representative of logical statements in many program-
ming languages.

Step 235: Spawn minimal application with minimal func-
tionality.

Step 26: Terminate maximal application.

US 8,479,202 B2

S

When computing system resources become available again
(e.g., computing system resources are available at a level
above a threshold), then the minimal application can deter-
mine whether (or when) to re-spawn (restart) the maximal
application. We wish to avoid bouncing between the two
versions such that the spawning rules are used to specily
requirements. When the rules are met, before the minimal
application version 1s terminated, the maximal application 1s
restarted with information about current computing system
workload.

FI1G. 3 shows a flowchart of an example process 30 imple-
mented by the secondary application (e.g., minimal applica-
tion), including:

Step 31: Minimal application executing while monitoring
status of computing system resources against a second
status threshold (e.g., said rules).

Step 32: If the status of the computing resources 1s an
acceptable level relative to a threshold (e.g., availability
of memory, processor, etc.), then the process proceeds

back to step 31, otherwise the process proceeds to step
33.

Step 33: Build parameters (similar to that described

above).

Step 34: Re-spawn of the maximal application.

Step 35: Terminate minimal application.

As such, the primary and second application components
of the application program, allow the application program to
perform autonomic computing which involves self-manage-
ment based on the state of the computing environment
resources. The self-management allows the application pro-
gram to provide core functionality while maintaiming respon-
stveness. This autonomic behavior allows the maximal appli-
cation to continue providing the user with the ability to
perform their tasks, even when the system resources do not
allow the larger application to execute 1n a practical fashion.
The spawning of the minimal application may be arranged
such that the user 1s almost unaware of the fact that the user 1s
interacting with a ditferent application. This may not be nec-
essary, but all the user may know of the smaller application 1s
a change of typeface and the loss of some user interface
menus or buttons. Similarly the re-spawn of the maximal
application may be arranged to be almost imperceptible. As
the “overload” situations are handled without the need to add
physical resources to the machines, expenditure on hardware
1s delayed, with obvious cost and environmental benefits. The
secondary application comprises a lower functionality ver-
sion of the primary application. The secondary application
requires less number of resources than the primary applica-
tion and/or consumes less of each resource compared to the
primary application program.

As 1s known to those skilled 1n the art, the atforementioned
example architectures described above, according to the
invention, can be implemented 1n many ways, such as pro-
gram 1nstructions for execution by a processor, as software
modules, microcode, as computer program product on com-
puter readable media, as logic circuits, as application specific
integrated circuits, as firmware, etc. Further, embodiments of
the mvention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements.

FIG. 4 shows a functional block diagram of an example
architecture of an embodiment of a system 100 configured to
perform the processes described above, according to an
embodiment of the invention. The system 100 includes one or
more client devices 101 connected to one or more server
computing systems 130. A server 130 includes a bus 102 or
other communication mechanism for communicating infor-

10

15

20

25

30

35

40

45

50

55

60

65

6

mation, and a central processing unit (CPU) 104 coupled with
the bus 102 for processing imnformation. The server 130 also
includes a main memory 106, such as a random access
memory (RAM) or other dynamic storage device, coupled to
the bus 102 for storing mformation and instructions to be
executed by the processor 104. The main memory 106 also
may be used for storing temporary variables or other inter-
mediate information during execution or instructions to be
executed by the processor 104. The server computer system
130 further includes aread only memory (ROM) 108 or other
static storage device coupled to the bus 102 for storing static
information and instructions for the processor 104. A storage
device 110, such as a magnetic disk or optical disk, 1s pro-
vided and coupled to the bus 102 for storing information and
instructions. The bus 102 may contain, for example, thirty-
two address lines for addressing video memory or main
memory 106. The bus 102 can also include, for example, a
32-bit data bus for transferring data between and among the
components, such as the CPU 104, the main memory 106,
video memory and the storage 110. Alternatively, multiplex
data/address lines may be used instead of separate data and
address lines.

The server 130 may be coupled via the bus 102 to a display
112 for displaying information to a computer user. An input
device 114, including alphanumeric and other keys, 1is
coupled to the bus 102 for communicating imnformation and
command selections to the processor 104. Another type or
user mput device comprises cursor control 116, such as a
mouse, a trackball, or cursor direction keys for communicat-
ing direction information and command selections to the
processor 104 and for controlling cursor movement on the
display 112.

According to one embodiment of the invention, the func-
tions of the invention are performed by the processor 104
executing one or more sequences of one or more structions
contained 1n the main memory 106. Such istructions may be
read mnto the main memory 106 from another computer-read-
able medium, such as the storage device 110. Execution of the
sequences of mstructions contained in the main memory 106
causes the processor 104 to perform the process steps
described herein. One or more processors 1n a multi-process-
ing arrangement may also be employed to execute the
sequences of instructions contained 1n the main memory 106.
In alternative embodiments, hard-wired circuitry may be used
in place of or in combination with software instructions to
implement the invention. Thus, embodiments of the invention
are not limited to any specific combination of hardware cir-
cuitry and software.

The terms “computer program medium,” “computer usable
medium,” “computer readable medium,” and “computer pro-
gram product,” are used to generally refer to media such as
main memory, secondary memory, removable storage drive, a
hard disk installed 1n hard disk drive, and signals. These
computer program products are means for providing software
to the computer system. The computer readable medium
allows the computer system to read data, instructions, mes-
sages or message packets, and other computer readable infor-
mation from the computer readable medium. The computer
readable medium, for example, may include non-volatile
memory, such as a floppy disk, ROM, flash memory, disk
drive memory, a CD-ROM, and other permanent storage. It1s
usetul, for example, for transporting information, such as data
and computer instructions, between computer systems. Fur-
thermore, the computer readable medium may comprise
computer readable mnformation 1n a transitory state medium
such as a network link and/or a network interface, including a
wired network or a wireless network that allow a computer to

US 8,479,202 B2

7

read such computer readable information. Computer pro-
grams (also called computer control logic) are stored in main
memory and/or secondary memory. Computer programs may
also be received via a communications interface. Such com-
puter programs, when executed, enable the computer system
to perform the features of the present invention as discussed
herein. In particular, the computer programs, when executed,
enable the multi-core processor to perform the features of the
computer system. Accordingly, such computer programs rep-
resent controllers of the computer system.

Generally, the term “computer-readable medium”™ as used
herein refers to any medium that participated in providing
instructions to the processor 104 for execution. Such a
medium may take many forms, including but not limited to,
non-volatile media, volatile media, and transmission media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as the storage device 110. Volatile media
includes dynamic memory, such as the main memory 106.
Transmission media includes coaxial cables, copper wire and
fiber optics, icluding the wires that comprise the bus 102.
Transmission media can also take the form of acoustic or light
waves, such as those generated during radio wave and infra-
red data communications.

Common forms of computer-readable media include, for
example, a tloppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical
medium with patterns ofholes, a RAM, a PROM, an EPROM,
a FLASH-EPROM, any other memory chip or cartridge, a
carrier wave as described hereinafter, or any other medium
from which a computer can read.

Various forms ol computer readable media may be
involved 1n carrying one or more sequences of one or more
instructions to the processor 104 for execution. For example,
the instructions may initially be carried on a magnetic disk of
a remote computer. The remote computer can load the
instructions into 1ts dynamic memory and send the instruc-
tions over a telephone line using a modem. A modem local to
the server 130 can receive the data on the telephone line and
use an infrared transmitter to convert the data to an infrared
signal. An infrared detector coupled to the bus 102 can receive
the data carried in the infrared signal and place the data on the
bus 102. The bus 102 carries the data to the main memory 106,
from which the processor 104 retrieves and executes the
instructions. The instructions recetved from the main
memory 106 may optionally be stored on the storage device
110 either before or after execution by the processor 104.

The server 130 also includes a communication interface
118 coupled to the bus 102. The communication interface 118
provides a two-way data communication coupling to a net-
work link 120 that 1s connected to the world wide packet data
communication network now commonly referred to as the
Internet 128. The Internet 128 uses electrical, electromag-
netic or optical signals that carry digital data streams. The
signals through the various networks and the signals on the
network link 120 and through the communication interface
118, which carry the digital data to and from the server 130,
are exemplary forms or carrier waves transporting the infor-
mation.

In another embodiment of the server 130, interface 118 1s
connected to a network 122 via a communication link 120.
For example, the communication interface 118 may be an
integrated services digital network (ISDN) card or a modem
to provide a data communication connection to a correspond-
ing type of telephone line, which can comprise part of the
network link 120. As another example, the communication
interface 118 may be a local area network (LAN) card to

10

15

20

25

30

35

40

45

50

55

60

65

8

provide a data communication connection to a compatible
LAN. Wireless links may also be implemented. In any such
implementation, the communication interface 118 sends and
receives electrical electromagnetic or optical signals that
carry digital data streams representing various types of infor-
mation.

The network link 120 typically provides data communica-
tion through one or more networks to other data devices. For
example, the network link 120 may provide a connection
through the local network 122 to a host computer 124 or to
data equipment operated by an Internet Service Provider
(ISP) 126. The ISP 126 1n turn provides data communication
services through the Internet 128. The local network 122 and
the Internet 128 both use electrical, electromagnetic or optical
signals that carry digital data streams. The signals through the
various networks and the signals on the network link 120 and
through the communication interface 118, which carry the
digital data to and from the server 130, are exemplary forms
or carrier waves transporting the information.

The server 130 can send/recerve messages and data, includ-
ing e-mail, program code, through the network, the network
link 120 and the communication interface 118. Further, the
communication interface 118 can comprise a USB/Tuner and
the network link 120 may be an antenna or cable for connect-
ing the server 130 to a cable provider, satellite provider or
other terrestrial transmission system for receiving messages,
data and program code from another source.

The example versions of the invention described herein are
implemented as logical operations 1n a distributed processing
system such as the system 100 including the servers 130. The
logical operations of the present invention can be 1mple-
mented as a sequence of steps executing 1n the server 130, and
as mterconnected machine modules within the system 100.
The implementation 1s a matter of choice and can depend on
performance of the system 100 implementing the invention.
As such, the logical operations constituting said example
versions of the invention are referred to as operations, steps or
modules.

Similar to a server 130 described above, a client device 101
can include a processor, memory, storage device, display,
input device and communication interface (e.g., e-mail inter-
face) for connecting the client device to the Internet 128, the
ISP 126, or LAN 122, for communication with the servers
130.

The system 100 can further include computers (e.g., per-
sonal computers, computing nodes) 1035 operating the same
manner as client devices 101, wherein a user can utilize one or
more computers 105 to manage data 1n the server 130.

Those skilled 1n the art will appreciate that various adap-
tations and modifications of the just-described preferred
embodiments can be configured without departing from the
scope and spirit of the invention. Therefore, 1t 1s to be under-
stood that, within the scope of the appended claims, the inven-
tion may be practiced other than as specifically described
herein.

What 1s claimed 1s:

1. A method of self-managing an application program 1n a
computing environment, comprising:

spawning a primary application for execution 1n the com-

puting environment, the primary application providing
one or more core application features;

the primary application monitoring status of the primary

application and a computing environment resources
while executing; and

upon detecting a first status threshold based on response

time, the primary application spawning a secondary
application 1n the computing environment, wherein the

US 8,479,202 B2

9

secondary application comprises a lower functionality
version of the primary application while providing the
one or more core application features of the primary
application, and the primary application terminating,
wherein the first status threshold represents first com-
puting environment conditions under which the primary
application may spawn the secondary application and a
second status threshold represents second computing
environment conditions under which the secondary
application may re-spawn the primary application,
wherein the second status threshold 1s based on avail-
ability of computing environment processing resources
required by the primary application.
2. The method of claim 1 further comprising:
the secondary application monitoring status of computing
environment processing resources while executing; and

upon detecting the second threshold status of computing
environment processing resources, the secondary appli-
cation re-spawning the primary application in the com-
puting environment after a predetermined delay period
aiter the secondary application 1s terminated.

3. The method of claim 2 wherein the computing environ-
ment processing resources comprise one or more of: available
processor resources, available memory resources, available
storage resources, and available communication resources.

4. The method of claim 1 wherein the secondary applica-
tion requires less number of resources than the primary appli-
cation and/or consume less of each resource compared to the
primary application.

5. The method of claim 1 wherein the application program
includes said primary application and said secondary appli-
cation.

6. The method of claim 1 wherein the secondary applica-
tion includes core functions of the primary application.

7. A computer program product for self-managing an appli-
cation program 1n a computing environment, comprising a
non-transitory computer usable medium including a com-
puter readable program including program instructions,
wherein the computer readable program when executed on a
computer system causes the computer system to:

spawn a primary application for execution 1n the comput-

ing environment, the primary application providing one
or more core application features;
execute the primary application while the primary applica-
tion monitors status of the primary application and a
computing environment resources while executing; and

upon detecting a first status threshold based on response
time, the primary application spawns a secondary appli-
cation in the computing environment, wherein the sec-
ondary application comprises a lower functionality ver-
s1on of the primary application while providing the one
or more core application features of the primary appli-
cation, and the primary application terminating, wherein
the first status threshold represents first computing envi-
ronment conditions under which the primary application
may spawn the secondary application and a second sta-
tus threshold represents second computing environment
conditions under which the secondary application may
re-spawn the primary application, wherein the second
status threshold 1s based on availability of computing
environment processing resources required by the pri-
mary application.

8. The computer program product of claim 7 further com-
prising program instructions wherein the:
the secondary application monitors status of computing envi-
ronment processing resources while executing; and

10

15

20

25

30

35

40

45

50

55

60

65

10

upon detecting the second threshold status of computing
environment processing resources, the secondary appli-
cation re-spawns the primary application in the comput-
ing environment after a predetermined delay period after
the secondary application 1s terminated.

9. The computer program product of claim 8 wherein the
computing environment processing resources Comprise one
or more of: available processor resources, available memory
resources, available storage resources, and available commu-
nication resources.

10. The computer program product of claim 7 wherein the
secondary application requires less number of resources than
the primary application and/or consume less of each resource
compared to the primary application.

11. The computer program product of claim 7 wherein the
application program includes said primary application and
said secondary application.

12. The computer program product of claim 7 wherein the
secondary application includes core functions of the primary
application.

13. A system for self-managing an application program in
a computing environment, comprising:

a processor coupled to memory;

a primary application including a monitoring processor
function configured for monitoring status of the primary
application and a computing environment resources
while executing, the primary application providing one
or more core application features; and

the primary application further including a spawning pro-
cessor Tunction configured such that upon detecting a
first status threshold based on response time, the primary
application spawns a secondary application in the com-
puting environment, wherein the secondary application
comprises a lower functionality version of the primary
application while providing the one or more core appli-
cation features of the primary application, and the pri-
mary application terminating, wherein the first status
threshold represents first computing environment con-
ditions under which the primary application may spawn
the secondary application and a second status threshold
represents second computing environment conditions
under which the secondary application may re-spawn
the primary application, wherein the second status
threshold 1s based on availability of computing environ-
ment processing resources required by the primary
application.

14. The system of claim 13 wherein:

the secondary application includes a monitoring processor
function configured for monitoring status of computing,
environment processing resources while executing, and
a re-spawning processor function configured such that
upon detecting the second threshold status of computing
environment processing resources, the secondary appli-
cation re-spawns the primary application in the comput-
ing environment after a predetermined delay period after
the secondary application 1s terminated.

15. The system of claim 13 wherein the secondary appli-
cation requires less number of resources than the primary
application and/or consume less of each resource compared
to the primary application.

16. The system of claim 13 wherein the application pro-
gram 1ncludes said primary application and said secondary
application.

17. The system of claim 13 wherein the secondary appli-
cation mcludes core functions of the primary application.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

