US008479154B1
12 United States Patent (10) Patent No.: US 8.479.154 B1
Friedman 45) Date of Patent: Jul. 2, 2013
(54) INTERACTION WITH PARTIALLY 2008/0126072 Al* 5/2008 Hutchison etal. 703/25
CONSTRUCTED MORIL.E DEVICE 2008/0127036 Ath 5/2008 K:.;ldlll‘ et al.
2008/0127124 Al 5/2008 Gilfix et al.
APPLICATIONS 2008/0229274 Al* 9/2008 Cacenco etal. 717/100
2008/0307385 Al™* 12/2008 Dreillingetal. 717/108
(75) Inventor: Mark S. Friedman, Mountain View, CA 2008/0313594 ALl* 12/2008 Smithcccoceeevrvinenne.. 717/100
(US) 2009/0125892 Al 5/2009 Crewdson
2009/0228862 Al* 9/2009 Bertelrud etal. 717/100
: A 2009/0249311 Al 10/2009 Dandamudi et al.
(73) Assignee: Google Inc., Mountain View, CA (US) 2009/0328000 Al 12/2000 Neil et al.
2010/0174974 Al1* 7/2010 Brseboisetal. 715/223
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 OLHER PUBLICATIONS
U.S.C. 154(b) by 137 days. Hayenga et al., Accurate system-level performance modeling and
workload characterization for mobile internet devices, Oct. 2008, 7
(21) Appl. No.: 12/860,064 pages, <http://delivery.acm.org/10.1145/1510000/1509092/p54-
hayenga.pdf>.*
(22) Filed: Aug. 20,2010 Nethi et al., Simulation case studies of wireless networked control
systems, Oct. 2007, 5 pages, <http://delivery.acm.org/10.1145/
(51) Int.CL. 1300000/1298297/p100-nethi.pdf>.*
GOGF 9/44 (2006.01) Seo et al., Automating Embedded Software Testing on an Emulated
GO6F 9/45 2006'01 Target Board, May 2007, 7 pages, <http://delivery.acm.org/10.1145/
(52) U.S.Cl (01) 1280000/1270262/29710009.pdf>.*
USPC 717/106; 717/100; 717/134; 717/139 (Continued)
(58) Field of Classification Search _ _
None Primary Examiner — Thuy Dao
See application file for complete search history. (74) Attorney, Agent, or Firm — Morrns & Kamlay LLP
(56) References Cited (57) ABSTRACT
Methods, systems, and apparatus, including computer pro-
U.S. PATENT DOCUMENTS grams encoded on computer storage media, for creating
7,188,333 B1* 3/2007 LaMottaetal. 717/106 mobile device applications. In one aspect, a method includes
7,861,213 B2 12/2010 Wang determining that a user has entered one or more user iputs
7,908,580 B2 3/2011 Stubbs et al. into an integrated development environment, to select or
7,913,234 B2 3/2011 Neil et al. : L.
7041783 Bl 5/2011 Kishnani et al. arrange a component that detines a portion of an application,
7.941,790 B2* 5/2011 Cabillicetal. 717/139 and transmitting interpreter code that corresponds to the com-
8,191,039 B2* 52012 Cacencoetal. ... 717/106 ponent to a mobile device, where the interpreter code, when
8,255,880 B2 8/2012 Lachner interpreted by a command interpreter on the mobile device,
2005/0023955 AL™ - 172005 Lucassen et al. 7177106 causes the mobile device to generate a mock-up of the portion
2003/0208748 Al* 11/2003 Levinetal. 717/134 HOD 2 P P
2003/0236657 AL* 12/2003 RYZL coovoovevoreeerern.. 703/23 ol the application defined by the component.
2007/0113218 Al 5/2007 Nolan et al.
2007/0220494 A1* 9/2007 Spooneroocoene 717/130 16 Claims, 13 Drawing Sheets

N
”~
_ < Applicati

Determine That A Portion Of An
Application Has Been Defined

701

Transmit Interpreter Code For N
The Portion To A Mobile Device

702

.

on ™~

~ Complete? ~

at

~ 704 .7

&

| Transmit Executable Code To
| The Mobile Device

705

US 8,479,154 Bl
Page 2

OTHER PUBLICATIONS

“About Scratch,” [online], [retrieved on Aug. 20, 2010]. Retrieved
from the internet: http://info.scratch.mit.edu/About_ Scratch, 1

page.
“About Python,” [online], [retrieved on Aug. 20, 2010]. Retrieved
from the internet: http://www.python.org/about/, 2 pages.

Stafl et al., “An experimental evauation of continuous testing during
development,” MIT Computer Science & Artifical Intelligence Lab,

Jul. 2004, 10 pages.

Goldman et al., “Real-time collaborative coding in a web IDE,” MIT
CSAIL, Oct. 2011, 10 pages.

H. Behrens, “MDSD for the 1Phone: developing a domain-specific
language and IDE tooling to produce real world applications for
mobile devices,” itemis AG,Oct. 2010, 5 pages.

* cited by examiner

US 8,479,154 B1

Sheet 1 of 13

Jul. 2, 2013

U.S. Patent

751 owoH | NOILYOO T 41V INNIS 021

orl Wz

7
HHR m qapz)
- o —— eveh

|

.............. e ..l!\

/MON <O JabURY> {| B
PEOJUMO(Q] MaIABId il 10B1U0D

26} e —

qoc}

110 dd9NId pauueds

apooJeg

0ZL S9O|10ld 82IA8(]

€L sindul J8s(507 JuswuolIAuT
Juawdojeas(paie.balul

Cllsoninaq indu BuiwweBoid [ensia

— soelI8lu] bulwwelbouad
00} b} $108S800.d LT IBNSIA 801 SJ0SS920.d

US 8,479,154 B1

Sheet 2 of 13

Jul. 2, 2013

002

P9Ee

A :
@ o] o, S50i00Y

M SSaJPPY 148AUO0ND _wmﬁWc__EOOO
[] 99¢z-peiqeus

[__swon] =l

FIZ Sd9 - saiuadoud

SdD
:Sjuauodwon) a|qISIA-UON

ASHIA
10] uswuoddy 1A aINpayos

LUO [[eD
JYBIN abeqgies

q8ee SdS
18AB|4 Jopulluay

obesSSaN
| Ud310Q

177 Sjusuodwod 0lc J9Ae|dOWOH — JamaIA

IB100S
buelly Us812S
Ajwiixoud

Sd9

e
Ja)aw0J8|800y

EIPOIN
a1seg
uoljewIuY

807 oneled

U.S. Patent

972 J0)1p syoo|g usdo| |87 suoyd Joj sbexoed | | 917 aneg

y0Z
1sag |l Siodloid
v 90¢ >0 7 20

woaoajdwexa Ae|d-8)jealo pling//:sdny @ @ @ A_,H_ ﬂv

][O J0judAu| uonedliady ()

4

US 8,479,154 B1

Sheet 3 0f 13

Jul. 2, 2013

U.S. Patent

O

¢

9

¢

9y9¢

Cres 2 o

Pr9¢

ONOS

37011 J oz

85¢

96¢
IEN

o

J

d¢ 9l

1SN\ 18AB|JBWOH T11VD

HES I8AB|dBWOH 17vD

JNOHAIN Sd9

¥9¢ qr9¢ ey9¢

Od

laAr|4oWOH

ayse Sd9

NdHM
Bpcg JoAe|dJopullay

75z 4 0019 AN p

907 buibbngeq J| ubisaq ||_ s1o9loid

wod-aidwexa-Aeid-a1ea40°ping//:sdny @ @ @ A_W_ @

152

¢0¢

10jusAu| uoneolddy O

I¢ 9Ol

US 8,479,154 B1

ot
o
Cojny
-
.4 — " "
,w 3877 PIO PUS9IAN JoAe|diapulway)
7 g7z Pusyaspn JsAe(dispulwsy (CJ
B077 AepyospntsAe|dispuiwsy CJ)
- 977 19Ae|diepuiwsy [-
M 772 19he|dowoH [+
~ 2.7 sydaloud
=

887 maN | | 982 sso|n | | 8T Aojdaq | | 28T 100load uiey se 19s | 1082 pling
907 buibbnge(| | 70Z ubiseQ mm%m_en_

wod-ajdwexaAe|d-a)eald p|ing//:sdny @ @ @ AH_ __U

x]QE] J0judAu| uonedljiddy ()

U.S. Patent

US 8,479,154 B1

Sheet So0f 13

Jul. 2, 2013

U.S. Patent

o
N

adc Old

LB [21OWO0I9|900Y
gegee 10Suasg uoljelualQ

ee6¢ SdO
:Sjusauodwon 8|qISIA-UON

L6¢

43Rvd amoH

r TEEIRS

90¢
buibbngag E E

wo9 sjdwexs Ae|d-ajeala ping//:sdny @ @ @

J0JuUBAU| uonedlddy ()

U.S. Patent Jul. 2, 2013 Sheet 6 of 13 US 8,479,154 B1

3002

Recelve User Input

302

Generate

Executable Code
304

Provide

Executable Code
306

FIG. 3A

U.S. Patent

3202

Jul. 2, 2013 Sheet 7 of 13

Determine Characteristics of a
First Device 329

Generate a First Version of
Executable Code 294

Provide the First Version of
Code to the First Device 226

Determine Characteristics of a
Second Device 228

(Generate a Second Version of
Executable Code 220

Provide the Second Version of

Code to the Second Device
332

FIG. 3B

US 8,479,154 B1

U.S. Patent Jul. 2, 2013 Sheet 8 of 13 US 8,479,154 B1

3402

ldentify the User 242

Receive a Signal Indicating
Executable Code Is to be
Generated 344

Select a Device that Is Paired
with the User 346

Provide the Executable Code to
the Device 348

FIG. 3C

U.S. Patent Jul. 2, 2013 Sheet 9 of 13 US 8,479,154 B1

5400

Project Data
Database
404

AT

FIG. 4

Load Balancer

402

N
b
-r

Mom

edule
for

itsy

SC
Ve
Mit

P
3

23
Hi §
-

Backup
DB

L

G Old

US 8,479,154 B1

LG 01§

ozs 19 i P T

SNYHO0dd NOILVOl 1ad¥

g GlG AV
= NILSASHNS I98N0S ¥3IMOd JTNAON 716 545 ONIveado NOX
g ANOHJIT13L NOILLYSIAVYN
= ANIJIN IOVHOLS AdOWIIN NIVIA
o AL
&
=
72
17 sng

e,
y—
—
g |
S =lo) ANEIY 3OV44ILNI z%ﬁw_mmmw OV4YILNI m_wﬁw_wmz_ JOV4YILNI OV ILNI i
= ANNOS N NE e IO N VNNILNY oNLNIO Q¥VYOaAIM AVIdSIa
—_

606 206 106 906 G0S 706G 0G 106G

ovs

U.S. Patent

U.S. Patent Jul. 2,2013 Sheet 11 of 13 US 8,479,154 B1

621
\

SEND TO PHONE

625
BUTTON -
CHECKBOX 605 I
L (BUTTON 1 L

604

LIST %
‘ @
- 624
. 607
([BUTTON | SEND TO PHONE q

PROPERTIES

f f COMMAND INTERPRETER
401 614 PROCESSORS 607 61 9’_‘[PRO(ESSORS]
-)
y

FIG. 6A

U.S. Patent

609

631

611

Jul. 2, 2013

CLICK SOUND:

BUTTON |
PROPERTIES

SEND TO PHONE|

NAME:
I

IMAGE:
KITTY.JPG

BUTTON |
PROPERTIES

NAME:
]

IMAGE:
\KIT[YJ PG \

C(LICK SOUND:
" meow.mp3 |

626

Sheet 12 of 13

610

US 8,479,154 B1

“MEOW”

%

R N R

—

:634

APPLICATION
RECEIVED!

U.S. Patent Jul. 2,2013 Sheet 13 of 13 US 8,479,154 B1

7002

Determine That A Portion Of An

Application Has Been Defined
701

Transmit Interpreter Code For N

The Portion To A Mobile Device
702

7 N\
e N\
< Application ™~

~ Complete? ~

| Transmit Executable Code To

| The Mobile Device

| 709

FIG. 7

US 8,479,154 Bl

1

INTERACTION WITH PARTIALLY
CONSTRUCTED MOBILE DEVICE
APPLICATIONS

BACKGROUND

This specification relates to mobile devices and, 1n one
particular implementation, to a visual programming inte-
grated development environment (“IDE”) for developing
mobile device applications.

Visual programming interfaces may be used to help novice
computer users develop software applications. For instance,
Adobe Dreamweaver by Adobe Systems of San Jose, Calif.,
and Google Sites by Google of Mountain View, Calif., pro-
vide visual programming interfaces that allow users to
develop web pages without directly manipulating the under-
lying HyperText Markup Language (“HTML”) code.

Other 1nterfaces have been used to teach users the funda-
mentals of software development. Scratch, a project devel-
oped by the Massachusetts Institute of Technology, allows
children to develop simple games, animated stories, music,
and digital art using a block-based, visual programming lan-
guage. Alice, a project developed by the Carnegie Melon
University, uses a drag-and-drop visual programming inter-
face to introduce basic programming language concepts.

SUMMARY

According to one innovative aspect of the subject matter
described by this specification, a user may use a visual pro-

[1

gramming interface provided by a visual programming IDE
to develop applications for personal electronic devices, such
as mobile phones, personal digital assistants (PDAs), smart-
phones, tablet computers, e-book readers, notebook comput-
ers, or video gaming systems. The user may select and
arrange the components or functional elements that define an
application through the visual programming interface, where
at least one of the components may access mobile device-
specific Tunctionality, such as accelerometer or ringer func-
tionality that is not usually included on a stationary computer.
The visual programming IDE may be triggered to generate
executable code that implements the application through a
signal mput by the user through the visual interface, or

[1

through the mobile device. The visual programming IDE
automatically generates one or more versions of the execut-
able code that implements the application, and provides the
executable code to a mobile device or another device for
debugging or execution.

According to another mnovative aspect, iterpreter code
may be sent to a command interpreter on the mobile device as
a user 1s interactively and iteratively constructing the appli-
cation. When interpreted by the command mterpreter, the
interpreter code may cause the mobile device to display and
receive mputs for a mock-up version of the mobile device
application before the application 1t 1s fully and finally con-
structed, 1.e., before the user triggers the visual programming
IDE to generate the executable code.

Another mnovative aspect of the subject matter described
in this specification may be embodied 1n methods that include
the actions of determining that a user has entered one or more
user inputs nto an integrated development environment, to
select or arrange a component that defines a portion of an
application, and transmitting interpreter code that corre-
sponds to the component to a mobile device, where the inter-
preter code, when nterpreted by a command 1nterpreter on

10

15

20

25

30

35

40

45

50

55

60

65

2

the mobile device, causes the mobile device to generate a
mock-up of the portion of the application defined by the
component.

Other embodiments of these aspects include correspond-

ing systems, apparatus, and computer programs, configured
to perform the actions of the methods, encoded on computer
storage devices.
These and other embodiments may each optionally include
one or more of the following features. For instance, determin-
ing that a user has entered one or more user mputs further
includes determining that a user has entered one or more user
inputs mto an integrated development environment running
on a client device; transmitting 1nterpreter code that corre-
sponds to the component to a mobile device further includes
transmitting interpreter code that corresponds to the compo-
nent to a mobile device that 1s connected to the client device;
the actions also include recetving a signal indicating that the
application 1s complete or that executable code for the appli-
cation 1s to be transmitted to the mobile device; transmitting
interpreter code that corresponds to the component to a
mobile device further includes transmitting interpreter code
that corresponds to the component to a mobile device before
receiving the signal indicating that the application 1s complete
or that executable code for the application 1s to be transmuitted
to the mobile device; the actions further include, 1n response
to recerving the signal indicating that the application 1s com-
plete or that executable code for the application i1s to be
transmitted to the mobile device, generating the executable
code for the application, and transmitting the executable code
for the application to the mobile device; and/or transmitting
interpreter code that corresponds to the component to a
mobile device further includes iteratively transmitting the
interpreter code as the user enters the one or more inputs.

The details of one or more embodiments of the subject
matter described in this specification are set forth in the
accompanying drawings and the description below. Other
potential features, aspects, and advantages of the subject mat-
ter will become apparent from the description, the drawings,
and the claims.

DESCRIPTION OF DRAWINGS

FIGS. 1, 4 and 6 A to 6B are diagrams of example systems
for developing mobile device applications.

FIGS. 2A through 2D are example screenshots of a visual
programming interface that may be used for developing
mobile device applications.

FIGS. 3A through 3C and 7 are flow charts of processes for
developing mobile device applications.

FIG. 5 1s a block diagram of an example internal architec-
ture.

Like reference symbols 1n the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 1s a diagram of an example system 100 for devel-
oping mobile device applications. Specifically, the system
100 includes a server 101 that includes a back-end, visual
programming IDE 109 for developing mobile device appli-
cations, a client device 102 that displays a front-end, visual
programming 1nterface 118 for developing the mobile device
applications, and a mobile device 104 that runs the mobile
device applications.

Initially as used by this specification, a “visual program-
ming IDE” refers to a software application (or to a suite of
software applications) that provides a comprehensive facility

US 8,479,154 Bl

3

for a user of the system 100 to develop applications. The
visual programming IDE may include, for example, a source
code editor, a compiler, an interpreter, build automation tools,
a debugger, and/or other components. The build automation
tools may generate the ‘““visual programming interface”
which, as referred to by this specification, 1s an interface that
allows a user to create applications by moving programming
building blocks, modules, visual elements, or code nodes
(collectively, “components™), to create flowcharts or structure
diagrams which are then compiled or interpreted by the visual
programming IDE.

The server 101, the client device 102, the mobile device
104 communicate with each other over one or more networks
105. The networks 105 may include a wireless cellular net-
work, a wireless local area network (WLAN) or Wi-F1 net-
work, a telephone network, a Third Generation (3G) or Fourth
Generation (4G) mobile telecommunications network, a pri-
vate network such as an intranet, a public network such as the
Internet, or any appropriate combination thereof.

The server 101 may be a web application server or any
other computing device that includes one or more processors
108. The server 101 may be implemented 1n one or more
devices, arranged, for example, as a stand-alone server, a
server farm, or a server cluster. Among other data, the server
101 stores one or more device profiles 120 that, for example,
reference characteristics or capabilities of the different
devices included within the system 100, and that identily
users that are associated or paired with the different devices.
The client device 102 may be any type of computing device
that includes one or more processors 110, input devices 112,
display devices (e.g., display device 116), and engines (e.g.,
engine 114). As used by this specification, an “engine” (or
“soltware engine”) refers to a software-implemented mput/
output system that provides an output that 1s different than the
input. An engine may be an encoded block of functionality,
such as a library, a platform, Software Development Kit
(“SDK™) or an object.

The mobile device 104 1s any type of portable computing
device, such as a cellular phone, e-book reader, tablet com-
puter, music plaver, smart phone, personal data assistant
(PDA), notebook computer, or other mobile device. Similar
to the client device, the mobile device 104 includes one or
more processors 125 and an engine 128. The engine 128 may
be the same type of engine, or a different type ol engine, as
engine 114. The mobile device 104 also includes a command
interpreter 1277, which 1s a computer application that performs
instructions that are written in i1nterpreter code. The 1nter-
preter code may instruct the command interpreter 127 to, for
example, generate a mock-up version of an application that is
under development through the visual programming IDE
109. The command mnterpreter 127 may be, for example, a
Perl, Python, MATLAB, Ruby, Lisp, Scheme, or Java inter-
preter.

Unlike the client device 102, the mobile device 104
includes at least one hardware or software module that pro-
vides functionality which 1s specific to a mobile device. For
instance, the mobile device 104 may include a telephony
module 1244 that provides telephone functionality, an accel-
crometer 1245 that provides motion sensing functionality, a
(Global Positioning System (GPS) module 124¢ that provides
position sensing functionality, a barcode scanner 1244 that
provides barcode reading functionality, and/or a camera 124¢
that provides image sensing functionality. Other hardware or
soltware modules, such as an embedded orientation sensing
module, may also be included on the mobile device 104.

The user may interact with the visual programming IDE
109 through the client device 102 to create an application that

10

15

20

25

30

35

40

45

50

55

60

65

4

may be automatically uploaded to the mobile device 104 by
the visual programming IDE 109. Among other functional-
ities, the application may access one or more functional 1ties
that are specific to the mobile device 104, such as telephone,
motion sensing, or position sensing functionality. The user
who creates the application using the client device 102 may

be the same user, or a different user, as the user of the mobile
device 104.

As the user interacts with the visual programming IDE 109
to construct the application, 1.e., before the user indicates that
the application 1s completed, the visual programming IDE
109 may transmit interpreter code to the command 1nterpreter
127 on the mobile device 107. When interpreted by the com-
mand interpreter 127, the interpreter code causes the mobile
device 104 to generate an interactive, mock-up version of the
application. A user of the mobile device may interact with the
mock-up version of the application to troubleshoot or other-
wise experience portions of the application before the appli-
cation 1s fully complete. In doing so, these portions can be
tested, approved, shared or modified before a full, executable
version of the application 1s compiled.

For example, the user may interact with the visual pro-
gramming IDE 109 by dragging-and-dropping a user inter-
face component (e.g., a control) onto a component pane or
preview pane of the visual programming interface. Based on
this interaction, interpreter code may be communicated to the
command interpreter on the mobile device to cause the
mobile device to display the same type of user interface
component on a mocked-up user interface, in a portion.
Although executable code for the application has not yet been
communicated to the mobile device, the user may still interact
with the mocked-up user interface by, for example, selecting
the user interface component on the mobile device to test or
troubleshootthe application. After interacting with the mock-
up version of the application, the user may again interact with
the visual programming IDE 109 to alter the user interface
component 1n the component pane or the preview pane 1i they
are unsatisfied with the mock-up, or may select or arrange
other components that define different aspects or portions of
the application 1f they are satisfied with the mock-up.

Once the user 1s satisfied that the application 1s complete,
they may select a control to mstruct the visual programming
IDE 109 to generate a version of the executable code that may
be executed on the client device 102. When the client device
102 executes this version of the executable code, a mock-up
of the application may be displayed on the client device 102,
to appear as though the application were running on the
mobile device 104, and the user may interact with the mock-
up. In mteracting with the mock-up, the user may simulate
certain inputs to the application that may be associated with
mobile device-specific functionalities, even 1f the application
1s being executed on a computing device that may not actually
implement these types of functionalities or generate these
types of mputs. Once the user signals that they are satisfied
with the application, the visual programming IDE 109 may
automatically generate a version the executable code that may
be executed on the mobile device 104, and may automatically
provide this version of the executable code to the mobile
device 104.

FIG. 1 also 1llustrates a flow of data within the system 100
during states (a) to (g), and two screenshots 106 and 107 of the
visual programming interface 118 that are displayed on the
client device 102 during states (b) and (e), respectively. The
states (a) to (g) may be time-sequenced states, or they may
occur 1 a sequence that 1s different than the illustrated
sequence.

US 8,479,154 Bl

S

In more detail, during state (a), the user uses the client
device 102 to log into the visual programming IDE 109 that 1s
executing on the server 101. The visual programming IDE
109 may determine, from logon data or from user or device

profiles, the 1dentity of the user, and a type or characteristicof 53

the client device 102. For instance, the visual programming
IDE 109 may determine from logon data that the user 1s using
a particular version of a browser. The visual programming
IDE 109 may identily the user, and may access the device
profiles 120 to 1dentify devices that are paired with the user.
For instance, the visual programming IDE 109 may deter-
mine from the logon data that, although the user 1s accessing,
the visual programming IDE 109 through the client device
102, the user 1s associated or paired with the mobile device
104.

The visual programming IDE may generate code (e.g.,
eXtensible Markup Language (XML) or HIML code, or
JavaScript) that implements the visual programming inter-
face 118, and that 1s tailored to the type or characteristic
associated with the client device 102. The server 101 streams
or otherwise transmits the code to the client device 102 which,
during state (b), displays the visual programming interface
118 to the user.

In some 1implementations, the visual programming inter-
face 118 1s rendered within an Internet browser on the display
116, and the code 1s customized for that browser.

As shown 1n screenshot 106, the visual programming inter-
face 118 includes drag-and-drop components that may be
selected and visually arranged by the user to define an appli-
cation. The location component 130a may, for example, be
selected from a contact list database 122 associated with the
mobile device 104. The “ringer ofl” component 1s one
example mobile device-specific functionality that may be
provided by the telephony module 124a of the mobile device
104.

In the screenshot 106, the location component 130a
(“Home™) and the telephony module component 1305
(“Ringer o) have been selected and added to an *“if . . . then”
statement that makes up a portion of the application. When
executed, this portion of the application would cause the
ringer of a mobile device to turn “oif” when the mobile device
infers that i1t has arrived at a “home™ location. Components
that are associated with other types of functionality may also
be added to the application, such as mobile device-specific
functionality related to the accelerometer 1245, the global
positioning system (GPS) module 124¢, the barcode scanner
1244, or the camera 124e¢, or functionality that 1s not mobile
device-specilic (e.g., “power off” or “enter hibernation
mode™).

Although only a portion of the application 1s completed 1n
state (b), the visual programming IDE 109 may send, or may
cause the client device 102 to send, interpreter code to the
mobile device 104. When iterpreted by the command inter-
preter 127, the interpreter code may cause the mobile device
104 to generate a mock-up version of the application, with
which the user may interact before the application 1s fully
completed. If the mobile device 104 1s located at “Home,” for
example, the command interpreter 127 may generate a mock-
up of the application that turns off the ringer, or that displays
a message on the user interface of the mobile device 104 to
indicate that the nnger has been turned off. The visual pro-
gramming IDE 109 or the client device 102 may determine to
send the interpreter code to the mobile device 104 based on a
user selection or preference, or based on determining that the
mobile device 104 1s directly connected to the client device.

During state (c), signals that retlect the user’s inputs to, or
other interactions with, the visual programming interface 118

10

15

20

25

30

35

40

45

50

55

60

65

6

are communicated to the visual programming IDE 109. For
example, a signal that indicates that the user has selected of a
“00” control 132 on the visual programming interface 118
may be transmitted from the client device 102 to the visual
programming IDE 109. Interpreter code may be sent to the
mobile device before the “go” control 132 1s selected, to allow
the command interpreter 127 to generate or update a mock-up
ol the portion of the application that corresponds to the user’s
inputs to the visual programming IDE 109.

In response to detecting that the user has selected the “go”
control 132, the visual programming IDE 109 may, during
state (d), generate a first binary executable 136 that 1s specific
to the engine 114 associated with the client device 102. The
first binary executable 136 1s transmitted from the server 101
to the client device 102, which executes the first binary
executable 136, thereby displaying a mock-up of the applica-
tion. By displaying a mock-up of the application, the user may
test and debug the application without having to connect the
mobile device 104 to the network, or install a new executable
upon the mobile device 104.

In one particular implementation, in addition to generating
the first binary executable 136 and transmitting the first
binary executable 136 to the client device 102, the visual
programming IDE 109 i1dentifies one or more mobile devices
(e.g., mobile device 104) that are paired with the user, gener-
ates a different binary executables that are specific to those
mobile devices, and transmits the different binary executable
to the respective mobile devices. In doing so, a mobile device-
specific executable may be automatically generated and
pushed by the visual programming IDE 109 to a mobile
device associated with the user, without requiring the user to
interact with the visual programming IDE 109 through the
mobile device, and without requiring the user to connect the
mobile device to the client device 102 itself. The user may
also be prompted, through the visual programming interface
118, to confirm whether they intend for the second binary
executable to be pushed to a mobile device that 1s paired with
the user, or other context data (e.g., collocation of the client
device 102 and the mobile) device may be used to infer that
the user intends to push the second binary executable to the
mobile device.

Screenshot 107 shows the visual programming interface
118, as displayed by the client device 102 during state (e).
Specifically, the screenshot 107 includes a preview pane 138
that displays the mock-up of the application, as 1t would
appear when executed on the mobile device 104. The preview
pane 138 includes a graphic that depicts the mobile device
104, to give the user a sense ol how the application will appear
on the mobile device 104. The particular graphic to display 1n
the preview pane 138 may be determined from a device pro-
file associated with the mobile device 104.

The user may interact with the controls that are depicted 1n
the preview pane 138 by clicking on or otherwise selecting a
control, to simulate selecting a control on the mobile device
104. The server 101 may determine characteristics (e.g.,
screen dimensions, control layout) of the mobile device 104
from the device profile associated with the mobile device 104,
and may alter the mock-up of the application based on these
characteristics.

The first binary executable 136 may include code that
accepts inputs that the client device 102 may not be capable of
generating. Accordingly, the visual programming IDE 109
may provide a capability for the user to simulate these mnputs
through the client device 102. For instance, while the appli-
cation would otherwise accept data from a position sensor of
a mobile device to determine whether the mobile device 1s 1n
the “home” location, the first binary executable 136 1s con-

US 8,479,154 Bl

7

figured to accept simulated position sensor data, since the
client device 102 may not include position sensing function-
ality.

The simulated data may be predetermined data, or the user
may select the data to simulate. for instance, the visual pro-
gramming interface 118 may include one or more controls
(e.g., a selectable, map control) that, when selected, cause
simulated data to be generated and input to the application.
For example, a location selection control 142 may be selected
by the user to simulate GPS data associated with a particular
location, such as an address derived from the contact list
database 122. In FIG. 1, for example, the location selection
control 142 1s associated with data for the location “Home.”
When the control 142 1s selected, the data that 1s associated
with the control 142 1s input to the first binary executable 136,
to simulate the position sensor data that a mobile device
would generate 1f the mobile device were to arrive at the
“home™ location. In the situation where the client device 102
1s capable of generating a particular input, controls may still
be used to simulate data for that input, for example to substi-
tute simulated data for data that the client device 102 1s
actually generating.

If the visual programming IDE 109 has not already pushed
the second binary executable 146 to the mobile device 104
(e.g., based on the mobile device 104 being paired with the
user and further based on the user selecting the “go™ control
132), the visual programming IDE generates a symbol (e.g., a
quick response (QR) code or a bar code) that may be used to
identify the application, and provides the symbol to the client
device 101 for display in the download pane 140. The user
may scan the symbol displayed in the download pane 140
(e.g., using the barcode scanner 1244 or an 1image generating
module, such as the camera 124¢), to indicate that the appli-
cation 1s to be pushed or transmitted from the server 1012 to
the mobile device 104. If the visual programming IDE 109
has already pushed the second binary executable 146 to the
mobile device 104, scanning the symbol may result in the
visual programming IDE 109 sending an update version of
the second binary executable 146 to the mobile device 104, or
otherwise confirming that the push of the second binary
executable 1s or was acceptable to the user.

During state (1), the barcode data 144 generated by the
mobile device 104 1s communicated from the mobile device
104 to the server 101. The barcode data 144 may, for instance,
reference the user, the application, the client device 102, the
mobile device 104, the first binary executable 136, or the
second binary executable 146. The visual programming IDE
109 may use the barcode data 144, or other data that identifies
the mobile device 104, to generate, as the second binary
executable 146, a version of the application that 1s tailored to
the hardware or software configuration of the mobile device
104.

During state (g), the server 101 communicates the second
binary executable 146 to the mobile device 104. The second
binary executable 146, for example, may be automatically
installed upon the mobile device 104, or the mobile device
104 may prompt the user regarding installation. Because the
transmission of the barcode data 144 may establish a direct
network connection between the mobile device 104 and the
server 101 that 1s mndependent of the network connection
between the server 101 and the client device 102, the second
binary executable 146 may be communicated directly
between the mobile device 104 and the server 101 without
being communicated to, or through, the client device 102
itself.

FIGS. 2A and 2B are example screenshots of a visual
programming interface that may be used for developing

10

15

20

25

30

35

40

45

50

55

60

65

8

mobile phone applications. In general, a user may use the
visual programming interface to create new applications for a
mobile device, or to modily an existing application, by drag-
ging and dropping components associated with various appli-
cation functionality 1nto a web-based workspace.

As shown 1n FIG. 2A, a screenshot 200 shows the design
screen ol a web-based visual programming interface. The
interface includes a projects tab 202, a design tab 204 (cur-
rently active), and a debugging tab 206. In general, through
the projects tab 202, a user may access a previously com-
pleted or current project (e.g., application development) or
begin a new development project. Using the design tab 204,
the user may define a mobile device application with one or
more components selected from a components palette 208.
The mobile device application may be visualized using a
preview window 210. If the mobile device application 1s not
functioning as desired, the user may access the debugging tab
206 to locate and fix any errors.

When working 1n the design tab 204, for example, the user
may review mobile device components 1n the components
palette 208 and place any selected components into a com-
ponents pane 212 or the preview window 210. A user may
then set properties related to one or more of the selected
components using a properties pane 214. As the user selects
or arranges the components in the components pane 212 or
the preview window 210, interpreter code may be transmitted
to a mobile device to allow a command interpreter on the
mobile device to generate a mock-up of the application, or of
the portion of the application defined by the selected compo-
nents. Once the user has finished working on the current
development project, the user may select a save button 216 to
save the project or a package to phone button 218 to generate
executable code for use on a mobile device.

The components palette 208 presents a list of components
or features of a mobile device that the user may add to a new
mobile device application. The components and features are
categorized 1nto the following headings: animation 220 (e.g.,
graphics features), basic 222 (e.g., menus, buttons, icons,
telephony functionality), media 224 (e.g., audio, video, ringer
functionality), sensor 226 (e.g., external data collection),
screen arrangement 228 (e.g., zones, panes, navigation, touch
response), and social 230 (e.g., social networking, texting).
Other categories or components are possible, such as digital
camera functionality, personal information management
functionality (e.g., involving a personal information manager
tool on the mobile device), or other embedded module func-
tionality. The sensor heading 226 has been selected, and the
individual sensor components, including an accelerometer
226a, a light indicator (CCD) 226b, a global positioning
system (GPS) 226¢, and a proximity sensor 2264 are visible.

The GPS sensor component 226c¢, for example, has been
selected by the user, either through adding it to the preview
window 210 or the components pane 212. The GPS sensor
component 1s listed within a non-visible components section
232 of the preview window 210 as well as within the compo-
nents pane 212. The properties of the GPS sensor component
226¢ are available within the properties pane 214. These
properties include an 1dentification property 236a selected as
“Home,” an enabled checkbox 2365 (affirmative), a coordi-
nates drop-down menu 236c¢ set to “convert address”, and an
address drop-down menu 2364 set to “my house.” The 1den-
tification property 236qa, for example, may be used to identify
this GPS setting from any other GPS settings potentially used
by the same mobile device application or application project.
The GPS coordinates may be selected by retrieving an
address (e.g., through the personal information management
functionality of the mobile device) and having the mobile

US 8,479,154 Bl

9

device or the online development tool generate coordinates
corresponding to the selected address. In another example,
the user may directly input GPS coordinates.

The application being developed within the screenshot
200, for example, may correspond to a message and to-do list
triggered by the mobile device returning home. The compo-
nents pane 212 lists a series of components associated with a
first screen 234. In some 1mplementations, the application
may span multiple screens of information. In addition to a
GPS component 238c, the first screen 234 includes a message
component 238a and a reminder player component 2385.

In the preview window 210, a first screen 240 (e.g., corre-
sponding to the first screen 234) includes a message 242
“Iriendly reminder” (e.g., corresponding to the message com-
ponent 238a) and a reminders region 244 (e.g., corresponding,
to the reminder player component 2385). The reminder player
component 238, 1n some implementations, corresponds to a
module created by the user. For example, the user may select
an open blocks editor button 246 to define the behavior of one
or more of the components included 1n the mobile device
application. Even before the user has finished programming
the application, a mock-up of the application may display a
user interface that 1s similar to the first screen 240, on the
display of the mobile device. This mock-up may be generated
when a command 1nterpreter on the mobile device interprets
interpreter code corresponding to the application (or portions
thereot) or the components 238.

As shown 1n FIG. 2B, a screenshot 250 includes an
example visual programming interface for developing mobile
device applications. A design tab 251 includes a “my blocks™
user interface 252. The user interface 252, for example, may
be accessed by selecting the open blocks editor button 246, as
described 1n relation to FIG. 2A. At the left of the user inter-
face 252, a set of user definitions 254 are available for selec-
tion, including a REMINDERPLAYER definition 254a, a GPS defi-
nition 2545, and a HomeEPLavYER definition 254¢. The user
definitions 234, in some 1mmplementations, include sets of
information related to a user-defined application module. For
example, 1n selecting a user definition, sub-events, such as
files within a folder, may be made available to the user. These
sub-events may describe specific property settings or condi-
tions for each definition.

The HoMEPLAYER definition 254¢, for example, 1s open for
editing within the user interface 252. The HoMEPLAYER mod-
ule may be activated by a when block 256 labeled “GPS.MY-
HOME”. For example, when the GPS sensor within the
mobile device determines that the mobile device has reached
the user’s home address, the HomePLAYER module 1s activated.
Two call blocks 258 and 260 have been added to the when
block 256. The first call block 238 1s labeled “HoMEPLAYER-
Start”, and the second call block 260 1s labeled “HoMEPLAY-
ER.Music” of type song. Connected to the second call block
260 1s a title block 262 labeled “Love You”. When running the
HomeEPLAYER module, for example, upon returning home, the
mobile device may automatically begin to play the song
“Love You™.

In generating a module such as the HoMEPLAYER module,
the user may select from a series of functional blocks 264
including a definition block 264a, a text block 2645, a lists
block 264¢, amath block 264d, and a logic block 264e¢. These
blocks, for example, may correspond to variable types or
function calls within a programming language. For example,
when rendering a title to the screen or passing a file name to
a Tunction such as the mobile device audio player, the user
may select and customize the text block 264b. As the user
selects the functional blocks 264, the visual programming

10

15

20

25

30

35

40

45

50

55

60

65

10

IDE may sent interpreter code to the mobile device to allow
the mobile device to generate a mock-up or preview version
of the application.

Once the user has finished editing the HoMEPLAYER module,
the user may select a save button 266 to save the module and
return to the design tab 204 displayed 1n relation to FIG. 2A.
In some 1mplementations, rather than opening within the
same browser window, the user interface 252 1s displayed
within a separate browser tab or within a pop-up window or
additional browser application, allowing the user to switch
between the blocks user interface 252 and the design tab 204
described in relation to FIG. 2A while defining a new mobile
device application.

As shown 1n a screenshot 270 1n FIG. 2C, selection of the
projects tab 202 navigates the user to a projects directory 272
containing a HoMEPLAYER project 274 and a REMINDERPLAYER
project 276. The REMINDERPLAYER project 276 1includes three
sub-projects: REMINDERPLAYER .WEEKDAY 278a, REMINDER-
PLAYER .WEEKEND 2786 and REMINDERPLAYER . WEEKEND.OLD
2778c¢. A user, for example, may visit the project directory 272
to open, delete, rename, reorganize, or download one or more
projects.

A series of buttons are available above the project directory
272. A build button 280, when selected, may build a mock-up
version in a preview window of the mobile device application
defined by the selected project. The user may verily function-
ality of the project 1n the preview window prior to deploying
the mobile device application to a mobile device. A “set as
main” project button 282 may set the selected project as the
default project, making the project immediately available
whenever the user accesses the web-based visual program-
ming interface. A deploy button 284 may be used to generate
executable code related to the selected project. The execut-
able code, for example, may be uploaded to a mobile device.
A close button 286 may be used to close the selected project.
A new button 288 may be used to create a new project 1n the
project directory 272. If the user has selected an existing
project, for example, the new project may be created as a
sub-project of the existing project. A sub-project, 1n some
implementations, may inherit the user-designed modules,
screen layout, and component selection(s) associated with the
parent project.

FIG. 2D 1s a screenshot 290 illustrating the debugging
screen of a web-based visual programming interface. The
debugging tab 206 has been selected. A preview pane 292
provides the user with a mock-up of a mobile device appli-
cation recently designed by the user. The user may interact
with the mock-up version to verily functionality or to debug
any problems. In some implementations, the mock-up ver-
sion may be generated using a different binary executable
than the application which would be 1nstalled upon a mobile
device. For example, functionality available through a mobile
device, such as text messaging functionality, accelerometer
functionality, telephone functionality, bar code reading func-
tionality, ringer functionality, position determination func-
tionality, embedded module functionality, proximity sensor
functionality, light detection functionality, orientation sens-
ing functionality, camera functionality, personal information
management functionality, or social networking functionality
may be simulated through code substituted or added 1nto a
binary executable version generated to execute within a
visual programming IDE. The simulation may include one or
more 1nput boxes or user controls for providing mputs typi-
cally received externally from a mobile device or through
sensor data.

The preview pane 292 includes a message “HoMEPLAYER”
and a disable button control 291. Beneath the screen mockup,

US 8,479,154 Bl

11

a set of non-visible components 293 1s listed, including a GPS
component 293qa, an orientation sensor component 2935, and
an accelerometer component 293¢. The non-visible compo-
nents 293 each map to a component emulator, such as a GPS
emulator 294a, an orientation emulator 29454, and an accel-
crometer emulator 294¢. The user may interact with the con-
trols within each of the emulators 294 to simulate inputs to the
non-visible components 293.

Using the GPS emulator 294a, the user may select a loca-
tion on a map to provide GPS coordinates to the mock-up
application displayed in the preview pane 292, simulating
data received from the GPS component 2934. In some imple-
mentations (not 1illustrated), an address could be entered,
coordinates could be directly entered, or an address could be
selected from a personal information management module,
such as a contacts database available through the mobile
device. In addition to a static location, 1n some 1implementa-
tions (not illustrated), the user may select a route between two
locations. The route, for example, may 1nclude an average
speed.

The orientation emulator 2945 emulates events received
from the orientation sensor component 2935. The user may
interact with a compass control 295 to set a direction and a tilt
control 296 to simulate a tilt. For example, using the tilt
control 296, selection above center may indicate forward,
selection below center may indicate backwards, and selection
to the left or right of center may indicate tipping the mobile
device to the left or the night.

The accelerometer emulator 294¢ simulates events gener-
ated by the accelerometer component 293¢. An acceleration
window 297 may be used to select forward, backward, or
sideways acceleration, depending upon the position of the
user activation in relation to the center point. The further from
the center point, for example, the faster the resultant accel-
eration mnput. The user may instead or additionally select a
shake button 298 to simulate shaking the mobile device.

In addition to graphical display controls and the emulators
294, 1n some implementations, physical controls, such as
buttons or navigation controls available on a mobile device,
may be displayed as part of the mock-up 1n the preview pane
292 (not 1llustrated). For example, the user could verity tunc-
tionality when selecting characters on a keypad of a mobile
device or when triggering a call button.

FIG. 3A 1s a flow chart of a process 300 for developing
mobile device applications. Brietly, the process 300 may be
used 1n creating new mobile device applications or modifying
existing mobile device applications using a web-based visual
application development tool.

The process begins with recerving user input through a
visual programming interface (302). One or more of the user
inputs, for example, may mnvolve selecting and arranging
components that define an application for a mobile device. At
least one of the components may access functionality that 1s
specific to mobile devices such as, 1n some examples, accel-
crometer Tunctionality, telephone functionality, text messag-
ing functionality, bar code reading functionality, position
determination functionality, proximity detection functional-
ity, light detection functionality, social networking function-
ality, camera functionality, or personal information manage-
ment functionality.

In some 1mplementations, the visual programming inter-
face may include a web-based visual programming 1nterface.
For example, a user working at a computing device may
access a mobile device application development tool through
a network connection. The development tool, 1n some 1mple-
mentations, may include a preview window that displays a
mock-up of the application that the user 1s currently develop-

10

15

20

25

30

35

40

45

50

55

60

65

12

ing, demonstrating how the application may appear on a
mobile device. The development tool may also transmit inter-
preter code to the mobile device, for example 1f the mobile
device 1s connected to the computing device or 1f the user
instructs the development tool to transmit the interpreter
code. When interpreted by an interpreter on the mobile
device, the interpreter code causes the mobile device to gen-
erate a mock-up version of the application on the mobile
device, that the user may 1nteract with before finmishing devel-
opment of the application.

Executable code 1s generated (304). The user, after arrang-
ing the components defining the application, may choose to
build an executable code version of the defined application for
use with a mobile device. The executable code may be stored
within a networked storage device (e.g., controlled by the
system providing the web-based development tool) or locally
at the user’s computing device. In some 1mplementations, the
executable code includes 1nstallation functionality as well as
the application functionality. One or more versions of the
executable code may be generated for a particular application
under design, for instance to provide different versions of the
executable code to be run on systems with different charac-
teristics.

In some implementations, along with generating the
executable code, a quick response code uniquely 1dentifying
the application may be generated. The quick response code
may be provided to the mobile device to allow the mobile
device access to the executable code, for example, stored
within the networked system.

Executable code 1s provided to a mobile device (306). ITthe
executable code 1s stored within a local storage, the mobile
device may be connected to the user’s computing device to
upload the executable code. If the executable code 1s stored
within a networked drive, the mobile device may be used to
access the web-based system and retrieve the executable
code. If a quick response code was generated, the user may
provide the mobile device with the quick response code, and
the mobile device may be used to access executable code
using the quick response code.

In some implementations, the quick response code 1s gen-
crated on the display of the user’s computing device as a bar
code mmage. The user may scan the bar code, for example
using a bar code scanner or a digital camera built into the
mobile device. After scanning the bar code, the user may
access a networked resource (e.g., through a URL) to retrieve
the executable code using the quick response code. In other
implementations, the executable code 1s provided to a mobile
device that the visual programming IDE 1dentifies as being
paired with the user.

Once the executable code has been transierred to the
mobile device, the executable code may be 1nstalled to run the
application. For example, the application may appear within
an application menu or a collection of 1cons in the display area
of the mobile device.

FIG. 3B 1s a tlow chart of a process 320 for developing
mobile device applications. Briefly, the process 320 may be
used 1n creating binary executable code for previewing or
running mobile device applications designed using a web-
based wvisual application development tool. The binary
executable code, for example, may be generated by a visual
programming IDE.

The process 320 begins with determining characteristics of
a first device (322). For example, 1t may be determined that a
mobile device application 1s going to be executed 1n a browser
environment of a non-mobile computing device. Further,
hardware, software, or firmware characteristics of the first
device, 1n some 1implementations, may be determined.

US 8,479,154 Bl

13

A first version of executable code 1s generated based on the
characteristics of the first device (324). For example, a
browser-specific version of executable code may be gener-
ated. The executable code may simulate a mobile device
application.

The first version of executable code 1s provided to the first
device (326). The first version of executable code may be
downloaded to the first device. Alternatively, the first version
of executable code may be streamed to a virtual runtime
environment on the first device from an application server.
Other implementations are possible.

Characteristics of a second device are determined (328).
For example, 1t may be determined that the application 1s
going to be executed 1n a mobile device operating system
environment. Additionally, a device model, operating system
version, hardware characteristics, firmware characteristics,
or software module installations may be determined. In some
implementations, the characteristics of the second device
may be determined through device information provided by
the first device or the second device. A device profile associ-
ated with the user or the particular device registered to the
particular user, 1n some implementations, may be accessed to
determine characteristics of the second device.

A different, second version of executable code 1s generated
(330). For example, a mobile device operating system-spe-
cific version of the executable code may be generated. The
executable code, 1n some implementations, may be generated
to be compatible with particular hardware and soitware com-
ponents available on the second device.

The second version of executable code 1s provided to the
second device (332). In some 1mplementations, the second
version of executable code may be provided to the second
device by a visual programming IDE through a network. The
second version of executable code, 1n some implementations,
may be downloaded to the second device from the first device.

In some 1mplementations, characteristics of both the first
device and the second device may be considered when gen-
erating the first version of executable code. For example, the
first version of executable code may include a mockup of the
particular physical control layout of the second device, as
well as visible and non-visible components available to the
second device.

FIG. 3C 1s a tflow chart of a process 340 for developing
mobile device applications. Briefly, the process 340 may be
used 1n creating binary executable code for running mobile
device applications designed using a web-based visual appli-
cation development tool. The binary executable code, for
example, may be generated by a visual programming IDE.

The process 340 begins when the visual programming IDE
identifies the user (342). For example, the user may log into
the web-based visual application development tool with user
account settings, such as a user name and password. In
another example, identification provided 1n a message from a
client device, such as an account number, telephone number,
or IP address, may be used to 1dentify the user of the device.
The user, for example, may have device profile settings asso-
ciated with one or more devices.

A signal 1s recerved indicating that the executable code 1s to
be generated (344). For example, the visual programming
IDE may determine that the user has selected a control on the
visual programming interface of the client device to indicate
that the executable code 1s to be generated. In another
example, the visual programming IDE may determine that the
user has selected a control on a mobile client device to 1ndi-
cate that the executable code 1s to be generated. In another
implementation the executable code may be dynamically
generated as the user selects and arranges components on the

10

15

20

25

30

35

40

45

50

55

60

65

14

visual user interface. Belore receiving the signal, the visual
programming language may iteratively send interpreter code
that allows an interpreter on the mobile device to generate a
mock-up version of the application, as the application 1s being
programmed by the user.

The visual programming IDE 1dentifies a mobile device
that 1s paired with the user (346). For example, information
regarding the mobile device may be linked to a user profile
account in the visual programming IDE. The mobile device
may or may not be connected to the client device that 1s
displaying the visual programming interface.

In addition to or instead of generating a first binary execut-
able and transmitting the first binary executable to the client
device, the visual programming IDE i1dentifies one or more
mobile devices that are paired with the user, generates a
different binary executables that are specific to those mobile
devices, and transmits the different binary executable to the
respective mobile devices. In doing so, a mobile device-spe-
cific executable may be automatically generated and pushed
by the visual programming IDE to a mobile device associated
with the user, without requiring the user to interact with the
visual programming IDE through the mobile device, and
without requiring the user to connect the mobile device to the
client device 1tself. The user may also be prompted, through
the visual programming interface, to confirm whether they
intend for the second binary executable to be pushed to a
mobile device that i1s paired with the user, or other context
data device may be used to infer that the user intends to push
the second binary executable to the mobile device.

The executable code 1s provided to the second client device
(348). The executable code, for example, may be downloaded
to the second client device from the visual programming IDE.
Downloading may occur with or without requiring the user to
explicitly authorize the download, depending upon whether
the user has opted to authorize this service.

FIG. 4 1s a diagram of an example system 400 for devel-
oping mobile device applications. Brietly, the system 400
provides a browser-based user interface for generating new
mobile device applications. A user, working at a first client
device 402, may access a web site for developing mobile
device applications. The web site may include a visual pro-
gramming interface that presents the user with one or more
components that may be used to access functionality of the
mobile device. These components, 1n some examples, may
include digital camera functionality, sensor functionality, or
telephony functionality. As the user designs the new applica-
tion, the resultant mobile device application project may be
stored remotely within a project data database 404. Once the
user has completed development of the new mobile applica-
tion, the application may be downloaded to a second client
device 406. A user may gain access to the system 400, for
example, through registering the second client device 406
with the device manufacturer and joining an online mobile
device application development community. In another
example, the system 400 may be presented within a class-
room setting to introduce students to basic telecommunica-
tions technologies and mobile communication features.

The web site accessed by the user may include an visual
programming IDE which allows a user having basic under-
standing of software development principles to build amobile
device application. Through the application development
process, the user may access the underlying capabilities of the
second client device 406, using these features in new combi-
nations and with new outcomes. For example, the user may
drag and drop mobile device components or features nto a
workspace. The user may specity within the workspace an
interrelation between the device components or features. For

US 8,479,154 Bl

15

example, the user may select graphics, multimedia, sensors,
social networking, or other mobile device capabilities. The
user may arrange the components to interact using a visual
programming interface. If a user has trouble recognizing
incoming calls when the user’s phone 1s 1n her purse, for
example, the user may access data collected by a light detec-
tion sensor, such as a charge-coupled device (CCD) sensor, to
create an application which automatically adjusts the volume
of the ringtone when the device has been placed 1n a dark
location (e.g., a pocket or purse).

In some implementations, the user may test a mock-up of
the mobile device application on the first client device 402
within a preview window. For example, a mock-up version of
the application designed by the user may be generated for
testing and verification prior to uploading the mobile appli-
cation to the second client device 406. The preview window
may include one or more controls, such as 1cons or buttons,
used to simulate sensor input. For example, a shake button
may be activated to simulate shaking the mobile device.

To meet the needs of multiple developers within the system
400, while ensuring fast and dependable interaction for each
user interfacing with the visual programming IDE, the system
400 may include a load balancer 408 distributing data traffic
between each computing device, such as the first client device
402, and multiple data servers 410. The load balancer 408
may include hardware, software, or a combination thereof
functioning to distribute requests for the mobile application
development tool received from multiple users on multiple
computing devices. In some implementations, the load bal-
ancer 408 may include a multi-layer switch or a domain name
system (DNS) server capable of distributing traflic to the data
servers 410 with high availability and failover.

The data servers 410 may supply information to the visual
programming IDE running upon the first client device 402,
and may store project information for the user 1n the project
data database 404. The project information, for example, may
include ongoing and previously developed applications and
user-designed components (e.g., a widget, graphic, audio file,
or other component which the user may include 1n one or
more application projects). The project data database 404
may include one or more digital storage devices, physically
connected or inter-networked. In some implementations, a
user may store ongoing projects or previously developed
projects locally as well within a backup database 412.

In some implementations, the user may connect to the
system 400 using the second client device 406 to download an
application. For example, the user may point the second client
device 406 to the uniform resource locator (URL) of the
visual programming IDE or an associated site where the user
may retrieve executable code corresponding to the newly
developed mobile device application.

The second client device 406, 1n some 1mplementations,
may be provided with a quick response code for use in down-
loading the executable code. For example, once the mobile
application has been compiled into executable code foruse by
the second client device 406, the visual programming IDE
may render a bar code upon the display of the first client
device 402 corresponding to the executable code. The user
may scan the bar code using the second client device 406 to
collect the quick response code. The second client device 406
may then retrieve executable code from the project data data-
base 404 using the quick response code and install the new
mobile device application.

If the mobile device has been registered 1n relation to a user
account 1n the online development environment, in some
implementations, the user may select a download control
within the user interface to push the application to the regis-

10

15

20

25

30

35

40

45

50

55

60

65

16

tered mobile device. For example, upon selection of a “down-
load app” button, a compiled binary executable may be trans-
mitted from the data servers 410 to the second client device
406.

I the project data has been stored to a backup database 412,
the user may connect the second client device 406 to the first
client device 402 or the backup database 412 to retrieve the
executable code. In some examples, the second client device
406 may be tethered to the first client device 402 using a USB
cable or wirelessly connected using Bluetooth or radio fre-
quency (RF) communications.

Upon receiving the executable code, the mobile applica-
tion may be executed on the second client device 406. For
example, the application may be launched from a list of
applications 1n an application menu or as a selectable 1con
upon the display of the second client device 406.

Although the system 400 has been described in relation to
developing new applications, 1n some implementations, the
user may choose to modily an existing application. For
example, the user may select an existing application, either
proiessionally developed or developed by a different user of
the system 400 (e.g., a friend or a member of an online mobile
device application development community). The selected
application may be modified by the user prior to installing the
application upon the second client device 406. In some 1mple-
mentations, the visual programming IDE may include a col-
lection of example mobile device applications.

FIG. 5 1s a block diagram 1llustrating an example internal
architecture 500 of the second client device 406. The archi-
tecture includes a central processing umt (CPU) 501 where
the computer instructions that comprise an operating system
or an application are processed; a display interface 502 that
provides a communication interface and processing functions
for rendering video, graphics, images, and texts on the display
of the second client device 406, provides a set of built-in
controls (such as buttons, text and lists), and supports diverse
screen sizes; a keyboard interface 504 that provides a com-
munication mterface to a keyboard iput device; a pointing
device interface 505 that provides a communication interface
to a pointing input device; an antenna interface 506 that
provides a communication interface to an antenna; a network
connection interface 307 that provides a communication
interface to a network; a camera itertace 308 that provides a
communication interface and processing functions for cap-
turing digital images from a built-in camera; a sound interface
509 that provides a communication interface for converting
sound 1nto electrical signals using a microphone and for con-
verting electrical signals into sound using a speaker; arandom
access memory (RAM) 510 where computer instructions and
data are stored 1n a volatile memory device for processing by
the CPU 501; a read-only memory (ROM) 511 where invari-
ant low-level systems code or data for basic system functions
such as basic mput and output (I/0), startup, or reception of
keystrokes from the keyboard are stored in a non-volatile
memory device; a storage medium 512 or other suitable type
of memory (e.g. such as RAM, ROM, programmable read-
only memory (PROM), erasable programmable read-only
memory (EPROM), electrically erasable programmable
read-only memory (EEPROM), magnetic disks, optical disks,
floppy disks, hard disks, removable cartridges, tlash drives),
where the ﬁles that compri se an operating system 514, appli-
cation programs 315 (including, for example, a web browser
application, a widget or gadget engine, and mobile applica-
tions created using the system 400) and data files 516 are
stored; a navigation module 517 that provides a real-world or
relative position or geographic location of the second client
device 406; a power source 519 that provides an appropriate

US 8,479,154 Bl

17

alternating current (AC) or direct current (DC) to power com-
ponents; and a telephony subsystem 520 that allows the sec-
ond client device 406 to transmit and receive sound over a
telephone network. The constituent devices and the CPU 501
communicate with each other over a computer bus 521.

The CPU 501 may be one of a number of computer pro-
cessors. In one arrangement, the computer CPU 501 1s more
than one processing unit. The RAM 510 interfaces with the
computer bus 521 so as to provide quick RAM storage to the
CPU 3501 during the execution of software programs such as
the operating system application programs, and device driv-
ers. More specifically, the CPU 501 loads computer-execut-
able process steps from the storage medium 512 or other
media into a field of the RAM 510 1n order to execute software
programs. Data 1s stored in the RAM 510, where the data 1s
accessed by the computer CPU 501 during execution.

The storage medium 512 itself may include a number of
physical drive units, such as a redundant array of independent
disks (RAID), a floppy disk drive, a flash memory, a USB
flash drive, an external hard disk drive, thumb drive, pen
drive, key drive, a High-Density Digital Versatile Disc (HD-
DVD) optical disc drive, an internal hard disk drive, a Blu-
Ray optical disc drive, or a Holographic Digital Data Storage
(HDDS) optical disc drive, an external mini-dual in-line
memory module (DIMM) synchronous dynamic random
access memory (SDRAM), or an external micro-DIMM
SDRAM. Such computer readable storage media allow the
second client device 406 to access computer-executable pro-
cess steps, application programs and the like, stored on
removable and non-removable memory media, to off-load
data from the second client device 406, or to upload data onto
the second client device 406.

A computer program product 1s tangibly embodied 1n stor-
age medium 512, a machine-readable storage medium. The
computer program product includes instructions that, when
read by a machine, operate to cause a data processing appa-
ratus to store 1mage data in the mobile device. In some
embodiments, the computer program product includes
instructions that generate a visual programming environment
for developing applications for mobile devices.

The operating system 514 may be a LINUX-based operat-
ing system such as a mobile device platiorm; APPLE MAC

OS X; MICROSOFT WINDOWS NT/WINDOWS 2000/
WINDOWS XP/WINDOWS MOBILE; a variety of UNIX-
flavored operating systems; or a proprietary operating system
for computers or embedded systems. The application devel-
opment platform or framework for the operating system 514
may be: BINARY RUNTIME ENVIRONMENT FOR
WIRELESS (BREW); JAVA Platform, Micro Edition (JAVA
ME) or JAVA 2 Platform, Micro Edition (J2ME) using the
SUN MICROSYSTEMS JAVASCRIPT programming lan-
guage; PYTHON™, FLASH LITE, or MICROSOFT .NET
Compact, or another appropriate environment.

The device stores computer-executable code for the oper-
ating system 514, and the application programs 515 such as
an email, istant messaging, a video service application, a
mapping application, word processing, spreadsheet, presen-
tation, gaming, mapping, web browsing, JAVASCRIPT
engine, or other applications. For example, one implementa-
tion may allow a user to access the GMAIL email application,
an 1nstant messaging application, a social networking appli-
cation, a video service application, a mapping application, or
an 1maging editing and presentation application. The appli-
cation programs 5135 may also include a widget or gadget
engine, such as a TAFRI™ widget engine, a MICROSOFT
gadget engine such as the WINDOWS SIDEBAR gadget
engine or the KAPSULES™ gadget engine, a YAHOO! wid-

10

15

20

25

30

35

40

45

50

55

60

65

18

get engine such as the KONFABULTOR™ widget engine,
the APPLE DASHBOARD widget engine, a gadget engine,
the KLIPFOLIO widget engine, an OPERA™ widget engine,
the WIDSETS™ widget engine, a proprietary widget or gad-
get engine, or other widget or gadget engine the provides host
system software for a physically-inspired applet on a desktop.

Although 1t 1s possible to provide for a web-based visual
programming environment for developing mobile device
applications using the above-described implementation, it 1s
also possible to implement the functions according to the
present disclosure as a dynamic link library (DLL), or as a
plug-in to other application programs such as an Internet
web-browser such as the FOXFIRFE web browser, the APPLE
SAFARI web browser or the MICROSOFT INTERNET
EXPLORER web browser.

The navigation module 517 may determine an absolute or
relative position of the device, such as by using the Global
Positioning System (GPS) signals, the GLObal NAvigation
Satellite System (GLONASS), the Galileo positioning sys-
tem, the Beidou Satellite Navigation and Positioning System,
an mertial navigation system, a dead reckoning system, or by
accessing address, imternet protocol (IP) address, or location
information 1n a database. The navigation module 517 may
also be used to measure angular displacement, orientation, or
velocity of the second client device 406, such as by using one
or more accelerometers.

FIGS. 6A and 6B are diagrams of an example system 600
for developing mobile device applications. FIGS. 6 A and 6B
also 1llustrate a tlow of data between a client device 601 and
a mobile device 602 that occurs during states (a) to (e), as well
as user interfaces 604 to 612 that are displayed on the client
device 601 and the mobile device 602 during various states.
The states (a) to (¢) may occur in the 1llustrated sequence, or
they may occur 1n a sequence that 1s different than the illus-
trated sequence.

The client device 601 may be any type of computing device
that includes, among other things, one or more processors
614, an 1mput device 615, a display 616, and an IDE 617 for
developing mobile device applications. The IDE 617 may be
a visual programming IDE, such as the visual programming
IDE described with reference to FIG. 2, or the IDE 617 may
not be a visual programming IDE.

The mobile device 602 1s any type of portable computing,
device, such as a cellular phone, e-book reader, tablet com-
puter, music player, smart phone, PDA, notebook computer,
or other mobile device. Among other things, the mobile
device 602 includes one or more processors 619 and a com-
mand interpreter 620 which, as the term 1s referred to by this
specification, 1s an application that receives interpreter code,
and interprets the iterpreter code 1n the context of a given
operating system. Interpreter code, which 1s ‘indirectly’
executed (or “interpreted”) by the command interpreter 620,
1s different from compiler code, which 1s converted into
machine code and then ‘directly” executed by the a processor.
The command nterpreter 620 may be, for example, a Perl,
Python, MATLAB, Ruby, Lisp, Scheme, or Java interpreter.

The mobile device 602 1s directly connected to the client
device 601 over a wireless or wireline connection. In an
alternate implementation, the mobile device 602 1s connected
to the client device 601 some other way, such as over a
network connection.

The user of the client device 601 i1ntends to develop an
application that displays an 1image of a cat and that, when
detecting that the image has been touched or selected, plays a
“meow” sound. During state (a), the user mvokes the IDE
617, which displays the user interface 604 on the client device

601.

US 8,479,154 Bl

19

Because (in this example) the IDE 617 1s a visual program-
ming IDE, the user begins developing this application by
selecting an interactive user interface element, 1.¢., a button
component 621, on the user interface 604, and dragging the
user iterface element from a components palette 622 of the
user 1nterface into a desired position or arrangement within
the components pane 624. The selection and arrangement of
the button component 621 within the components pane 624
defines an 1nitial portion or aspect of the application under
development, specifically a portion of the application where a
user interface element 1s mitially displayed or presented on a
user interface.

The client device 601 generates interpreter code that cor-
responds to the action of displaying a button on a user inter-
face, and transmits this interpreter code to the mobile device
602. The command interpreter 620 on the mobile device 602
interprets this interpreter code and, as shown 1n user interface
605, displays a button 625 on a mock-up version of the appli-
cation (or, more specifically, on a mock-up of the user inter-
face that would be generated by the application). Because the
user has not yet defined any properties of the button 621
through the IDE 617 or, alternatively, because the button does
not have any default properties other than a default type,
shape or size, the button 625 displayed on the user interface
603 appears relatively generic.

During state (b), to display the image of the cat, the user
accesses a properties pane 626 for the button 621, and enters
a file name associated with an 1mage of a cat (in the drawing,
“katty.jpg”’) 1n the “1mage” property text entry field 627. The
image 629 of the catis displayed or overlaid on the button 621
in the component pane 624 on the client device 601.

Although the application 1s not yet completed, the client
device 601 generates mterpreter code that corresponds to the
action of displaying the image of the cat on a button on a user
interface, and transmits this interpreter code to the mobile
device 602. The client device 601 may transmit other infor-
mation as well, such as the file “kiatty.jpg.” The command
interpreter 620 on the mobile device 602 interprets this inter-
preter code and, as shown 1n user interface 607, displays an
image 630 of a cat on the button 625. Because the user has not
yet defined any action that 1s to occur when the button 621 1s
selected, nothing would happen 11 the user selected the button
625 on the mobile device 602 other than, perhaps, an anima-
tion of a button depression.

Referring to FIG. 6B, during state (¢), to cause a “meow”
sound to be played when the cat image 1s touched or selected,
the user accesses the properties pane 626, and enters the file
name of a sound file that plays the “meow” sound (in the
drawing, “meow.mp3”’) 1n the “click sound” property text
entry field. I the user were to select the button 621 1n the
components pane 624 (or in a preview pane), the “meow”
sound may be played through a speaker of the client device
601.

The client device 601 generates interpreter code that cor-
responds to the action of playing the “meow’” sound when the
button 625 1s selected, and transmits this interpreter code to
the mobile device 602. The client device 601 may transmit
other information as well, such as the file “meow.mp3.” The
command interpreter 620 on the mobile device 602 interprets
this interpreter code and, as shown 1n the user interface 610,
plays, during state (d), the “meow” sound when the user
selects the button 625 on the mock-up version of the applica-
tion.

During state (e), once the user is satisfied that the applica-
tion 1s complete, the user may select a control 632 to mstruct
the visual programming IDE to generate executable code that
may be executed on the mobile device 602, and provides this

10

15

20

25

30

35

40

45

50

55

60

65

20

executable code to the mobile device 602. The mobile device
602 may acknowledge receipt of this executable code, for
example by displaying an acknowledgement message 634 1n
the user interface 612. The mobile device 602 may delete or
retain the interpreter code after a more recent version of the
interpreter code 1s recerved, or after receiving the executable
code that corresponds to the application.

FIG. 7 1s a flowchart of an exemplary process 700. Briefly,
the process 700 includes determining that a user has entered
one or more user mnputs into an mtegrated development envi-
ronment, to select or arrange a component that defines a
portion of an application, and transmitting interpreter code
that corresponds to the component to a mobile device, where
the interpreter code, when interpreted by a command inter-
preter on the mobile device, causes the mobile device to
generate a mock-up of the portion of the application defined
by the component.

When the process 700 begins, a user enters one or more
user 1nputs to an integrated development environment
(701). The user inputs may, for example, select or arrange one
or more components that define a portion of an application.
The user mputs may be entered through an integrated devel-
opment environment running on a client device.

As the user programs the application, 1.e., before the appli-
cation 1s complete, interpreter code that corresponds to the
components that the user has defined 1s communicated to a
mobile device (702). When interpreted by a command inter-
preter on the mobile device, the interpreter code causes the
mobile device to generate a mock-up of the portion of the
application defined by the component. The IDE may commu-
nicate interpreter code to implement the mock-up of the
application mstead of executable code because, among other
reasons, 1t may be difficult or impossible for the IDE to
generate executable code for the application while 1t the
application 1s incomplete, unfinished, or otherwise still under
development.

The interpreter code may be communicated to the mobile
device when, for example, the user selects a component from
a component palette and drags the component to a preview
pane or components pane. Additionally or alternatively, the
interpreter code may be communicated to the mobile device
when the component s selected, 1.e., in the component palette
or blocks editor, and, through a context menu item, the user
selects a “Do It” control. The context menu may be shown, for
example, when the user ‘right clicks’ on a component.

When the “Do It” control 1s selected, interpreter code cor-
responding to that component 1s communicated the mobile
device for interpretation by the command interpreter. So, for
example, 11 a sound component 1s included as part of the
mobile device application, the user may drag a Sounp.Pray
block onto the blocks editor and then select the “Do It”
control to hear the sound component play on the mobile
device or the client device, even before the user has created
any buttons and added the sound component to a BuTTON-
WHENCLICKED block, or to other mechanism that would allow
a user to trigger the playing of the sound on the mobile device.

Moreover, the “Do It” control allows the user to view the
result of a calculation performed by any component (or set of
connected components) by sending the code that corresponds
to the component to a command interpreter on the mobile
device or the client device, causing the result of the calcula-
tion to be displayed near the appropriate block 1n the blocks
editor. Finally, 1n addition to or instead of the “Do It” control,
the context menu (or a different context menu) may include a
“Watch” control that allows the user to monitor a variable,
property or block calculation, and to continuously update and
display the value of that variable, property or calculation as

US 8,479,154 Bl

21

the application runs and 1s interacted with by the user on the
client device or the mobile device.

The interpreter code may be 1teratively transmitted as the
user enters the one or more 1puts that select or arrange
different components. For instance, i the application 1s not
complete (704, “N”), the user may select or arrange another
component that defines a different portion of the application
(701). I the application 1s complete (704, “Y”), executable
code for the application may be generated, and may be trans-
mitted to the mobile device.

A number of implementations have been described. Nev-
ertheless, 1t will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. For example, various forms of the tlows shown
above may be used, with steps re-ordered, added, or removed.
Accordingly, other implementations are within the scope of
the following claims.

Embodiments of the invention and all of the functional
operations described in this specification may be imple-
mented 1n digital electronic circuitry, or 1n computer soit-
ware, firmware, or hardware, including the structures dis-
closed 1n this specification and their structural equivalents, or
in combinations of one or more of them. Embodiments of the
invention may be implemented as one or more computer
program products, 1.e., one or more modules of computer
program 1nstructions encoded on a computer readable
medium for execution by, or to control the operation of, data
processing apparatus. The computer readable medium may
be a machine-readable storage device, a machine-readable
storage substrate, a memory device, a composition of matter
cifecting a machine-readable propagated signal, or a combi-
nation of one or more of them. The term *“data processing
apparatus” encompasses all apparatus, devices, and machines
for processing data, including by way of example a program-
mable processor, a computer, or multiple processors or com-
puters. The apparatus may include, 1n addition to hardware,
code that creates an execution environment for the computer
program 1n question, e.g., code that constitutes processor
firmware, a protocol stack, a database management system,
an operating system, or a combination of one or more of them.
A propagated signal 1s an artificially generated signal, e.g., a
machine-generated electrical, optical, or electromagnetic sig-
nal that 1s generated to encode information for transmission to
suitable receiver apparatus.

A computer program (also known as a program, software,
soltware application, script, or code) may be written in any
form of programming language, including compiled or inter-
preted languages, and it may be deployed 1n any form, includ-
ing as a stand alone program or as a module, component,
subroutine, or other unit suitable for use 1n a computing
environment. A computer program does not necessarily cor-
respond to a file 1n a file system. A program may be stored in
a portion of a file that holds other programs or data (e.g., one
or more scripts stored in a markup language document), 1n a
single file dedicated to the program 1n question, or in multiple
coordinated files (e.g., files that store one or more modules,
sub programs, or portions of code). A computer program may
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work.

The processes and logic flows described 1n this specifica-
tion may be performed by one or more programmable pro-
cessors executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows may also be performed by, and
apparatus may also be implemented as, special purpose logic

10

15

20

25

30

35

40

45

50

55

60

65

22

circuitry, €.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transier data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto optical disks, or optical disks. However, a computer
need not have such devices. Moreover, a computer may be
embedded 1n another device, e.g., a tablet computer, a mobile
telephone, a personal digital assistant (PDA), a mobile audio
player, a Global Positioning System (GPS) receiver, to name
just a few. Computer readable media suitable for storing
computer program instructions and data include all forms of
non volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The pro-
cessor and the memory may be supplemented by, or incorpo-
rated 1n, special purpose logic circuitry.

To provide for interaction with a user, embodiments of the
invention may be implemented on a computer having a dis-
play device, e.g., a CRT (cathode ray tube) or LCD (liquad
crystal display) monitor, for displaying information to the
user and a keyboard and a pointing device, e.g., a mouse or a
trackball, by which the user may provide input to the com-
puter. Other kinds of devices may be used to provide for
interaction with a user as well; for example, feedback pro-
vided to the user may be any form of sensory feedback, e.g.,
visual feedback, auditory feedback, or tactile feedback; and
input from the user may be received 1n any form, imcluding
acoustic, speech, or tactile input.

Embodiments of the invention may be implemented 1n a
computing system that includes a back end component, e.g.,
as a data server, or that includes a middleware component,
¢.g., an application server, or that includes a front end com-
ponent, e.g., a client computer having a graphical user inter-
face or a Web browser through which a user may interact with
an 1implementation of the mvention, or any combination of
one or more such back end, middleware, or front end compo-
nents. The components of the system may be mterconnected
by any form or medium of digital data communication, e.g., a
communication network. Examples of communication net-
works include a local area network (“LLAN") and a wide area
network (“WAN™), e.g., the Internet.

The computing system may include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

While this specification contains many specifics, these
should not be construed as limitations on the scope of the
invention or of what may be claimed, but rather as descrip-
tions of features specific to particular embodiments of the
invention. Certain features that are described in this specifi-
cation 1n the context of separate embodiments may also be
implemented in combination 1n a single embodiment. Con-
versely, various features that are described 1n the context of a
single embodiment may also be implemented 1n multiple

US 8,479,154 Bl

23

embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as act-
ing in certain combinations and even initially claimed as such,
one or more features from a claimed combination may 1n
some cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a subcombination.

Similarly, while operations are depicted 1n the drawings 1n
a particular order, this should not be understood as requiring
that such operations be performed i1n the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and 1t should be understood that the described program com-
ponents and systems may generally be integrated together in
a single software product or packaged into multiple software
products.

In each instance where an HITML file 1s mentioned, other
file types or formats may be substituted. For instance, an
HTML file may be replaced by an XML, JISON, plain text, or
other types of files. Moreover, where a table or hash table 1s
mentioned, other data structures (such as spreadsheets, rela-
tional databases, or structured files) may be used.

Thus, particular embodiments of the invention have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims may be performed in a different order and still achieve
desirable results.

What 1s claimed 1s:
1. A method for creating a mobile device application com-
prising:

generating, by a server device, a visual programming inter-
face for display on a client device, wherein the visual
programming interface includes iterface elements that
permit a user of the client device to graphically select
and arrange components to define the mobile device
application, wherein at least some of the components
define tunctional elements of the mobile device applica-
tion;

generating, by the server device, a binary executable of the
mobile device application based on a signal received
from the client device, such that when executed by the
client device, a mock-up of the mobile device applica-
tion 1s generated;

transmitting the binary executable to the client device for
execution;

determining that the mobile device application 1s 1ncom-
plete;

generating, by the server device, interpreter code based on
the incomplete mobile device application that 1s capable
ol generating a mock-up of completed portions of the
mobile device application when executed by a command
interpreter:;

transmitting the interpreter code to the mobile device for
execution by a command interpreter of the client device;

wherein the binary executable 1s a first binary executable,
generating the visual programming interface includes
generating a barcode for display on the client device and
the method further comprises:

receiving a signal from the mobile device based at least 1n
part on barcode data received by the mobile device by
scanning the barcode;

5

10

15

20

25

30

35

40

45

50

55

60

65

24

generating, by the server device, a second binary execut-
able of the mobile device application based at least 1n
part on the data; and

transmitting the second binary executable directly to the

mobile device.

2. The method of claim 1, wherein the binary executable
includes executable code 1n addition to the mobile device
application to enable emulation of at least one functional
aspect of a mobile device that 1s not present in the client
device.

3. The method of claim 2, wherein at least one functional
aspect imncludes at least one of output {from an accelerometer
device, output from a global positioming satellite device, or
output from a camera device.

4. The method of claim 3, wherein the binary executable
includes a GPS emulator capable of recerving input to emu-
late GPS output corresponding to at least one of a static
geographical location or a route between two or more loca-
tions.

5. The method of claim 1, wherein the

second binary executable of the mobile device application

1s based on a configuration of the mobile device.

6. The method of claim 5, wherein the configuration of the
mobile device 1s associated with one or more device profiles
of mobile devices accessible by the server device, and
wherein the generation of the second binary executable 1s
further based on the one or more device profiles.

7. A method for creating a mobile device application com-
prising;:

generating, by a server device, a visual programming inter-

face for display on a client device, wherein the visual
programming interface includes interface elements that
permit a user of the client device to graphically select
and arrange components to define the mobile device
application, wherein at least some of the components
define functional elements of the mobile device applica-
tion;

generating, by the server device, a binary executable of the

mobile device application based on areceived signal and
a configuration of a mobile device;

transmitting the binary executable directly to the mobile

device for execution;

determiming that the mobile device application 1s 1ncom-

plete;

generating, by the server device, interpreter code based on

the incomplete mobile device application that is capable
of generating a mock-up of completed portions of the
mobile device application when executed by a command
interpreter; and

transmitting the interpreter code to the mobile device for

execution by a command interpreter of the mobile
device;

wherein generating the visual programming interface

includes generating a barcode for display on the client
device and the method further comprises:

recerving a signal from the mobile device based at least 1n

part on barcode data received by the mobile device by
scanning the barcode.

8. The method of claim 7, wherein the signal 1s received
from the client device and 1s generated based on user input to
the visual graphical user interface to deploy the mobile device
application to the mobile device, and the method further
comprises 1dentifying that the mobile device 1s associated
with the user.

9. The method of claim 7, wherein the configuration of the
mobile device 1s associated with one or more device profiles
of mobile devices accessible by the server device, and

US 8,479,154 Bl

25

wherein the generation of the binary executable 1s further
based on the one or more device profiles.

10. The method of claim 7, wherein the incomplete mobile
device application does not include at least one component
required to generate the binary executable of the mobile
device application.

11. An apparatus for creating a mobile device application,
the apparatus comprising:

a memory; and

a processor configured to execute instructions stored 1n the

memory 1o:

generate a visual programming interface for display on a
client device, wherein the visual programming inter-
face includes intertface elements that permit a user of
the client device to graphically select and arrange
components to define the mobile device application,
wherein at least some of the components define func-
tional elements of the mobile device application;

generate a binary executable of the mobile device appli-
cation based on a signal recerved from the client
device, such that when executed by a client device, a
mock-up of the mobile device application 1s gener-
ated:

transmit the binary executable to the client device for
execution;

determine that the mobile device application 1s 1ncom-
plete;

generate interpreter code based on the imcomplete
mobile device application that 1s capable of generat-
ing a mock-up of completed portions of the mobile
device application when executed by a command
interpreter; and

transmit the interpreter code to the mobile device for
execution by a command interpreter of the mobile
device;

wherein the binary executable 1s a first binary executable,

the instructions to generate the visual programming

5

10

15

20

25

30

35

26

interface includes generating a barcode for display on

the client device, and the memory further includes

instructions to:

receive a signal from the mobile device based at least 1n
part on barcode data recetved by the mobile device by
scanning the barcode;

generate a second binary executable of the mobile
device application based at least in part on the barcode
data; and

transmit the second binary executable directly to the
mobile device.

12. The apparatus of claim 11, wherein the binary execut-
able includes executable code 1n addition to the mobile device
application to enable emulation of at least one functional
aspect of a mobile device not present in the client device.

13. The apparatus of claim 12, wherein the functional
aspect imncludes at least one of output from an accelerometer
device, output from a global positioning satellite device, or
output from a camera device.

14. The apparatus of claim 13, wherein the binary execut-
able 1includes a GPS emulator capable of receiving mput to
emulate GPS output corresponding to at least one a static
geographical location or a route between two or more loca-
tions.

15. The apparatus of claim 11, wherein the memory further
includes 1nstructions to:

generate the second binary executable of the mobile device

application based on a configuration of the mobile
device.

16. The apparatus of claim 15, wherein the configuration of
the mobile device 1s associated with one or more device
profiles of mobile devices stored 1n the memory, and wherein

the instructions to generate the second binary executable
include using the one or more device profiles.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

