12 United States Patent
Kashai

US008478575B1

US 8.478.575 B1
Jul. 2, 2013

(10) Patent No.:
45) Date of Patent:

(54) AUTOMATIC ANOMALY DETECTION FOR
HW DEBUG

(75) Inventor: Yaron Kashai, Sunnyvale, CA (US)

(73) Assignee: Cadence Design Systems, Inc., San
Jose, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 418 days.

(*) Notice:

(21) Appl. No.: 12/824,066

(22) Filed: Jun. 25, 2010
(51) Int.CL
GO6F 17/50 (2006.01)
GO6F 11/30 (2006.01)
G06G 7/48 (2006.01)
G2IC 17/00 (2006.01)
GOIR 31/28 (2006.01)
(52) U.S. CL
USPC ..o, 703/14; 703/4; 703/13; 702/185;

714/724

(58) Field of Classification Search
USPC ..., 703/14, 4, 13; 702/185; 714/724

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,141,630 A * 10/2000 McNamaraetal. 703/14
2002/0120891 Al* 8/2002 Bartensteinetal. 714/724
2006/0111873 Al1* 5/2006 Huangetal. 702/185
2007/0234161 Al1* 10/2007 Blanton etal. 714/736
OTHER PUBLICATIONS

Baah, George K. et al., “On-line Anomaly Detection of Deployed
Software: A Statistical Machine Learning Approach,” SOQUAO6,

Nov. 6, 2006, Portland, OR, USA.

(" san)

Hangal, Sudheendra et al., “Tracking Down Software Bugs Using

Automatic Anomaly Detection,” 24" Conference on Software Engi-
neering (ICSE *02) 2002, p. 291.

Teuvo Kohonen, Timo Honkela, Kohonen network, 2007,
Scholarpedia, 2(1):1568.

Kraskov, Alexander et al., “Hierarchical Clustering Based on Mutual
Information,” John-von-Neumann Institute of Computing, Julich,
Germany, 2008.

OVM World, Open Verification Methodology, found online on Sep.

24, 2010 at http://www.ovmworld.org/, 1 page.
* cited by examiner

Primary Examiner — Omar Fernandez Rivas

Assistant Examiner — Angel Calle

(74) Attorney, Agent, or Firm — Holland & Knight LLP;
Mark H. Whittenberger, Esq.

(57) ABSTRACT

A method for identifying an anomaly 1n an electronic system
includes recewving, from a computer-readable storage
medium, a plurality of entries from a successiul simulation
test of the electronic system, each of the plurality of entries
including information about simulation time. The method
also includes, with one or more computer processors, deter-
mining time sequence relationship between pairs of entries
selected from the plurality of entries and 1dentitying allow-
able sequences of entries using information related to the first
plurality of entries and the time sequence relationship. The
method includes receiving a second plurality of entries from
a failed simulation test of the electronic system, each of the
second plurality of entries including information about simu-
lation time. The method 1ncludes analyzing the second plu-
rality of entries and identilying one or more anomalies in the
clectronic system based on the analysis of the failed simula-
tion test.

23 Claims, 9 Drawing Sheets

400

\\\T/ Yy

Receive antries from a successiul
simulation test of the electronic system

l

420

Determine time sequence relationship
between entries

'

e 430

Identify allowable sequences of entries

i

_—— 440

Recetve entries from a failed simulation test
of the electronic system

i

_—— 450

Analyze entries from the failed test based
on infarmation from the successful fest

I

460

Identify anomalies in the elecironic system
based on the analysis of the failed test

v
l/f Stop >

N

\-""'“-—._.______,_,d—-"'f

US 8,478,575 Bl

L 9l

10IABYSg

_Homam:w
_ oLL
S %E/y ‘sulened
5 ” POOS) |
L N -]
- 1B | (0 | SSee
o 01~ P ™ €0l
= /7 AUS N

U.S. Patent

_uoissalb

—

»

U.S. Patent Jul. 2, 2013 Sheet 2 of 9 US 8,478,575 B1

201~ e

fies

et orter
PEEEINg
fung

3

Wavelanm | | s

™ -r_‘-'.-l'.--.-.:-l.,l___-_Jm.-l

i,

................... -w-:-_.'_:‘_-'. - . L. o ._ﬁ_‘:i'—'ﬁ-'-‘

oo | 207
paliarns

..................
JEEEREEREERE R EENE R NN

otsteuct
ElEkear

PrOCRsS */

. g faitir
213 e U
Wavelonn | R R R R R

fins

¢ 9Ol

Sng UoNEJIUNWWOY / BIE(]

US 8,478,575 Bl

&N N I
= i ARD R A
. m 3UINOY
> “ HOREWIOM JOJBJBUDN)
= m (S)J0$S92014 R 19408U)
m - UOLEINWIS JBWOINY
0¢t — —
e o GEe A%
—
N UOIIBWLIOM SUNOY
> uoidLoSa(] Jozhjeuy
= W04 SABAN HUand
uoeIWIS
0L¢ wnipsiy abelos
00€ 7 W8)SAS Jajndwon

U.S. Patent

U.S. Patent Jul. 2, 2013 Sheet 4 of 9 US 8,478,575 B1

<Start> 400
'

yat
Receive entries from a successful
simulation test of the electronic system

| _— 420
Determine time sequence relationship
between entries

: _— 430
ldentify allowable sequences of entries

! _— 440
Receive entries from a failed simulation test
of the electronic system

Analyze entries from the failed test based
on information from the successful test

ldentify anomalies in the electronic system
based on the analysis of the failed test

T

F1G. 4

g 9l

US 8,478,575 Bl

lll

- auoQ b_>=b< eoo | auo(||Auanovy|| [eoo

2 T szavvaon ¥ (0000000000000

. L LA R A A AR A LA Eﬁw gﬁ
m SO L =00 L =UD0oL sLO0s sU04Y SO UL

= 100dsng buljie uny buissed

U.S. Patent

U.S. Patent Jul. 2, 2013 Sheet 6 of 9 US 8,478,575 B1

a0 el nl e e el e e e e el)
bb'l'*l'*l'* I'*I'*J-*I*J-*I-*J-*I*I*I*I*I-*I‘*I‘*I‘* I'*J-*I-*l*l*}*l*l*l*l*l*bkl. ll- h -
- 1\\'l'l'l\'l\'l\\\'l\\'l\'l'l\\'l\'l\'!\-! ..
LTt St

L rERRE Y L Lt
X & % % X 4 X & & &K E ol el e
"‘.."‘.."‘.."‘.."‘.."‘.."‘ 4-.4- "‘.."‘.."'.."‘.."‘.."‘.."‘.."‘.."‘.."‘.."‘..*.."‘.."‘.."‘-."‘.."' LI
T T T e e T T e e e e R

. . e e e e e e e -- P .,
HHFHFHFHF!HFHFHFHHFH
N EEE N NN x Al

IIIII N EEEE

.. " .l'b*b‘b*b‘*‘b‘}‘b‘**b‘l*b E b*.- E b‘b**‘b‘b*b‘l*b‘}‘b*b L d
B b bk b & bk b b bk b b bk F & bk b B b B B kbR EE --|lhll [] B bk b b bk F b bk E bk k

L LN
E 0 ek e e el e) .
*b*b*b*b*b*b*b*b*b*b*b*b*l "'l '-'l b-. L

» Ay
CRUSN o ol el el ol el el el Sl el el "l el el
- " b-b~"~".*b*b*b*b*b*b*b*b*b*b*b*b

#.‘.*. X U

L) L el el e)
b b
L Jr o ot ot 4-.‘_4- 4-'_4‘_4- 4'4- » 4 4*4- E g 4*4-'4‘_4*4'43*4-*4-* .

L] L L
L] I‘\'I‘

A H H H H H H H H F) HFH‘IH’H‘IHxHvﬂrxvﬂvﬂ.vﬂvﬂ.vﬂvxvﬂrﬂvﬂpﬂ H’Hﬂﬂl
Al A A AN A A A A A A NN AN AN A AN A S

X L)]
. lblb*b*b*b*b*b*b*b*b*b*b*b*b*b*
ERIERE | LI N L L

L) L e e)
1 b*b*b*b*b*b*b*b*b*b*b*b*b*blbbb.1. .
I 'l I [] I I L] I L] I 'l I LI | LI

'l 'l

'l 'l

i, -, ~mr, . ., wrll

E
vrdr4-4-4-1-1-1-1-1-1-1-1-1-1-11::1:;1:1::;1;11:111;44

| I e) | 2]
1- - 'l I*I*I*b*l*b*b*b*b*b*b*b*b*b*I*b*l*b*b*b*b*b:‘b*b‘b‘b‘l‘b‘l*b‘l*b*l*b*l*l*l*l L]

X X)
b rF b b b b b r r b b b b b r
L] 'r I‘-b b‘.b b*b b*b b‘.b b*b bi: b‘.b b*b b‘-b b‘.b b*b b b b 'l

e e e e
E NN NN Al ol AN N

x>)
- IrJ-4-4-41-4--11--1-1--1-1-1141#14111111111414141#4&# .-
. . o " "b'b.‘b'b'b.‘b"b'b*b*b'b‘b'b*b*b*b'b*b*b'b.‘b*b'b*b*b'b‘b*b'b*b*b'b*l". - ."."- .

US 8,478,575 Bl

Sheet 7 0of 9

Jul. 2, 2013

U.S. Patent

L Ol

N N

uonoBNX3
uisned

2073
«

A

d(ulened R sulened
SABAN

JIWO}Y
UoeuUIquIoy @\ mcgmu‘ﬂma

rrrrrrrrrrrrrrrrrrrrrrrrr __v.
Nom»
uoneuiquod { sliened

/ U C@O \\v

—

@on

9|y
bo

sunl Buissed Auew
JBAO Pa)eINWNIDY

U.S. Patent Jul. 2, 2013 Sheet 8 of 9 US 8,478,575 B1

xfer
start

FIG. 8

60

5

1700
write
start

US 8,478,575 Bl

Sheet 9 of 9

Jul. 2, 2013

U.S. Patent

6 9l
4
\4 Jodas
L1106 hnad
m_‘om NG 06
L o
Tl \ hoT
/" SIUBAT
19302 < | UOHIEIX]
mrm\f L cO\ oouny NE
| 06— -
LOI}ONNISU0N) N //,_, d(
yoeyy | aw,mm!@
A\wcl_mzmn_v €06
116 "\

MO|4 uonoala(Ajewouy

US 8,478,575 Bl

1

AUTOMATIC ANOMALY DETECTION FOR
HW DEBUG

BACKGROUND OF THE INVENTION

The present invention relates generally to design automa-
tion tools 1n electronic system design. More particularly,
some embodiments of the invention provide methods and
systems for automatic analysis of simulation test results for
detection of anomalies in an electronic system.

As electronic system become more complex, the cost of
design and testing continues to rise. As a result, design auto-
mation tools are becoming indispensible 1n electronic system
designs. In an automatic design environment, simulation
tools allow fast design and testing. Many design and testing
activities are carried out in regression environments, which
often execute large numbers of simulations overnight. A
single simulation of a complex system can generate many
mega-bytes of data 1n waveforms and log files. Such large
number of simulation runs typically result in some failures
that need to be classified and debugged efliciently.

The debug process 1s time critical, because 1t gates the fixes
that need to take place before the next regression run. Letting
known problems persist for the next regression run aggravates
the problem, as the known failures need to be separated out
betfore the new failures can be attended to. On the other hand,
debug 1s a difficult and time consuming intellectual activity
that requires a level of expertise. In a conventional design
environment, debugging 1s usually carried out manually. The
first action the human debugger performs 1s scanning through
this myriad of data 1n search of a hint that will narrow down
the scope of the problem. The ongoing regression process ties
up valuable engineering resources 1n a constant loop of clas-
sification, debug, fix, and repeat.

Hence, methods and systems that can automate the debug-
ging process are ol great interest.

BRIEF SUMMARY OF THE INVENTION

In a conventional design environment, debugging of failed
tests 1s a manual and time consuming process. In this envi-
ronment, data produced by passing simulations 1s mostly
ignored. Embodiments of the invention provide methods and
systems for automatically identifying an anomaly 1n an elec-
tronic system. Some embodiments of the mvention provide
capabilities to automatically detect “good” behavior patterns
from passing runs and point out where failing runs diverge.
By providing a better starting point for debug, the design
process can be made more eificient.

Some embodiments of the present mvention provide a
method for 1dentifying an anomaly 1n an electronic system.
The method can be used in an analysis tool implemented 1n a
computer system having one or more computer processors
and a computer-readable storage medium. The method
includes receiving, from the computer-readable storage
medium, a plurality of entries from a successiul simulation
test of the electronic system, each of the plurality of entries
includes at least information about simulation time. In an
embodiment, the simulation time 1s the time during simula-
tion when the entry was reported. In certain embodiments,
cach entry also has a source, which 1s the element 1n the
simulation that i1s 1dentified by the entry. The method also
includes determining, with one or more of the computer pro-
cessors, time sequence relationship between pairs of entries
selected from the plurality of entries, and identifying, with
one or more of the computer processors, allowable sequences

10

15

20

25

30

35

40

45

50

55

60

65

2

ol entries using information related to the first plurality of
entries and the time sequence relationship.

When used 1n analyzing a failed test, the method includes
receiving, from the computer-readable storage medium, a
second plurality of entries from a failed simulation test of the
clectronic system, each of the second plurality of entries
includes at least information about simulation time. The sec-
ond plurality of entries from the failed simulation test is
analyzed, with one or more of the computer processors, based
on information related to the first plurality of entries and the
allowable sequences from the successiul simulation test. The
method turther includes identifying, with one or more of the
computer processors, one or more anomalies 1n the electronic
system based on the analysis of the failed simulation test.

In some embodiments, the allowable time sequences can
include hierarchical structures of event entries. In specific
embodiment of the above method, determining time sequence
relationship includes forming a first plurality of entry classes,
cach of which represents a subset of the first plurality of
entries that have a common feature. A set of allowed patterns
are then formed. Some of the allowed patterns include only
first-level patterns. Other allowable patterns can include
higher levels of patterns. In an embodiment, the set of allow-
able patterns can include at least a plurality of first-level
behavioral patterns and a plurality of second-level behavioral
patterns. Each of the first-level behavioral patterns imncludes
information related to two entry classes. Each of the second-
level behavioral patterns includes information related to more
than two entry classes and, in some cases, includes informa-
tion related to two or more first-level behavioral patterns.
Time sequence relationship between entry classes in each of
the allowed patterns 1s then determined.

In another embodiment, a computer system 1s provided for
performing various methods for identifying an anomaly 1n an
clectronic system.

In yet another embodiment, a computer readable storage
medium 1ncludes computer code which, when retrieved and
executed, results 1n performing various methods for identify-
ing an anomaly 1n an electronic system.

A Turther understanding of the nature and advantages of the
present invention may be realized by reference to the remain-
ing portions of the specification and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram 1llustrating a method for auto-
matic anomaly detection according to an embodiment of the
present invention;

FIG. 21s atflow diagram illustrating a more detailed method
according to an embodiment of the mnvention;

FIG. 3 1s a stmplified block diagram of a computer system
that can be used for performing automatic anomaly detection
according to an embodiment of the present invention;

FIG. 4 1s an example of wavelorms according to an
embodiment of the invention;

FIG. 5 1s an example of log messages according to an
embodiment of the invention;

FIG. 6 1s a simplified diagram 1llustrating sequence graph
according to an embodiment of the present invention;

FIG. 7 1s a simplified flow diagram 1llustration a method for
behavioral patterns extraction according to an embodiment of
the present invention;

FIG. 8 15 a simplified diagram 1llustrating sequence graph
according to an embodiment of the present invention; and

US 8,478,575 Bl

3

FI1G. 9 illustrate a method for automatic anomaly detection
according to an embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 1s a simplified block diagram 1illustrating a method
for detecting an anomaly 1n an electronic system according to
an embodiment of the invention. In FIG. 1, 1n a regression test
environment 101, identification of “good” behavior 105 of the
design under verification can be achieved by automatically
scanning the log files and/or wavetorm traces of passing or
successiul runs (103). The method also 1includes analyzing
and comparing (109) data lett by a run known to fail (107) to
identify such good or “allowed” behavioral patterns. In some
cases, partial matches, suspect behaviors, and other devia-
tions are reported (110).

FI1G. 2 1s aflow diagram illustrating a more detailed method
according to an embodiment of the invention. As shown 1n
FIG. 2, the information, e.g., run logs 201 and/or waver form
files 203, left by passing runs 205 1s extracted and formed nto
behavioral patterns 207. In this embodiment, these patterns
can be statistical 1n nature, each assigned a relevance number
describing how likely 1t 1s to show up 1n a passing run. This
database of passing run behavior patterns can be accumulated
over a suite of runs. Patterns can be composed recursively to
create a hierarchy, reflecting the natural semantics of the
logged information. Patterns can also be filtered so that the
most likely behaviors are identified. Each pattern 1s qualified
in terms of its likelihood and 1ts average temporal occurrences
(when does 1t tend to occur, at what relative time each member
of the pattern 1s expected to show, 1ts typical and maximal
duration and so on). The final pattern database 1s processed
and converted into a checker 209.

In a specific example, checker 209 1s a timed tree automa-
ton, where each node represents a position 1n a pattern (e.g., a
position 1n a family of patterns sharing a common prefix).
Each edge of the tree represents a possible legal transition,
which 1s qualified with average and maximal time as well as
a probability.

(Given a failing run, 1t’s outputs (e.g., log files 211 and/or
wavelorms 213) are processed (1n 215) by checker 209, which
may identily a large number of patterns that correspond to
normal behavior. It may, however, spot some anomalies, for
example:

Some patterns that occur 1n every passing run may be

missing;

Some patterns may be partially detected, for example they

may start but not finish;

Some behavior will be completely new.

The checker will report such anomalies (217), after quali-
tying them based on their probability, and after filtering out
ones that seem less interesting given the general nature of
hardware simulation. The output of the process 1s a list of
hints that point the human debugger to anomalies i the
failing simulation outputs. Such anomalies can be extremely
hard to spot by simply scanning the output by eye because of
the huge size of the output and the fact that behavior patterns
intertwine due to concurrent execution, obscuring each
orthogonal behavior pattern.

In some embodiments, hardware designs, such as digital
systems, can give rise to hierarchical patterns that are exposed

by pattern extraction algorithms. Hardware designs also can
exhibit rich concurrent and timing related behaviors. In addi-
tion, embodiments of the mvention also include the integra-
tion of multiple sources of run trace mnformation.

In some embodiments, automatic design anomaly detec-
tion can include one or more the following processes:

10

15

20

25

30

35

40

45

50

55

60

65

4

Automatic extraction of expected behavior patterns from a
suite of passing simulation runs;

Construction of a checker from the i1dentified patterns;

Application of the checker to a failing run, and

outputting a list of hints.

FIG. 3 1s a simplified block diagram of a computer system
300 that can be used for performing automatic anomaly
detection according to embodiments of the present invention.
As shown, computer system 300 includes a storage medium
310 and one or more processors 320 coupled to storage
medium 310 through a data/communication bus. Depending
on the embodiment, processor 320 may include a single pro-
cessor, multiple processors, or a number of local or distrib-
uted processors operating 1n parallel. Storage medium 310
can 1nclude various memory and mass storage devices, such
as DRAM, SRAM, non-volatile memory devices, read only
memory (ROM), disk storage, optical CD, DVD, etc. Storage
medium 310 are configured to store one or more computer
instruction codes and data, while processor 320 1s configured
to retrieve the code and data, and to execute the computer
code. In the embodiment of FIG. 2, storage medium 310
includes computer codes such as simulation event analyzer
routine 331 and automatic checker generator routine 333.
Storage medium 310 also includes various data files, such as
wave form description information 335 and circuit simulation
log file information 337.

In some embodiments, when computer program instruc-
tions or code are retrieved from storage medium 310 and
executed by processor(s) 320, certain automatic anomaly
checking functions are performed. For example, mn an
embodiment, a method 1s carried out for 1identifying one or
more anomalies 1in an electronic system. The method 1s out-
lined 1n flowchart 400 1n FIG. 4, and summarized below.

Step 410—Recerve, from the computer-readable storage
medium, a plurality of entries from a successiul simula-
tion test of the electronic system, each of the plurality of
entries including at least information about simulation
time;

Step 420—Determine, with one or more of the computer
processors, time sequence relationship between pairs of
entries selected from the plurality of entries;

Step 430—Identily, with one or more of the computer
processors, allowable sequences of entries using infor-
mation related to the first plurality of entries and the time
sequence relationship;

Step 440—Recerve, from the computer-readable storage
medium, a second plurality of entries from a failed simu-
lation test of the electronic system, each of the second
plurality of entries including at least information about
simulation time:

Step 450—Analyze, with one or more of the computer
processors, the second plurality of entries from the failed
simulation test based on information related to the first
plurality of entries and the allowable sequences from the
successiul simulation test; and

Step 460—Identily, with one or more of the computer
processors, one or more anomalies 1n the electronic sys-
tem based on the analysis of the failed simulation test.

Certain features of the methods and systems for analyzing
and 1dentifying anomalies in an electronic system are first
described below. They will be further illustrated using spe-
cific examples subsequently.

In some embodiments, hierarchical patterns are recog-
nized. This can be 1llustrated using entry classes and two level
of behavioral patterns, although multiple levels of patterns are
also included. Here, determining time sequence relationship
includes forming a first plurality of entry classes, each of

US 8,478,575 Bl

S

which represents a subset of the first plurality of entries that
have a common feature. A set of allowed patterns are then
formed. Some of the allowed patterns include only first-level
patterns, and other allowable patterns can include higher lev-
¢ls of patterns. In an embodiment, the set of allowable pat-
terns can include at least a plurality of first-level behavioral
patterns and a plurality of second-level behavioral patterns.
Each of the first-level behavioral patterns includes informa-
tion related to two or more entry classes. Each of the second-
level behavioral patterns includes information related to more
than two entry classes and, in some cases, includes informa-
tion related to two or more first-level behavioral patterns.
Time sequence relationship between entry classes 1n each of
the allowed patterns 1s then determined.

In a specific embodiment, the process of 1dentifying allow-
able sequences of entries also includes 1dentifying allowable
sequences ol entry classes using mformation related to the
first plurality of entry classes, the set of allowed patterns, and
the time sequence relationship.

In an embodiment, the set of allowed patterns and the
allowable time sequence relationship are implemented 1n an
bottom-up automata.

In an embodiment, the process ol analyzing the second
plurality of entries from the failed simulation test includes
forming a second plurality of entry classes, each of which
represents a subset of the second plurality of entries that have
a common feature. The process also includes analyzing the
second plurality of entry classes from the failed simulation
test based on mnformation related to the first plurality of entry
classes, the set of allowed patterns, and allowable sequences
from the successtul simulation test. In an example, 1dentify-
ing allowable sequences of entries includes incorporating the
allowable sequences 1n a bottom-up automata.

In some embodiments, the method also includes outputting,
anomaly information related to the anomalies using a com-
puter display device. In some cases, the output includes hints
to aid the user in debugging. In certain embodiments, the
anomaly information may include one or more of the follow-
ng:

missing patterns;

new patterns;

a list of stuck patterns or partial patterns—patterns that
have started and not finished—and a prediction of how
they should finish; and

a l1st of timing anomalies or a list of patterns with suspect
timing, detected by comparing the timing to the average
timing characteristics of the pattern.

The method described above 1s now 1llustrated with more

detailed examples.

Deriving Behavioral Patterns

In some embodiments, two mput sources are used 1n an
environment of electronic design: log messages and wave-
forms. However, the methods considered here can be
extended to deal with other 1nputs, for example, transaction
recordings. FIG. 5 1s an example of wavelorms according to
an embodiment of the invention. Wavelorms are database
entries that can contain signal names, transition times, and
values. The signals 1 FIG. 5§ include run time, the clock
signal, the data signal, the “Done” status signal, and Goal
values. The left side of FIG. 5 illustrates a passing run, which
includes data signals representing activities, goal values
being met, and the presence of the “Done” status signal. In
contrast, the right side of FIG. 5 shows a suspected failing run,
with an absence of the “Done” status signal and unmatched
goal values. FIG. 6 1s an example of event extraction based on
log messages according to an embodiment of the ivention.
Here, the basic operations of the design under verification

10

15

20

25

30

35

40

45

50

55

60

65

6

include “write start,” “write end,” “transier start,” and “trans-
fer end,” etc. Further details of hierarchical event extraction 1s
described below.

In an embodiment, the inputs from the successiul runs are
parsed and represented internally in structures called entries
which are tuples of features. For log messages, the repre-
sented features include the simulation time, the message text
string, values of parameters such as integers and data refer-
ences, as well as the identity of the unit that printed the
message, which 1s considered the source of the entry. For
wavelorms, the represented features include the simulation
time, the value and the hierarchical path of the signal, con-
sidered the source of the entry. Each entry also 1dentifies the
run from which 1t 1s derived and the sequential order of the
entry 1n that run.

A population of heterogeneous entries 1s accumulated as a
number of passing runs 1s processed. This population 1s pro-
cessed 1nto patterns by a pattern extraction algorithm, which
includes 1iterating n times the following steps:

I. Classity entries into equivalence classes. Each equiva-
lence class contains entries that are uniformly structured
(same feature set) and have the same source.

I1. Cluster entries based on their feature vectors. Exit 11 no
new clusters are formed. (More about clustering below).

III. Create new entries from the clusters, the feature vector
of each new entry 1s the union of its members feature
vectors.

The above algorithm 1s 1terated a pre-determined number of
times, or quits when no clusters are formed 1n step (11).

As mentioned above, FIG. 6 1llustrates an example of hier-
archical pattern extraction using a log file according to an
embodiment of the invention. The 1nitial set of entries, which
are not shown 1n FIG. 6, retlect some simple behavior 1n the
design under verification, for example read and write trans-
actions on some bus. The features of an entry may 1dentily the
data packet or the address being accessed. These values may
not be used directly in the extraction algorithm, but may
indicate the 1dentity of the feature when comparing with other
entries. Additionally, the features may include the source and
destination units.

In an embodiment, an algorithm for identitying hierarchi-
cal patterns of entry or entry class include the following steps.

Step (1) will collect all write start entries with the same
source 1nto an equivalence class and will similarly col-
lect all write end entries into another equivalence class;

Step (2) will create clusters of size 2 joining each write start
entry with 1ts matching write end entry—presumably
using the address reference as the unifying feature;

Step (3) will create a new entry from each cluster—such
entry will combine the features of the write start and
write end entries; and

Returning to step (1), new equivalence classes will be
created for all write transaction entries.

The newly created write transaction equivalence class 1s a
simple pattern—called a first order (or first level) pattern—
that can be used for anomaly detection. It may be able to
detect cases where a transaction has started but did not end.
Running the algorithm another round exposes a richer behav-
1or: the write transaction 1s followed temporally by entries
reporting a transfer, which in itself 1s a second order (or
second level) pattern comprising slave transier start, slave
transfer end, master transfer start and master transfer end. If
the correlation 1s strong enough, a new cluster will be formed
yielding entries of the form transaction and transier, a yet
higher order (or ligher lever) pattern. Such a high order
pattern can be used to detect obscure failures 1n processing
transactions and transfers.

The pattern extraction algorithm recovers a hierarchy of

behavior that 1s often found in hardware design. The high

e 4 4

US 8,478,575 Bl

7

level structure exposed by the patterns 1s easier for engineers
to understand. Looking at the fragments of such high level
structures, especially when interleaved with other behavior
can often obscure the design behavior and prevents compre-
hension by a human observer.

FI1G. 7 1s a ssmplified flow diagram 1llustration a method for
behavioral patterns extraction according to an embodiment of
the present invention. As shown i FIG. 7, the method
includes collecting patterns gathered from log files 701 and
wavelorm 703 databases and forming passing patterns. For
example, atomic patterns (first-level patterns) 705 can be
combined to form generation 1 (Gen 1 or second-level) pat-
terns 707. In some cases, the patterns are compounded recur-
stvely, to form Gen n (generation n or higher level) patterns
709. Of course, besides log files and wavelorm databases,
other sources can be used as well.

In some embodiments, behavioral patterns can be extracted
from entry data using a clustering method. Embodiments of
the mvention include various methods for clustering data,
ranging from algebraic and statistical methods to unsuper-
vised machine learning. In a specific embodiment, a distance
based method 1s used, in which one or more of the following
properties are maintained in order to preserve the semantics
of features:

Features are typed—each feature is associated with a data
type based on the data represented. Example types
include time, sequential order, string, integer, Boolean,
reference, path and so on;

Features of different types are incomparable (orthogonal,
infinite distance); and

Clustering 1s done for each type independently, possibly
using a different clustering method.

When using a distance based method, each data type has an
associated metric—a function from a pair of values to a
non-negative number. Different metrics are used for different
types. Table 1 below lists examples of types and metrics.

TABL

(L.

1

Type Metric

Reference, path 0 if equal, «© otherwise

String Normalized Hamming distance
Time, Sequential order Exponential decay
Integer min{Hamming distance, arithmetic

difference)

In a specific embodiment, behavioral patterns extraction
using a distance method can use the procedures described
below. Let EQ be the vector of equivalence classes and |. JQI
the si1ze of that vector. Let Ind(Eq), EqeEQ), be the index ol Eq
in EQ, and the function Eq(e) return the class Eq such that
ceEq. Distance between Equivalence classes are stored in
adjacency matrices, one matrix per type, denoted A . Each
adjacency matrix 1s IEQIXIEQI 1n size, 1s symmetric and has
a zero diagonal. Let T(1) be a function returning the type of
teature 1. Let D {11,12) be the distance function of type T. The
set S 1s a temporary set of entry tuples.

The procedure Distance(el, €2) computes the distance
between two entries. It 1s presented here 1n a simplified form.

Procedure Distance(el,e2):

For each pair 11, 12 such that fleel, 12ee2, T(11 =T(12)
1=Ind(Eq(el)); 1=Ind(Eq(e2))
d=D ;x,({1.12)
If d<ttl then:

AT(fl)[z‘J]zAT(fl)[i:j]'l'd
S=SU(el, e2)

10

15

20

25

30

35

40

45

50

55

60

65

8

Better results can be obtained i1f the accumulation of dis-
tances 1s biased in favor of tewer and closer relations. A

biasing factor of the form k-e~¥#9!+1£42| {5 ysed, where d is

the computed distance and k 1s a parameter controlling ampli-
fication.

The procedure unity(1,7) 1s called to form new clusters,
which are represented as sets. Let C be the set of all clusters
and C(e) be a function returning all the entries that are clus-
tered together with e.

Procedure Unify(l, j):
For each el in EQ[1]
For each e2 1n EQ[j]
If (el,e2) € Sthen C =C U {C(el), C(e2)}

An example of the algorithm for distance based clustering
1s as follows:

Initialize all matrices A =cc
Initialize S=0)

For each pair Eql, Eq2eEQ

For each entry €l 1n Eql and €2 1n
(el, e2).

For each matrix A -

For each 1, 1 such that j<a<|A /

If A1,1]<t, then Unity(1,))

Locality sensitive hashing can be used to speed up the
feature by feature comparison. Two thresholds, T, and t, are
used to eliminate noisy data and limit the number of compari-
sons performed. Filtering may be applied by adapting the
thresholds based on the population of features.

Characterizing Equivalence Classes

In some embodiments, characterizing equivalence classes
also i1ncludes statistical features, which 1s computed in the
pattern extraction process for each pattern, represented by the
matching equivalence class. These features are computed
over the entries that belong to the equivalence class. Some
examples are:

-

T'he probability of the pattern to appear i a run

The average number of appearances in a run

-

I'he average onset time of the first (and last) pattern in a run
The average duration of a pattern and the standard devia-

tion

The average gap between patterns and the standard devia-

tion

In some embodiments, a sequence graph 1s computed for
every compound (non-atomic, or higher-level) pattern. FIG. 8
1s a simplified diagram 1llustrating sequence graph according
to an embodiment of the present invention. The graph repre-
sents the relationship between equivalence classes included
in the pattern, e.g., write start, write end, xfer start, and xfer
end, etc., ordered sequentially in the order of sub-entries that
make up each member entry, e.g., write start, write end, xier
start, and xfer end, as shown in FIG. 8. This 1s achieved by
sorting the sub-entries by their sequence numbers. If the
sequencing order 1s not uniform, the union ol sequence
graphs 1s taken. The graph edges are annotated with the aver-
age transition time betweennodes, e.g., 1700, 75, 60, 450, and
20, etc, as shown 1n FIG. 8. In the example of FIG. 8 two
ordering variants were found. The statistical features will be
used during checking to flag suspect behavior.

Checker Construction

Embodiments of the present invention provide checker
generating routines for automatic anomaly detection. The
checker routines are software programs that incorporate

allowable entries, entries classes, and sequences derived from

Eqg2 compute Distance

US 8,478,575 Bl

9

database of passing tests. In some embodiments, the checker
1s implemented as a bottom-up finite tree automaton, that may
be nondeterministic (ND). (The automaton 1s ND 1 sequence

graphs with common prefixes exist in EQ).

In an embodiment, tree automata are defined by a tuple: (Q,
F, Qf, A), where:

Q 1s a set of states—mapped to the set of known patterns.
Reaching a state means the corresponding pattern was
recognized;

F 1s the alphabet, mapped to the atomic entry equivalence
classes, ranked by their probability;

Q, the accepting states, are the subset of top level patterns
(patterns that are not part of other patterns); and

A 1s the transition relation from patterns to the higher level
pattern contaiming them.

The automaton 1mitial state q; 1s explicitly added to Q, and
transitions from ¢, to each atomic state in Q are added to A.
Transitions in the tree automaton are annotated by the prob-
ability of transition and the average transition time.

In a specific embodiment, a construction algorithm can be
defined using several procedures. Let State(exp) return a new
unique state identifier. Let Input(Eq), defined for atomic
equivalence classes, be the entry type that matches Eq. The
predicate top(Eq) returns True for equivalence classes that are
not members of other equivalence classes in EQ. Let Sequen-
ceEdges(Eq) return the list of edges 1n the sequence graph of
Eqg. Let Source(v) and Target(v) return the source and target
state of an edge, respectively. In this example, the construc-
tion algorithm 1s implemented as follows:

Initialize Q = {q;}
Initialize Q,=Q;A=0; F =0
For each Eq in EQ do:
Q = Q U State(Eq)
If Eq is atomic then F = F U Input(Eq)
Iftop(Eq) then Q.= Q.U State(Eq)
For each v € SequenceEdges(Eq) do:
Q= Q U Target(v)
A = A U {Source(v), Target(v)}
v’ such that Source(v’) = Target(v); If v’ '€ SequenceEdges(Eq) then :
A = A U {Target(v), State(Eq) }/* add final transition */
v such that Target(v’") = Source(v); If v* e SequenceEdges(Eq) then :
A = A U{q;, Source(v) } /* add initial transition */

Checker Execution

FI1G. 9 illustrate a method for automatic anomaly detection
according to an embodiment of the invention. In this embodi-
ment, failing run logs 901 and/or waveforms 903 are con-
verted to run events 905, which can include entries and entry
classes, 1n a way similar to the passing runs process. Entries
are classified to equivalence classes.

The failing run entries are provided to the checking
automaton 913 in sequential order. The automaton implemen-
tation includes data from successtul runs 911, and 1s capable
ol tracking multiple patterns simultaneously: an entry could
advance the internal state of one pattern as well as 1nitiate
another. These are maintained as a dynamic list of active
traces.

When an accepting state 1s reached, the related active trace
1s removed. Active traces that get stuck, or exceed a timing
threshold determined by transition timing statistics, get
reported 917 as potential anomalies. In FIG. 9, an optional
filter function 915 1s included, which processes output of
checker 913 to provide suitable anomaly reports. In an
embodiment, new equivalence classes found are reported as
anomalies—as they represent behavior that wasn’t found 1n
the passing runs.

10

15

20

25

30

35

40

45

50

55

60

65

10

In embodiments of the invention, nondeterministic transi-
tions 1n the checker represent variations in the sequential
ordering of entries in a pattern. Sometimes a primary order
with a high probability overshadows a secondary order with
low probability. In those cases the nondeterminism 1s
removed statically by eliminating the low probability transi-
tion. In other cases, though, nondeterministic transitions must
be retained to prevent significant degradation of the checker.
Nondeterminism 1s handled 1n runtime by forking the active
trace at the point of nondeterminism. When any of the forked
traces reaches an accepting state all related traces are
removed.

Anomaly Reporting

The checker flags active traces 11 they get stuck or delayed
beyond a threshold that 1s computed per transition. The
checker also flags newly created equivalence classes and
equivalence classes that were not present 1n the run but have
a high likelihood. The anomalies are collected and sorted
based on their probability. Some of the anomalies include the
following;:

Maissing patterns are reported based on the likelihood of the

missing equivalence class;

New patterns are always reported (but see filtering below);

The probabaility of stuck traces 1s computed as the weighted
sum of probabilities of the accepting states. (the prob-
ability of an accepting state 1s the likelithood of the
corresponding equivalence class);

The probability of timing anomalies 1s computed as the
probability of a similar stuck trace times the probability
of the timing threshold used.

Since 1t 1s desirable for the generated hints to be understood
and acted upon by the debugging engineer, a small number of
high quality hints 1s desired. Theretfore, the list of hints can be
turther filtered to eliminate patterns typical to hardware veri-
fication failure. For example, error reporting can appear as a
new pattern, and such patterns are not reported. As another
example, mid run termination due to error 1s likely to cut
patterns mid-execution yielding stuck traces. Such stuck
traces are likely caused by the error, rather than causing the
error. Hence patterns overlapping the time of error have their
probabilities reduced. In some embodiments, a small number
of top probability anomalies are selected, and presented 1n
readable form to the debugging engineer. The ability to
explore the list of hints interactively, applying searches and
manual filters through a user interface are also included in
some embodiments of the imvention. For example, the inte-
gration of user input 1 both pattern editing and hint ranking

through a graphical user interface would improve the over all
benelit to the user.

As described above, embodiments of the invention make
use of mvaluable mformation about the typical behavior of
passing runs which often goes to waste 1 a conventional
debugging environment. The techniques described above
uses that immformation to detect suspicious behavior for a
shorter debug cycle. Automatic anomaly detection uncovers
and reports suspect behavior of failing simulation runs, by
comparing to patterns of behavior extracted from related
passing runs.

Such suspect behavior may or may not be directly tied to
the reported error. In a successiul scenario, such hints may
jump over many reasoning steps from the error to the root
cause, shrinking the debug process. In a less structured envi-
ronment, the similarity between passing and failing runs may
be hard to establish. It i1s also noted that automatically
detected anomaly hints are based on statistical observations,
hence rare but legitimate behaviors may be flagged as anoma-
lies. Additionally, an anomaly may be reported even 1f there 1s

US 8,478,575 Bl

11

no causal relation to the failure. In order to handle these
situations, embodiments of the 1invention also provide inter-
active capabilities. For example, the integration of user input
in both pattern editing and hint ranking through a graphical
user mterface would improve the over all benefit to the user.

While certain embodiments of the invention have been
illustrated and described, those skilled in the art with access to
the present teachings will recognize that the invention 1s not
limited to these embodiments only. Accordingly, 1t 1s to be
understood that the invention 1s intended to cover numerous

modifications, changes, variations, substitutions, and equiva-
lents that will be apparent to those skilled 1n the art.

What 1s claimed 1s:

1. A method, implemented 1n a computer system having
one or more computer processors and a computer-readable
storage medium, for identifying an anomaly 1n an electronic
system, the method comprising:

receiving, from the computer-readable storage medium, a

first plurality of entries from a successtul simulation test
of the electronic system, wherein the successiul simula-
tion test 1s a test of the electronic system by simulation
that indicates the electronic system passing the test, each
of the plurality of entries including at least information
about simulation time and information from an output
electronic wavetorm description or an output text log
file;

determining, with one or more of the computer processors,

time sequence relationship between pairs of entries
selected from the plurality of entries;

identifying, with one or more of the computer processors,

allowable sequences of entries using information related
to the first plurality of entries and the time sequence
relationship from the successiul simulation test, wherein
said sequences of entries are referred to as allowable
sequences ol entries;

receiving, from the computer-readable storage medium, a

second plurality of entries from a failed simulation test
of the electronic system, wherein the failed simulation
test 1s a test of the electronic system by simulation that
produces results that indicate failures of the electronic
system, each of the second plurality of entries including
at least information about simulation time and informa-
tion from an output electronic wavetorm description or
an output text log file;

analyzing, with one or more of the computer processors,

the second plurality of entries from the failed simulation
test based on mnformation related to the first plurality of
entries and the allowable sequences of entries from the
successiul simulation test; and

identifying, with one or more of the computer processors,

one or more anomalies 1n the electronic system based on
the analysis of the failed simulation test.

2. The method of claim 1, further comprising receiving a
plurality of entries from two or more successiul simulation
tests of the electronic system.

3. The method of claam 1, wheremn determining time
sequence relationship comprises:

forming a first plurality of entry classes, each of which

represents a subset of the first plurality of entries that
have a common feature;

forming a set of patterns including at least a plurality of

firs-level behavioral patterns, wherein:

cach of the firs-level behavioral patterns includes informa-

tion related to two or more entry classes; and
determining time sequence relationship between entry
classes 1n each of the patterns.

10

15

20

25

30

35

40

45

50

55

60

65

12

4. The method of claim 3, wherein 1dentifying allowable
sequences ol entries comprises 1dentifying allowable
sequences ol entry classes using mformation related to the
first plurality of entry classes the set of patterns, and the time
sequence relationship.

5. The method of claim 2, wherein analyzing the second
plurality of entries from the failed simulation test comprises:

forming a second plurality of entry classes, each of which

represents a subset of the second plurality of entries that
have a common feature; and

analyzing the second plurality of entry classes from the

failed stmulation test based on information related to the
first plurality of entry classes, the set of patterns, and
allowable sequences from the successiul simulation test.

6. The method of claim 3, wherein the set of patterns
further comprises a plurality of second-level behavioral pat-
terns, wherein each of the second-level behavioral patterns
includes information related to more than two entry classes.

7. The method of claim 6, wherein one or more of the
second-level behavioral patterns include information related
to two or more first-level behavioral patterns.

8. The method of claim 1, wherein identifying sequences of
entries comprises mcorporating the allowable sequences 1n a
bottom-up automata.

9. The method of claim 8, further comprising analyzing the
second plurality of entries from the failed simulation test
using the bottom-up automata.

10. The method of claim 1, further comprising outputting
anomaly information related to the anomalies using a com-
puter display device.

11. The method of claim 10, wherein the anomaly 1nfor-
mation comprises one or more of the following;:

missing patterns;

new patterns:

a list of partial patterns; and

a list of patterns with suspect timing.

12. A computer system for anomaly detection 1n an elec-

tronic design, the system comprising:

a non-transitory machine-readable storage medium;

one or more processors coupled to said storage medium;
and

computer code stored 1n said storage medium wherein said
computer code, when retrieved from said storage
medium and executed by said one or more processor,
results 1n:

receving, from the computer-readable storage medium, a
plurality of entries from a successiul simulation test of
the electronic system, wherein the successtul simulation
test 1s a test of the electronic system by simulation that
indicates the electronic system passing the test, and each
of the plurality of entries includes at least information
about simulation time and information from an output
clectronic wavelorm description or an output text log
file;

determiming, with one or more of the computer processors,
time sequence relationship between pairs of entries
selected from the plurality of entries;

identifying, with one or more of the computer processors,
allowable sequences of entries using information related
to the first plurality of entries and the time sequence
relationship from the successiul simulation test, wherein
said sequences of entries are referred to as allowable
sequences ol entries;

recerving, from the computer-readable storage medium, a
second plurality of entries from a failed simulation test
of the electronic system, wherein the failed simulation
test 1s a test of the electronic system by simulation that

US 8,478,575 Bl

13

produces results that indicate failures of the electronic
system, each of the second plurality of entries includes at
least information about simulation time and imnformation
from an output electronic wavetform description or an
output text log file;

analyzing, with one or more of the computer processors,

the second plurality of entries from the failed simulation
test based on mnformation related to the first plurality of
entries and the allowable sequences from the successiul
simulation test; and

identifying, with one or more of the computer processors,

one or more anomalies 1n the electronic system based on
the analysis of the failed simulation test.

13. The computer system of claim 12, further comprising
receiving a plurality of entries from two or more successiul
simulation tests of the electronic system.

14. The computer system of claim 12, wherein determining
time sequence relationship comprises:

forming a first plurality of entry classes, each of which

represents a subset of the first plurality of entries that
have a common feature;

forming a set of huerarchical patterns from the first plurality

of entry classes; and

determining time sequence relationship in each of the hier-

archical patterns.

15. The computer system of claim 14, wherein forming a
set of hierarchical patterns comprises:

forming a set of patterns including at least a plurality of
first-level behavioral patterns, wherein:

Each of the first-level behavioral patterns includes infor-
mation related to two entry classes.

16. The computer system of claim 15, wherein the set of
patterns further comprises a plurality of second-level behav-
ioral patterns, wherein each of the second-level behavioral
patterns includes information related to more than two entry
classes.

17. The computer system of claim 16, wherein one or more
of the second-level behavioral patterns include information
related to two or more first-level behavioral patterns.

18. A non-transitory machine-readable storage medium
comprising computer code stored in said non-transitory
machine-readable storage medium, wherein said computer
code, when retrieved from said non-transitory machine-read-
able storage medium and executed by a processor, results 1n:

receiving, from the non-transitory machine-readable stor-

age medium, a plurality of entries from a successiul
simulation test of the electronic system, wherein the
successiul simulation test 1s a test of the electronic sys-
tem by simulation that indicates the electronic system
passing the test, each of the plurality of entries includes
at least information about simulation time and informa-
tion from simulation output;

determining, with one or more of the computer processors,

time sequence relationship between pairs of entries
selected from the plurality of entries;

10

15

20

25

30

35

40

45

50

14

identifying, with one or more of the computer processors,
allowable sequences of entries using information related
to the first plurality of entries and the time sequence
relationship;
recerving, from the non-transitory machine-readable stor-
age medium, a second plurality of entries from a failed
simulation test of the electronic system, wherein the
failed simulation test 1s a test of the electronic system by
simulation that produces results that indicate failures of
the electronic system, each of the second plurality of
entries ncludes at least information about simulation
time and information from simulation output;

analyzing, with one or more of the computer processors,
the second plurality of entries from the failed simulation
test based on information related to the first plurality of
entries and the allowable sequences from the successtul
simulation test; and

identifying, with one or more of the computer processors,

one or more anomalies 1n the electronic system based on
the analysis of the failed simulation test.

19. The non-transitory machine-readable storage medium
of claim 18, wherein each of the plurality of entries from a
successiul simulation test of the electronic system comprises
information from an electronic waveform description or a text
log file.

20. The non-transitory machine-readable storage medium
of claim 18, further comprising receiving a plurality of entries
from two or more successiul simulation tests of the electronic
system.

21. The non-transitory machine-readable storage medium
of claim 18, wherein determiming time sequence relationship
COmprises:

forming a first plurality of entry classes, each of which

represents a subset of the first plurality of entries that
have a common feature;

forming a set of huerarchical patterns; and

determining time sequence relationship 1n each of the hier-

archical patterns.

22. The non-transitory machine-readable storage medium
of claim 21, wherein forming the set of hierarchical patterns
COmMprises:

forming a set of patterns including at least a plurality of

first-level behavioral patterns and a plurality of second-

level behavioral patterns wherein:

cach of the first-level behavioral patterns includes infor-
mation related to two entry classes; and

cach of the second-level behavioral patterns includes
information related to more than two entry classes.

23. The non-transitory machine-readable storage medium
of claim 22, wherein one or more of the second-level behav-
ioral patterns include information related to two or more
first-level behavioral patterns.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

