12 United States Patent

Wipfel

US008468518B2

US 8,468,518 B2
Jun. 18, 2013

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)

(58)

(56)

SYSTEM AND METHOD FOR CREATING A
CUSTOMIZED INSTALLATION ON DEMAND

Inventor: Robert A. Wipfel, Draper, UT (US)

Assignee: Oracle International Corporation,
Redwood City, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 2100 days.
Appl. No.: 11/458,337
Filed: Jul. 18, 2006
Prior Publication Data
US 2006/0277542 Al Dec. 7, 2006

Related U.S. Application Data

Continuation-in-part of application No. 11/134,541,
filed on May 19, 2005, now Pat. No. 8,074,214.

Int. CIl.

GO6l" 9/44 (2006.01)

GO6F 9/445 (2006.01)

U.S. CL

USPC i, 717/174; 717/168; 717/177
Field of Classification Search

None

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,918,653 A 4/1990 Johr et al.
5,664,206 A 9/1997 Murrow et al.
5,713,024 A 1/1998 Halladay
5,721,824 A 2/1998 Taylor
5,732,212 A 3/1998 Perholtz et al.
5,748,890 A 5/1998 Goldberg et al.
5,835,777 A 11/1998 Staelin

5,894,571 A 4/1999 O’Connor
5,901,227 A 5/1999 Perlman
5,950,010 A 9/1999 Hesse et al.
5,961,593 A 10/1999 Gabber et al.
6,144,959 A 11/2000 Anderson et al.
6,161,139 A 12/2000 Win et al.
6,205,579 Bl 3/2001 Southgate
(Continued)
FOREIGN PATENT DOCUMENTS
GB 2419711 5/2006
OTHER PUBLICATIONS

Oracle, “Creating and Using Oracle VM Templates: The Fastest Way
to Deploy Any Enterprise Software”, An Oracle Technical White

Paper, Feb. 2009, Oracle Corporation, pp. 1-14; <http://www.oracle.
com/technetwork/server-storage/vimm/027001.pdf>.*

(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Ben C Wang,

(74) Attorney, Agent, or Firm — Marger Johnson &
McCollom PC
(57) ABSTRACT

A customized VM 1mage, for example of Linux software, 1s
created by allowing a user to select packages that the user 1s
interested 1n 1nstalling. During the process, the user 1is
informed 11 two of the packages that were selected will not be
interoperable at run-time. The user 1s then given an opportu-
nity to resolve the contlict. The user 1s also mmformed if
selected packages depend on other packages that were not
selected 1n order to run properly, and given the opportunity to
include those needed packages in the VM 1mage. Once the
selected packages have been validated that they will interop-
erate and all dependencies are satisfied, the system can build
and install the VM 1mage. The VM 1mage can also include
applications, and not just packages used 1n assembling an
operating system image.

25 Claims, 13 Drawing Sheets

S -

N
>
__—-—-//
Conflict/Depend.
221\I\Database o
| | 320 130 330
Security ABC <_ﬂ,,__ o NP s
. (Conflict] Conflict
AN . Checker /| Identified
File System < i} i
XYZ
11

Page 2

US 8,468,518 B2

0,256,774
0,259,442
6,282,711
6,301,707
0,324,091
6,353,926
6,367,075
6,421,777
6,457,130
6,460,060
0,493,871
0,539,473
0,539,539
6,606,744
0,615,406
6,651,085
0,725,452
0,728,711
0,735,757
6,775,829
6,799,208
0,892,382
6,928,644
6,981,028
0,986,135
7,006,993
7,013,461
7,016,959
7,051,327
7,055,149
7,093,247
7,143,067
7,177,859
7,181,768
7,185,047
7,222,218
7,251,812
7,272,815
7,284,243
7,302,634
7,350,075
7,353,533
7,356,679
7,398,480
7,398,524
7,424,617
7,478,381
7,506,337
7,506,338
7,539,978
7,546,594
7,571,427
7,574,706
7,577,722
7,853,609
8,005,986
2001/0023440
2001/0029605
2002/0007330
2002/0007380
2002/0010757
2002/0019879
2002/0100036
2002/0147974
2002/0156877
2002/0162030
2003/0014656
2003/0037107
2003/0061202
2003/0115292
2003/0121024
2003/0126214
2003/0131073
2003/0149749
2003/0172127
2003/0182414
2003/0182656

2003/0195970

U.S. PATENT DOCUMENTS

vellveivelveiiveliveiivejveiivelivelveiivelveiiveveiiveivejvsiivevelvevelveivy

AN S A AN A AN A AN N A

7/2001
7/2001
8/2001
10/2001
11/2001
3/2002
4/2002
7/2002
9/2002
10/2002
12/2002
3/2003
3/2003
8/2003
9/2003
11/2003
4/2004
4/2004
5/2004
8/2004
9/2004
5/2005
8/2005
12/2005
1/2006
2/2006
3/2006
3/2006
5/2006
5/2006
8/2006
11/2006
2/2007
2/2007
2/2007
5/2007
7/2007
9/2007
10/2007
11/2007
3/2008
4/2008
4/2008
7/2008
7/2008
9/2008
1/2009
3/2009
3/2009
5/2009
6/2009
8/2009
8/2009
8/2009
12/2010
8/2011
9/2001
10/2001
1/2002
1/2002
1/2002
2/2002
7/2002
10/2002
10/2002
10/2002
1/2003
2/2003
3/2003
6/2003
6/2003
7/2003
7/2003
8/2003
9/2003
9/2003
9/2003

10/2003

O’Leary et al.
Britt et al.
Halpern et al.

Carroll et al.
Gazdik

Parthesarathy et al.

Kruger et al.
Pierre-Louis et al.
Hitz et al.
Maddalozzo et al.
McQGuire et al.
Hubacher et al.
[Larsen et al.
Mikurak

Amberg et al.
Woods

Te’eni et al.

Richard

Kroening et al. 717/120

Kroening

Sankaranarayan et al.

Hapner et al.
Kroening et al.
Rawat et al.

[.eathers et al.
Cheong et al.
Hellerstein et al.
Dinh et al.
Milius et al.
Birkholz et al.
Ashworth et al.
Cheston et al.
Pather et al.
(Ghosh et al.
Bate et al.

Dutt et al.
Jhanwar et al.
Eldridge et al.
Burgess
Lucovsky et al.
Eastham
Wright et al.

.............. 717/177

Teetal. .oovivviviiniiiiiiiinn, 713/1

Zimniewicz et al.
Shapiro

Bovd et al.
Roberts et al.
Iyer

Alpern et al.
Haddox et al.
McGQGuire et al.

Wang et al.
Meulemans et al.

Khandekar et al. 709/220

Dehghan et al.

Cardoneetal. 717/174

Franklin et al.
Forbes et al.
Kumar et al.
Bauchot et al.
Granik et al.
Jasen et al.
Moshir et al.
Wookey

[u et al.
Brezak et al.
Ault et al.
Maeda

Coleman
Griffin et al.

Hilletal. 717/107

Oliszewski
Lucovsky et al.

Hetherington et al.

Northrup et al.
O’Neill

[.eathers et al.
Dinh et al.

‘‘‘‘‘‘‘‘‘‘‘‘‘ 717/177

2003/0200149
2003/0217123
2003/0221190
2004/0003266
2004/0006710
2004/0015831
2004/0015946
2004/0025048
2004/0049697
2004/0102182
2004/0196981
2004/0205748
2004/0254976
2004/0255291
2005/0002057
2005/0005152
2005/0081055
2005/0097353
2005/0120054
2005/0125677
2005/0132179
2005/0132349
2005/0134896
2005/0144615
2005/0235248
2005/0246588
2006/0021065
2006/0047657
2006/0059359
2006/0090208
2006/0123101
2006/0123414
2006/0137000
2006/0155838
2006/0174238
2006/0212865
2006/0218544
2006/0230124
2006/0265597
2006/0265702
2006/0265706
2006/0277542
2007/0006205
2007/0100907
2007/0111726
2007/0168956
2008/0066063
2011/0231836
2012/0144386
2012/0151469

AN A AAAAAAAAAANANAA AN AAA A AN A A AN AN A AN A A AN A A AN A A A

1 *

=

A B

10/2003
11/2003
11/2003
1/2004
1/2004
1/2004
1/2004
2/2004
3/2004
5/2004
10/2004
10/2004
12/2004
12/2004
1/2005
1/2005
4/2005
5/2005
6/2005
6/2005
6/2005
6/2005
6/2005
6/2005
10/2005
11/2005
1/2006
3/2006
3/2006
4/2006
6/2006
6/2006
6/2006
7/2006
8/2006
9/2006
9/2006
10/2006
11/2006
11/2006
11/2006
12/2006
1/2007
5/2007
5/2007
7/2007
3/2008
9/2011
6/2012
6/2012

(Gonzalez et al.

Anderson et al.

Deshpande et al.

Moshir et al.

Pollutro et al.

Bowhill

Te’entetal. ..oovvvnnanennn, 717/169
Porcari et al.

Edwards, Jr. et al.

Reith et al.

Nakano et al.

Iver .o 717/174
Malik et al.
Sierer et al.
Oe

Singh et al.
Patrick et al.
Patrick et al.
Shulman et al.
Michaelides
Glaum et al.
Roberts et al.
Koga

Chen et al.
Victoria et al.
Deng et al.
Kamperman et al.

Frieder et al.

Reasor et al.

Smith

Buccella et al.

Forsetal.occovvvnninnn., T17/177
Isaacson

Wu et al.

Henseleretal. 717/168
Vincentetal. 717/168
Chakraborty et al. 717/168
Belfiore et al.
Carey et al.
[saacson et al.
[saacson et al.
Wipfel
Kennedy et al. 717/168
Bayerooeiinn 707/203
[Lambert et al.

Mooreetal.ccoeenen.n.. 717/168
Pouliotcovvvivineinennn, 717/177
Wookeyoooooiiiiiiiininn, 717/174
Wookey ..o, 717/174
Wookeyooooiiiiiiiiiinn, 717/174

............... 717/102

************** 717/168
.............. 717/174

OTHER PUBLICATIONS

Magoutis et al., “Building Appliances out of Components using
Pebble”, 2000 ACM, pp. 1-6; <http://dl.acm.org/results.cim?h=1

&source_query=&&cfid=275149865&cftoken=21284401>.*
Szulc etal., “The Linux as the OS for Computational Node of Custom
Computing Machine Class System™, 2006 IEEE, MIXDES 2006,

Gdynia, Poland, Jun. 22-24, 2006, pp. 728-733,; <http://1eeexplore.
leee.org/stamp/stamp.jsp?tp=&arnumber=1706680>.*

“A Third Phase of Internet Search”; http://getoutfoxed.com/
booklprint/46; printed on Aug. 28, 2007, p. 1-2.

“Abstract”; http://getoutfoxed.com/booklprint/36; printed on Aug.
28, 2007, p. 1.
“Beyond Outfoxed”; http://getoutfoxed.com/booklprint/88; printed

on Aug. 28, 2007; p. 1.

“Calculating Levels of Trust”; http://getoutfoxed.com/booklprint/
112; printed on Aug. 28, 2007; pp. 1-2.

“Comparison
booklprint/47; printed on Aug. 28, 2007, pp. 1-3.

to

Existing Systems”;

http://getoutfoxed.com/

“Files & Processes™; http://getoutfoxed.com/booklprint/84; printed
on Aug. 28, 2007; p. 1.

“Firefox Help: How to Manage Profiles”; http://www.mozilla.org/
supportliirefoxlprofile; printed on Aug. 27, 2007; pp. 1-4.
“How 1t Works”; http://getoutifoxed.com/booklprint/87; printed on

Aug. 28, 2007, p. 1.
“Keeping Your Network Clean”; http://getoutfoxed.com/booklprint/

108; printed on Aug. 28, 2007; p. 1.

US 8,468,518 B2
Page 3

“Novell ZENworks 7 Suite: Your Complete Identity-driven IT
Resource Management Solution”; Novell, Inc. Product Guide; http://
www.novell.com; (2006); pp. 1-11.

“Novell ZENworks Configuration Management: Complete Systems
Management to Lower Your Total Cost of Ownership”; Novell, Inc.
Product Guide; http://www.novell.com; (2007);, pp. 1-11.

“Novell ZENworks Endpoint Security Management: Total Control
from a Single Console”; Novell, Inc. Technical White Paper; http://
www.novell.com; (2007); pp. 1-11.

“Novell ZENworks Orchestrator Virtual Machine Management
Guide 1.17”; Novell, Inc.; http://www.novell.com; (2007); pp. 1-109.
“Novell ZENworks”; Wikipedia, the free encyclopedia; http://en.
wikipedia.org/wiki/ZENworks; Printed on Aug. 28, 2007, pp. 1-3.
“Objections”; http:// getoutfoxed.com/booklprint/35; printed on Aug.
28, 2007; p. 1.

“Objections™; http:// getoutfoxed.com/booklprint/86; printed on Aug.
28, 2007, p. 1.

“Orchestrating the Data Center with Novell ZENworks”; Novell
Solution Flyer; http://www.novell.com; (2007), pp. 1-4.

Tridgell, A. et al., ““The rsync algorithm,” retrieved at http://www.
samba.org/rsync/tech_ report/node2.html, Nov. 9, 1998, p. 1.
“Phishing, Spyware, Crapware, Adware”; http://getoutfoxed.com/
booklprint/85; printed on Aug. 28, 2007; p. 1.

“Search & Browsing”; hittp://getoutfoxed.com/booklprint/83;
printed on Aug. 28, 2007; p. 1.

“Small World Networks”; hittp://getoutfoxed.com/booklprint/62;
printed on Aug. 28, 2007; pp. 1-2.

“Socially Aware Surfing and Shopping™; http://getoutfoxed.com/
booklprint/73; printed on Aug. 28, 2007, p. 1.

“Tagging and Folksonomy™; http://getoutfoxed.com/booklprint/96;
printed on Aug. 28, 2007; p. 1.

“Three Magic Ingredients”; http://getoutfoxed.com/booklprint/32;
printed on Aug. 28, 2007; p. 1.

“What Outfoxed 1s Not™; hittp://getoutfoxed.com/booklprint/34;
printed on Aug. 28, 2007; p. 1.

Adorno, Kerry, “Novell Delivers Industry’s Most Comprehensive
Systems Management Solution”; Novell, Inc.; http://www.novell.
com/news/press/novell-delivers-industrys-most-comprehensive-
systems-management-solution; Waltham, Massachusetts; Aug. 14,
2007;p. 1.

Aiken, Peter et al., Microsoft Computer Dictionary; Fifth Edition;
Microsoft Press; 2002.

Bailey, E.C., Maximum RPM, Red Hat Inc., 2000, ISBN 1-888172-
78-9, http://www.redhat.com/docs/books/max-rpm/index.html, pp.
1-565.

Bhuta et al., “A framework for identification and resolution of
interoperability mismatchs in COTS based system”, IEEE IWICSS,
2007, pp. 1-6.

Chapman et al., “Contemplating systemic software reuse in project
centric company”’, ACM SAICSIT, 2008, pp. 16-26.

Cowan, Crispin, Arnold, Seth, Beattie, Steve, Wright, Chris, & Viega,
John “Defcon Capture the Flag: Defending Vulnerable Code from
Intense Attack”; USA; 2003, pp. 1-53.

Cowan, Crispin, Arnold, Seth, Beattie, Steve, Wright, Chris, & Viega,
John, “Immunix & Defcon: Defending Vulnerable Code From
Intense Attack”; Immunix; USA; 2003.

Cowan, Crispin, Beattie, Steve, Kroah-Hartman, Greg, Pu, Calton,
Wagle, Perry, & Gligor, Virgil, “SubDomain: Parsimonious Server
Security”; Proceedings of the 14th Systems Administration Confer-
ence; The Usenix Association; USA; 2000.

Forrest, Stephanie “Computer Immunnology”; ACM,; Oct. 1997, pp.
88-96.

Fusco, John, “The Linux Programmer’s Toolbox”; Prentice Hall;
2007, Chapter 5, “What Every Developer Should Know about the
Kernel,” pp. 222-224.

Garfinkel, Simson & Spaford, Gene, “Practical Unix & Internet
Security”; Second edition; ISBN 1-56592-148-8; Apr. 1996, Chap-
ters 3.1,3.24.1,4.2.

Gill et al., “Resuability 1ssued 1n component based development™,
ACM, 2003, pp. 1-5.

James, Stan; “Outfoxed in a Nutshell”; http://getoutfoxed.com/nut-
shell; printed on Aug. 28, 2007, pp. 1-3.

James, Stan; “Outfoxed 1n a Nutshell: What does Outfoxed add to my
Browser?”; http://getoutfoxed.com/nutshell/ node/106; printed on
Aug. 28, 2007, pp. 1-3.

James, Stan; “What 1s Outfoxed?”; http://getoutfoxed.com/about;
printed on Aug. 28, 2007; pp. 1-2.

Lymer et al., “Experience 1n using business scenarios to access COTS
components in integrated solutions™, ACM, 2005, pp. 1-15.
Newham, C. et al., “Learning the Bash Shell,” 2nd Ed., O’Reilly &
Associates, 1998, p. 13.

Nemeth, Evietal., “Linux Administration Handbook’; Prentice Hall;
2006; Chapter 12—TCP/IP Networking, pp. 276-277.

Silva, G.N., APT HOWTO, Chapter 5—Getting Information about
packages, August 2001, htpp://web.archive.org/web/
20010911133902/http://www.debian.org/doc/manuals/apt-howto-
ch-sourcehandling.en.html.

Silva, G.N., APT HOWTO, Chapter 6—Working with source pack-
ages, August 2001, http://web.archive.org/web/20010911133902/
http://www.debian.org/doc/manuals/apt-howto/ch-sourcehandling.
en.html.

Tanenbaum, Andrew S., “Computer Networks”; Third edition;
Prentice Hall; 1996, pp. 29, 44.

Tanenbaum, Andrew; “Modern Operating Systems™; Second edition;
Prentice Hall, Upper Saddle River, NJ; 2001; pp. 753-757.
YourDictionary.com, Remote boot, retrieved on Jan. 5, 2010 from
https:///www.yourdictionary.com/computer/remote-boot.

“Firefox Help: How To Manage Profiles”: http://www.mozilla.org/
support/firefox/profile; printed on Aug. 27, 2007; pp. 1-4.
“XenFag—Xen Wiki1”; http://www.wiki.xensource.com/xenwiki/
XenFaq; printed on Aug. 27, 2007; pp. 1-7.

Buyaert, Kris; “Linux Virtualization with Xen”; LinuxDevCenter.
com; http://www.linuxdevcenter.com/pub/a/linux/2006/01/26/xen.
html; Jan. 26, 2006, pp. 1-3.

Rosen, Rami; “Introduction to the Xen Virtual Machine”;
LinuxJournal.com; http://www.linuxjournal.com/article/8540; Sep.
1, 2005; pp. 1-10.

Clark, Bryan; “A Moment of Xen; Virtualize Linux to Test Your
Apps”; IBM.com; http://www-128.1tbm.com/developerworks/linux/
library/l-xen/; Mar. 15, 2005; pp. 1-6.

* cited by examiner

US 8,468,518 B2

Sheet 1 of 13

Jun. 18, 2013

U.S. Patent

L 'Ol
|
obew|
OS] _
o
| | @mgﬂm@
1EISU | l0jepllep | | "puadag
“ = _ | m .UC@Q@Q \”—O__n—COOL
_ _ | 1 -

_ gt oy N
T o] | [s
| quessy | [eeyy | | | 18S
_ | Jo1puog _ abexoed |
| _ |

r)oS /\/om_‘ /\/OQ /\/o il

US 8,468,518 B2

Sheet 2 of 13

Jun. 18, 2013

U.S. Patent

¢ Ol

ZAX 1onI8S %z, DS N>x co_aaocm _»T«

OgV JoM9S gaM D/\/ _.wv:, uondAious3 D(/

_ 19MIBS g9 _ | uondAiou3 _

/\/omm

ZAX wayshs aji4 ES

£td

ZAX llemali ESN M WwelsAg 914 DS%

Ar llemally [Ogv welsAs ey DS

_ lemalld . _ Em#w\ﬂw 9|1 _

MNosz ez

ZAX Mundag [
r Aiunoeg jS

NgV Alnoaeg D/\/

w ALInoag

ZAX 18U
0aY [euIay

A

0¢c

_ ELE)Y

= N
.

|

oy

0Lc

HAY _

‘ X *

“

cLe _

e |

0Ll

US 8,468,518 B2

Sheet 3 of 13

Jlln. 18, 2013

U.S. Patent

pauiuepj
JOIU0Y

_

¢

Old

LLE

_ 129X03y0)

<

|

NN

Ott

JOIJUOD

LAX

Wa)sAS o)1

M\

etd

Mum,q ANoeg

_ {

(2N

oseqele e

puadagpoijjuod

et

0cCl

US 8,468,518 B2

Sheet 4 of 13

Jun. 18, 2013

U.S. Patent

Ol

Jdv

ver

ONW

18AIBS [IBIA

LAX

uondAioug

Wwa)sAg a4

oav

AJUNo8g

04V
1oniag |lejy | uondAioug jweisAs o4 Ajnosg

PCr

[Y4

l

-
o
=T

A

XA Y

4y

ZAX [ousoy

Ocl

1457

%7

424

LY

OLv

U.S. Patent

130

Jun. 18, 2013

—

Start)

Sheet So0f 13

g S

US 8,468,518 B2

=10
NN Y

r
J

A
“+

”
U

Identify two
packages

520

A AN

Do the two
packages
conflict?

Inform the user of

the conflict

No

]

- Any other
- combinations to
check?

No

Y

(-

End)

FIG. 5

U.S. Patent Jun. 18, 2013 Sheet 6 of 13 US 8,468,518 B2

140
AT

P e Sl pi a TTE I PR R e R

Dependency
Validator _

nlsbalniFlnivbfiir il b _ il

Conflict/Depend. Database
600 650
NN NN
210 F 233\/\S o _
. ecurity
Kernel XYZ X7
865\/\ _ r 6""5\/\
233 ~ 223 _ -
Security Encryption
XYZ | XYZ
\ e /

U.S. Patent Jun. 18, 2013 Sheet 7 of 13 US 8,468,518 B2

-4
(Stat)
o .
| - ”B E
Identify a package V
A R — e RS .
730
= Any more Yes
Does 7 “ No packages to
dependency check?
exist? “’"“6“‘““
N
No
Yes N

v
N%

FIG. 7A

U.S. Patent

740

NN

Jun. 18, 2013

735

No
yd

Y

Sheet 8 0f 13

%

Is required
package(s)
included?

Alert the user about
~ the dependency

FIG. 7B

Yes

\\

US 8,468,518 B2

U.S. Patent Jun. 18, 2013 Sheet 9
800_/‘
(Start 3
. -
810}{\) !
Take the selected
packages
820
Do any
packages
conflict?
Yes
(el R o
D"PO\/_\ | ____! L
850
Have the user
resolve the problem

FIG. 8

of 13 US 8,468,518 B2
830
Are any NGO
dependencies ﬂ
missing?
1Yes
{.—_—’__._—.
N v

e

Assemble the
packages into an
installation

\

(End)

U.S. Patent Jun. 18, 2013 Sheet 10 of 13 US 8,468,518 B2

900

910 9350

| _ 051
User 1 |[Kernel ABC f =
915 — - - 952

“N| User1 |Security ABC

_— e 953
User 1 |Encryption ABC | .
— 54
User 2 |Kernel XYZ)
920, || - 955
M| User2 [File System XYZ o

| User2 |Encryption JKL |

FIG. 9

US 8,468,518 B2

g
i

e ¢ e e R R AR L Rl R

—— oy PP A e e

e IR P I " 1F e " - = o e =

P |

Sheet 11 of 13

e e T e Y e T

pr— e e, pus e ey —y

Jun. 18, 2013

[

R

U.S. Patent

0L0L

01 Old

MIOM]IBN

001

000L

wl el

Ea

L\ h Eiz..

oA A A B AR A b M A

LIl U JU

»
e
|
E e
' |3

U.S. Patent

Jun. 18, 2013 Sheet 12 0of 13

1205
SN

1100
_ N

P kel o bl

' Image Storage

US 8,468,518 B2

| VM Image, Version

1.0

1105

N~

PRl LT TUE T T R TR SR

2.0

" L

VM Image, Version

e S

afansalnsas|anns aea

i

RS S
A

1

FIG. 11

100

=
e ¢l 'Ol
m | _ ﬂ @ O
- abelo
i abew| | 5 @mcw_w
= | A T L
. /\/SN_\ . _ SS

x _ - . 5seqeled)
2 o lolepllep | ‘puadaq]
i | | ‘puede(AOIBUOD
. _ , _ >
S _ ooy | ow ozl

. quisssy ENRETT0) EIS
m _ 101]JU0) abeyoed %
= | .
P. (/8_\ /)oﬁ . (/oﬁ ,,,,\/o:
4]
-

US 8,468,518 B2

1

SYSTEM AND METHOD FOR CREATING A
CUSTOMIZED INSTALLATION ON DEMAND

RELATED APPLICATION DATA

This application claims 1s a continuation-m-part of, com-

monly assigned, U.S. patent application Ser. No. 11/134,541,
titled “SYSTEM FOR CREATING A CUSTOMIZED

SOFTWARE INSTALLATION ON DEMAND,” filed May
19, 2005 by the same inventor, now U.S. Pat. No. 8,074,214,

issued Dec. 6, 2011, and 1s hereby incorporated by reference.

FIELD OF THE INVENTION

This 1invention pertains to allowing a user to create a cus-
tomized virtual machine 1mage, and more particularly to
enabling users to select and verily the interoperability at

run-time, of a virtual machine 1mage.

BACKGROUND OF THE INVENTION

Soltware distributions are typically built mnto an installa-
tion program and stored on a compact disc (CD), to be pur-
chased by a customer. Such distributions usually include at
least one program file and a number of other packages that
work with the program file to provide additional functionality
and features. These CDs are prepackaged and designed to
include features that the company selling the software thinks
will be desired by customers.

Manufacturers of such software products recognize that a
“one size fits all” mentality often does not work for all clients.
Thus, manufacturers sometimes produce multiple different
versions of a software package that a user chooses from.
Applications that are individually selected are then individu-
ally installed. I1 several different applications are selected, a
considerable amount of time can be spent 1nstalling the di-
terent applications. In addition, after installation, each appli-
cation then must be individually configured as desired by the
user.

To make 1t easier for users wishing to install several appli-
cations a vendor can bundle several applications together 1n
an application suite. For example, application suites are very
popular products today. Most versions include a word pro-
cessor and a spreadsheet program. But some versions might
include a database package, whereas other versions might
include a slideshow generating program. Still other versions
might include stripped-down versions of the products, priced
to sell to students and educators. By offering different ver-
sions of the product, the manufacturer hopes that as many
customers as possible will be satisfied by the different ver-
sions, thereby maximizing the manufacturer’s sales.

This approach to building pre-packaged software 1nstalla-
tions 1s used not just with application software, but also with
operating systems. For example, in selecting a Linux® dis-
tribution, a customer must choose between different packages
of distributions that have been released and are available 1n
off-the shelf combinations. (Linux 1s a registered trademark
of Linus Torvalds.) A customer typically chooses a Linux
distribution by first selecting a vendor who sells Linux distri-
butions, and then identifying a particular distribution avail-
able from the vendor that has the most features that the cus-
tomer 1s looking for. But if a customer wants a finer level of
control 1n selecting the structure of the Linux distribution, the
customer 1s usually left wanting.

Virtual machine (VM) images of a Linux distribution are
handled similarly. Virtual machines enable multiple operat-
ing systems to be run on a computer at the same time: 1n other

10

15

20

25

30

35

40

45

50

55

60

65

2

words, the multiple operating systems can be run 1n parallel.
A VM consists of a hosting operating system (OS) and VM
images representing operating systems to run on the com-
puter. The hosting OS loads the appropriate VM 1mages. Each
VM 1image 1s essentially an emulation of the OS 1t represents,
appearing to the user as 1f the OS were running directly on the
computer. As a VM 1image 1s installed on a computer, the VM
image 1s then configured to access installed hardware, use
partitions of a hard drive, and use optional features of the VM
image. Customers looking for a VM 1mage are hindered by
the limitations discussed above. Namely, a customer must
first select a vendor selling VM 1mages, and then i1dentily a
VM 1mage that has the most features that the user desires.
Accordingly, a need remains to allow a user to create a
customized VM 1mage, including only operating system

packages and applications that the user wants, verifying that
the VM 1mage will be operable at run-time, and including any

required package dependencies.

SUMMARY OF THE INVENTION

A customized virtual machine image 1s created by allowing
a user to select packages that the user 1s interested in installing
as a virtual machine 1image. During the process, the user 1s
informed 11 the selected packages will not be interoperable
with each other at run-time. The user 1s then given an oppor-
tunity to resolve the conflict. In cases where packages conflict
or will not work together at run-time, a different set of pack-
ages can be selected to serve the purpose. After veritying that
the selected packages do not contlict, the user then can then
deploy the customized virtual machine 1image.

The foregoing and other features, objects, and advantages
of the invention will become more readily apparent from the
following detailed description, which proceeds with refer-
ence to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a system on a computer configured to support
a distribution of Linux on demand, according to an embodi-
ment of the mvention.

FIG. 2 shows an example of the set of packages of FIG. 1
that are available for user selection.

FIG. 3 shows an example of two packages from the data-
base of run-time conflict information of FIG. 1 that will
conflict at run-time.

FIG. 4 shows an example table in the database of package
run-time conflicts of FIG. 1.

FIG. 5 shows a flowchart of the procedure used by the
contlict checker of FIG. 1 to resolve contlicts 1n packages.

FIG. 6 shows an example of dependency information that1s
stored 1n the database of FIG. 1.

FIGS. 7A-7B show a flowchart of the procedure used by
the dependency validator of FIG. 1 to validate that the neces-
sary package dependencies are included in the customized
installation.

FIG. 8 shows a flowchart of the procedure used by the
assembler of FIG. 1, to assemble an 1installation with both
dependency package validation and conflict resolution for all
packages in the mstallation.

FIG. 9 shows a table identifying what packages a particular
user recerved 1n the installation of FIG. 1.

FIG. 10 shows a system where the computer of FIG. 115 a
bootstrap server capable of installing the installation on to
remote servers.

FIG. 11 shows the image storage of FIG. 12 storing two
versions of a VM 1mage.

US 8,468,518 B2

3

FI1G. 12 shows the computer system of FI1G. 1 configured to
support a virtual machine (VM) 1mage and image storage,
according to an embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 shows a system on a computer with a set of available
packages, a set of user requirements, a database with depen-
dency and run-time conflict information, a contlict checker, a
dependency validator, an assembler to assemble a customized
installation, an installation, and a backup ISO 1mage of the
installation according to an embodiment of the invention.
Computer 100 includes all the typical elements of a computer,
such as a central processor, memory, bus, disk space, efc.
Also, computer 100 can be accessed locally by the user, or
remotely over a network, such as a LAN, WAN, the Internet,
etc., which can be reached via either a wired or a wireless
(such as IEEE 802.11a/b/g/n, among others) connection.

Available on computer 100 1s a set of, for example, Linux
packages 110 available for the customized installation. The
set of Linux packages 110 can be packages that have been
developed for Linux and are available to Linux users. The
packages 1n package set 110 can include, for example, ver-
s1ons of the Linux kernel, as well as other software by devel-
opers from all over the world. The packages can either be
open source or closed source, but typically the packages are
compiled modules, rather than source software that the user
has to then build into an executable module. Each of these
packages 1s designed to address a particular aspect of the
installation. For instance, 1n one embodiment of the invention
there could be a package that involves computer security or
that acts as a mail server. Typically, the set of Linux packages
110 1s distributed as a compact disc (CD), but a person skilled
in the art will recognize that the set of Linux packages 110
could be distributed 1n other manners: for example, by being
available for download from a website across a network.

Giving users control over the packages that go 1nto a Linux
installation introduces complexities that can prevent the
Linux system from running properly. For example, packages
must be interoperable at run-time, meanming that no packages
in the installation have conflicts. Also, 11 any packages 1n the
installation have dependencies, then those dependencies must
also be included 1n the installation in order for the Linux
system to function properly. Embodiments of the mnvention
are designed to ensure that these 1ssues are properly
addressed.

In an embodiment of the invention, some packages in the
set of the packages 110 can be designed to operate by them-
selves (other than needing the kernel). There can also be
packages that are to be used in conjunction with one or more
other packages. In some cases, the two packages provide
features that complement one another. In other cases, one of
the packages 1s a primary package that the secondary package
depends on. In these second cases, there 1s a dependency
between the primary package and the secondary package. IT
an 1nstallation icludes the secondary package but not the
primary package, the secondary package might not operate
properly (1f 1t operates at all). Thus, dependencies are a con-
cern that needs to be addressed and are described 1n greater
detail below.

In addition, some packages in the set of packages 110
might not be compatible with other packages. In other words,
these packages conflict; they are not interoperable at run-
time. While one or the other of the packages can work at
run-time, both might not. Users istalling a customized Linux

10

15

20

25

30

35

40

45

50

55

60

65

4

installation obviously would expect that all the packages built
into the installation will run. Thus, conflicts are a concern that
needs to be addressed.

To solve these problems, computer 100 1includes database
120 that stores contlict and dependency information, making
it possible to verily that no packages will conflict at run-time
and that all required dependencies will be included.

Computer 100 also includes a conflict checker 130 to
ensure that none of the selected packages will conflict at
run-time, and a dependency validator 140 to validate that all
dependencies of selected packages are also selected. Once the
Linux packages have been selected and checked for contlicts
and dependencies, an assembler 150 can then assemble the
selected packages into an installation 160. In one embodi-
ment of the invention, the assembler assembles the 1nstalla-
tion 160 as an ISO 1mage file 170. All of these elements are
discussed 1n greater detail below.

FI1G. 12 shows the computer system of FIG. 1 configured to
support a virtual machine (VM) mmage distribution on
demand and 1image storage, according to another embodiment
of the 1nvention. In this embodiment, the assembler
assembles installation 160 as virtual machine (VM) image
1200, capable of running on a computer with an appropriate
hosting operating system. VM 1mage 1200 typically includes
the custom built installation including a virtual operating
system. In an embodiment of the invention VM 1mage 1200
also includes selected applications to run on the virtual oper-
ating system represented in VM 1mage 1200.

An advantage to distributing installation 160 as VM 1mage
1200 1s that 1n addition to including a selected operating
system with selected packages that are operable at run-time,
other software applications can be included on VM 1mage
1200. Including applications on the VM 1mage means that
once VM 1mage 1200 1s mnstalled on a computer, each addi-
tional application i1s also installed on the computer. One
installation for several different applications means that a
user selecting software for a large number of computers can
save time by 1nstalling customized VM 1mage 1200.

In an embodiment of the invention, after assembling the
selected packages into VM 1mage 1200, VM 1mage 1200 can
be deployed on a development computer for configuration.
For example, configuring VM 1mage 1200 can include chang-
ing operating system settings and/or application settings. In
an embodiment of the invention, testing VM 1mage 1200 can
also be performed on the development computer, although
testing 1s typically unnecessary because verification occurs
with conflict checker 130 and dependency validator 140.

Once VM 1mage 1200 has been assembled and configured,
VM 1mage 1200 can be deployed on a production computer.
VM image 1200 can also be stored 1n 1image storage 1203. In
FIG. 12, image storage 1205 stores VM 1mage 1200 and
metadata about VM 1mage 1200. For example, image storage
1205 can include comments for notes on the image. The
metadata 1n 1mage storage 1205 can include an owner of the
image, the date the image was assembled, a version of the
image, deployment information, etc. A person skilled 1n the
art will recognize that there 1s other metadata that can be
included in 1mage storage 1205. Image storage 1203 1s dis-
cussed 1n greater detail below with reference to FI1G. 11.

FIG. 2 shows an example of a set of packages 110 1n FIG.
1 that are available for selection, according to an embodiment
of the invention. In the example set ol packages 110, there are
s1X package categories, kernel 210, security 220, file system
230, encryption 240, firewall 250 and web server 260, as well
as two to three packages for each category. While the present
embodiment has only six categories and fourteen packages, a
person skilled 1n the art will recognize that the categories are

US 8,468,518 B2

S

notrequired. In addition, the set of packages can be organized
into any number of categories, and any number of packages
per category (and, of course, any number of total packages).

In an embodiment of the invention, a deployment tool can
be used to 1nvestigate the computer environment of the user.
The selection of the packages can be done automatically for
the user based on the packages that are 1n the user’s current
Linux system. After the deployment tool has identified what
packages are currently on the user’s system, an 1nstallation 1s
built using the most recent versions of those packages (along
with any other packages necessary or deemed of 1nterest).

In another embodiment, a user of the system will be famil-
iar with Linux and its respective packages, and will have
preferences on which packages he 1s interested 1n nstalling.
For example, a user might be particularly interested 1n getting
the security package XY Z, as well as the encryption package
XYZ. With the checkbox embodiment of FIG. 2, the user
would select a kernel of his choice, kernel ABC 211 or kernel
XY 7 212, and then also select secunity XY 7 223, and encryp-
tion XYZ 242. And finally 1n another embodiment, a user
might not be interested 1n security, but might need a file
system 230, a web server 260, and a firewall 250. Again, the
user likely has particular packages in mind, and can select the
appropriate packages. But if the user has no particular pret-
erences for certain features, the system can provide default
selections, or make recommendations on those features
(based, for example, on levels of compatibility among the
various user-selected packages). While checkboxes are the
user interface element used 1n the example of FI1G. 2, a person
skilled 1n the art will recognize that there are other means of
identifving selected packages for an installation, e.g., list box,
search boxes, etc.

In an embodiment of the invention, the packages that are
built into an installation are compiled binary files that the user
will be able to run immediately after imstalling the installa-
tion. In the prior art, customers built installations by compil-
ing source code components from different vendors. Because
compiler settings can affect the behavior of software, even
technically skilled users could 1nadvertently build an 1nstal-
lation that would not work as intended. By providing the user
with compiled modules, embodiments of the invention avoid
these problems, and save the user time (in that the user does
not have to spend time building the installation from the
source code).

In an embodiment of the invention, the image 1s assembled
with each software package as if the package had been
installed on a computer directly. Then, the image need only be
copied on to a target computer with a hosting OS 1n order to
use the software included 1n the 1mage.

In the prior art, each software package would be directly
installed and then configured on a target computer. Further, 1f
the distribution were intended for more than one target com-
puter, each software package would be individually 1nstalled
on each computer. Installing a selected set of software pack-
ages on a computer would mean that the computer would not
be available for user by a user for some period of time.

But in an embodiment of the invention, assembling a dis-
tribution as a VM 1mage enables a user to bypass ofl-line
installation of each individual package, and instead simply
copy the image onto a computer with a hosting OS (requiring
less time). Another benefit from this embodiment 1s that 1f
there are multiple computers to recerve the same distribution,
cach of these computers simply receives a copy of the VM
image as assembled and configured. An embodiment of the
invention also enables a user who has either changed the

10

15

20

25

30

35

40

45

50

55

60

65

6

configuration of his VM 1mage or has otherwise corrupted the
VM 1mage to easily copy the VM 1mage as 1t was 1nitially
assembled and configured.

FIG. 3 shows an example of the contlict checker of FIG. 1
identifying two packages that will contlict at run-time using
the database of run-time conflict information in FIG. 1,
according to an embodiment of the invention. In FIG. 3, the
installation includes packages “security ABC” 221 and “file
system XY 7 233. The conflict checker 130 obtains informa-
tion about the security ABC package 221 from contlict data-
base 120 with locator 310, and information about file system
XYZ package 233 from conflict database 120 with locator
311 (which can, of course, be the same locator). In the
example shown i FIG. 3, conflict checker 130 determines
that the packages conflict, represented by contlict symbol
320, and presents message 330 to the user, so that the conflict
can be resolved.

In another embodiment, the selected packages might be
packages that do not contlict at run-time. In this case, the
conilict checker 320 does not prompt the user to resolve the
package conflict, and instead compares the other packages in
the set of selected packages in search of contlicts. FIG. 4
shows an example database table 1n the database 1n FIG. 1 that
records packages that conflict at run-time, according to an
embodiment of the invention. Table 120 1s a table with rows
410-414 and columns 420-424 representing the various pack-
ages, such as Kernel XY Z 410. In the example shown 1n FIG.
4, there 1s only conflict information for five packages, but a
person skilled 1n the art will recognize that 1n other examples
there can be any number of packages.

Conflict information 1s represented by an X, such as Xs
430,431,432, 433,434, 435, 1n entries 1n table 200. For each
pair of packages that has a contlict, table 200 stores an 1ndi-
cation of this conftlict 1n the appropnate table entry. For
example, X 430 represents a contlict between package “secu-
rity ABC” 1n column 221 and package “kernel XY Z” in row
210. The contlict 430 means that an installation containing
both kernel XY Z and security ABC will not be interoperable
at run-time. In other words, while the kernel XY Z package
can operate on 1ts own, and can 1nteroperate with other pack-
ages, kernel XY Z does not interoperate with security ABC at
run-time. (Presumably, there 1s some other version of the
kernel that interoperates with security ABC, or else security
ABC cannot be used at all.)

Although FIG. 4 shows conflict information being
arranged 1 an NxN table, where N 1s the total number of
packages, a person skilled 1n the art will recogmize that there
are other ways ol recording conflict information. For
example, database 120 includes redundant information, 1n
that every combination of packages 1s represented twice, e.g.,
Xs 430 and 431 both represent a contlict between kernel XY Z
and security ABC. Other embodiments of the contlict infor-
mation can include linked lists, arrays, etc. In addition, a
person skilled in the art will recognize that other contlict
combinations are possible, and will recognize how to modity
database 120 to store this additional information. For
example, there may be three different packages, which
include no pair-wise contlicts, but as a trio contlict.

FIG. 5 shows a flowchart that the contlict checker 130 1n
FIG. 1 uses to resolve run-time contlicts 1n packages, accord-
ing to an embodiment of the mvention. In step 510, the con-
flict checker starts by i1dentifying two of the packages that
have been selected for the installation. In step 520, the contlict
checker refers to the database to see if the packages have a
run-time contlict. This can be accomplished, among other
ways, by having the database store, for each package, a list of
other packages with which the first package contlicts. A per-

US 8,468,518 B2

7

son skilled 1n the art will recognize that this information can
be stored 1n a number of different manners: for example, by
using a list for each package, or by creating a table showing
pairs ol packages and flagging which combinations have con-
flicts. (A person skilled in the art will also recognize that
conilicts can extend beyond pairs of packages: for example,
there can be three packages which do not pair-wise contlict,
but as a trio conflict.) I there 1s a contlict with the packages,
the user 1s alerted with a message at step 540. Otherwise, at
step 330 the contlict checker looks to see 11 there 1s another
combination of packages to check. If there are no more com-
binations, the contlict checker finishes, having successtully
validated that no selected packages contain any run-time con-
flicts. If there are more combinations of selected packages,
the conflict checker 130 then goes back to step 510 and begins
the process all over again. FIG. 5 1s described 1n an abstract
model (for example, FI1G. 5 does not specily exactly how the
conilict checker selects packages 1n step 510). But a person
skilled 1 the art will recognize how to adapt FIG. 5: for
example, by using nested loops to select pairs of packages. A
person skilled 1n the art will also recognize how to adapt FIG.
5 to check for contlicts among groups of packages larger than
two.

In an embodiment of the invention, the conflict checker
analyzes all combinations of packages before alerting users
ol existing run-time contlicts. The system then notifies the
user as to which packages had contlicts, and prompts the user
to make a different selection of packages that do not contlict
at run-time. When the user has made a different selection, the
conilict checker again checks to see if the new selection of
packages has introduced any new conflicts between pack-
ages.

In another embodiment of the invention, the conflict
checker can provide the user with a recommendation for
resolving the current run-time conflict. Sometimes a contlict
between packages might have a relatively straightforward
resolution. For example, there might be one package that
contlicts with several others. If those other packages do not
contlict with any more packages, then the system could rec-
ommend an alternative package to the one that 1s causing the
numerous conflicts.

In yet another embodiment, a means of resolving a package
contlict might not be as straightforward. For example, 1t could
be the case that two packages contlict with each other, but not
with any other packages inthe set of selected packages. In this
case, 1t 1s not necessarily clear which of the two conflicting
packages should be replaced with an alternative non-contlict-
ing package. In this case, the contlict checker can at least alert
the user to which packages are 1 contlict.

FI1G. 6 shows an example of dependency information that 1s
stored 1n database 120 1n FIG. 1, according to an embodiment
of the mvention. In the present embodiment, two dependen-
cies are shown. In dependency 650, Encryption XY Z 223 has
a package dependency of Security XY Z 223. So if Encryption
XY 7 223 1s in the nstallation, then Security XY Z 223 should
also be included 1n the 1installation for the encryption software
to run.

Similarly, dependency 600 shows that Security XYZ 233
requires that Kernel XY Z 211 be selected and included 1n the
installation. As a result, a selection of Encryption XYZ 223
will require that not only Security XYZ 233 be selected and
included 1n the installation, but also that Kernel XY Z 211 be
selected and included 1n the 1nstallation.

As can be seen, the example of FIG. 6 shows only imme-
diate dependencies, under the assumption that any indirect
dependencies are captured by checking the dependency infor-
mation for the needed package. Thus, dependency 650 does

10

15

20

25

30

35

40

45

50

55

60

65

8

not retlect that Encryption XY Z 223 depends (indirectly) on
Kernel XYZ 211, as this information 1s represented through
dependency 600. But a person skilled 1n the art will recognize
that database 120 can store all the dependencies for a single
package, whether direct or indirect. Thus, dependency 650
can be modified to reflect that Encryption XY Z 223 1s also
dependent on Kernel XYZ 211.

Regardless of whether database 120 stores direct or 1ndi-
rect dependencies, or the number of dependencies that are

stored, dependency validator 140 can traverse all dependen-
cies 1n the database.

While FIG. 6 shows security XYZ 233 having only one

dependency and encryption XY Z 223 also having only one
dependency, a person skilled in the art will recognize that
there can be more than one dependency for a selected package
or that a selected package can have no dependencies. Indeed,
not all packages will necessarily depend on another package.

FIGS. 7A-7B show a flowchart of the procedure used by
the dependency validator 140 of FIG. 1 to validate that the
necessary package dependencies are included 1n the custom-
1zed 1nstallation, according to an embodiment of the mven-
tion. In FIG. 7A, at step 710, the dependency validator begins
by 1dentitying a package. In step 720 the dependency valida-
tor looks up that package in the dependency database 120, and
checks to see if that package depends on any other packages.
If a dependency does not exist, then the dependency validator
goes to step 730 and checks to see 1f there are more packages
that need dependency checking. If at step 730 there are more
packages to check for dependencies, then the dependency
validator returns to step 710 and 1dentifies the next package to
move through the flowchart again. However, 1t at step 730
there are no more packages that need to be checked for depen-
dencies, the dependency validation i1s complete, and the
selected packages can be built into an installation with the
assurance that all required dependency packages are
included.

I at step 720, a dependency does exist for the package
being checked, then the dependency validator goes to step
735 (1in FI1G. 7B), and checks to see 11 the needed package(s)
1s/are 1included 1n the selected set of packages. It the needed
package(s) 1s/are not selected for inclusion in the installation,
then at step 740 the dependency validator alerts the user of the
missing package(s) so that the needed package(s) can be
selected and included 1n the installation (or, alternatively, the
selected package removed from the installation to avoid
including the needed package). If at step 735 the needed
package 1s selected for inclusion 1n the installation, then the
dependency validator goes back to step 730 (in FIG. 7A)
where, as described above, the dependency validator checks
to see 1f there are any more packages that need dependency
validation.

While one embodiment of the invention alerts the user to a
dependency 1ssue as soon as a problem 1s i1dentified, another
embodiment can check all the packages 1n the selected set and
identify all missing but needed packages before alerting the
user of the missing packages. In yet another embodiment, the
dependency checker can check for dependency packages as
soon as a package 1s selected. While packages are being
selected, 1t can select the dependency package and note the
automatic selection of the additional package (so that the user
1s aware of this automatic selection). IT a needed package 1s
removed from the set of selected packages, then the original
package can be removed as well (again, with the system
notifying the user of this automatic action). In one embodi-
ment, the alerts of dependency packages can be 1n the form of
a dialog box, but a person skilled in the art will recognize that

US 8,468,518 B2

9

there are other ways of alerting the user of missing dependen-
cies, such as text in the selection interface itself, log files or
windows, etc.

While the embodiments of dependencies described thus far
have included a package with only one dependency package,
a package can also be dependent on the existence of at least
one package 1n a set of packages. For example, a particular
security package might not require a specific kernel, but
rather any kernel of a specified version or greater. In this
situation, when the dependency validator sees the particular
security package, the dependency validator then checks for a
kernel that 1s in the set of dependency packages that waill
satisiy the dependency requirement for the security package.
Similarly, a selected encryption package can only require that
a security package be included for the encryption package to
be operable. In this case, 1t 1s not important which security
package 1s included, only that one security package 1s
included. A person skilled 1n the art will also recognize other
combinations of dependencies that can be tested for.

FIG. 8 shows a flowchart of the procedure used by the
assembler 150 in FI1G. 1 with both dependency package vali-
dation 140 and contlict resolution 130 for all packages 1n the
installation, according to an embodiment of the invention. In
step 810, the assembler starts with the set of selected pack-
ages. In step 820 the assembler checks to see if any packages
contlict, as described above with reference to FIG. 5. If no
packages conflict, then the assembler goes to step 830 and
validates that the necessary dependency packages are
included 1n the set of selected packages, as described above
with reference to FIGS. 7TA-7B.

If at step 820 the conflict checker 140 1dentifies packages
that will conflict at run-time, or if at step 830 the dependency
validator 130 identifies dependencies that must be selected
and included 1n the installation, the assembler goes to step
840 where 1t prompts the user to resolve the 1ssues in the
selected packages. I at step 830 the dependency validator
finds no missing dependencies (and no contlicts), the assem-
bler goes to step 850 where the packages are assembled 1nto
an installation, which can then be installed on a computer.

After the conflict checker and dependency validator suc-
cessiully certity the packages 1n the installation, the installa-
tion 1s ready to be mstalled. In one embodiment of the inven-
tion, the installation can be installed over a network to a
remote server. FIG. 10 shows a system where the computer in
FIG. 1 1s a bootstrap server capable of installing the installa-
tion on to remote servers, according to an embodiment of the
invention. Bootstrap server 1000 includes the elements of the
computer in FIG. 1, with a set of packages available for user
selection, a contlict checker, a dependency validator, and an
assembler with an assembled installation, and an ISO 1mage
of the installation. After the installation has been assembled,
bootstrap server 1000 remotely boots destination server 1010,
and installs base kernels to destination server 1010. Then
destination server 1010 can install the other selected pack-
ages 1n the customized installation.

In one embodiment of the invention, bootstrap server 1000
could save a backup of the installation, so that the installation
could be replicated 11 necessary. In an embodiment of the
invention the backup of the 1nstallation can be represented as
an ISO 1mage of the 1nstallation.

Also, 1 another embodiment of the invention, bootstrap
server 1000 could serve as a cache of all packages in order to
have dependency packages available 1n the future. If a user
installs a package in the future that has a needed dependency
package that 1s not included 1n the user customized 1nstalla-
tion, then the cache provides access to the dependency pack-
age. While this embodiment uses one destination server, 1t

10

15

20

25

30

35

40

45

50

55

60

65

10

would be obvious to a person skilled 1n the art that any number
of destination servers could be used.

FIG. 11 shows the image storage of FIG. 12 storing two
versions of a VM 1mage. After a VM 1mage has been
assembled and verified to be operable, the VM 1mage can be
stored 1n 1mage storage 1203 for future deployment or as a
backup copy of a deployed image. FIG. 11 shows image
storage 1205 storing VM 1mage 1100 and VM 1mage 1105.
VM image 1100 can be a 1.0 version of a custom built VM
image, and VM 1mage 1105 can be a later, 2.0 version of the
same set ol packages.

While FIG. 11 shows two versions of the same package set
assembled as VM 1mages, in an embodiment of the invention,
other VM 1mages assembled from different package sets can
also be stored 1n 1mage storage 1205. For example, one VM
image can include a kernel XYZ and a security package,
while another VM 1mage 1includes kernel ABC and an encryp-
tion package. By storing assembled VM 1mages, VM 1mages
that are assembled from a package set and then configured can
be stored so that if a configuration of the VM 1mage changes,
original VM 1mage (that 1s known to work correctly) can be
re-deployed.

In an embodiment of the invention, image storage 1203 can
include information facilitating easy organization of all
assembled VM 1mages. In addition to a version number,
image storage 1205 can be organized to include a list of the
packages that are 1n a VM 1mage. Image storage 1205 can
even include the corresponding versions that are included in a
stored VM 1mage. Image storage 1205 can include if the VM
image has been deployed, and the target machine of the VM
image.

In an embodiment of the mmvention, 1mage storage 1205
enables administrators responsible for setting up computer
systems to customize, assemble, and configure an 1mage on
computer system before installing the image on the computer
system. Further, image storage 1205 allows the administrator
to deploy the same 1mage version on multiple computers, or
can enable different VM 1mages to be assembled and config-
ured based on computing requirements. For example, top
executives can have one set of requirements, while project
managers or engineers can have a different set of require-
ments. To satisiy the different requirements of different users,
the administrator can 1nstall different applications of the dii-
ferent computer systems. In the prior art, the administrator
would have to istall each application (including operating
system) directly on the computer.

In an embodiment of the invention, an administrator can
create a customized computer environment independent of
installing each software package directly on the computer.
After assembling a VM 1image that includes all software appli-
cations for a particular user, the administrator can then store
the VM 1mage 1n image storage 1205. By storing the VM
image, 11 the deployed VM 1mage gets corrupted, or 1s other-
wise changed, the administrator can simply re-deploy the VM
image from 1mage storage 1205.

In another embodiment of the mnvention 1s a way to retain
information about what packages are included 1n a particular
customer’s customized Linux installation. FIG. 9 shows a
database table 1dentifying what packages a particular user
received 1n the mstallation 1n FIG. 1, according to an embodi-
ment of the invention. After an installation 1s built for a user,
information 1s stored to 1dentily what packages were included
for the user.

In table 900, Users 1in column 910 are matched with Pack-
ages in column 950. User 1 1n entry 915 created an installation
that included Kermel ABC 951, Security ABC 952, and

Encryption ABC 953. In the event that, for example, Encryp-

US 8,468,518 B2

11

tion ABC 952 1s updated, this new version of the package can
be added to the set of packages available for creating a cus-
tomized Linux installation. However, this updated package
can also be distributed to users who have the previous version
of Encryption ABC 952. A query for Encryption ABC 952 1n
Package table 900 1dentifies User 1 1n entry 915 as having
installed Encryption ABC 952. This way, User 1 can be noti-
fied of the update, for example, by e-mail, and can install the
update 1f desired. Similarly 11 Encryption JKL 956 1s updated,
User 2 1n entry 920 can be notified of the update. Although
FIG. 9 shows the package information being stored as a table,
a person skilled 1n the art will recognize that there are other
ways of recording package information, such as linked lists,
arrays, €lc.

While currently 1t 1s possible to notify Linux users when
updates to packages are available, an embodiment of the
ivention makes it possible for users of a customized Linux
installation to recerve notifications only when a package that
1s 1n the user’s own customized version 1s updated. In this
way, the user does not get bombarded with notices of updates
to packages that the user does not have.

Another embodiment of the mvention includes a deploy-
ment tool that checks for updates to packages in a user’s
Linux environment. In one embodiment the deployment tool
can be set up to automatically use the Internet to see 1f any
patches are available to packages in the user’s Linux environ-
ment. The deployment tool can be set up to check on a peri-
odic basis, for example every month. A person skilled in the
art will recognize that this periodic basis could be any set
period, or that this period can be set as a preference of the user.

In addition to automatically checking for updates to pack-
ages, the deployment tool can also allow users to run query for
updates on demand. Instead of having the update checking as
a process that 1s started automatically, users can manually
start the process. A person skilled in the art will recognize that
some users might prefer to always have the updates to their
packages, while other users might prefer to always be notified
of the package updates, 1n order to approve of the updates
betore the updates are installed.

In addition to being able to provide customized notifica-
tions of package updates, the information 1n table 900 1n FIG.
9 can be used by a Linux vendor as a basis for a customer
support agreement. That way, a customer 1s able to get sup-
port for packages included in the customer’s installation.
Similarly, the vendor knows what packages the customer 1s
entitled to support.

The following discussion i1s intended to provide a brief,
general description of a suitable machine 1 which certain
aspects of the mnvention may be implemented. Typically, the
machine includes a system bus to which 1s attached proces-
sors, memory, €.g., random access memory (RAM), read-
only memory (ROM), or other state preserving medium, stor-
age devices, a video interface, and iput/output interface
ports. The machine may be controlled, atleast in part, by input
from conventional input devices, such as keyboards, mice,
etc., as well as by directives recetved from another machine,
interaction with a virtual reality (VR) environment, biometric
teedback, or other imput signal. As used herein, the term
“machine” 1s intended to broadly encompass a single
machine, or a system of communicatively coupled machines
or devices operating together. Exemplary machines include
computing devices such as personal computers, workstations,
servers, portable computers, handheld devices, telephones,
tablets, etc., as well as transportation devices, such as private
or public transportation, e.g., automobiles, trains, cabs, etc.

The machine may include embedded controllers, such as
programmable or non-programmable logic devices or arrays,

10

15

20

25

30

35

40

45

50

55

60

65

12

Application Specific Integrated Circuits, embedded comput-
ers, smart cards, and the like. The machine may utilize one or
more connections to one or more remote machines, such as
through a network interface, modem, or other communicative
coupling. Machines may be interconnected by way of a physi-
cal and/or logical network, such as an intranet, the Internet,
local area networks, wide area networks, etc. One skilled 1n
the art will appreciated that network communication may
utilize various wired and/or wireless short range or long range
carriers and protocols, including radio frequency (RF), satel-
lite, microwave, Institute of Electrical and Electronics Engi-
neers (IEEE) 802.11, Bluetooth, optical, infrared, cable,
laser, etc.

The 1invention may be described by reference to or 1n con-
junction with associated data including functions, proce-
dures, data structures, application programs, etc. which when
accessed by a machine results 1n the machine performing
tasks or defining abstract data types or low-level hardware
contexts. Associated data may be stored in, for example, the
volatile and/or non-volatile memory, ¢.g., RAM, ROM, etc.,
or 1n other storage devices and their associated storage media,
including hard-drives, floppy-disks, optical storage, tapes,
flash memory, memory sticks, digital video disks, biological
storage, etc. Associated data may be delivered over transmis-
s1on environments, including the physical and/or logical net-
work, 1n the form of packets, serial data, parallel data, propa-
gated signals, etc., and may be used 1mn a compressed or
encrypted format. Associated data may be used in a distrib-
uted environment, and stored locally and/or remotely for
machine access.

Having described and illustrated the principles of the
invention with reference to i1llustrated embodiments, 1t will be
recognized that the 1llustrated embodiments may be modified
in arrangement and detail without departing from such prin-
ciples. And although the foregoing discussion has focused on
particular embodiments and examples, other configurations
are contemplated. In particular, even though expressions such
as “according to an embodiment of the invention™ or the like
are used herein, these phrases are meant to generally refer-
ence embodiment possibilities, and are not intended to limat
the mvention to particular embodiment configurations. As
used herein, these terms may reference the same or different
embodiments that are combinable into other embodiments.
Descriptions of the embodiments by reference to Linux are
illustrative; the mvention can be used with other operating
systems and software distributions.

Consequently, in view of the wide variety of permutations
to the embodiments described herein, this detailed descrip-
tion and accompanying material 1s intended to be 1llustrative
only, and should not be taken as limiting the scope of the
invention. What 1s claimed as the invention, therefore, 1s all
such modifications as may come within the scope and spiritof
the following claims and equivalents thereto.

The mvention claimed 1s:
1. A method for creating a virtual machine (VM) 1mage,
comprising:

selecting a subset of packages from an available set of
packages on a computer, the selected subset of packages
including at least a first package and a second package
and omitting a non-included package;

building a VM 1mage on the computer with the selected
subset of packages;

determining if there 1s a conflict between a first package 1n
the subset of packages and a second package in the
subset of packages; and

US 8,468,518 B2

13

if there 1s a contlict between the first package 1n the subset
ol packages and the second package in the subset of
packages:
recommending the first package to be removed from the

VM 1mage;
recommending a third package that does not contlict
with the second package at run-time;
removing the first package from the VM 1mage; and
adding the third package to the VM 1mage,

where the VM 1mage 1s built prior to be installed on a
computer.

2. A method according to claim 1, wherein verifying the

subset of packages 1s operable further comprises:
identifying a first package 1n the selected subset of pack-
ages that depends on a third package 1n the set of pack-
ages; and

adding the third package to the VM 1image.

3. A method according to claim 1, wherein validating the
subset of packages includes:

deploying the VM 1mage on a development computer; and

testing the VM 1mage on the development computer.

4. A method according to claim 1, further comprising
deploying the VM 1mage on a production computer including
a hosting operating system to run the VM 1image.

5. A method according to claim 4, further comprising
updating the VM 1mage on the production computer after the
VM 1mage 1s deployed on the production computer.

6. A method according to claim 4, further comprising
updating the VM 1mage, including:

creating a second subset of packages by replacing an
updated package 1n the selected subset of packages with
the updated selected package;

building an updated VM image with the second subset of
packages;

verifying the updated VM 1mage 1s operable; and

deploying the updated VM 1mage to the production com-
puter after verifying the updated VM 1mage 1s operable.

7. A method according to claim 4, further comprising
deploying the VM 1mage on a second production computer.

8. A method according to claim 1, further comprising stor-
ing the VM 1mage 1n a VM storage.

9. A method according to claim 8, further comprising:

changing a configuration of the VM 1mage; and

deploying the stored VM 1mage to recover from the
changed configuration.

10. A method according to claim 1, wherein selecting a
subset of packages includes selecting an operating system.

11. A method according to claim 10 wherein selecting a
subset of packages includes selecting at least one application
running on the selected operating system.

12. A method according to claim 1, wherein selecting a
subset of packages from an available set of packages includes
selecting a subset of Linux packages.

13. A system for building a customized virtual machine
(VM) image, comprising:

a set of available software packages;

a computer;

a selector on the computer to select a subset of the set of
available software packages, the selected subset includ-
ing at least a first package and a second package and
omitting a non-included package;

an 1mage builder on the computer to build a VM 1mage
including the selected subset of the set of available soft-
ware packages; and

a validator to validate that the first package and the second
package do not contlict at run-time and, 11 the first pack-
age and the second package conflict at run-time, to

10

15

20

25

30

35

40

45

50

55

60

65

14

remove the first package from the VM 1mage and add a
third package to the VM 1mage that does not contlict
with the second package at run-time,

wherein the image builder builds the VM 1mage prior to 1ts
deployment on a production computer.

14. A system according to claim 13, further comprising:

an update to the package; and

a VM 1mage updater to replace the first package with the
updated package in the VM 1mage.

15. A system according to claim 14, further comprising an

update 1nstaller to 1nstall the updated VM 1image.

16. A system according to claim 13, comprising a version
identifier to 1dentify a version of the VM 1mage.

17. A system according to claim 13, further comprising a
backup copy of the VM 1mage.

18. A system according to claim 13, wherein the set of
available software packages includes a set of Linux software
packages.

19. A system according to claim 13, further comprising:

a production server to run the VM 1mage; and

a host operating system to host the VM 1mage.

20. A system according to claim 19, further comprising an
installer to mstall the VM 1mage to run on the host operating
system.

21. An article, comprising:

a non-transitory storage medium, the non-transitory stor-
age medium having stored thereon instructions, that,
when executed by a machine, result in:

accessing a set of available packages;

selecting a subset of the set of available packages, the
subset including least a first package and a second pack-
age and omitting a non-included package;

assembling the subset of available packages into a virtual
machine (VM) image;

determining if there 1s a conflict between a first package 1n
the subset of packages and a second package in the
subset of acka es” and

11 there 1s a contflict between the first package in the subset
of packages and the second package in the subset of
packages:
automatically removing the first package from the VM

1mage;
automatically selecting a third package that does not
contlict with the second package at run-time; and
automatically adding the third package to the VM
image, where the VM 1mage 1s built prior to be
installed on a computer.

22. An article according to claim 21, wherein the non-
transitory storage medium has further instructions stored
thereon that, when executed by the machine result in:

identifying that the first package 1n the VM 1mage depends
on a third package 1n the set of packages; and

adding the third package to the VM 1mage.

23. An article according to claim 21, wherein the non-
transitory storage medium has further instructions stored
thereon that, when executed by the machine result 1n notify-
ing the user when an update to a package in the VM 1mage 1s
available on a production computer after the VM 1mage 1s
deployed on the production computer without the user or the
production computer having to check for the update to the
package.

24. An article according to claim 23, wherein the non-
transitory storage medium has further instructions stored
thereon that, when executed by the machine result 1n install-
ing the update on the production computer.

US 8,468,518 B2
15

25. An article according to claim 21, wherein accessing a
set of available software packages includes accessing a set of
Linux software packages.

G e x Gx ex

16

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,468,518 B2 Page 1 of 1
APPLICATION NO. : 11/458337

DATED : June 18, 2013

INVENTOR(S) . Wipfel

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On title page 3, column 1, item (56), under Other Publications, line 47, delete “mismatchs™ and insert
-- mismatches --, therefor.

On title page 3, column 2, item (56), under Other Publications, line 5, delete “Immunnology” and
mnsert -- Immunology --, therefor.

On title page 3, column 2, item (56), under Other Publications, line 13, delete “Resuability” and insert
-- Reusability --, therefor.

On title page 3, column 2, item (56), under Other Publications, line 29, delete “htpp™ and 1nsert
-- http --, therefor.

In the Claims,

In column 14, line 32, In Claim 21, after “including™ insert -- at --, therefor.

In column 14, line 39, In Claim 21, delete “acka es” and insert -- packages; --, theretor.

Signed and Sealed this
Eighth Day of September, 2015

Tecbatle 7 Lo

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

