US008458127B1

a2 United States Patent (10) Patent No.: US 8,458,127 B1
Lorch, I1I et al. 45) Date of Patent: Jun. 4, 2013
(54) APPLICATION DATA SYNCHRONIZATION 6,847,983 B2 1/2005 Somalwaretal. 707/203
6,941,327 B2 9/2005 Kimetal. .cccoocvrvvevinn., 707/204
| . | 6,983,308 Bl 1/2006 Oberhausetal. 709/206
(75) Inventors: George O. Lorch, 111, Gilbert, AZ (US); 6985915 B2 1/2006 Somalwaretal. ... 707/203
Chitra Ramaswamy, North Brunswick, 7.085.779 B2 82006 Holtzetal. ..oocovvivivi... 707/200
N7 (US); Dinesh Sinha, North 7,103,617 B2 9/2006 Phatakccccovvvvvvevnn., 707/201
R e N (US 7.124,151 Bl 10/2006 ChOi ovevvevereeveeeeierinn, 707/200
runswick, NJ (US) 7.146.385 BL* 12/2006 BIUCE ...oooooooooooooooo /1
. 7,165,154 B2* 1/2007 Coombsetal. 711/162
(73) Assignee: Blue Coat Systems, Inc., Sunnyvale, CA 7277901 B2 10/2007 Parkeretal. 707/203
(US) 7373362 B2 5/2008 Detweileretal. 707/201
7.401,104 B2 7/2008 Shahetal.cccoovevi... 707/100
(*) Notice: Subject to any disclaimer, the term of this 7,657,574 B2 2/2010 Guptaetal. ... 707/201
paten‘[iS extended Or adjusted under 35 756853170 B2 3/200 Barsness et al. 707/202
U.S.C. 154(b) by 313 days 7.743,019 B2 6/2010 Shahetal.cccocvev.... 707/610
A y ys- 2002/0059299 Al 5/2002 SPACY .oevievererereinn.. 707/104.1

(21) Appl. No.: 11/966,005 (Continued)

OTHER PUBLICATIONS

(22) Filed: Dec. 28, 2007
Office Action, U.S. Appl. No. 11/260,063, 9 pages, Oct. 23, 2007.

(51) Int.Cl.

GO6F 17/00 (2006.01) (Continued)
(52) U.S. CL Primary Examiner — Dennis Truong
USPC 707/617;°707/640; 70°7/661; 707/674; (74) Attorney, Agent, or Firm — Baker Botts L.L.P.
707/781;711/162
(58) Field of Classification Search (57) ABSTRACT
USPC 707/204, 203, 617, 640, 661, 674,

In a particular implementation, providing a virtual cached
network drive, on a client, for PST-type (Personal STore) file
operations, during a non-optimal connection. In one 1mple-
mentation, during the non-optimal connection, changes to
objects, 1n a local PST file, are saved 1n a local cache (the
U.S PATENT DOCUMENTS virtual network drive) and logged. At certain intervals, the
changes are compiled, compared with entries 1n a synchroni-

707/781;711/162
See application file for complete search history.

(56) References Cited

5,030,855 A 6/1996 Satohetal. 395/600 zation database and a list of changes, to be performed on the
5,991,771 A 11/1999 Fallsetal. 707/202 . . C oy .

5005 080 A 11/1999 Olson et al 707/201 objects, 1s generated which 1s used to update a remote PST. If
6,034,621 A 3/2000 Kaufmancooevnn. 340/825.44 the connection remains non-optimal, a temporary PST file 1s
6,308,201 Bl 10/2001 Pivowar etal. 709/214 created, based on the list of changes, and transferred to a
6,460,124 B1* 10/2002 Kagietal. ... 711/163 remote agent that pertorms the changes on the remote PST. If
0,601,076 Bl 7/2003 McCawetal.cco.o.v.... 707/203 the connection improves, the changes are instead performed
6,636,873 Bl 10/2003 Merchant et al. 707/201 _ P ,, S P

6,691,245 B1* 2/2004 DeKONingco.coocovvnn... 714/6 directly on the remote PST.

6,704,755 B2 3/2004 Midgleyetal. 707/204

6,792,085 Bl 9/2004 Rigaldiesetal. 379/88.13 28 Claims, 9 Drawing Sheets

DATA MGMT.

APPLICATION 18 APPLICATION o8

DATA ACCESS
MODULE 62

DATA ACCESS
PLUG-IN 66

MAPL 72 MAPI 64

US 8,458,127 Bl
Page 2

U.S. PATENT DOCUMENTS

2003/0037020 Al 2/2003 Novaketal.oce 0 707/1
2003/0101300 AL* 5/2003 Goldickcovvinninnn, 710/200
2003/0135524 Al* 7/2003 Caneetal. 707/204
2003/0158869 Al* 8/2003 Micka ... 707/203
2004/0054699 Al* 3/2004 Bearetal. 707/204
2005/0055382 Al 3/2005 Ferratetal. 707/201
2005/0182767 Al 8/2005 Shoemaker et al. 707/10
2005/0256907 Al 11/2005 Noviketal. 707/200
2006/0020594 Al 1/2006 Gargetal.ooooeei 707/6
2006/0190722 Al* 8/2006 Sharmaetal. 713/165
2007/0027936 Al* 2/2007 Stakutis etal. 707/204
2007/0094465 Al 4/2007 Sharmaetal. 711/162
2007/0100902 Al 5/2007 Sinha
OTHER PUBLICATIONS

Oflice Action, U.S. Appl. No. |
Office Action, U.S. Appl. No.
Office Action, U.S. Appl. No.

11/260,063, 10 pages, Apr. 18, 2008.
11/260,063,10 pages, Sep. 2, 2008

| 1/260,063, 15 pages, Oct. 29, 2008.
Office Action, U.S. Appl. No. 11/260,063, '6pages Feb. 11, 2009.

Office Action, U.S. Appl. No. 11/260,063, 15 pages, Jul. 15, 2009.
“ViceVersa File Synchronization Software lets You Synchronize
Files, Data and Folders,” www.tgrmn.com, http://web.archive.org/

web20041022015247/http:www.tgrmn.com/web/file__synchroniza-
tion.htm, 2 pages, Oct. 22, 2004.

“ViceVersa Software: File Synchronization, File Replication, File
Backup, File Comparison,” www.tgrmn, http//web.archive.org/web/
20040806122844/http://www.tgrmn.com/web/file_ replication.htm,
2 pages, Aug. 6, 2004.

“Screenshots,” www.tgrmn.com, http://web.archive.org/web/
20040806085616/http://www.tgrmn.com/web/screenshots/9.htm, 2
pages, Aug. 6, 2004.

“ViceVersa Software Features: File Synchronization File Replica-
tion, File Backup, File Comparison,” www.tgrmn.com, http://web.
archive.org/web/2004102202 1826/ http: www.tgrmn.com/web/
popup/feat__comp.htm, 3 pages, Oct. 22, 2004.

“PeerSync Introduction & Applications,” peersoftware.com, http://
web.archive.org/web/2003120500183 1/http://peersoftware.com/

peersync.html, 2 pages, Dec. 5, 2003.

“PeerSync Feature Listing,” peersoftware.com, http://web.archive.
org/web/20030619072647/http://peersoftware.com/peersync/
peersync__features_ full html, 6 pages, Jun. 19, 2003.

* cited by examiner

U.S. Patent Jun. 4, 2013 Sheet 1 of 9 US 8,458,127 B1

ENTERPRISE

SERVER 12

.:‘ -

AGENT 24 N—r/
REMOTE
PST 26

FIGURE 1

EMAIL LOCAL PST 20
APPLICATION 16

VIRTUAL
REMOTE

PST 22
DATA MGMT.
APPLICATION 18

CLIENT 10

U.S. Patent Jun. 4, 2013 Sheet 2 of 9 US 8,458,127 B1

20 CLIENT

S—

~— MAPI SYNC MAPI ~——~
LOCAL 32 34 36 REMOTE
PST 30 PST 28

FIGURE 2A

U.S. Patent Jun. 4, 2013 Sheet 3 of 9 US 8.458.,127 B1

CLIENT-SIDE NETWORK-SIDE

— wer W ey
LOCAL 46 45
PST 30

SYNC
SERVER

44

REMOTE
PST 38

FIGURE 2B

U.S. Patent Jun. 4, 2013 Sheet 4 of 9 US 8,458,127 B1

FILE SYSTEM 52
FILE SYSTEM FILTER DRIVER 50

o
NETWORK DRIVE
56
-

LOCAL

NETWORK CACHE 58
DRIVE 54

U.S. Patent

DATA MGMT.
APPLICATION 18

DATA ACCESS
MODULE 62

MAPI /72

FIGURE 4

Jun. 4, 2013

Sheet S of 9

US 8,458,127 B1

APPLICATION 68

DATA ACCESS
PLUG-IN 66

MAPI 64

U.S. Patent Jun. 4, 2013 Sheet 6 of 9 US 8.458.,127 B1

500

GATHER OBJECT
META DATA USING
LOCAL MAPI 504

COMPARE TO SYNC
DATABASE TO
GENERATE CHANGE
WORK LIST 506

MOUNT REMOTE PST

VIA MAPI INTERFACE TO CREATE TEMP PST

LOCAL
MODE? 508

IMPLEMENT CHANGE FROM LOCAL FILE

PST 512

WORK LIST 510

TRANSFER TEMP PST
AND CHANGE LIST TO
REMOTE AGENT 514

UPDATE SYNC
DATABASE 516

FIGURE 5

U.S. Patent

Jun. 4, 2013 Sheet 7 of 9

TWO-WAY
SYNC 602

GATHER LOCAL
OBJECT META

DATA 604

GATHER REMOTE
OBJECT META
DATA 606

BUILD
SYNCHRONIZATION
TABLE

6038

ANALYZE SYNCHRONIZATION
TABLE, APPLYING FUNCTION
TO EACH ROW TO
GENERATE CHANGE WORK

LIST 610

LOCAL
MODE? 612

YES

MOUNT REMOTE PST
VIA MAPI INTERFACE TO
IMPLEMENT CHANGE
WORK LIST 614

FIGURE 6

ACCESS LOCAL PST TO
IMPLEMENT CHANGE
WORK LIST 615

UPDATE SYNC
DATABASE 616

US 8,458,127 B1

CREATE LOCAL
TEMP PST 618

SEND TEMP PST AND
CHANGE WORK LIST
TO REMOTE AGENT 620

RECEIVE REMOTE PST
ADDITIONS IN THE
FORM OF A TEMP PST

622

ADD TO LOCAL
PST 624

U.S. Patent

FIGURE 7

Jun. 4, 2013 Sheet 8 of 9

RECEIVE FILE
SYSTEM
COMMAND 702

IS THE COMMAND
A WRITE TO THE

LOCAL P5T? 704

YES

LOG AND STORE THE

COMMAND Z0Q6

US 8,458,127 B1

INCREMENT WRITE
COMMAND THRESHOLD
COUNTER Z10

THRESHOLD
NUMBER OF
WRITES REACHED?

/208

YES

TRANSMIT

NOTIFICATION
712

NO

U.S. Patent Jun. 4, 2013 Sheet 9 of 9 US 8.458.,127 B1

202

216
Interface
Host Bridge

210

High Performance 1/O Bus 206

Standard I/0 Bus 208

1/0 Ports | [Keyboard and | 1 pigplay
Storage Pointing Device

224

FIGURE 8

US 8,458,127 Bl

1
APPLICATION DATA SYNCHRONIZATION

TECHNICAL FIELD

The present disclosure generally relates to data backup and
synchronization mechanisms.

BACKGROUND

5

Reliably and consistently performing data backups of .

mobile laptop users, typically members of an orgamzation
that desires to maintain such backups, can often be problem-
atic. Some of those problems may include deciding a process
to perform the data backup 1n view of not necessarily knowing,
where a laptop may next be connected. For example, 11 a
connection 1s established between the laptop and the organi-

zation network via a non-organization network at a non-
optimal connection speed to perform a backup.

Email client-related data 1s one example of a data-type that
may be beneficial to backup. However, an email storage file
can become monolithic over time and therefore make back-
ups time-intensive for the user.

SUMMARY

The present mvention, in particular embodiments, 1s
directed to methods, apparatuses and systems directed to
application data backup and synchronization.

In a particular implementation, providing a virtual cached
network drive, on a client, for PST-type (Personal STore) file
operations, during a non-optimal connection. In one 1mple-
mentation, during the non-optimal connection, changes to
objects, 1n a local PST file, are saved 1n a local cache (the
virtual network drive) and logged. At certain intervals, the
changes are compiled, compared with entries 1n a synchroni-
zation database and a list of changes, to be performed on the
objects, 1s generated which 1s used to update a remote PST. If
the connection remains non-optimal, a temporary PST file 1s
created, based on the list of changes, and transferred to a
remote agent that performs the changes on the remote PST. IT
the connection improves, the changes are istead performed
directly on the remote PST.

In another implementation, change work lists are generated
for both the local and remote PSTs, when a connection
becomes non-optimal. At the local PST, the lists are analyzed
for changes, synchronized to generate a master change work
list. If the connection remains non-optimal, a temporary PST
1s created and the master change work list 1s sent to a remote
agent which performs updates on the remote PST. In turn, the
remote PST returns any additions to the local PST. If the
connection improves, the changes are instead performed
directly on the remote PST.

The following embodiments and aspects thereof are
described and 1llustrated 1n conjunction with systems, appa-
ratuses and methods which are meant to be exemplary and
illustrative, not limiting in scope. In various embodiments,
one or more of the above-described problems have been
reduced or eliminated. In addition to the aspects and embodi-
ments described above, further aspects and embodiments will
become apparent by reference to the drawings and by study of
the following descriptions.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments are 1llustrated in referenced figures
of the drawings. It 1s intended that the embodiments and
figures disclosed herein are to be considered i1llustrative rather
than limiting.

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 1-2B are various block diagrams illustrating
example operating environments for data synchronization

and data backup performed by the present invention;

FIG. 3 1s a block diagram 1illustrating file storage locations
utilized for differing operating modes of the present mnven-
tion;

FIG. 4 1s a block diagram illustrating an Outlook Mail
Harmony instance and a Mobiliti1 Mail Harmony 1nstance, 1n
accordance with an example embodiment;

FIG. 5 1s a flowchart diagram illustrating a method of
one-way data backup between local PST and a remote PST, 1n
accordance with an example embodiment;

FIG. 6 1s a flowchart diagram illustrating a method of
two-way data synchronization between local PST and a
remote PST, in accordance with an example embodiment;

FIG. 7 1s a flowchart diagram 1llustrating a method for
initiating two-way data synchronization; and

FIG. 8 1s a diagram showing a high-level example system
architecture that may be used to implement the present inven-
tion.

DETAILED DESCRIPTION

The following embodiments and aspects thereof are
described and illustrated 1n conjunction with systems, appa-
ratuses and methods which are meant to be illustrative, not
limiting 1n scope.

The present invention, in particular embodiments, 1s
directed to methods, apparatuses and systems directed to
providing a virtual network drive, on a client, for PST-type file
operations, when a connection 1s non-optimal or not available
(1.e. offline-usage). This 1s accomplished, 1n part, by provid-
ing a file system filter driver operable to determine when a
connection to a network drive, hosting a remote backup PST,
becomes non-optimal. When this occurs, the file system filter
driver re-directs PST file operations to a virtual network drive
hosted 1n a local cache. When the connection improves or
becomes available, the file system filter driver re-directs PST
file operations back to the network drive. The file system filter
driver and conditions other than connection quality, to cause
the driver to switch to and from a virtual network drive, will
be presented 1n a later section.

During the duration of the non-optimal connection, log-
ging and analyzing of the PST {file operations occurs, at cer-
tain 1ntervals, and are utilized to generate a change work list.
If the non-optimal connection persists, a temporary PST,
containing information on changes to the local PST, 1s created
and sent to a remote agent which updates the remote PST
based on the temporary PST. If the connection improves, the
changes are instead performed directly on the remote PST.
This particular implementation of updating the remote PST
may be termed as a “one-way” backup. Also, the present
invention, in particular embodiments provides for a “two-
way’~ data synchronization which will be described 1n more
detail at a later section.

For didactic purposes, a brief review of some terms and
concepts, utilized by the present invention, will first be pre-
sented. In a Microsoft® Exchange® server email system,
email messages and perhaps other 1tems are typically deliv-
ered to and stored on a server 1n a multi-user database, the
messages being accessible via an email client application
(such as Outlook®) hosted on a client computer. Personal
items, such contacts and notes, are typically stored at the
client computer. In contrast, non-Exchange email systems,
such as POP-based email, for example, will typically store all
the information 1n a local file at the client computer. A PST
(Personal STorage) file 1s a storage container, created from

US 8,458,127 Bl

3

within an email client (such as Microsoft® Outlook®), which
stores e-mail, contacts, tasks and more, 1n a local location
such as a user’s laptop or a network drive. Enterprise users,
with Exchange® accounts, typically use PSTs for archival
purposes given that their respective email accounts usually
have storage size limits. Such PST f{iles are either typically
stored on a local client or on a remote host, such as a file
server. To remotely access the PST f{ile, the folder space
maintained by the file server may be accessible to the user as
a so-called network drive. Given that the archive PST files
may be the only container of a user’s data, 1t may be desirable
to remotely backup these PST files from the client to a remote
backup system. Still further, some enterprise users may not
maintain an exchange server. Accordingly, backup of PST
files 1 an efficient manner becomes more important.

In the corporate arena, Exchange Servers are used to store
email messages. The Outlook Offline Storage Folder (.OST)
in Microsoit Outlook provides a synchronization method
with an Exchange Server and existing mailbox accounts. This
OST file 1s generated by the email client application for the
purpose of storing the content of the user’s mailbox on the
local hard drive for oftline use. The OST file gets stored on a
users computer system which gets synchronized with the
Exchange mailbox account, resulting in duplication of data
on the exchange server and on the user’s system.

For purposes of description, a local PST refers to a PST file
stored locally on a storage system directly attached to a com-
puter host. A remote PST refers to a file stored on a server or
other host remote from a given computer host. A PST may
also be termed as “remote” if 1t resides on a different partition
or section of a drive that hosts the local PST, on another drive
on a client or perhaps an external drive locally connected,
wired or wireless, to the client or other similar situations.

The present invention may also utilize Messaging Appli-
cation Programming Interface (MAPI) which 1s a messaging
architecture and a Component Object Model based API for
Microsoit Windows. MAPI allows client programs to become
(e-mail) messaging-enabled, -aware, or -based by calling
MAPI subsystem routines that interface with certain messag-
ing servers. Email applications use MAPI to access PST and
OST files. MAPI 1s closely related to MAPI/RPC, the propri-
etary protocol that Microsoit Outlook uses to communicate
with Microsoit Exchange. MAPI tends to be “chatty,” how-
ever, 1n that 1t tends to use large amounts of bandwidth.

Remote procedure call (RPC) 1s an inter-process commu-
nication technology that allows a computer program to cause
a subroutine or procedure to execute in another address space
(either on the same host or, more commonly, on another
computer on a shared network) without having to explicitly
code the details for this remote interaction. As will be seen 1n
a later section, an RPC 1s utilized 1n an Outlook 1nstance as
part of one implementation of the present invention.

The present mnvention may be embodied 1n a mobile data
management utility, such as the Mobility® software product
offered by Packeteer®, Inc. of Cupertino, Calif. Mobiliti1s a
soltware package that provides file access, data synchroniza-
tion and data backup for, though not necessarily limited to,
mobile computer users.

A. Network and Operating Environment

FIGS. 1-2B are various block diagrams illustrating
example operating environments for data synchronization
and data backup performed by the present invention. FIG. 1 1s
a block diagram illustrating an exchange protocol environ-
ment utilized to communicate between a client 10 and an
enterprise server 12 over a network 14. Running on the client
10 1s an 1nstance of an email application 16, and a mobile data
management application 18. In a particular implementation,

10

15

20

25

30

35

40

45

50

55

60

65

4

an mnstance of a data access module (see FIG. 4, below) may
run as a plug-in to the email application 16. Client 10 may also
maintain one or more local PSTs 20 and a temp (temporary)
or virtual remote PST 22. The local and temp PSTs (20, 22)
are created during certain operational modes of the present
invention. The mobile data management application includes
a synchronization scheme that maintains a sync database
which logs PST-file operations and a sync engine that can be
utilized to synchronize two application data files, such as PST
files. In one implementation, the sync engine can be utilized
to produce change lists when the file system filter driver
switches the client 10 to a locally-cached virtual network
drive-mode. The change list may be utilized by a remote sync
agent 24 to update remote PS'T 26, both typically residing on
server 12.

FIGS. 2A and 2B illustrate the relationship between the
synchronization engine and the local and remote PST files. As
FIG. 2A shows, the synchromization engine 34 accesses the
objects of the local PST 30 using MAPI layer 32, and accesses
the remote PST 28 using MAPI layer 36. The synchromization
functionality described herein can operate 1n a variety of
modes and environments. For example, 1n one implementa-
tion, synchronization functions are hosted on one node (e.g.,
a client computer), as FIG. 2A illustrates. In another imple-
mentation, the synchronization functions may be split into a
client-side synchronization client 42, and a server-side syn-
chronization agent 44, as FIG. 2B shows. FIG. 2B 1llustrates
yet another operational environment in which a remote PST
38 and a local PST 40 are connected over a network (not
shown). Also included 1s a MAPI 46 utilized for accessing the
local PST 40 by the sync client 42, as well as a MAPI 48 used
for accessing the remote PS'T 38 by the server-side synchro-
nization agent 42. The split synchronization mode can be
advantageous as i1t eliminates protocol overhead of certain
network file systems (such as Common Internet File System
(CIFS)) associated with mounting and accessing remote files
over longer latency networks to thereby increase perfor-
mance.

As discussed above, the remote PST file 26 may be main-
tained on a remote file server resident on an enterprise local
area network. In a particular implementation, a mobile user
may maintain on or more remote PST files on a so-called
network drive. In a particular implementation, the mobile
data management application 18 includes functionality that,
while the laptop 1s not connected to the local area network,
emulates the network drive. FIG. 3 1s a block diagram 1llus-
trating file storage locations utilized for differing operating
modes of the present mvention, as directed by the driver.
Speaking generally, a file system filter driver 50 can be used
to intercept file system commands (such as open, read and
write commands) from the file system 52 directed to a net-
work drive 34 and direct them to a virtual network drive 56. In
a particular implementation, the mobile data management
client 18 maintains a local copy of the network drive 1n a local
cache 58. While the client host 1s not connected to the enter-
prise network, the file system filter driver 52 directs the file
system commands to the virtual network drive 56 which
processes the commands on the data stored 1n the local cache
58. When connectivity 1s re-established (or in response to a
manual command or determination of improvement 1n con-
nectivity), the mobile data management application 18 syn-
chronizes the local cache 58 with the data stored on the
network drive 58. Accordingly, when a user saves data to a
PST, when the client host 1s disconnected, the data will be
saved to the PST residing in the local cache 58. A subsequent
synchronization will be performed between the PST {ile on
the local cache 58 and the PST stored in the network drive 54.

US 8,458,127 Bl

S

There are various conditions or modes that could be set
which would cause the file system filter driver 50 to re-direct
remote PST file operations, when one or more of those con-
ditions are met. For example, one mode could be based on a
process which automatically decides when to switch over
based on network connectivity. Another mode may be that a

user manually switches over. Yet another mode may be rule-
based, where the switch over 1s conditioned on a threshold
observed data rate.

FIG. 4 1illustrates how a PST file 70, whether local or
remote, residing on a client host may be accessed. Mobile
data management application 18 accesses PST file 70 via a
data access module 62, which 1s operative to access the PST
file 70 via MAPI layer 72. However, when an application 68
(such as Microsolit’s Outlook®) mounts a PST file 70 1t

obtains a lock on the file, preventing access by other applica-
tions. Accordingly, while the application 68 has a lock on the
file, data management application 18 may not obtain access to
the PST file 70. To permit access, while application 68 main-
tains a lock on the PST file 70, a data access plug-in 66 1s
installed. The data access plug-in 66 1s a plug-in or module to
application 68, and 1s operative to access the PST file 70 via
MAPI layer 64. The data access plug-1n 66 supports an RPC
channel that allows data management application 18 to access
the PST file, while application 68 has a lock on 1t. In a
particular implementation, the data management application
18 can be configured to test for accessibility to a given PST
file via either the data access module 62 or the data access
plug-1n 66. For example, prior to a given synchronization (or
a step or sub-process thereotf), the data management applica-
tion 18 can attempt to access the PST file 70 via data access
module 62. If data access module 62 1s locked out of the file,
it will attempt to access via the data access plug-in 66 for the
remainder ol the synchronization operation or sub-process
within the synchronization operation. It should be noted that
while a synchronization is occurring, and an instance of appli-
cation 68 1s attempted to be launched, application 68 may not
be able to be launched 11 exclusive access to the PST file 70 1s
not available. To prevent a delay in launching the application
68, 1n the situation that was just described, the synchroniza-
tion may be paused to allow launch of the application 68. To
accomplish this, the RPC channel, of the data access plugin
66, signals the data management application 18 to pause the
synchronization until the application 68 has fully launched.
Additionally, when the application 68 1s closed and a syn-
chronization 1s occurring, the synchronization may continue
to proceed, until complete, through the instance of the appli-
cation 68.
B. One-Way and Two-Way Synchronizations

The synchronization functionality described herein can
perform one-way synchronizations for straight back ups, or
two-way synchronizations. In a particular implementation,
the synchronization functionality utilizes a local synchroni-
zation database, where metadata of the objects 1n a PST file,
such as the local or virtual remote PST files 20, 22, are stored.
The contents of the synchronization database contains infor-
mation relating to the state of a given PST file at the last
synchronization, such as what objects are contained in the file
and their last modification times. In one implementation, file
system filter driver 50 or a separate module or driver layer
may also monitor file system accesses to a select set of files
(such as PST files) and stores the write commands associated
with these set of files 1n the synchronization database. From
this write history, the synchronization functionality may
determine what file objects have been added, changed or
deleted.

10

15

20

25

30

35

40

45

50

55

60

65

6

As discussed above, a synchromization can be nitiated in a
variety of manners—including manually and automatically.
In one implementation, a triggering event can be determined
by monitoring file system commands associated with one or
more target PST files. Once a certain number of writes has
occurred, for example, then the backup or synchronization
would start. FI1G. 7 illustrates such a method 700. File system
filter driver 50, for example, receives a file system command
(702) and determines if the received command 1s a write
command to the local PST (704). If no, the next recerved
command will be checked (702, 704). I the received com-
mand 1s a write to the local PST (704), the file system filter
driver 50 logs and stores the command (706) and determines
if a threshold number of writes to the local PST has been
reached (708). If no, a counter 1s incremented (710). I ves,
the file system filter driver 50 transmits a notification to
mobile data management application 18 to launch a synchro-
nization (712). Additional decisional logic, such as determin-
ing network connectivity and data rates, can also be applied as
well.

B.1. One-Way Synchronization

Starting with one-way synchronizations or backups, refer-
ence 1s made to FIG. 5 which 1s a flowchart diagram 1llustrat-
ing a method 500 for performing said backup. When a backup
1s 1nitiated (502), mobile data management application 18
accesses the PST to gathers object metadata corresponding to
the data from the local PST (504). This object meta data
includes the objects 1dentified in the PST file and their last
modification times. Mobile data management application 18
then compares the meta-data to the object meta-data 1n the
synchronization database to the gathered metadata to gener-
ate a change work list (506)—a list of objects that have been
added, changed or deleted since the last synchronization.

After the work list has been completed (506), mobile data
management application 18 determines (508) whether it 1s
currently configured to operate in a local synchronization
mode or a split synchronization mode (508). The local syn-
chronization mode refers to the deployment configuration,
illustrated 1n FIG. 2A, where the synchronization engine of
the client host performs the synchronmization. The split syn-
chronization mode refers to the deployment configuration,
illustrated 1n FIG. 2B, where synchronization operations are
distributed between a synchromization client 42 and a syn-
chronization server agent 44. If the mobile data management
application 18 1s operating 1n the local mode (508), it mounts
the remote PST via a MAPI interface to implement the
changes to the file 1n the change work list (510), and updates
the synchronization database to retlect the current state of the
objects 1n the PST file (516).

I1 the mobile data management application 18 is operating
in the split synchronization mode, 1t creates a temporary PST
file including the objects that have been added to the local
PST 20 (512), and transmits the temporary PST file and the
change list to the remote synchronization server agent 44
(514). The temporary PST will typically contain objects that
have been added or changed, while the change list will con-
tain the list of added, changed and deleted objects. In an
optional optimization, the mobile data management applica-
tion 18 may compress the data prior to transmission. The
remote synchronization server agent 44 uses this data to syn-
chronize the remote PST file 26. Mobile data management
application 18 may then update the synchronization database
(516) erther after transmitting this information or after recerv-
ing an acknowledgment that the remote synchronization has
been executed.

The following provides a pseudo-code representation set-
ting forth example decisional logic for creating an entry of a

US 8,458,127 Bl

7

work change list. The pseudo-code includes a list of defini-
tions. The definitions also apply to a two-way synchroniza-
tion pseudo-code representation that will be presented 1n a
later section.

DEFINITIONS

object: An actual instance of message or folder 1n a local PST
file.

record: A record of the existence of an object but not the
object itsell. Contains information such as object identifica-
tion, object last modification time, object flags, etc.

local: A reference to the PST file that resides on the user’s
local computer.

remote: A reference to the PST file that resides on some form
of disconnectable media, network or other shared or backup
location (may also refer to a virtual remote PST file).
syncdb: A reference to a database that resides on the user’s
local computer that reflects the last known state of all of the

objects 1n the local PST file.
One-Way Backup:
1. If there 1s no local record AND there 1s a matching syncdb
record
1.1. Then the local object has been deleted and will be
removed from the remote

2. Elseif there1s alocal record AND there 1s no matching sync
db record

2.1. Then the local object has been added and will be
copied to the remote
3. Else if there 1s a local record AND there 1s a matching
syncdb record
3.1. If the local record timestamp indicates an error
3.1.1. If 1gnoring erroneous timestamps due to a user
setting,
3.1.1.1. Then assume the local object has not changed
3.1.2. Else if assuming a change when erroneous times-
tamps are encountered due to a user setting
3.1.2.1. Then assume the local object has changed and
will be copied to the remote
3.2. Else 1f the syncdb record timestamp indicates an
Crror
3.2.1. Then assume the local object has changed and
will be copied to the remote
3.3. FElse il the local record timestamp 1s not the same as the
remote record timestamp
3.3.1. Then assume the local object has changed and will
be copied to the remote

3.4. Else 11 the local record tlags are not the same as the

syncdb record flags
3.4.1. Then assume the local objects flags have changed
and will be copied to the remote

3.5. Else

3.5.1. Nothing has changed

Additionally, 1n view of the one-way backup pseudo-code,
it 1s possible to backup from one source to multiple destina-
tions. To facilitate this, there 1s typically a unique record
corresponding to each destination.

Furthermore, also 1n view of the one-way pseudo-code, 1t 1s
possible to have a list of folders/items that may be 1gnored
from synchronization. Due to this, 1t 1s possible to prevent
backup of data that does not necessarily require backup. It 1s
also possible to backup portions of the PST {ile into different
locations. This advantageously allows the user to prioritize
the backup of different locations (by having different sched-
ules for different folders running at different priorities). Also
it 1s possible, 1n one 1implementation, to have content based

10

15

20

25

30

35

40

45

50

55

60

65

8

filters to enable synchronization, for example, of email from
a specific sender or perhaps by keyword.

FIG. 6 further 1llustrates a two-way synchronization imple-
mentation via a flowchart diagram of method 600. When a
synchronization 1s 1nitiated (602), mobile data management
application 18 gathers local object meta-data (604) and also

gathers remote PST object metadata (606). Gathering of
remote PST object data can be accomplished by directly

mounting the remote PST and gathering object metadata via
the MAPI layer, 11 the mobile data management application
18 1s 1n a local synchromization mode. Otherwise, mobile data
management application 18 sends a command to the remote
server synchronization agent 44 to obtain the remote PST
object meta-data.

B.2. Two-Way Synchronization

Now that the one-way backup implementation has been
described, the two-way synchromization implementation will
be presented. Two-way synchronization generally involves
determining discrepancies between a local PST and a remote
PST since a last synchronization and applying updates as
necessary to either or both PSTs. Two-way synchromization
can be utilized for a group of users who share a single local
PST, or a single user who uses multiple client hosts and wants
to maintain a common PST among the multiple client hosts.

FIG. 6 turther 1llustrates a two-way synchronization imple-
mentation via a flowchart diagram of method 600. When a
synchronization 1s mitiated (602), mobile data management
application 18 gathers local object meta-data (604) and also
gathers remote PST object metadata (606). Gathering of
remote PST object data can be accomplished by directly
mounting the remote PST and gathering object metadata via
the MAPI layer, 11 the mobile data management application
18 15 1n a local synchronization mode. Otherwise, mobile data
management application 18 sends a command to the remote
server synchronization agent 44 to obtain the remote PST
object meta-data.

Next, mobile data management application 18 builds a
synchronization table of PST file object entries based on the
local PST object metadata, the remote PST object metadata
and the local synchronization database (608). Table 1 1llus-
trates for didactic purposes a representation of an example
synchronization table that may be generated. Mobile data
management application 18 analyzes the row entries of the
synchronization table to build change work lists for the local-
to-remote direction and the remote-to-local direction (610).
In one implementation, MAPI provides unique object 1denti-
fiers that are used to reconcile the entries of the synchroniza-
tion table. For a given row entry, the presence or absence of
entries 1n a given column, as well as differences between time
stamps of corresponding entries 1n a row, can 1ndicate what
entries have been deleted, changed or added. Additionally,
contlicts are 1dentified between the two lists an example of
which could be an email that was modified at both PSTs.

TABLE 1
Local PST Sync Database Remote PST

Entry 1 Entry 1 Entry 1
Entry 2

Entry 3

Entry 4

Entry 5 Entry 5

Entry 6 Entry 6

As discussed above, mobile data management application
18 may be running 1n a local or a split synchronization mode
(612). It mobile data management application 18 1s running in

US 8,458,127 Bl

9

the local mode (612), it mounts the remote PST and imple-
ments the changes 1dentified in the change work list in the
local-to-remote direction via a MAPI layer (614), and
accesses the local PST file (either by directly mounting it or
accessing thru the access plug-1n) implements the changes to
the local PST file 1in the remote-to-local direction (615).
Mobile data management application 18 then updates the
local synchronization database to retlect the current state of
the local PST file (616).

If mobile data management application 18 1s executing in
the split synchronization mode (612), 1t creates a temporary
PST, based on the master change list and the local PST, to
include the objects added to the local PST file 20 (618), and
transmits the temporary PST and the change list to the remote
server synchronization agent 44 (620). The remote server
synchronization agent 44 applies the changes to the remote
PST file 26, and based on the change list generates a tempo-
rary PST file including the file objects to be added to the local
PST file 20. When mobile data management application 18
and receives remote PST additions (622), 1t adds the file
objects to the local PST file 20 (624). Mobile data manage-
ment application 18 then updates the local synchromization
database to select the current state of the local PST (616).

The following pseudo-code sets forth decisional logic that
can be applied to each row of the synchronization table to
identily object deletions, additions and changes and to gen-
crate a change work list for both the local-to-remote and
remote-to-local directions. As mentioned in the previous
pseudo-code section for the one-way backup implementa-
tion, the listed definitions also apply to the following pseudo-
code representation for the above-described two-way syn-
chronization implementation.

Two-Way Synchronization:

1. If there 1s no local record AND there 1s no syncdb record

AND there 1s a remote record

1.1. Then the object has been created remotely and will be

copied to the local
2. Else i there 1s no local record AND there 1s a syncdb record
AND there 1s no remote record
2.1. Then assume the object was deleted from both the local
and remote outside of the synchronization process,
remove the syncdb record
3. Else if there 1s no local record AND there 1s a syncdb record
AND there 1s a remote record
3.1. If the syncdb record flags are the same as the remote
record flags AND (the syncdb record timestamp 1ndi-
cates an error OR the remote record timestamp indicates
an error OR the syncdb record timestamp indicates a
more recent change than the remote record)
3.1.1. Then assume the object was deleted locally and

will be deleted remotely
3.2. Else

3.2.1. There 1s conflict
4. Else if there 1s a local record AND there 1s no syncdb record
AND there 1s no remote record
4.1. Then the object has been created locally and will be
copied to the remote
5. Else if there 1s a local record AND there 1s no syncdb record
AND there 1s a remote record
5.1. If the syncdb record flags are the same as the remote
record flags AND (the local record timestamp 1ndicates
an error OR the remote record timestamp indicates an
error OR the local record timestamp 1s the same as the
remote record timestamp)
5.1.1. Then assume the object has not changed between
the local and remote and only the synchronization
database will be updated to reflect this

5

10

15

20

25

30

35

40

45

50

55

60

65

10
5.2. Else
5.2.1. There 1s contlict
6. Else 11 there 1s a local record AND there 15 a syncdb record
AND there 1s no remote record
6.1. I the syncdb record flags are the same as the local
record tlags AND (the syncdb record timestamp indi-
cates an error OR the local record timestamp indicates
an error OR the syncdb record timestamp 1s more recent
than the local record timestamp)
6.1.1. Then assume the object was deleted remotely and
will be deleted locally
6.2. Else
6.2.1. There 1s contlict
7. Else if there 1s a local record AND there 1s a syncdb record
AND there 1s a remote record
7.1. If the local record tlags are not the same as the remote
record tlags
7.1.1. IT the local record flags are the same as the syncdb
record flags
7.1.1.1. If the local record timestamp indicates an
error OR the remote record timestamp indicates an
error OR the syncdb record timestamp indicates
and error OR the local record timestamp 1s the same
as the remote record timestamp
7.1.1.1.1. Then the remote object flags have been
changed and will be copied to the local
7.1.1.2. Else
7.1.1.2.1. There 1s a contlict

7.1.2. Else if the remote record tlags are the same as the
syncdb record flags
7.1.2.1. IT the local record timestamp indicates an
error OR the remote record timestamp 1indicates an
error OR the syncdb record timestamp indicates
and error OR the local record timestamp 1s the same
as the remote record timestamp
7.1.2.1.1. Then the local object flags have been
changed and will be copied to the remote

7.1.2.2. Else
7.1.2.2.1. There 1s a conflict
7.1.3. Else

7.1.3.1. There 1s conflict 1n the flags
7.2. Else 11 the local record flags are not the same as the
syncdb record flags
7.2.1. I the local record timestamp indicates an error OR
the remote record timestamp 1ndicates an error OR the
syncdb record timestamp indicates and error OR the
local record timestamp 1s the same as the remote
record timestamp
7.2.1.1. Then the syncdb record will be updated
7.2.2. Else
7.2.2.1. There 1s no change
7.3. Else
7.3.1. There 1s no change
7.4. IT 1t has been determined that nothing has changed or
that the syncdb record needs updating
7.4.1. If the local record timestamp indicates an error OR
the remote record timestamp 1ndicates an error OR the
local record timestamp 1s not the same as the remote
record timestamp
7.4.1.1. If the local record timestamp 1s the same as
the syncdb record timestamp
7.4.1.1.1. I1 the remote record timestamp 1s more
recent than the syncdb record timestamp
7.4.1.1.1.1. Then assume the remote object has
changed and will be copied to the local

US 8,458,127 Bl

11

7.4.1.1.2. Else
7.4.1.1.2.1. Then assume the local object has
changed and will be copied to the remote
7.4.1.2. Else if the remote record timestamp 1s the
same as the syncdb record timestamp
7.4.1.2.1. It the local record timestamp 1s more
recent than the syncdb record timestamp
7.4.1.2.1.1. Then assume the local object has
changed and will be copied to the remote
7.4.1.2.2. Else
7.4.1.2.2.1. Then assume that the remote object
has changed and will be copied to the local
7.4.2. Else 1f the local record timestamp does not indi-
cate an error AND the syncdb record timestamp indi-
cates an error AND the remote record timestamp does
not indicate an error
7.4.2.1. I the local record timestamp 1s more recent
than the remote record timestamp
7.4.2.1.1. Then assume that the local object has
changed and will be copied to the remote
7.4.2.2. Else if the remote record timestamp 1s more
recent than the local record timestamp
7.4.2.2.1. Then assume that the remote object has
changed and will be copied to the local
7.4.2.3. Else
7.4.2.3.1. The syncdb record will be updated to
reflect the corrected timestamps of the local and
remote records
Additionally, 1n view of the two-way synchromization
pseudo-code, mstead of synchronizing between a network
drive and a local drive, two-way synchromization may be
performed between the local drive and an external drive, in
one 1mplementation. By doing this, a user can keep active
PSTs synced on multiple PSTs. Additionally, the virtual net-
work cache may be located on the external drive. This way the
user may be mobile with the PST file (on the external drive)
without syncing to the local hard disk but sync the external
drive directly to the network. Preterably, for consistent behav-
101, 1t 18 recommended 1n this scenario to work 1n a forced
cached mode, and keep the network synced using Mail Har-
mony® when network connectivity 1s available, otherwise,
when network connectivity 1s not available, an offline mode
will be utilized.
B.3. Example Synchronization Configurations
The synchronization functionality described above can be
utilized 1n a vaniety of different manners. For example, the
synchronization functionality can be utilized to synchronize a
local PST file 20 with a remote PST file 26 directly. In another
implementation, the synchronization functionality described
herein can be utilized 1n a first synchromzation phase to
synchronize the local PST file 20 with a “virtual” remote PST
file 22 stored 1n the local cache 38 1n connection with the
virtual network drive 56. A second synchronization process
between the virtual remote PST file 22 and the remote PST
file 26 can be mitiated when network connectivity 1s estab-
lished.
C. Example Computing System Architecture
FIG. 8 1s a diagram showing a high-level example system
architecture that may be used to implement a client or server.
In one embodiment, hardware system 200 comprises a pro-
cessor 202, a cache memory 204, and one or more soitware
applications and drivers directed to the functions described
herein. Additionally, hardware system 200 includes a high
performance input/output (I/0) bus 206 and a standard 1/O
bus 208. A host bridge 210 couples processor 202 to high
performance I/O bus 206, whereas 1/0O bus bridge 212 couples
the two buses 206 and 208 to each other. A system memory

10

15

20

25

30

35

40

45

50

55

60

65

12

214 and one or more network/communication interfaces 216
couple to bus 206. Hardware system 200 may further include
video memory (not shown) and a display device coupled to
the video memory. Mass storage 218 and I/O ports 220 couple
to bus 208. The I/O port 220 can be an RS-232 port that can
accommodate the RS-232 standard mentioned 1n the previous
section. In some, but not all, embodiments, hardware system
200 may also include a keyboard and pointing device 222 and
a display 224 coupled to bus 208. Collectively, these elements
are intended to represent a broad category of computer hard-
ware systems, imncluding but not limited to general purpose
computer systems based on the x86-compatible processors
manufactured by Intel Corporation of Santa Clara, Calif., and
the x86-compatible processors manufactured by Advanced
Micro Devices (AMD), Inc., of Sunnyvale, Calif., as well as
any other suitable processor.

The elements of hardware system 200 are described 1n
greater detail below. In particular, network interface 216 pro-
vides communication between hardware system 200 and any
of a wide range of networks, such as an Ethernet (e.g., IEEE
802.3) network, etc. Mass storage 218 provides permanent
storage for the data and programming instructions to perform
the above described functions, whereas system memory 214
(e.g., DRAM) provides temporary storage for the data and
programming instructions when executed by processor 202.
I/O ports 220 are one or more serial and/or parallel commu-
nication ports that provide communication between addi-
tional peripheral devices, which may be coupled to hardware
system 200.

Hardware system 200 may include a variety of system
architectures; and various components ol hardware system
200 may be rearranged. For example, cache 204 may be
on-chip with processor 202. Alternatively, cache 204 and
processor 202 may be packed together as a “processor mod-
ule,” with processor 202 being referred to as the “processor
core.” Furthermore, certain embodiments of the present
invention may not require nor include all of the above com-
ponents. For example, the peripheral devices shown coupled
to standard I/0O bus 208 may couple to high performance 1/O
bus 206. In addition, 1n some embodiments only a single bus
may exist with the components of hardware system 200 being
coupled to the single bus. Furthermore, hardware system 200
may include additional components, such as additional pro-
cessors, storage devices, or memories.

In particular embodiments, the processes described herein
may be implemented as a series of software routines run by
hardware system 200. These software routines comprise a
plurality or series of instructions to be executed by a proces-
sor 1n a hardware system, such as processor 202. Initially, the
series ol mstructions are stored on a storage device, such as
mass storage 218. However, the series of mstructions can be
stored on any suitable storage medium, such as a diskette,
CD-ROM, ROM, EEPROM, etc. Furthermore, the series of
instructions need not be stored locally, and could be recerved
from a remote storage device, such as a server on a network,
via network/communication interface 216. The instructions
are copied from the storage device, such as mass storage 218,
into memory 214 and then accessed and executed by proces-
sor 202.

An operating system manages and controls the operation of
hardware system 200, including the input and output of data
to and from software applications (not shown). The operating
system provides an interface between the software applica-
tions being executed on the system and the hardware compo-
nents ol the system. According to one embodiment of the
present invention, the operating system 1s the Linux operating
system. However, the present mvention may be used with

US 8,458,127 Bl

13

other suitable operating systems, such as the Windows®
05/98/NT/XP/Vista operating system, available {rom
Microsoit Corporation of Redmond, Wash., the Apple Macin-
tosh Operating System, available from Apple Computer Inc.
of Cupertino, Calif., UNIX operating systems, and the like.

Particular embodiments of the above-described processes
might be comprised of 1instructions that are stored on storage
media. The instructions might be retrieved and executed by a
processing system. The instructions are operational when
executed by the processing system to direct the processing
system to operate 1n accord with the present invention. Some
examples of instructions are software, program code, firm-
ware, and microcode. Some examples of storage media are
memory devices, tape, disks, integrated circuits, optical
disks, magnetic disks and hard drives. The term “processing
system” refers to a single processing device or a group of
inter-operational processing devices. Some examples of pro-
cessing devices are integrated circuits and logic circuitry.
Those skilled 1n the art are familiar with 1nstructions, storage
media, and processing systems.

While a number of exemplary aspects and embodiments
have been discussed above, those of skill in the art will rec-
ognize certain modifications, permutations, additions and
sub-combinations thereof. For example, while implementa-
tions of the mvention have been described as operating on a
PST file, the present invention has application to synchroni-
zation and back up of other container file formats. Accord-
ingly, it 1s therefore intended that the following appended
claims and claims hereafter introduced are interpreted to
include all such modifications, permutations, additions and
sub-combinations as are within their true spirit and scope.

What 1s claimed 1s:

1. A method comprising:

responsive to a synchronization operation identifying a

first application data {file, selecting, by a synchronization
engine executing on a host, from a data access module
operative to directly access the first application data file
and a data access plug-in to an application executing on
the host, wherein the data access plug-in 1s operative to
access the first application data file via the application,
wherein the data access plug-in 1s selected over the data
access module 1f the application has a lock on the first
application data file thereby preventing direct access to
the first application data file by the data access module,
the lock indicating a reservation for use by the data
access module;

responsive to the synchronization operation, determining a

connection mode between the synchromization engine
and a remote server;
gathering, using the selected access method, state informa-
tion relating to the first application data file; and

synchronizing the first application data file with a second
application data file based at least 1n part on the state
information.

2. The method as recited 1n claim 1 wherein from the data
access module and the data access plug-1n 1s repeated for at
least one operation 1n the synchronizing step.

3. The method as recited claim 1 wherein synchronizing,
based at least in part on the state information comprises
comparing the gathered state information of the first applica-
tion data file to a synchronization database, reflective of a
previous synchronization step, to generate a change work list
to be implemented on the second application data file.

4. The method as recited 1n claim 3 wherein determining,
the connection mode comprises determining the status of a
connection between the synchronization engine and a net-
work drive.

10

15

20

25

30

35

40

45

50

55

60

65

14

5. The method as recited 1n claim 4 wherein 11 the connec-
tion mode 1s a local mode then the synchronization 1s per-
formed directly on the second application data file.

6. The method as recited in claim 4 wherein 11 the connec-
tion mode 1s a non-local mode then the synchromization 1s
performed by creating a data file of changes to be performed
on the second application data file and a change list detailing
how to implement the changes.

7. The method as recited in claim 6 wherein a remote agent
performs the changes to the second application data file based
on the data file and the change list.

8. The method as recited 1n claim 5 further comprising
updating the synchronization database based on the per-
tormed synchronization.

9. The method as recited 1n claim 7 further comprising
updating the synchronization database based on the per-
tormed synchronization.

10. The method as recited 1n claim 1 further comprising

gathering state information relating to the second application
data file.

11. The method as recited 1n claim 10 further comprising
building a synchronization table based on the gathered state
information of the first and second application data files.

12. The method as recited 1 claim 11 further comprising
generating a change work list from the synchronization table.

13. The method as recited 1n claim 12 further comprising
determining a connection mode.

14. The method as recited 1n claim 13 wherein 11 the con-
nection mode 1s a local mode then the synchronization 1s
performed directly on the second application data file.

15. The method as recited 1n claim 12 wherein 11 the con-
nection mode 1s a non-local mode then the synchronization 1s
performed by creating a data file of changes to be performed
on the second application data file and a change list detailing
how to implement the changes.

16. The method as recited 1n claim 15 wherein a remote
agent performs the changes to the second application data file
based on the data file and the change list.

17. The method as recited 1in claim 16 further comprising
receiving additions to the second data application data file and
applying the additions to the first data application data file.

18. The method as recited 1n claim 14 further comprising
updating the synchronization database based on the per-
formed synchronization.

19. The method as recited 1n claim 15 further comprising
updating the synchronization database based on the per-
tormed synchronization.

20. An apparatus comprising:

a memory;

One or more Processors;

computer-executable program code stored 1n the memory

and executable by the one or more processors, the com-

puter-executable program code comprising

an application comprising computer-executable instruc-
tions configured to cause the one or more processors
to obtain a lock on a first application data file when
accessing the first application data file;

a data access plug-1n to the application comprising com-
puter-executable istructions configured to cause the
one or more processors to provide access through the
application to the first application data file to a syn-
chronization engine when the application has a lock
on the first application data file;

a data access module operative to directly access the first
application data file responsive to commands of the
synchronization engine;

US 8,458,127 Bl

15

a synchronization engine comprising computer-executable
instructions configured to cause the one or more proces-
sors 1o
responsive to a synchronization operation identifying

the first application data file, select the data access
module or the data access plug-in for accessing the
first application data file, wherein the data access
plug-1n 1s selected over the data access module 1f the

application has a lock on the first application data file
thereby preventing direct access to the first applica-
tion data file by the data access module, the lock
indicating a reservation for use by the data access
module;

responsive to the synchronization operation, determine a
connection mode between the synchronization engine
and a remote server;

gather, using the selected access method, state informa-
tion relating to the first application data file; and

synchronize the first application data file with a second
application data file based at least 1n part on the state
information.

21. The apparatus as recited in claim 20 wherein selecting
the data access module or the data access plug-1in 1s repeated
for at least one operation 1n the synchronizing step.

22. The apparatus as recited claim 20 wherein synchronize
based at least in part on the state information comprises
compare the gathered state information of the first application

10

15

20

25

16

data file to a synchronization database, retlective of a previous
synchronization step, to generate a change work list to be
implemented on the second application data file.

23. The apparatus as recited in claim 22 wherein the logic
operable to determine the connection mode further comprises
logic operable to determine the connection mode by deter-
mining the status of a connection between the synchroniza-
tion engine and a network drive.

24. The apparatus as recited 1in claim 23 wherein 1f the
connection mode 1s a local mode then the synchronization 1s
performed directly on the second application data file.

25. The apparatus as recited 1n claim 23 wherein 1f the
connection mode 1s a non-local mode then the synchroniza-
tion 1s performed by creating a data file of changes to be
performed on the second application data file and a change list
detailing how to implement the changes.

26. The apparatus as recited in claim 25 wherein a remote
agent performs the changes to the second application data file
based on the data file and the change list.

277. The apparatus as recited in claim 24 further comprising
logic operable to cause the one or more processors to update
the synchronization database based on the performed syn-
chronization.

28. The apparatus as recited in claim 27 further comprising,
updating the synchronization database based on the per-
formed synchronization.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

