12 United States Patent

US008453132B2

(10) Patent No.: US 8.453.132 B2

Mannarswamy et al. 45) Date of Patent: May 28, 2013
(54) SYSTEM AND METHOD FOR RECOMPILING 7,257,685 B2* 82007 Teneetal.ccvvvvn..... 711/154
CODE BASED ON LLOCALITY DOMAIN AND 7,308,680 B2* 12/2007 Groveretal. 717/114
7451438 B2* 11/2008 Kielstraetal. 717/154
THREAD AFFINITY IN NUMA COMPUTER 2003/0188299 Al* 10/2003 Broughton et al. 717/141
SYSTEMS 2004/0015920 Al* 1/2004 Schmidt ..ooovvrviooon. 717/153
2005/0080980 Al1* 4/2005 Wuetal. ..o, 711/1
(75) Inventors: Sandya S. Mannarswamy, Bangalore 2005/0283771 A1* 12/2005 Pallercccccovvevueennnnn, 717/151
(IN): Virendra Kumar Mehta 2007/0250825 Al* 10/2007 Hicks etal. ..c..ccco......... 717/151
Cupértino CA (US)' Prakash ’ 2008/0288737 Al* 11/2008 Zhuangetal. 711/165
Sathyanath Raghavendra, Bangalore FORFEIGN PATENT DOCUMENTS
(IN) JP 06-075786 3/1994
_ JP HO06-131313 5/1994
(73) Assignee: Hewlett-Packard Development TP 07-141305 2/1995
Company, L.P., Houston, TX (US) JP H10-063525 3/1998
P 2002-149481 5/2002
(*) Notice: Subject to any disclaimer, the term of this P 2002-251321 6/2002
patent 1s extended or adjusted under 35
OTHER PUBLICATIONS

U.S.C. 154(b) by 1327 days.

(21) Appl. No.: 11/812,639

(22) Filed: Jun. 20, 2007
(65) Prior Publication Data

US 2008/0028179 Al Jan. 31, 2008
(30) Foreign Application Priority Data

Jul. 28,2006 (IN) .o, 1331/CHE/2006

(51) Int.CL

GO6IF 9/45 (2006.01)

GO6I 9/44 (2006.01)
(52) U.S. CL

USPC 717/151;°717/114;°717/141; 717/134
(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,665,865 B1* 12/2003 Rufcccoooiiiininninn 717/157
6,675,378 B1* 1/2004 Schmdt 717/154
7,146,606 B2* 12/2006 Mitchelletal. 717/141

Chor et al., Stack allocation and synchronization optimizations for
Java using escape analysis, Nov. 2003, 35 pages, <http://delivery.
acm.org/10.1145/950000/945892/p876-cho1.pdf>.*

(Continued)

Primary Examiner — Thuy Dao

(57) ABSTRACT

A technique for reducing non-local access, in dynamically
generated code that resides 1n a code buifer of a non-uniform
memory access computer system including multiple nodes,
for improving overall performance of dynamic optimization
systems. In one example embodiment, this 1s accomplished
by partitioning the code buffer into multiple smaller code

il

butilers and assigning each of the multiple smaller code buil-
ers to one of the multiple nodes. Statically determining which
methods 1n the generated code are executed by a thread and
then to place those methods 1n associated one of the multiple
smaller code butfers to reduce memory latencies introduced
by non-local accesses.

18 Claims, 2 Drawing Sheets

110

PARTITION CODE BUFFER INTO MULTIPLE 4
SMALLER CODE BUFFERS

ASSIGN EACH OF THE MULTIPLE SMALLER CODE /
BUFFERS TO EACH CELL

120

TN

PERFORM ESCAPE ANALYSIS

YES

h, 4

PLACING THE GENERATED

CODE OF THE METHOD IN |~ 10
THE CELL ASSOCIATED

WITH THE S5ETS OF THREADS

S THERE ANY SETS O
THREADS THE METHODS DO
MNOT ESCAPE?

140

h 4

PLACING THE GENERATED
CODE IN THE MULTIPLE |~ 180
SMALLER CODE BUFFERS
BASED ON OFF-LINE PROFILE
DATA

US 8,453,132 B2
Page 2

OTHER PUBLICATIONS

Kotzmann et al., Escape analysis in the context of dynamic compi-
lation and deoptimization, Jun. 2005, 10 pages, <http://delivery.acm.

org/10.1145/1070000/1064996/pl 1 1-kotzmann.pdf>.*

Mu et al., Interactive locality optimization on NUMA architectures,
Jun. 2003, 10 pages, <http://delivery.acm.org/10.1145/780000/
774853/p133-mu.pdf>.*

Hazelwood et al., “Exploring Code Cache Eviction Granularities in
Dynamic Optimization Systems,” Second Annual IEEE/ACM Inter-

national Symposium on code Generation and Optimization (CGO-
04), Mar. 2004, pp. 89-99.

* cited by examiner

U.S. Patent May 28, 2013 Sheet 1 of 2 US 8,453,132 B2

— — 110

PARTITION CODE BUFFER INTO MULTIPLE 4
SMALLER CODE BUFFERS

— —T — 120

ASSIGN EACH OF THE MULTIPLE SMALLER CODE |/
BUFFERS TO EACH CELL

1(5\4

S — - J S

PERFORM ESCAPE ANALYSIS

140

S THERE ANY SETS O
THREADS THE METHODS DO
NOT ESCAPE?

YES NO

- Y . . A 2N
PLACING THE GENERATED
PLACING THE GENERATED CODE IN THE MULTIPLE |~ 160
CODE OF THE METHOD IN |~ 150 SMALLER CODE BUFFERS
THE CELL ASSOCIATED BASED ON OFF-LINE PROFILE
WITH THE SETS OF THREADS DATA

FIG. 1

”

. 2

e

1-...,.

e

\(

4-...,.

“© TOVHQLS

% FITVAONWTY-NON

ple
TIOVAAINI YHOMLIN
A 212
. |
3 e
M,. COZ
% .
i
7).
<
—
g
S TN
- ONIS SHOON
> ANOWAN TTIVIOA-NON
ANOWEIW TV IOA
cOC

Ol¢

U.S. Patent

HOIAZA U IO
81¢

SINA 1 MNT 441ST)

9lLc

00¢

US 8,453,132 B2

1

SYSTEM AND METHOD FOR RECOMPILING
CODE BASED ON LOCALITY DOMAIN AND

THREAD AFFINITY IN NUMA COMPUTER
SYSTEMS

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to computer soft-
ware, and more particularly relates to reallocating portions of
a computer program for improved performance.

BACKGROUND OF THE INVENTION

Multiprocessor computer systems can be generally divided
into two categories: systems with multiple processors either
having a common shared memory and peripherals or having
distributed memories and peripherals. Systems organized so
that all processors have equal access to the peripheral devices
and memories are known as symmetric multiprocessing
(SMP) systems. The processors within an SMP system are
connected to the shared memory and to each other via a
common bus. A bus hierarchy may be used to connect the
peripheral devices.

In non-uniform memory access (“NUMA™) computer
architecture, memory access latencies are allowed to differ
depending on processor and memory locations. All proces-
sors in a NUMA computer system continue to share system
memory but the time required to access memory varies, 1.€., 18
non-uniform, based on the processor and memory location.
The main advantage of NUMA SMP designs over other alter-
natives like UMA SMP designs 1s scalability. Further, pro-
gramming on NUMA SMPs 1s as simple as programming on
traditional SMP shared memory. As a result, NUMA com-
puter systems can run existing SMP applications without
modifications.

Ina NUMA computer system where processors and system
memory are organized ito two or more clusters or locality
domains, each locality domain can include one or more pro-
cessors which communicate with the local memory by means
of a local bus. Each locality domain also includes a bridge for
interconnecting the locality domain with other locality
domains by means of a communication channel 1n order to
form a network of intercommunicating locality domains. In
such a multinode multiprocessor computer system, perfor-
mance ol a particular processor 1s always best if it accesses
memory from its own local locality domain rather than from
a remote locality domain, because it only requires access to
the local bus.

A determination of underlying architecture and memory
access patterns of all locality domains 1n a multinode multi-
processor computer system and exploiting the knowledge to
optimally place program and data on a NUMA machine, can
lead to significant performance gains. The system firmware
generally contains topology information for all the processors
and memories present 1n a multi processor environment dur-
ing system reboot. Such topology information i1dentifies the
locality domains—groups of processors and associated
memories 1n the system. This enables a tight coupling
between the processors and the memory ranges 1n a locality
domain and the operating system can use such aflinity infor-
mation to determine the allocation of memory resources and
the scheduling of software threads to improve the system
performance.

Current optimization techniques use such aifinity informa-
tion to better use locality domains to reduce memory access
latency. For example, most operating systems provide a way
to lock an entire process within a locality domain so that all

10

15

20

25

30

35

40

45

50

55

60

65

2

threads of a process are able to share a common pool of
memory that provides a substantially low amount of latency.
If a process requires spanning across locality domains, the
current techniques provide better memory access to different
threads by splitting the thread accessed locality domains into
local domain memory segments. While these techniques

address data handling, they do not address instruction han-
dling. In addition, current techniques do not partition code
builer based on locality domain and/or thread aflinity in
NUMA computer systems using such atfinity information.

SUMMARY OF THE INVENTION

According to an aspect of the subject matter, there 1s pro-
vided a method for improving instruction locality by splitting
the code bufler for executable code 1 multiple locality
domains, comprising the steps of partitioning the code butfer
into multiple smaller code buffers, assigning each of the
multiple smaller code builers to one of the multiple nodes,
performing escape analysis during compilation of methods,
determining 1f there 1s any of the sets of threads associated
with the methods that do not escape, and 11 so, placing the
generated code associated with each of the sets of threads
associated with the methods that do not escape in the associ-
ated partitioned multiple smaller code buffers that are
assigned to the multiple nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the mnvention will now be described, by
way ol example only, with reference to the accompanying
drawings 1n which:

FIG. 1 1s a flowchart illustrating a method for recompiling
executable code to improve performance according to an
embodiment of the present subject matter.

FIG. 2 1s a block diagram of a typical computer system
used for implementing embodiments of the present subject
matter shown 1n FIG. 1.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description of the wvarious
embodiments of the invention, reference 1s made to the
accompanying drawings that form a part hereot, and 1n which
are shown by way of 1illustration specific embodiments 1n
which the invention may be practiced. These embodiments
are described 1n sufficient detail to enable those skilled in the
art to practice the mvention, and 1t 1s to be understood that
other embodiments may be utilized and that changes may be
made without departing from the scope of the present inven-
tion. The following detailed description is, therefore, not to be
taken 1n a limiting sense, and the scope of the present inven-
tion 1s defined only by the appended claims.

The term “thread” refers to independent paths of execution
for a program. For example, for an e-commerce computer
application, different threads might be assigned to different
customers so that each customer’s specific e-commerce trans-
action 1s handled 1n a separate thread. The discussion herein-
alter will refer to the entities that are assigned to particular
sets of resources as being “threads™. It will be appreciated,
however, that other terminology may be used to describe
entities that define unique paths of execution 1n a computer
system. As such, the term “thread” should be considered to
correspond to any entity 1n a computer defining a particular
execution path 1n a computer system.

A thread type within the context of the present subject
matter may include practically any attribute or other distin-

US 8,453,132 B2

3

guishing characteristic of a thread, including, but not limited
to, run priority, assignment to the same virtual or physical
buifer or memory, user 1dentity, parent logical subsystem,
10b, application, task or thread, assignment to the same
memory sub system, name of the initial program to be
executed when thread started, thread authority, and user pro-
file.

Also the terms “locality domain™, “cluster”, and “cell” are
used mterchangeably throughout the document.

The present technique divides methods present 1n gener-
ated code based on partitioned multiple smaller code butfers.
It further groups the divided methods and associated sets of
threads together into these partitioned multiple smaller code
butifers. Furthermore, it associates the grouped methods and
threads with assigned nodes. Basically, each method gets
placed 1nto one of the associated partitioned multiple smaller
code bullers and the grouped thread executes on one of the
associated multiple nodes. In addition, the present technique
uses the online profile data to place the code generated from
compilation of new methods or recompilation of existing
methods such that the non-local accesses are minimized.

FIG. 1 1llustrates an example method 100 of recompiling
reducing non-local access for dynamically generated code
residing in a code buifer in a NUMA computer system with
multiple nodes. The dynamically generated code can be for
JAVA methods, which 1s generated 1in smaller snippets and 1ts
access patterns can be determined by the run-time environ-
ment. For example, 1n a multi-threaded program, different
threads may be doing different work and can be working with
different JAVA methods. Also for example, 11 there are four
cells in the NUMA computer system, the code buffer can be
split 1into four associated parts (C1, C2, C3 and C4). At step
110, this example method 100 begins by partitioning the code
builer mto multiple smaller code buifers. In some embodi-
ments, generally known techmiques, such as mmaps are used
to partition the code butler. In our running example, the four
smaller buflfers are assigned to their associated four different
cells, 1.e., placing them 1n corresponding CLMs (Cell Local
Memories).

At step 120, each of the multiple smaller code builers 1s
assigned to an associated node i the multi-node NUMA
computer system. In some embodiments, the size of each of
the multiple smaller code buifers 1s determined based on

off-line profile data. For example, for a typical application
run, 1f we need about 40% of the code bufter in cell, C1, 20%

each 1n C2, C3 and C4. Then, we can divide the code butter
into corresponding sizes and associate these smaller butlers
with these corresponding cells.

At step 130, escape analysis 1s performed during compila-
tion of methods 1n the generated code to find a method, or
methods, that do not escape threads or sets of threads. Escape
analysis 1s a static analysis that determines whether the life-
time ol data may exceed 1ts static scope. The escape analysis
can also determine 1f an object can be allocated on the stack.
Further the technique facilitates 1n determining 1f an objectis
accessed only by a single thread during its lifetime so that
synchronization operations on that object can be removed.

In some embodiments, the methods refer to JAVA functions
and/or procedures. The escape analysis information can be
gathered by the compiler using well-known conventional
techniques. The escape analysis information provides 1nfor-
mation, such as which objects can be allocated on a stack
instead of on the heap, which set of instructions do not escape
a thread, and so on; This information can be used to divide a
set of hot methods and a set of threads such that each method
talls into a non-escape set of a thread. For example, the escape
analysis might tell us that a method, M, does not escape set of

10

15

20

25

30

35

40

45

50

55

60

65

4

threads, T1 and T2. Then, we can place code generated from
compilation of M only on the associated cell, to which threads
T1 and T2 are tied (or on which cell the threads T1 and T2
run).

At step 140, the method 100 determines whether there are
any methods that do not escape each of the sets of threads.
Based on the determination at step 140, i there are methods
that do not escape each of the sets of threads, the method 100
goes to step 150. At step 150, the generated code associated
with the methods that do not escape each of the sets of threads
1s placed 1n the associated partitioned multiple smaller code
butlfers that are assigned to the multiple nodes.

Based on the determination at step 140, 11 there are no
methods that do not escape each of the sets of threads, the
method 100 goes to step 160. At step 160, the generated code
associated with the methods that do not escape each of the sets
of threads 1s placed 1n the multiple code butfers based on an
off-line profile data. For example, 1f we cannot find any sets of
threads which a method, M, does not escape, then we can
place the code compiled for method, M, into CLMs of those
cells, C1, C2, C3 and C4 as follows: From oitline profile data,
if 1t can be determined that the certain threads T1, T2, ... T1
can access a certain set of methods M1, M2, . . . Mifrequently,
then the thread set T1, 12 . . . Tican be tied to a cell Ciand by
placing the code compiled for that method set M1, M2, . . . M1
on to the associated cell Ci.

Generally, the off-line profile data includes the information
per method, like, the number of 1nvocations executed in inter-
preter mode of that method, the number of invocations
executed in compilation mode of that method, total number of
invocations of that method, average time taken for one 1nvo-
cation in mterpreter mode of that method, average time taken
for one mvocation of compiled code of that method, the
invocation count at the time 1t 1s sent to the compile request
list, the method size (estimated from a cost analysis of the
instructions in the method), the compilation time etc.

In some embodiments, newly or recompiled methods asso-
ciated with sets of threads are periodically reassigned to asso-
ciated multiple smaller code butlers based on online profile
data. The online profile information 1s used to find nstruc-
tions which suffer from remote memory misses during code
cache accesses. This information helps in allocating code
cache for each instruction such that the istructions are
mapped on to the associated locality domain where the
threads are schedule to run. In these embodiments, this infor-
mation 1s also reported so that 1t can assist a programmer to
use, for example, pset calls to tie the threads to the associated
locality domain. The profiling information can also include
data about the frequencies with which different execution
paths 1n a program are traversed which can facilitate 1n deter-
mining the order 1n which mstructions can be packaged. By
discovering the “hot code” through a procedure, the mstruc-
tions can be packed to those traces consecutively into cache
lines, which can result 1n greater cache utilization and fewer
cache misses. Thus, profile information can be used to reduce
contlict misses 1n set-associate cache misses. In addition, the
profiling imformation can assist 1n separate infrequently
executed traces from the main procedure body for additional
elficiency.

Generally, a hot code 1s run 1n an mterpretation mode. As
the interpreter executes, it gathers on-line profile data 1ndi-
cating which code sections are being executed frequently.
These code sections are designated as “hot” code, and are
compiled 1n a compilation mode 1nto machine code. Thus,
only code that 1s executed frequently 1s compiled. If the

US 8,453,132 B2

S

number of ivocations of a code section 1s determined to be
above a static hotness threshold, then the code section 1s
compiled.

In some embodiments, the generated code residing in the
assigned multiple smaller code buffers 1s mvalidated upon
periodically placing copies of the recompiled generated code
in the associated multiple nodes for a predetermined number
of times. In these embodiments, the predetermined number of
times to place copies of the recompiled generated code 1s
determined based on an empirical approach. In some embodi-
ments, newly generated code i1s periodically placed in the
associated multiple nodes based on on-line profile data.

In some embodiments, the steps of periodically 1nvalidat-
ing the generated code residing in the assigned multiple
smaller code butlers and placing copies of the recompiled
generated code 1s repeated during a predefined event, such as
the garbage collection event.

Although the flowchart 100 includes steps 110-140 that are
arranged serially 1n the exemplary embodiments, other
embodiments of the subject matter may execute two or more
steps 1n parallel, using multiple processors or a single proces-
sor organized as two or more virtual machines or sub-proces-
sors. Moreover, still other embodiments may implement the
steps as two or more specific interconnected hardware mod-
ules with related control and data signals communicated
between and through the modules, or as portions of an appli-
cation-specific integrated circuit. Thus, the exemplary pro-
cess flow diagrams are applicable to soitware, firmware, and/
or hardware implementations.

Although the embodiments of the present mvention are
described 1n the context of non-distributed environment they
can be very much implemented in the distributed environ-
ment as well.

Various embodiments of the present subject matter can be
implemented 1n software, which may be run 1n the environ-
ment shown 1n FIG. 2 (to be described below) or 1n any other
suitable computing environment. The embodiments of the
present subject matter are operable 1n a number of general-
purpose or special-purpose computing environments. Some
computing environments include personal computers, gen-
eral-purpose computers, server computers, hand-held devices
(including, but not limited to, telephones and personal digital
assistants (PDAs) of all types), laptop devices, multi-proces-
sOrs, microprocessors, set-top boxes, programmable con-
sumer electronics, network computers, minicomputers,
mainframe computers, distributed computing environments
and the like to execute code stored on a computer-readable
medium. The embodiments of the present subject matter may
be implemented 1n part or 1n whole as machine-executable
instructions, such as program modules that are executed by a
computer. Generally, program modules include routines, pro-
grams, objects, components, data structures, and the like to
perform particular tasks or to implement particular abstract
data types. In a distributed computing environment, program
modules may be located 1n local or remote storage devices.

FIG. 2 shows an example of a suitable computing system
environment for implementing embodiments of the present
subject matter. FIG. 2 and the following discussion are
intended to provide a brief, general description of a suitable
computing environment in which certain embodiments of the
inventive concepts contained herein may be implemented.

A general computing device, 1n the form of a computer
210, may include a processor 202, memory 204, removable
storage 201, and non-removable storage 214. Computer 210
additionally 1includes a bus 205 and a network interface 212.

Computer 210 may include or have access to a computing,
environment that includes one or more user mput modules

10

15

20

25

30

35

40

45

50

55

60

65

6

216, one or more output modules 218, and one or more
communication connections 220 such as a network interface
card or a USB connection. The one or more output devices
218 can be a display device of computer, computer monitor,
TV screen, plasma display, LCD display, display on a digi-
tizer, display on an electronic tablet, and the like. The com-
puter 210 may operate 1n a networked environment using the
communication connection 220 to connect to one or more
remote computers. A remote computer may include a per-
sonal computer, server, router, network PC, a peer device or
other network node, and/or the like. The communication con-
nection may include a Local Area Network (LAN), a Wide
Area Network (WAN), and/or other networks.

The memory 204 may include volatile memory 206 and
non-volatile memory 208. A variety ol computer-readable
media may be stored in and accessed from the memory ele-
ments of computer 210, such as volatile memory 206 and
non-volatile memory 208, removable storage 201 and non-
removable storage 214. Computer memory eclements can
include any suitable memory device(s) for storing data and
machine-readable instructions, such as read only memory
(ROM), random access memory (RAM), erasable program-
mable read only memory (EPROM), electrically erasable
programmable read only memory (EEPROM), hard drive,
removable media drive for handling compact disks (CDs),
digital video disks (DVDs), diskettes, magnetic tape car-
tridges, memory cards, Memory Sticks™, and the like;
chemical storage; biological storage; and other types of data
storage.

“Processor” or “processing unit,” as used herein, means
any type of computational circuit, such as, but not limited to,
a microprocessor, a microcontroller, a complex imstruction set
computing (CISC) microprocessor, a reduced instruction set
computing (RISC) microprocessor, a very long instruction
word (VLIW) microprocessor, explicitly parallel instruction
computing (EPIC) microprocessor, a graphics processor, a
digital signal processor, or any other type of processor or
processing circuit. The term also includes embedded control-
lers, such as generic or programmable logic devices or arrays,
application specific itegrated circuits, single-chip comput-
ers, smart cards, and the like.

Embodiments of the present subject matter may be imple-
mented 1n conjunction with program modules, including
functions, procedures, data structures, application programs,
etc., for performing tasks, or defiming abstract data types or
low-level hardware contexts.

Machine-readable 1nstructions stored on any of the above-
mentioned storage media are executable by the processing
unit 202 of the computer 210. For example, a program module
225 may include machine-readable nstructions capable of
reducing non-local access for dynamically generated code
residing 1n a code builer in a NUMA computer system includ-
ing multiple nodes to improve performance according to the
teachings and herein described embodiments of the present
subject matter. In one embodiment, the program module 225
may be included on a CD-ROM and loaded from the CD-
ROM to a hard drive in non-volatile memory 208. The
machine-readable instructions cause the computer 210 to
encode according to the various embodiments of the present
subject matter.

The operation of the computer system 200 for recompiling
executable code to improve performance 1s explained in more
detail with reference to FIG. 1. The above-described tech-
nique uses escape analysis information obtained from a com-
piler to segment executable code bufler for cell based sys-
tems, such as NUMA computer systems. The above
technique proposes persistent code cache schemes on a per

US 8,453,132 B2

7

locality basis for processes having high thread affinity. Fur-
ther, the above technique reduces synchronization overhead
of a shared code cache (i.e., in multiple compiler threads 1n
high speed java virtual machines (JVMs), as opposed to each
thread executing the code by 1tself doing the translation as in
a JIT (Just-in-time compilation) can be reduced. A JI'T com-
piler converts all byte codes 1nto machine code before execu-
tion, but only compiles a code path when 1t knows that the
code path 1s about to be executed.

The above-described process improves performance by
reducing remote memory code bufler misses for dynamic
optimization systems that include cell local memory as well
as blade servers. Further, the above technique uses escape
analysis information obtained from the compiler for segment-
ing the code bufler for Cell Local Memory (CLM) based
systems.

Although, the above example embodiments shown in
FIGS. 1-2 are explained with reference to JVM and NUMA
computer systems, the above-described technique 1s not lim-
ited to only JVM and NUMA computer systems, but 1t can be
used within any executable code on any computer system to
reduce remote memory code buller misses to improve perfor-
mance.

The above technique can be implemented using an appa-
ratus controlled by a processor where the processor 1s pro-
vided with 1nstructions in the form of a computer program
constituting an aspect of the above technique. Such a com-
puter program may be stored in storage medium as computer
readable mstructions so that the storage medium constitutes a
turther aspect of the present subject matter.

The above description 1s intended to be 1llustrative, and not
restrictive. Many other embodiments will be apparent to those
skilled in the art. The scope of the subject matter should
therefore be determined by the appended claims, along with
the full scope of equivalents to which such claims are entitled.

As shown herein, the present subject matter can be imple-
mented 1 a number of different embodiments, including
various methods, a circuit, an I/O device, a system, and an
article comprising a machine-accessible medium having
associated instructions.

Other embodiments will be readily apparent to those of
ordinary skill in the art. The elements, algorithms, and
sequence ol operations can all be varied to suit particular
requirements. The operations described-above with respect to
the method 1llustrated in FIG. 1 can be performed 1n a differ-
ent order from those shown and described herein.

FIGS. 1-2 are merely representational and are not drawn to
scale. Certain proportions thereol may be exaggerated, while
others may be minimized. FIGS. 1-2 illustrate various
embodiments of the subject matter that can be understood and
approprately carried out by those of ordinary skill 1n the art.

In the foregoing detailed description of the embodiments
of the invention, various features are grouped together 1n a
single embodiment for the purpose of streamlining the dis-
closure. This method of disclosure 1s not to be interpreted as
reflecting an intention that the claamed embodiments of the
invention require more features than are expressly recited 1n
cach claim. Rather, as the following claims retlect, inventive
invention lies in less than all features of a single disclosed
embodiment. Thus the following claims are hereby incorpo-
rated nto the detailed description of the embodiments of the
invention, with each claim standing on 1ts own as a separate
preferred embodiment.

The mvention claimed 1s:
1. A method, executed by one or more processors, for
reducing non-local access for dynamically generated code

5

10

15

20

25

30

35

40

45

50

55

60

65

8

residing 1in a code buffer 1n a non-uniform memory access
(“NUMA”) computer system including multiple nodes, com-
prising:
partitioning the code bufler into multiple smaller code
bufters:
assigning each of the multiple smaller code buifers to one
of the multiple nodes;
performing escape analysis during compilation of meth-
ods:
determining 1f there are any methods that do not escape the
associated sets of threads based on the escape analysis, a
thread defining a particular execution path in a computer
system;
11 so, placing the generated code associated with the meth-
ods and the sets of threads in the associated partitioned
multiple smaller code buffers that are assigned to the
multiple nodes;
11 the methods escape, placing the generated code associ-
ated with the methods and the sets of threads in the
multiple smaller code butlers based on off-line profile
data selected from a group consisting of the number of
invocations executed 1n interpreter mode of the methods,
the number of invocations executed i compilation
mode of the methods, total number of invocations of the
methods, average time taken for one invocation 1n inter-
preter mode of the methods, average time taken for one
invocation of compiled code of the methods, the 1nvo-
cation count at the time 1t 1s sent to the compile request
l1st, the method size estimated from a cost analysis of the
instructions in the methods and compilation time;
determining 1f an object 1s accessed only by a single thread
during the object’s lifetime; and
11 so, removing synchronization operations on the object.
2. The method of claim 1, further comprising:
periodically reassigning newly or recompiled generated
code associated with sets of threads to associated mul-
tiple smaller coder butfers that are assigned to the mul-
tiple nodes based on on-line profile data used to find
instructions that miss remote memory during code cache
access.
3. The method of claim 2, further comprising;
invalidating generated code residing 1n the associated mul-
tiple smaller code butfers upon periodically placing cop-
ies of the recompiled generated code 1n the associated
multiple nodes for a predetermined number of times.
4. The method of claim 3, further comprising:
periodically placing newly generated code 1n the associ-
ated multiple nodes based on the on-line profile data.
5. The method of claim 2, further comprising:
repeating the steps ol periodically placing and invalidating
during a predefined event.
6. The method of claim 1, further comprising:
determining size of each of the multiple smaller code buil-
ers based on off-line profile data.
7. An article comprising;:
a non-transitory storage medium having mstructions, that
when executed by a computing platform, result 1n execus-
tion of a method for reducing non-local access for
dynamically generated code residing in a code buifer 1n
a non-uniform memory access (“NUMA™) computer
system including multiple nodes comprising:
partitioning the code bulfer into multiple smaller code
butters:

assigning each of the multiple smaller code butlers to
one of the multiple nodes;

performing escape analysis during compilation of meth-
ods:

US 8,453,132 B2

9

determining 1f there 1s any methods that do not escape
the associated sets of threads based on the escape
analysis, a thread defining a particular execution path
1n a computer system;

if so, placing the generated code associated with the and
the sets of threads 1n the associated partitioned mul-
tiple smaller code builers that are assigned to the
multiple nodes;

if the methods escape, placing the generated code asso-
ciated with the methods and the sets of threads 1n the
multiple smaller code buifers based on off-line profile
data selected from a group consisting of the number of
invocations executed 1n interpreter mode of the meth-
ods, the number of 1nvocations executed 1n compila-
tion mode of the methods, total number of invocations
of the methods, average time taken for one mvocation
in interpreter mode of the methods, average time
taken for one invocation of compiled code of the
methods, the invocation count at the time 1t 1s sent to
the compile request list, the method size estimated
from a cost analysis of the instructions 1n the methods
and compilation time;

determining if an object 1s accessed only by a single
thread during the object’s lifetime; and

if so, removing synchronization operations on the
object.

8. The article of claim 7, further comprising:

periodically reassigning newly or recompiled generated
code associated with sets of threads to associated mul-
tiple smaller coder butfers that are assigned to the mul-
tiple nodes based on on-line profile data used to find
instructions that miss remote memory during code cache
access.

9. The article of claim 8, further comprising:

invalidating generated code residing 1n the associated mul-
tiple smaller code butlers upon periodically placing cop-
ies of the recompiled generated code 1n the associated
multiple nodes for a predetermined number of times.

10. The article of claim 9, further comprising:

periodically placing newly generated code 1n the associ-
ated multiple nodes based on the on-line profile data.

11. The article of claim 9, further comprising:

repeating the steps of periodically placing and invalidating
during a predefined event.

12. The article of claim 7, further comprising;

determining size of each of the multiple smaller code buil-
ers based on off-line profile data.

13. A computer system comprising;

a computer network, wherein the computer network has a
plurality of network elements, and wherein the plurality
of network elements has a plurality of network inter-
faces:

a network interface;

an mput module coupled to the network interface that
receives generated code via the network interface;

a processor; and

a memory coupled to the processor, the memory having
stored therein code associated with reducing non-local

10

15

20

25

30

35

40

45

50

55

10

access for dynamically generated code residing in a code
buffer in a non-uniform memory access (“NUMA™)
computer system including multiple nodes, the code
causes the processor to perform a method comprising:

partitioning the code bulifer into multiple smaller code

butters;
assigning each of the multiple smaller code butfers to
one of the multiple nodes;
performing escape analysis during compilation of meth-
ods;
determining if there 1s any methods that do not escape
the associated sets of threads based on the escape
analysis, a thread defiming a particular execution path
in a computer system;
if so, placing the generated code associated with the
methods and the sets of threads in the associated par-
tittoned multiple smaller code buflers that are
assigned to the multiple nodes;
if the methods escape, placing the generated code asso-
ciated with the methods and the sets of threads in the
multiple smaller code butfers based on off-line profile
data selected from a group consisting of the number of
invocations executed 1n interpreter mode of the meth-
ods, the number of invocations executed in compila-
tion mode of the methods, total number of invocations
of the methods, average time taken for one invocation
in interpreter mode of the methods, average time
taken for one mnvocation of compiled code of the
methods, the 1nvocation count at the time it 1s sent to
the compile request list, the method size estimated
from a cost analysis of the instructions 1n the methods
and compilation time;
determining if an object 1s accessed only by a single
thread during the object’s lifetime; and
i so, removing synchronization operations on the
object.
14. The system of claim 13, further comprising:
periodically reassigning newly or recompiled generated
code associated with sets of threads to associated mul-
tiple smaller coder buffers that are assigned to the mul-
tiple nodes based on on-line profile data used to find
instructions that miss remote memory during code cache
access.
15. The system of claim 14, further comprising:
invalidating generated code residing 1n the associated mul-
tiple smaller code butfers upon periodically placing cop-
ies of the recompiled generated code 1n the associated
multiple nodes for a predetermined number of times.
16. The system of claim 15, further comprising:
periodically placing newly generated code in the associ-
ated multiple nodes based on the on-line profile data.
17. The system of claim 15, further comprising:
repeating the steps ol periodically placing and invalidating
during a predefined event.
18. The system of claim 15, further comprising:
determining size of each of the multiple smaller code buil-
ers based on ofif-line profile data.

G o e = x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,453,132 B2 Page 1 of 1
APPLICATION NO. : 11/812639

DATED : May 28, 2013

INVENTOR(S) : Mannarswamy et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 10, line 55, Claim 18, delete “claim 15, and insert -- claim 13, --, therefor.

Signed and Sealed this
Sixteenth Day of September, 2014

TDecbatle X oo

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

