US008447916B2
a2y United States Patent (10) Patent No.: US 8.447.,916 B2
Rambo et al. 45) Date of Patent: May 21, 2013
(54) INTERFACES THAT FACILITATE SOLID 2009/0204872 Al 8/2009 Yu et al.
STATE STORAGE CONFIGURATION 2010/0262857 Al* 10/2010 Enarsonetal. ................. 714/2
2010/0281299 Al1* 11/2010 Garsonetal. ................... 714/15
2012/0030442 Al1* 2/2012 Nakanishietal. ............ 711/163

(75)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

(56)

Inventors: Trenton P. Rambo, Seattle, WA (US);
Sean Nicholas McGrane, Sammamish,

Assignee:

Notice:

Appl. No.:

Filed:

Int. CI.

WA (US)

Microsoft Corporation, Redmond, WA

(US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 636 days.

12/706,715

Feb. 17, 2010

Prior Publication Data

US 2011/0202790 Al

GO6F 12/00
GO6F 13/00
GO6F 13/28

U.S. CL

USPC

Aug. 18, 2011

(2006.01)
(2006.01)
(2006.01)

711/103; 711/114; 711/115

Field of Classification Search

None

See application file for complete search history.

5,854,942
5,890,204
0,295,575
0,519,679
7,210,077
7,237,021

2006/0253549
2007/0233916
2008/0141043
2008/0244331

References Cited

U.S. PATENT DOCUMENTS

A
A

Bl

B2
B2
B2
A
A
A
A

12/1998
3/1999
9/2001
2/2003
4/2007
6/2007

1* 11/2006

10/2007
6/2008
10/2008

Penokie

Ofer et al.

Blumenau et al.

Devireddy et al.

Brandenberger et al.

Penny et al.

Arakawa et al. .............. 709/217
Seto

Flynn et al.

Grimes et al.

OTHER PUBLICATIONS

“The High Performance SAN Alliance: SAN, SSD, and Virtualiza-
tion”, Retrieved at <<http://web.archive.org/web/20030831082223/
http://cnscenter.future.co kr/resource/rsc-center/vendor-wp/

falconstor/HighPerformanceSANAlllanceWhitePaper.pdf>> Aug.

31, 2003, pp. 5.

Hutsell, Woody “An In-depth Look at the RamSan-400 Solid State
Disk”, Retrieved at <<http://uk.sun.com/products/complementary/
storage/ssd4/pdl/ssd4-indepth.pdf>> Sep. 2005, pp. 1-15.

Bitar, Roger, “Deploying Hybrid Storage Pools with Sun Flash Tech-
nology and the Solaris ZFS™ File System”, Retrieved at <<http://
www.absol.co.za/medialib/Downloads/Home/AboutUs/News/
DEPLOYING%20HYBRID%  20STORAGE%20POOLS . pdf>>
Oct. 31, 2008, pp. 15.

“Avere Systems FX'T Series Delivers High Performance and Greater
Efficiencies to Storage Networks”, Retrieved at http://www.
greensupplyline.com/shared3/prnews/showPRNews.jhtml?art_
1d=E784601>> Oct. 5, 2009, pp. 2.

“International Search Report”, Mailed Date: Sep. 30, 2011, Applica-
tion No. PCT/US2011/023816, Filed Date: Feb. 4, 2011, pp. 8.

* cited by examiner

Primary Examiner — Yaima Campos

(57) ABSTRACT

Aspects of the subject matter described herein relate to stor-
age configuration. In aspects, an interface 1s used to discover
the existence, capacity, and characteristics of solid state stor-
age. This information may be provided to a user or storage
management process which may use the information to con-
figure the solid state storage. When appropriate, bus band-
width to the solid state storage as well as bandwidth to
memory components of the solid state storage may be con-
figured. Configuration and re-configuration may be per-
formed automatically according to one or more policies
maintained locally or remotely.

20 Claims, 12 Drawing Sheets

1000
1001 —p MEMORY MEMORY MEMORY MEMORY
COMPONENT COMPONENT| | COMPONENT COMPONENT
1005 1002 MEMORY | MEMORY | | MEMORY | | MEMORY |
g g COMPONENT| |COMPONENT| [COMPONENT| | COMPONENT
EVICE
INTERFACE
1003 MEMORY MEMORY MEMORY MEMORY
COMPONENT COMPONENT| | COMPONENT COMPONENT
1004 MEMORY MEMORY MEMORY MEMORY
COMPONENT| | COMPONENT| |COMPONENT| | COMPONENT




US 8,447,916 B2

Sheet 1 of 12

May 21, 2013

U.S. Patent

0

SYILNdNOYD)
J10NIY

VL]

MMOMLAN
vINY V207

961 161

HILNRIG

AN
JOLINOIN

161

S3TNAON SVL T
NVdO0ud SINVYO0¥d NILSAS

—GLOIIIITICiT = WVHEO0dd 19T  w3H1Q| Nowvollddy | ONHVE3dO

JOVANILN R " 3DV4ILN =T V1lv(Q
3OVAYILNJ _ AYOWIN _ o)

MHYOMLIN 1NdN] "T0A-NON AJONWIAl "TOA-NON WVYHOD0¥d
d3s 319VAONIY J19VAONITY-NON

9c] S3ITNAON
NVH90dd ¥3IHLO

NOILVII'lddY
A

40V4dddlN|
d0V4ddLlN|
E
1IN 9ONISSI00H
| 61 N dloc)
06} 0Zl
| 0rT

|
|
|
|
| sng WALSAS SNVHOO0Nd
|
|
|

AJOWNI A NJLSAS



U.S. Patent May 21, 2013 Sheet 2 of 12 US 8,447,916 B2

1ST CODE
SEGMENT

INTERFACE
210

INTERFACE
215

2ND CODE

SEGMENT 2ND CODE

SEGMENT

FIG. 2A FIG. 2B

1ST CODE
SEGMENT

2ND CODE

SEGMENT 2ND CODE

SEGMENT

FIG. 3A




U.S. Patent May 21, 2013 Sheet 3 of 12 US 8,447,916 B2

1ST CODE
1ST CODE SEGMENT
SEGMENT INTERFACE
210’
Square(input, f
meaningless, 205| Square(input, ---, 220
output, additional) output, ---)
INTERFACE
2ND CODE 215
SEGMENT 2ND CODE
SEGMENT
FIG. 4A FIG. 4B
_____________ 1ST CODE
SEGMENT
1ST CODE '"T'Z':ZACE 210"
SEGMENT —
. < 215A"
=7  Ts
205, 220
N
INTERFACE
2ND CODE 215B"
SEGMENT
2ND CODE
e SEGMENT

FIG. 5A FIG. 5B



U.S. Patent May 21, 2013 Sheet 4 of 12 US 8,447,916 B2

1ST CODE
1ST CODE SEGMENT
SEGMENT

DIVORCE 3RD CODE
INTERFACE SEGMENT
HE E
NN
2ND CODE
SEGMENT

2ND CODE
SEGMENT

FIG. 6A FIG. 6B



US 8,447,916 B2

Sheet Sof 12

May 21, 2013

U.S. Patent

IN3JINOTS

3000 AdNC

JOV4dd1LNI
JJd40AId

INJINOIS
3000 1S|

Z Old

ddldddadlNI
[ 43 T1dINOD 1Ir

INJINOIS

3000 ANZ

INJINOTS
3000 1S}




US 8,447,916 B2

Sheet 6 of 12

May 21, 2013

U.S. Patent

IN3JINODTS
3000 dNCZ

A d31IdINOD LI | ¢

ININOdINOD ANZ

J¥4
JOVAHILN]|

1) XA
JOVAYILNJ



US 8,447,916 B2

Sheet 7 of 12

May 21, 2013

U.S. Patent

3SS
>
0¢6
Jd0VdddLN|
d|0d
L C6
o6

AJOWTA

L LG

JOVAOLS

>

evo

JOVAYTIN]
V1VS

LEG
056

Jd3T104d1NOD

O/l

916

d055400dd

906

JOVHOLS

>

cvo

JOV4HALN]
SVS

9¢6

148

dOVH0LS

dOV4dddlN]

VIiVS

0E6

676

dOVdOLS

4>

Ov6

FOV4Y3IN|
SVS
6

VO

Gé

d3dTIOH1INOD

O/l

GG

—“““mmmmm““_
G06

SSS

GEo6

d0Vddd1N]|

110d

026

G¥6

AYOWIN

0] %%

6 OId



US 8,447,916 B2

Sheet 8 of 12

May 21, 2013

U.S. Patent

INJNOJINOD
ALONIIA

INJNOJINOD
ALONIIA

INJNOdINOD
ALONIIA

ININOJNOD
AYOWIN

ININOdNOD
AJONTIA

ININOdNOD
AJONTIA

ININOdNOD
AJONTIA

ININOJINOD
AYOWIN

ININOdNOD
ALJONTIA

ININOdNOD
ALJONTIA

ININOdNOD
ALJONTIA

ININOJINOD
AYOWIN

ININOdINOD
ALONTIA

ININOdINOD
ALONTIA

ININOdINOD
ALONTIA

ININOJINOD
AYOWIN

<€+—001L

<€+—C001

40Vd4ddd1N|

301A3Q
<€+—c00l <G00l

€4+—|001|



U.S. Patent May 21, 2013 Sheet 9 of 12 US 8,447,916 B2

’-1100
/‘1106 1107 1108

POLICY REMOTE MANAGEMENT
USER INTERFACE
MANAGER INTERFACE

SOFTWARE INTERFACE

110¢

FIG. 11

HOST PROCESSOR 1105

1111

HOST INTERFACE HOST INT

RFACE

1135 —»
112C 1121

1115 | DEvICE INTERFACE(S) DEVICE INTERFACE(S) | 1116

I
L
L
R

-
—
N
&)
—
—
)
o)
—
-
N
-\l
—
—
N)
o0
-3
—
N
O
—
-
D
-
-
—
o3
—
—
—
D
N



U.S. Patent May 21, 2013 Sheet 10 of 12 US 8,447,916 B2

FIG. 12

BEGIN 1205

DISCOVER SSS CAPABILITIES 1210

STORE CAPABILITIES IN DATA
STRUCTURE 1212 1230

RE-CONFIGURE SSS

BASED ON PoOLICY

REQUEST SSD CAPABILITIES “™M215

CONFIGURE SSS OR PATH(S) TO
SSS " ™M220

ACCESS SSS 1225

OTHER

ACTIONS 1235



U.S. Patent May 21, 2013 Sheet 11 of 12 US 8,447,916 B2

RECEIVE CONFIGURATION
COMMAND 1310

CONFIGURE SSS 1315
OTHER



U.S. Patent May 21, 2013 Sheet 12 of 12 US 8,447,916 B2

FIG. 14

“VICE INTERFACE(S)




US 8,447,916 B2

1

INTERFACES THAT FACILITATE SOLID
STATE STORAGE CONFIGURATION

BACKGROUND

Rotational media such as hard drives have been standard in
computing environments for many years. Solid-state storage,
however, 1s starting to become a viable option 1n some envi-
ronments. As reliability increases and costs decrease, solid-
state storage 1s poised to take on a larger role 1n non-volatile
storage.

Current solid state storage devices typically focus on using,
the same form factors and interfaces as the hard drives they
replace. For example, a solid state storage device may include
a serial attached SCSI (SAS) interface or a senial advanced
technology attachment (SATA) interface to provide a well-
known 1nterface to the solid state storage device. Further-
more, the solid state storage device may be housed 1n a hard-
drive like enclosure that has connections such that the solid
state storage device can easily be inserted 1n a hard drive slot
of a computer system. While compatible, packaging solid
state storage devices 1n this manner may limit performance
and flexibility and increase costs.

The subject matter claimed herein 1s not limited to embodi-
ments that solve any disadvantages or that operate only in
environments such as those described above. Rather, this
background 1s only provided to 1llustrate one exemplary tech-

nology area where some embodiments described herein may
be practiced.

SUMMARY

Brietly, aspects of the subject matter described herein
relate to storage configuration. In aspects, an interface 1s used
to discover the existence, capacity, and characteristics of solid
state storage. This information may be provided to a user or
storage management process which may use the information
to configure the solid state storage. When appropriate, bus
bandwidth to the solid state storage as well as bandwidth to
memory components of the solid state storage may be con-
figured. Configuration and re-configuration may be per-
formed automatically according to one or more policies
maintained locally or remotely.

This Summary 1s provided to briefly identily some aspects
of the subject matter that 1s further described below 1n the
Detailed Description. This Summary 1s not intended to 1den-
tify key or essential features of the claimed subject matter, nor
1s 1t 1ntended to be used to limit the scope of the claimed
subject matter.

The phrase “subject matter described herein” refers to sub-
ject matter described in the Detailed Description unless the
context clearly indicates otherwise. The term “aspects™ 1s to
be read as “at least one aspect.” Identifying aspects of the
subject matter described 1n the Detailed Description 1s not
intended to identily key or essential features of the claimed
subject matter.

The aspects described above and other aspects of the sub-
ject matter described herein are 1llustrated by way of example
and not limited 1n the accompanying figures 1n which like
reference numerals indicate similar elements and 1n which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 15 a block diagram representing an exemplary gen-
eral-purpose computing environment 1to which aspects of
the subject matter described herein may be incorporated;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 2A-6B are block diagrams generally representing
exemplary application programming interfaces that may

operate 1n accordance with aspects of the subject matter
described herein;

FIGS. 7 and 8 are block diagrams that generally represent
how a compiler or interpreter may transform one or more
interfaces to one or more other interfaces 1 accordance with
aspects of the subject matter described herein;

FIG. 9 1s a block diagram that represents an exemplary
environment 1n which aspects of the subject matter described
herein may be implemented;

FIG. 10 1s a block diagram that illustrates some exemplary
components of an SSS card 1n accordance with aspects of the
subject matter described herein;

FIG. 11 1s a block diagram of some components of an
apparatus configured in accordance with aspects of the sub-
ject matter described herein;

FIGS. 12-13 are tflow diagrams that generally represent
actions that may occur in accordance with aspects of the
subject matter described herein; and

FIG. 14 1s a block diagram that represents assignment of
devices lanes to solid state storage components that have been
partitioned into multiple physical partitions 1n accordance
with aspects of the subject matter described herein.

DETAILED DESCRIPTION

Definitions

As used herein, the term “includes” and 1ts variants are to
be read as open-ended terms that mean “includes, but 1s not
limited to.” The term *““or” 1s to be read as “and/or” unless the
context clearly dictates otherwise. The term “based on” 1s to

be read as “based at least in part on.” The terms “one embodi-
ment” and “an embodiment™ are to be read as “at least one
embodiment.” The term “another embodiment™ 1s to be read
as “at least one other embodiment.” Other definitions, explicit
and 1implicit, may be included below.
Exemplary Operating Environment

FIG. 1 illustrates an example of a suitable computing sys-
tem environment 100 on which aspects of the subject matter
described herein may be implemented. The computing sys-
tem environment 100 1s only one example of a suitable com-
puting environment and 1s not itended to suggest any limi-
tation as to the scope of use or functionality of aspects of the
subject matter described herein. Neither should the comput-
ing environment 100 be interpreted as having any dependency
or requirement relating to any one or combination of compo-
nents 1llustrated 1n the exemplary operating environment 100.

Aspects of the subject matter described herein are opera-
tional with numerous other general purpose or special pur-
pose computing system environments or configurations.
Examples of well known computing systems, environments,
or configurations that may be suitable for use with aspects of
the subject matter described herein comprise personal com-
puters, server computers, hand-held or laptop devices, mul-
tiprocessor systems, microcontroller-based systems, set-top
boxes, programmable consumer electronics, network PCs,
minicomputers, mainframe computers, personal digital assis-
tants (PDAs), gaming devices, printers, appliances including
set-top, media center, or other appliances, automobile-em-
bedded or attached computing devices, other mobile devices,
distributed computing environments that include any of the
above systems or devices, and the like.

Aspects of the subject matter described herein may be
described in the general context of computer-executable
istructions, such as program modules, being executed by a




US 8,447,916 B2

3

computer. Generally, program modules include routines, pro-
grams, objects, components, data structures, and so forth,
which perform particular tasks or implement particular
abstract data types. Aspects of the subject matter described
herein may also be practiced 1n distributed computing envi-
ronments where tasks are performed by remote processing
devices that are linked through a communications network. In
a distributed computing environment, program modules may
be located 1n both local and remote computer storage media
including memory storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting aspects of the subject matter described herein
includes a general-purpose computing device 1n the form of a
computer 110. A computer may include any electronic device
that1s capable of executing an instruction. Components of the
computer 110 may include a processing unit 120, a system
memory 130, and a system bus 121 that couples various
system components including the system memory to the pro-
cessing unit 120. The system bus 121 may be any of several
types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard

Architecture (ISA) bus, Micro Channel Architecture (MCA)
bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, Peripheral Component Inter-
connect (PCI) bus also known as Mezzanine bus, Peripheral
Component Interconnect Extended (PCI-X) bus, Advanced
Graphics Port (AGP), and PCI express (PCle).

The computer 110 typically includes a variety of computer-
readable media. Computer-readable media can be any avail-
able media that can be accessed by the computer 110 and
includes both volatile and nonvolatile media, and removable
and non-removable media. By way of example, and not limi-
tation, computer-readable media may comprise computer
storage media and communication media.

Computer storage media includes both volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information such
as computer-readable instructions, data structures, program

modules, or other data. Computer storage media includes
RAM, ROM, EEPROM, flash memory or other memory tech-

nology, CD-ROM, digital versatile discs (DVDs) or other
optical disk storage, magnetic cassettes, magnetic tape, mag-
netic disk storage or other magnetic storage devices, or any
other medium which can be used to store the desired infor-
mation and which can be accessed by the computer 110.

Communication media typically embodies computer-read-
able instructions, data structures, program modules, or other
data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of 1ts characteristics set or changed 1n such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired connec-
tion, and wireless media such as acoustic, RF, infrared and
other wireless media. Combinations of any of the above
should also be 1included within the scope of computer-read-
able media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110, such as during start-
up, 1s typically stored in ROM 131. RAM 132 typically con-

10

15

20

25

30

35

40

45

50

55

60

65

4

tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FIG. 1
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 1llustrates a hard disk drive 141
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 151 that reads from or
writes to a removable, nonvolatile magnetic disk 152, and an
optical disc drive 155 that reads from or writes to aremovable,
nonvolatile optical disc 156 such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used 1n the
exemplary operating environment include magnetic tape cas-
settes, flash memory cards, digital versatile discs, other opti-
cal discs, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 141 1s typically
connected to the system bus 121 through a non-removable
memory 1nterface such as mterface 140, and magnetic disk
drive 151 and optical disc drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as
interface 150.

The drives and their associated computer storage media,
discussed above and illustrated 1n FIG. 1, provide storage of
computer-readable 1nstructions, data structures, program
modules, and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 1s 1llustrated as storing operating
system 144, application programs 145, other program mod-
ules 146, and program data 147. Note that these components
can either be the same as or different from operating system
134, application programs 135, other program modules 136,
and program data 137. Operating system 144, application
programs 145, other program modules 146, and program data
147 are given different numbers herein to illustrate that, at a
minimum, they are different copies.

A user may enter commands and information 1into the com-
puter 110 through input devices such as a keyboard 162 and
pointing device 161, commonly referred to as a mouse, track-
ball, or touch pad. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish,
scanner, a touch-sensitive screen, a writing tablet, or the like.
These and other mput devices are often connected to the
processing unit 120 through a user input interface 160 that 1s
coupled to the system bus, but may be connected by other
interface and bus structures, such as a parallel port, game port
or a universal serial bus (USB).

A monitor 191 or other type of display device 1s also
connected to the system bus 121 via an interface, such as a
video interface 190. In addition to the monitor, computers
may also include other peripheral output devices such as
speakers 197 and printer 196, which may be connected
through an output peripheral interface 195.

The computer 110 may operate in a networked environ-
ment using logical connections to one or more remote com-
puters, such as a remote computer 180. The remote computer
180 may be a personal computer, a server, a router, a network
PC, a peer device or other common network node, and typi-
cally includes many or all of the elements described above
relative to the computer 110, although only a memory storage
device 181 has been 1llustrated 1n FI1G. 1. The logical connec-
tions depicted 1n FIG. 1 include a local area network (LAN)
171 and a wide area network (WAN) 173, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets, and the Internet.




US 8,447,916 B2

S

When used 1n a LAN networking environment, the com-
puter 110 1s connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 may include a modem 172 or
other means for establishing communications over the WAN
173, such as the Internet. The modem 172, which may be
internal or external, may be connected to the system bus 121
via the user mput interface 160 or other appropriate mecha-
nism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored 1in the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device 181.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

A baseboard management controller (e.g., BMC 198) may
be embedded on the computer 110 to allow the computer 110
to communicate with other devices out-of-band (e.g., without
using an operating system). The BMC 198 may be able to
report temperature, cooling fan speeds, power mode, operat-
ing system status, and the like to a console. The BMC 198
may include a processor that 1s capable of operating at a very
low power draw when other components of the computer 110
are turned off. In addition, the BMC 198 may communicate
what power capabilities the computer 110 has and may be
able to set the power level of the computer 110. Power capa-
bilities include the different power level(s) at which the com-
puter 110 1s able to operate.

Aspects of the subject matter described herein are opera-
tional with numerous other general purpose or special pur-
pose computing system environments or configurations.
Examples of well known computing systems, environments,
and/or configurations that may be suitable for use with
aspects of the subject matter described herein include, but are
not limited to, personal computers, server computers, hand-
held or laptop devices, multiprocessor systems, microcon-
troller-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputers, mainirame
computers, distributed computing environments that include
any of the above systems or devices, and the like.

Aspects of the subject matter described herein may be
described 1n the general context of computer-executable
instructions, such as program modules, being executed by a
mobile device. Generally, program modules include routines,
programs, objects, components, data structures, and so forth,
which perform particular tasks or implement particular
abstract data types. Aspects of the subject matter described
herein may also be practiced in distributed computing envi-
ronments where tasks are performed by remote processing,
devices that are linked through a communications network. In
a distributed computing environment, program modules may
be located 1n both local and remote computer storage media
including memory storage devices.

Although the term “server” 1s sometimes used herein, 1t 1s
to be understood that a server may be implemented as a
machine that has hardware and/or software that 1s typically
associated with a personal computer or some other device.
Indeed, the use of the term “server” 1s not intended to limit
aspects of the subject matter described herein to machines
that have upgraded or enhanced capabilities.

Interfaces

A programming interface (or more simply, interface) may
be viewed as any mechanism, process, or protocol for
enabling one or more segment(s) of code to communicate
with or access the functionality provided by one or more other
segment(s) of code. Alternatively, a programming interface

10

15

20

25

30

35

40

45

50

55

60

65

6

may be viewed as one or more mechanism(s), method(s),
function call(s), module(s), object(s), and the like of a com-
ponent of a system capable of communicative coupling to one
or more mechamsm(s), method(s), function call(s),
module(s), and the like of other component(s). The term
“segment of code” 15 intended to include one or more mstruc-
tions or lines of code, and 1ncludes, for example, code mod-
ules, objects, subroutines, functions, and so on, regardless of
the terminology applied or whether the code segments are
separately compiled, or whether the code segments are pro-
vided as source, intermediate, or object code, whether the
code segments are utilized 1n a runtime system or process, or
whether they are located on the same or different machines or
distributed across multiple machines, or whether the func-
tionality represented by the segments of code are imple-
mented wholly 1n software, wholly 1n hardware, or a combi-
nation ol hardware and software.

Notionally, a programming interface may be viewed
generically, as shown in FIG. 2A or FIG. 2B. FIG. 2A 1llus-
trates an 1nterface 205 as a condut through which first and
second code segments communicate. FIG. 2B illustrates an
interface as comprising interface objects 210 and 215 (which
may or may not be part of the first and second code segments),
which enable first and second code segments of a system to
communicate via medium 220. In the view of FIG. 2B, one
may consider interface objects 210 and 215 as separate inter-
faces of the same system and one may also consider that
objects 210 and 215 plus medium 220 comprise the interface.
Although FIGS. 2A and 2B show bi-directional flow and
interfaces on each side of the flow, certain implementations
may only have information flow in one direction (or no nfor-
mation tlow as described below) or may only have an inter-
face object on one side. By way of example, and not limita-
tion, terms such as application programming interface (API),
entry point, method, function, subroutine, remote procedure
call, and component object model (COM) interface, are
encompassed within the definition of programming interface.

Aspects of such a programming interface may include the
method whereby the first code segment transmits information
(where “information” 1s used in 1ts broadest sense and
includes data, commands, requests, etc.) to the second code
segment; the method whereby the second code segment
receives the information; and the structure, sequence, syntax,
organization, schema, timing, and content of the information.
In this regard, the underlying transport medium itself may be
ummportant to the operation of the interface, whether the
medium be wired or wireless, or a combination of both, as
long as the information 1s transported 1n the manner defined
by the interface. In certain situations, information may not be
passed 1 one or both directions 1n the conventional sense, as
the information transier may be either via another mechanism
(e.g., information placed 1n a buller, file, etc. separate from
information tlow between the code segments) or non-exis-
tent, as when one code segment simply accesses functionality
performed by a second code segment. Any or all of these
aspects may be used 1n a given situation, for example, depend-
ing on whether the code segments are part of a system 1n a
loosely coupled or tightly coupled configuration, and so this
list 15 to be considered 1llustrative and non-limiting.

This notion of a programming interface 1s known to those
skilled 1n the art and 1s clear from the foregoing detailed
description. There are, however, other ways to implement a
programming interface, and, unless expressly excluded, these
too are intended to be encompassed by the claims set forth at
the end of this specification. Such other ways may appear to
be more sophisticated or complex than the simplistic view of
FIGS. 2A and 2B, but they nonetheless perform a similar




US 8,447,916 B2

7

function to accomplish the same overall result. Below are
some 1llustrative alternative implementations of a program-
ming interface.

A. Factoring

A communication from one code segment to another may
be accomplished indirectly by breaking the communication
into multiple discrete communications. This 1s depicted sche-
matically in FIGS. 3A and 3B. As shown, some interfaces can
be described 1n terms of divisible sets of functionality. Thus,
the iterface functionality of FIGS. 2A and 2B may be fac-
tored to achieve the same result, just as one may mathemati-
cally provide 24 as 2 times 2 times 3 times 2. Accordingly, as
illustrated 1n FI1G. 3 A, the function provided by interface 205
may be subdivided to convert the communications of the
interface mto multiple interfaces 305, 306, 307, and so on
while achieving the same result.

As 1llustrated in FIG. 3B, the function provided by inter-
face 210 may be subdivided into multiple interfaces 310, 311,
312, and so forth while achieving the same result. Similarly,
interface 2135 of the second code segment which receives
information from the first code segment may be factored into
multiple interfaces 320, 321, 322, and so forth. When factor-
ing, the number of interfaces included with the 1°° code seg-
ment need not match the number of mterfaces included with
the 2”? code segment. In either of the cases of FIGS. 3A and
3B, the functional spirit of interfaces 205 and 210 remain the
same as with FIGS. 2A and 2B, respectively.

The factoring of interfaces may also follow associative,
commutative, and other mathematical properties such that the
factoring may be ditficult to recognize. For instance, ordering
of operations may be unimportant, and consequently, a func-
tion carried out by an interface may be carried out well in
advance of reaching the interface, by another piece of code or
interface, or performed by a separate component of the sys-
tem. Moreover, one of ordinary skill in the programming arts
can appreciate that there are a variety of ways of making
different function calls that achieve the same result.

B. Redefinition

In some cases, 1t may be possible to 1gnore, add, or redefine
certain aspects (e.g., parameters) ol a programming interface

while still accomplishing the intended result. This 1s 1llus-
trated in F1GS. 4A and 4B. For example, assume interface 205
of FI1G. 2A includes a function call Square (input, precision,
output), that includes three parameters, imput, precision and
output, and which is issued from the 1°° Code Segment to the
2" Code Segment. If the middle parameter precision is of no
concern in a given scenario, as shown in FI1G. 4 A, 1t could just
as well be1gnored or even replaced with a meaningless (1n this
situation) parameter. An additional parameter of no concern
may also be added. In either event, the functionality of square
can be achieved, so long as output 1s returned after input 1s
squared by the second code segment.

Precision may very well be a meaningful parameter to
some downstream or other portion of the computing system:;
however, once 1t 1s recognized that precision 1s not necessary
for the narrow purpose of calculating the square, it may be
replaced or 1ignored. For example, instead of passing a valid
precision value, a meaningless value such as a birth date could
be passed without adversely affecting the result. Similarly, as
shown 1n FIG. 4B, interface 210 1s replaced by interface 210,
redefined to 1gnore or add parameters to the interface. Inter-
face 215 may similarly be redefined as interface 215!, rede-
fined to 1gnore unnecessary parameters, or parameters that
may be processed elsewhere. As can be seen, 1n some cases a
programming interface may include aspects, such as param-

10

15

20

25

30

35

40

45

50

55

60

65

8

eters, that are not needed for some purpose, and so they may
be 1gnored or redefined, or processed elsewhere for other
pUrposes.

C. Inline Coding

It may also be feasible to merge some or all of the func-
tionality of two separate code modules such that the “inter-
face” between them changes form. For example, the function-
ality of FIGS. 2A and 2B may be converted to the
functionality of FIGS. SA and 3B, respectively. In FIG. 5A,
the previous 1°* and 2”¢ Code Segments of FIG. 2A are
merged into a module containing both of them. In this case,
the code segments may still be commumicating with each
other but the interface may be adapted to a form which 1s more
suitable to the single module. Thus, for example, formal Call
and Return statements may no longer be necessary, but simi-
lar processing or response(s) pursuant to intertace 205 may
still be 1n effect. Similarly, shown 1n FI1G. 5B, part (or all) of
interface 215 from FIG. 2B may be written inline into inter-
face 210 to form interface 210". As illustrated, interface 215
1s divided into 215 A" and 215B", and interface portion 215A™"
has been coded in-line with interface 210 to form interface
210",

For a concrete example, consider that the interface 210
from FIG. 2B may perform a function call square (input,
output), which 1s received by interface 215, which after pro-
cessing the value passed with mput (to square 1t) by the
second code segment, passes back the squared result with
output. In such a case, the processing performed by the sec-
ond code segment (squaring input) can be performed by the
first code segment without a call to the interface.

D. Divorce

A communication from one code segment to another may
be accomplished indirectly by breaking the commumnication
into multiple discrete communications. This 1s depicted sche-
matically in FIGS. 6A and 6B. As shown 1n FIG. 6A, one or
more piece(s) of middleware (Divorce Interface(s), since they
divorce functionality and/or interface functions from the
original interface) are provided to convert the communica-
tions on the first interface 605, to conform them to a different
interface, in this case intertaces 610, 615, and 620. This might
be done, for example, where there 1s an installed base of
applications designed to communicate with, say, an operating
system 1n accordance with the first interface 605’s protocol,
but then the operating system 1s changed to use a different
interface, 1n this case interfaces 610, 615, and 620. It can be
seen that the original interface used by the 2"? Code Segment
1s changed such that 1t 1s no longer compatible with the
interface used by the 1% Code Segment, and so an intermedi-
ary 1s used to make the old and new interfaces compatible.

Similarly, as shown in FI1G. 6B, a third code segment can be
introduced with divorce interface 635 to receive the commu-
nications from interface 630 and with divorce interface 640 to
transmit (e.g., via interface 645) the interface functionality to,
for example, intertaces 650 and 655, redesigned to work with
the interface 640, but to provide the same functional result.
Similarly, the interfaces 635 and 640 may work together to
translate the functionality of interfaces 210 and 215 of FIG.
2B to a new operating system, while providing the same or
similar functional result.

E. Rewriting

Yet another possible variant 1s to dynamically rewrite the
code to replace the interface functionality with something
clse but which achieves the same overall result. For example,
there may be a system 1n which a code segment presented in
an 1termediate language (e.g. Microsoit IL, Java® Byte-
Code, etc.) 1s provided to a Just-in-Time (JIT) compiler or
interpreter 1n an execution environment (such as that provided




US 8,447,916 B2

9

by the .Net framework, the Java® runtime environment, or
other similar runtime type environments). The JIT compiler
may be written so as to dynamically convert the communica-
tions from the 1°* Code Segment to the 2”? Code Segment, i.e.,
to conform them to a different interface as may be required by
the 2" Code Segment (either the original or a different 2"¢
Code Segment). This 1s depicted 1n FIGS. 7 and 8.

As can be seen 1 FIG. 7, this approach 1s similar to the
Divorce scenario described above. It might be done, for
example, where an installed base of applications are designed
to communicate with an operating system in accordance with
a first interface protocol, but then the operating system 1s
changed to use a different interface. The JIT Compiler may be
used to conform the commumnications on the tly from the
installed-base applications to the new interface of the operat-
ing system. As depicted 1in FIG. 8, this approach of dynami-
cally rewriting the interface(s ) may be applied to dynamically
factor, or otherwise alter the interface(s) as well.

It 1s also noted that the above-described scenarios for
achieving the same or similar result as an interface via alter-
native embodiments may also be combined 1n various ways,
serially and/or in parallel, or with other intervening code.
Thus, the alternative embodiments presented above are not
mutually exclusive and may be mixed, matched, and com-
bined to produce the same or equivalent scenarios to the
generic scenarios presented in FIGS. 2A and 2B. It 1s also
noted that, as with most programming constructs, there are
other similar ways of achieving the same or similar function-
ality of an interface which may not be described herein, but
nonetheless are represented by the spirit and scope of the
subject matter described herein, 1.¢., it 1s noted that 1t 1s at least
partly the functionality represented by, and the advantageous
results enabled by, an interface that underlie the value of an
interface.

Storage Configuration

As mentioned previously, packaging solid state storage
devices 1n a well-known form factor for rotational type inter-
faces, while compatible, may limit performance and tlexibil-
ity and 1ncrease costs.

FIG. 9 1s a block diagram that represents an exemplary
environment 1n which aspects of the subject matter described
herein may be implemented. The environment includes pro-
cessors 905-906, memories 910-911, 1/O controllers 915-
916, PCI Express (PCle) buses 945-950, PCle interfaces 920-
021, SAS interfaces 925-926, SATA interfaces 930-931, solid
state storage 935-936, and storage 940-943. The term “stor-
age” 1s sometimes used to indicate the solid state storage
935-326 and/or the storage 940-943.

The processors 905-906 correspond to the processing unit
120 of FIG. 1, and the memories 910-911 corresponds to the
RAM 132 of FIG. 1 and may be implemented using 1dentical
or similar technology as the corresponding components
described in FIG. 1.

Although the environment as illustrated includes various
components, 1t will be recognized that more, fewer, or a
different combination of these components and others may be
employed without departing from the spirit or scope of
aspects of the subject matter described herein. Furthermore,
the components may be configured 1n a variety of ways as will
be understood by those skilled in the art without departing
from the spirit or scope of aspects of the subject matter
described herein.

The SAS interfaces 925-926 present a SCSI interface to
access the storage 940 and 942, respectively. The SATA 1nter-
faces 930-931 present a SATA nterface for interfacing with
the storage 941 and 943, respectively. Although not shown,
parallel ATA (PATA) mterfaces may exist that provide PATA

5

10

15

20

25

30

35

40

45

50

55

60

65

10

interfaces to access storage. The PCle interfaces 920-921
allow access to the solid state storage 935-936, respectively.
The PCle imterfaces 920-921 may be pass through or other
host-to-device interfaces that are included with the solid state
storage (see, €.g., device iterface 1005 of FIG. 10).

The storage 940-943 may include device interfaces that
reside on devices housing the storage 940-943. The device
interfaces may translate commands received from I/O con-
trollers 1nto actions used to access data on the storage 940-
943. Access as used herein may include reading data, writing
data, deleting data, updating data, a combination including
two or more of the above, and the like.

The storage 940-943 may include rotational storage
devices such as hard disk drives, CD drives, DVD drives, tape
drives, other devices that present an SAS or SATA 1interface,
and the like.

The PCle buses 945-950 may include any bus that operates
in accordance with the PCle standards or the successors to
these standards. A PCle bus may connect to solid state storage
(sometimes referred to as SSS). In some embodiments, a
PCle bus may connect to a controller that 1s able to commu-
nicate with multiple SSS entities.

The solid state storage (sometimes referred to as SSS)
935-936 may include device interfaces (not shown). These
interfaces may be used to discover and configure the SSS
935-936. These interfaces may be accessed via the PCle buses
945-946. The term SSS 1s used herein to refer to one or more
solid state storage entities. A solid state storage entity may
include a device mterface and collection of memory compo-
nents such as described in conjunction with FIGS. 9, 10, 11,
and 14.

Note that data travelling to and from the storage 940-943
may go through several interfaces before the data 1s available
for the processors to use. Each interface may add latency as
well as impose various restrictions on what commands may
be given to the stores.

Note that data traveling to the SSS 935-936 may go directly
from the I/O controllers 915-916 to the SSS 935-936 via the
PCle buses 945-946 without any intervening SAS or SATA
interface. In one embodiment, the I/O controllers 915 and 916
may be embedded 1n the processors 905 and 906, respec-
tively.

When configuring an apparatus, storage may be partitioned
and formatted with file systems. In addition, one or more of
storage components may be configured 1n a RAID configu-
ration to boost performance or reliability. An operating sys-
tem or other programs may also be installed on the storage.
When the apparatus 1s booted up, interfaces associated with
the storage may be used to discover the storage and report
information about the storage to their respective 1/0 control-
lers.

The storage may be hot swappable to allow for insertion
into and removal from the apparatus while the apparatus 1s
turned on. Storage may be connected to a back plane of a
computer. The back plane may be connected to a controller.
The storage may be enclosed 1n an enclosure that facilitates
inserting and removing the storage from the apparatus.

SSS may be created using NAND, NOR, flash memory, or
other memory components. The non-volatile memory of SSS
may be provided as a collection of memory components (e.g.,
chips) where each memory device includes a specified
amount of memory. SSS may consume less power and per-
form better than a rotational hard drive of similar capacity—
although this 1s not a requirement of aspects of the subject
matter described herein.

In one configuration, an SSS may be configured with a dual
interface to be interface-compatible with common rotating




US 8,447,916 B2

11

storage devices. In other words, the SSS may include a device
interface such as an SAS or SATA 1nterface as well as another
interface (e.g., a PCle or other interface). The SAS or SATA
interface may allow compatibility with software that is
unaware of how to utilize the other interface while the other
interface may be used to discover and configure additional
characteristics of the SSS as well as access data of the SSS.

In one configuration, an SSS may be laid outon acard (e.g.,
a PCle card) that may be 1nserted in a slot of the computer.
FIG. 10 1s a block diagram that 1llustrates some exemplary
components of an SSS card 1n accordance with aspects of the
subject matter described herein. The SSS card 1000 1llus-
trated in FIG. 10 1s notintended to limit layout, form factor, or
number of components that may be included on an SSS.
Indeed, 1n other embodiments, the layout, number and
arrangement of memory components, and the physical
attachment mechanism may vary. For example, some PCle
based cards may have a mechanism that allows a system
administrator or the like to hot-swap the cards from the front
of a computer similar to how how-swappable hard drives can
be swapped 1n today’s systems.

The card 1000 may include arrays of memory devices
1001-1004 (e.g., memory chips) laid out on the card 1000.
The card 1000 may include a device interface 1005 that
allows the external entities to communicate with the card via
a backplane mterface (e.g., PCle). The memory capacity of
the card 1000 may vary depending on the number of memory
components and memory capacity of each of the memory
components placed on the card 1000. The device interface
1005 may provide a way of discovering, configuring, and
accessing the memory of the card 1000.

Although PCle 1s sometimes referred to herein, aspects of
the subject matter described herein may also be applied to
other bus interfaces and form factors currently existing or yet
to be developed. For example, the device interface 10035 may
be directly connected to a processor bus or even embedded
inside a processor 1n some 1implementations.

FIG. 11 1s a block diagram of some components of an
apparatus configured in accordance with aspects of the sub-
ject matter described herein. The apparatus 1100 may include
a host processor 1105, policy manager 1106, user interface
1107, remote management interface 1108, software interface

1109, host interfaces 1110-1111, host lanes 1135, and SSS
1115-1116. The SSS 1115 may include discrete memory
components 1125-1128 while the SSS 1116 may include
discrete memory components 1129-1132. The number of dis-
crete memory components shown 1s exemplary only. In other
implementations, there may be more or fewer discrete
memory components and the number of memory components
on each device may be different. Each memory component
may include one or more memory chips or other storage
clements. The SSS 1115-1116 may support hot swapping. As
mentioned previously, hot swapping allows storage to be
attached or removed from an apparatus without turning the
apparatus ofif.

The SSS 1115 may include one or more device interfaces
1120 while the SSS 1116 may include one or more device

interfaces 1121. In one embodiment, the device interfaces
1120-1121 comprise an interface other than a SCSI, SATA, or

PATA interface. In one embodiment, there 1s no SCSI, SATA,
or PATA interface disposed between the host processor 11035
and the device interfaces 1120-1121.

Each device interface may have one or more channels
(sometimes called device lanes) by which 1t may communi-
cate with memory of the device. A device may have a maxi-
mum number of device lanes that are to be shared to access
memory of the device. The number of device lanes (up to the

10

15

20

25

30

35

40

45

50

55

60

65

12

maximum) a device interface uses to commumnicate with a
discrete memory component may be configured via the
device interface. Allocating more device lanes to designated
discrete memory components may increase the bandwidth to
or reliability of communication with the designated discrete
memory components.

For example, referring to FIG. 14, the SSS 1405 may
include discrete memory components 1425-1428 that have
been divided into physical partitions 1410-1413. The SSS
1405 may be configured to have various numbers of device
lanes 1415 to each of the physical partitions 1410-1413. As
illustrated 1n FI1G. 14, there may be four device lanes to the
physical partition 1411, two device lanes to the physical
partition 1410, one device lane to the physical partition 1412,
and one device lane to the physical partition 1413. The num-
ber of device lanes to each physical partition may be config-
urable.

Returning to FIG. 11, the number of host lanes 1135 from
the host interfaces 1110-1111 to the device interfaces 1120-
1121 may also be configurable. In one embodiment, an appa-
ratus may be configurable to assign a certain number of host
lanes to each device interface. In another embodiment, an
apparatus may be configurable to assign certain host lanes to
certain device lanes. In yet another embodiment, an apparatus
may be configurable to assign percentages of available host
lanes to each device interface.

The examples above for options for configuring device and
host lanes are not intended to be all-inclusive or exhaustive.
Indeed, based on the teachings herein, those skilled 1n the art
may recognize other host or device lane configuration options
that may also be used without departing from the spirit and
scope of aspects of the subject matter described herein.

Upon request, the device interfaces 1120-1121 may pro-
vide mformation about the SSS 1115-1116. This information
may, for example, include:

1. SSS capacity. SSS capacity may include the amount of
memory available, the number of discrete memory devices,
and the like.

2. SSS configuration options. SSS configuration options
may include, for example:

A. Maximum/minimum size for a physical partition of the
SSS. For example, a SSS may support partitioning discrete
memory components contained thereon into groups where
cach group physically represents a separate store to external
entities. In other words, to an operating system or other soft-
ware interacting with the SSS, the SSS may present a plurality
of different storage devices. A group of storage components
of an SSS that 1s presented to soitware as a physical device 1s
sometimes referred to herein as a physical partition of the
SSS. A device interface may allow partitioning discrete
memory components based on the number of discrete
memory components, via a specified memory size (e.g., cer-
tain amount of memory), or the like.

B. Granulanty {for sizes of physical partitions. For
example, an SSS may be able to put a discrete memory
component in one physical partition or another, but may not
be able to put a portion of the discrete memory component in
one physical partition and another portion of the discrete
memory component 1n another physical partition. Some SSS,
however, may allow discrete memory components to be split
between physical partitions. Some SSS may only be able to
partition discrete memory components in some pre-defined
multiple. For example, an SSS may be able to create a physi-
cal partition having 2, 4, 6, or some other even number of
discrete memory components.

C. Memory reliability. An SSS may support various
options for memory reliability. For example, certain discrete




US 8,447,916 B2

13

memory components may be allocated as “spares.” Allocat-
ing these spares 1s sometimes referred to as over provisioning.
Some solid state memory can only be written to a certain
number of times before the memory becomes unusable. If a
used memory component fails or 1s close to failing, the data of
the memory component may be transierred to a spare and
subsequent access to the memory component may be directed
to the spare. This failover capacity of an SSS may be 1mple-
mented directly on the SSS itself or may be implemented
external to the SSS.

For example, an SSS may include components that track
the reliability or wearing of discrete memory portions of the
SSS and may re-route access requests to a spare automatically
when a memory component fails or 1s close to failing. An
interface may allow fine-grained requests (e.g., a number)
that indicate how many spares are to be allocated or may
allow coarser-grained requests that indicate a level of reliabil-
ity (e.g., high, medium, low), etc.

In external implementations, a component (e.g., software
or hardware) external to the SSS may receive or keep track of
information that indicates whether a device 1s failing and may
take actions to route access requests to a spare. This informa-
tion may take many forms including keeping track of how
many times memory locations have been written to and re-
routing access requests accordingly, receiving reliability
reports from the device, comparing hashes, checksums, or
other data computed from or returned from memory of the
device with hashes, checksums, or other data computed from
or returned from other storage, and so forth.

Similarly, the SSS may natively support wear leveling.
With wear leveling, writes to the device are distributed so that
memory of the SSS “wears evenly.”” By distributing the
writes, the number of writes to any particular location may be
kept 1n line with writes to other locations so that the memory
in the particular location will not wear out significantly faster
than other memory of the device. In some 1implementations, a
device may not natively support wear leveling. In these imple-
mentations, an external component may distribute writes as
appropriate.

D. RAID capabilities. SSS may natively support one or
more RAID configurations for discrete memory components
of the SSS. In a RAID configuration, the SSS may perform
RAID functionality that treats different hardware partitions
as different storage devices (Tor RAID purposes). Thus, two
or more physical partitions on a device may be used together
for RAID 0, RAID 1, RAID 3, RAID 4, RAID 3, RAID 10,
RAID 01, or some other RAID configuration.

In some cases, a host interface or other component may
support RAID configurations that span two or more separate
SSS entities (e.g., memory on different cards). In these cases,
one or more of the SSS entities may or may not natively
support RAID, although memory on the devices may still be
used 1n a RAID configuration using the host interface or other
component.

E. Bandwidth capabilities. An apparatus may support con-
figuring host lanes to SSS or even assigning certain host lanes
to physical partitions of SSS as mentioned previously. SSS
may support configuring the number of device lanes to each
physical partition of memory devices as mentioned previ-
ously. In some 1implementations, the number of device lanes
to a particular physical partition may be indicated via the
device interface. In other implementations, SSS may support
a request to give a specified portion of the device’s bandwidth
to a particular physical partition.

F. Multipath capabilities. SSS may support configuring
multiple device lanes to a group of memory components for
reliability purposes. Similarly, an apparatus may support con-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

figuring multiple host lanes to an SSS for reliability purposes.
For example, 1f one or more lanes to a group of memory
components, host interface, or host controller become 1nop-
erable, other lanes, 11 any, may be used to communicate with
memory components.

G. Power capabilities. SSS may support diflerent perior-
mance options (bandwidth, speed of reads/writes, memory
capacity), based on power states of the device. SSS may also
support different power management options.

H. Failure mode. SSS may go mnto a degraded state and
perform at a lower level (e.g., fewer writes/reads per second).
It may just perform at full throttle until 1t “burns 1itself up.” It
may be able to fail into other storage by transferring data to
the other storage.

I. Reporting capabilities. SSS may be able to indicate status
regarding memory components. For example, the SSS may be
able to indicate the number of times, on average, that a
memory component can be written to before failure. As
another example, SSS may be able to indicate a projected
remaining time for functioning based on historic usage pat-
terns and available spares.

I. Encryption capabilities. SSS may support encryption
and may have the ability to encrypt and decrypt data stored on
the SSS or any physical partition thereof.

The host processor 1105 may comprise one or more pro-
cessors similar to the processing unit 120 of FIG. 1. The host
interfaces 1110-1111 provide an interface by which the host
processor 1105 may communicate with the SSS 1115-1116.
The host mterfaces 1110-1111 may be included on the host
processor 1105 or may be separate from (outside of) the host
processor 1103.

The host processor 1105 may execute instructions to dis-
cover capabilities of the solid state storage 1115-1116 via the
host interfaces 1110-1111. The host processor 1105 may
work 1n conjunction with the host interfaces 1110-1111 and
the device mtertfaces 1120-1121 to discover the capabilities.
The processor 1105 may place data regarding the capabilities
in a data structure. The host processor 1105 may execute
functions of an interface to access data in the data structure to
provide to a calling process.

The term “function” as used herein may be thought of as a
portion of code, hardware, firmware, or the like that may be
executed to perform one or more tasks. In software, although
a function may include a block of code that returns data, 1t 1s
not limited to blocks of code that return data. A function may
also perform a specific task without returning any data. Fur-
thermore, a function may or may not have input parameters. A
function may include a subroutine, a subprogram, a proce-
dure, method, routine, or the like. A function may be 1mple-
mented by a predefined protocol specified elsewhere. For
example, writing certain data to a region on the host interface
may cause a function to execute.

In response to a process requesting information regarding,
an SSS via an mterface, the host processor 1105 may execute
one or more functions including one or more of the following:

a Tunction for determining capacity of a solid state storage;

a function for determining partitioning options for the solid
state storage:

a function for determining capability of the solid state
storage of allocating a portion of memory of the solid state
storage to use when other memory of the solid state storage
fails (e.g., over provisioning);

a Tunction for discovering existence of the solid state stor-
age;

a function for determining wear leveling capabilities of the
solid state storage;




US 8,447,916 B2

15

a Tunction for determining whether the solid state storage
supports automatic fallover from failed memory components
to other memory components;

a function for determining RAID capabilities of the solid
state storage:

a Tunction for determining bandwidth configurations for
the device, a bandwidth configuration indicating a number of
device lanes to a physical partition of memory of the solid
state storage:

a Tunction for determining multipath capabilities of the
solid state storage and/or of host lanes to the solid state
storage;

a Tunction for determining power capabilities of the solid
state storage:

a Tunction for determining failure mode capabilities of the

solid state storage;

a function for determining reporting capabilities of the
solid state storage;

a function for determining encryption capabilities of the
solid state storage;

an extensibility function that returns data regarding addi-
tional capabilities of the solid state device;

other functions not listed above; and the like.

A process may obtain information about capabilities of the
SSS 1115-1116 through an interface that indicates the func-
tions above. These functions may obtain data from the data
structure previously mentioned and provide the data to a
calling process. A purpose of the interface 1s to provide a
common interface by which applications, OS components,
and other software on the host processor 1105 may discover
the capacity and characteristics of different SSS. The inter-
face may also provide a common interface by which applica-
tions, OS components, and other soitware may access data on
SSS without having knowledge of the physical configuration
of the SSS.

If an SSS does not support a particular feature, the host
processor 1105 may indicate this fact to a calling process.
Alternatively, for some features that are not supported on the
SSS, the host processor 1105 and/or the host interfaces 1110-
1111 may implement the additional features external to the
SSS such that a calling process can safely assume that the
feature exists. For example, the hostinterface 1110-1111 may
implement wear leveling, RAID capabilities, or other features
that may not reside natively on an SSS.

The software interface 1109 may comprise an interface by
which the policy manager 1106, the user interface 1107, and
the remote management interface 1108 may 1nstruct the host
processor 1105 to discover, determine characteristics of, and
configure the devices 1115-1116. The software interface
1109 may provide data to the policy manager 1106, the user
interface 1107, the remote management interface 1108, or
other caller to indicate characteristics of the devices 1115-
1116, provide data requested from the devices 1115-1116,
and provide reporting data regarding the devices 1115-1116.

The policy manager 1106 may automatically configure a
solid state device based on a policy and characteristics of one
or more processes. For example, a database application may
have different storage needs from a word processing applica-
tion. Furthermore, these needs may change over time. In
response, the policy manager 1106 may again configure the
SSS.

The policy manager 1106 may configure the devices 1115-
1116 by sending requests via the soitware interface 1109. The
policy manager 1106 may receive mformation regarding an
SSS or process on the apparatus 1100 via the software inter-
face 1109. As used herein, the term configure means config-

10

15

20

25

30

35

40

45

50

55

60

65

16

ure 1n the case of an SSS that has not been configured and
re-configure 1 the case of an SSS that has already been
coniigured.

The term “process™ and its variants as used herein may
include one or more traditional processes, threads, compo-
nents, libraries, objects that perform tasks, and the like. A
process may be implemented in hardware, software, or a
combination of hardware and software. In an embodiment, a
process 1s any mechanism, however called, capable of or used
in performing an action. A process may be distributed over
multiple devices or a single device.

The user interface 1107 1s operable to recerve input indica-
tive of one or more configuration settings to apply to an SSS.
The configuration settings indicated by a user may include
configuring one or more physical partitions, host lanes,
device lanes, provisioning of the solid state device as a cache,
defining one or more policies for configuring the host lanes to
the solid state device and/or the device lanes to memory
components of the solid state device, and defining policies
that govern automatic provisioning, configuration, and
assignment of memory of the SSS to act as a cache for a
process, other configuration settings mentioned previously,
and the like. Similar to the policy manager 1106, the user
interface 1107 may communicate via the software interface
1109 to obtain information about an SSS and to configure the
SSS.

The remote management interface 1108 allows a process
on another apparatus to obtain information about an SSS
and/or processes installed or executing on the apparatus 1100.
The remote management interface 1108 also allows a process
(e.g., amanagement process) on another apparatus to config-
ure an SSS. The remote management interface 1108 may
communicate via the software interface 1109 to obtain infor-
mation about an SSS and to configure the SSS. The remote
management interface 1108 may be used in conjunction with
a management console to configure and manage SSS on a
plurality of computers.

FIGS. 12-13 are flow diagrams that generally represent
actions that may occur in accordance with aspects of the
subject matter described herein. For simplicity of explana-
tion, the methodology described 1n conjunction with FIGS.
12-13 1s depicted and described as a series of acts. It 1s to be
understood and appreciated that aspects of the subject matter
described herein are not limited by the acts illustrated and/or
by the order of acts. In one embodiment, the acts occur 1n an
order as described below. In other embodiments, however, the
acts may occur in parallel, 1n another order, and/or with other
acts not presented and described herein. Furthermore, not all
illustrated acts may be required to implement the methodol-
ogy 1n accordance with aspects of the subject matter
described herein. In addition, those skilled in the art waill
understand and appreciate that the methodology could alter-
natively be represented as a series of interrelated states via a
state diagram or as events.

Turning to FIG. 12, at block 1205, the actions begin. At
block 1210, capabilities of SSS are discovered. The SSS may
potentially reside on one or more hardware components of a
computer. For example, the SSS may reside on multiple
cards, chips, or other hardware components of the computer
as mentioned previously. Each of the hardware components
may potentially have different capabilities. For example, two
cards may have different configuration capabilities. For
example, referring to FIG. 11, the host processor 1105 may
access the host interfaces 1110-1111 to discover the capabili-
ties of the SSS 1115-1116.

At block 1212, the data regarding the capabilities 1s stored
in a data structure. For example, referring to FIGS. 1 and 11,




US 8,447,916 B2

17

dataregarding the capabilities may be stored in the RAM 132,
dedicated memory associated with the host interfaces 1110-
1111, or some other memory.

At block 1215, the characteristics of the discovered SSS
are accessed via an interface. For example, referring to FIG.
11, capabilities of the SSS 1115 may be requested via the
soltware interface 1109. An interface may indicate a plurality
of callable functions for determining characteristics of the
solid state storage. When called, a function may access data in
the data structure indicated above to provide one or more
characteristics to a calling process.

At block 1220, configuration regarding the SSS may be
performed. For example, a physical partition may be created
or changed, a number of host lanes to carry data to and/or
from the SSS may be assigned, the number of memory com-
ponents assigned as spares may be configured, or some other
configuration may be performed. For example, referring to
FIG. 11, the policy manager 1106, the user interface 1107, or
the remote management interface 1108 may request config-

uring one of the devices 1115-1116 via the software intertace
1109.

At block 1225, an SSS may be accessed via the interface.
After an SSS has been configured, data may be stored on and
retrieved from the SSS. For example, referring to FIG. 11, an
application (not shown) may access data on a physical parti-

tion of the SSS 1115.

At block 1230, the SSS may be re-configured based on
policy. For example, 1f a physical partition of an SSS 1s
becoming full or 1s close to the number of writes at which the
SSS may begin to fail, the SSS may be re-configured to add
more space to the physical partition or assign more memory
components as spares to the physical partition. This may be
done automatically, semi-automatically, or manually via a
policy manager, remote management process, user interface,
or the like. For example, referring to FIG. 11, the policy
manager 1106 may re-configure an SSS based on a policy. A
re-configuration may occur and re-occur at various times after
an SSS 1s discovered.

At block 12335 other actions, if any, may be performed.
Turning to FIG. 13, at block 1305, the actions begin. At

block 1310, input indicating a configuration command 1s
received. The input may be received from a user interface,
storage management process, or some other enfity. For
example, referring to FIG. 13, the host interface 1110 may
receive input that includes a configuration command for con-
figuring the SSS 1115.

At block 1315, the SSS 1s configured 1n accordance with
the configuration command. This may imnvolve sending one or
more requests to the solid state storage. For example, refer-
ring to FIG. 13, the host mterface 1110 may send multiple
requests to the device mterface 1120 to configure the SSS
1115.

At block 1320, other actions, 1 any, are performed.

As can be seen from the foregoing detailed description,
aspects have been described related to storage configuration.
While aspects of the subject matter described herein are sus-
ceptible to various modifications and alternative construc-
tions, certain 1llustrated embodiments thereof are shown in
the drawings and have been described above 1n detail. It
should be understood, however, that there 1s no intention to
limit aspects of the claimed subject matter to the specific
torms disclosed, but on the contrary, the intention 1s to cover
all modifications, alternative constructions, and equivalents
talling within the spirit and scope of various aspects of the
subject matter described herein.

10

15

20

25

30

35

40

45

50

55

60

65

18

What 1s claimed 1s:

1. A method implemented at least 1n part by a computer, the
method comprising:

discovering capabilities of solid state storage of the com-
puter, the solid state storage residing on one or more
hardware components of the computer, the hardware
components having different capabilities;

storing data regarding the capabilities 1n a data structure;

accessing an interface for requesting the capabilities, the
interface indicating a plurality of callable functions for
determining characteristics of the solid state storage, the
plurality of callable functions accessing the data regard-
ing the capabilities 1n the data structure to provide the
characteristics to one or more calling processes, the plu-
rality of callable functions including;

a function for determining capacity of the solid state
device;

a function for determining capabilities of the solid state
storage for creating physical partitions; and

a Tunction for determining a capability of the solid state
storage to allocate a portion of memory of the solid state
storage to each physical partition of the solid state stor-
age to use when memory of the physical partition fails.

2. The method of claim 1, wherein the plurality of callable
functions further include:

a function for discovering an existence of the solid state

storage;

a function for determinming wear leveling capabilities of the
solid state storage;

a function for determining whether the solid state storage
supports automatic failover from failled memory com-
ponents to other memory components;

a Tunction for determining RAID capabilities of the solid
state storage:

a function for determining bandwidth configurations for
the solid state storage, a bandwidth configuration indi-
cating a number of device lanes to a physical partition of
the memory of the solid state storage;

a function for determining multipath configuration capa-
bilities to the solid state storage and to the physical
partitions of the solid state storage;

a function for determining power capabilities of the solid
state storage:

a Tunction for determining failure mode capabilities of the
solid state storage;

a function for determining reporting capabilities of the
solid state storage; and

a Tunction for determining encryption capabilities of the
solid state storage.

3. The method of claim 2, further comprising configuring,
via the interface, a characteristic of the solid state storage
corresponding to one or more of the plurality of callable
functions.

4. The method of claim 1, wherein the accessing comprises
executing an operating system of the computer, the operating
system 1nstantiating one or more components corresponding,
to the plurality of callable functions.

5. The method of claim 1, further comprising receiving, via
the interface, a request for data from the solid state storage
and, 1n response, obtaining the data from the solid state stor-
age via a bus of the computer without traversing a SCSI,
SATA, or PATA 1interface to obtain the data from the solid
state storage.

6. The method of claim 1, further comprising configuring,
via the interface, capacity of, host lanes to, device lanes of,
and/or reliability of the solid state storage based on a storage
policy.




US 8,447,916 B2

19

7. The method of claim 6, wherein configuring the capacity
of the solid state storage comprises changing, via the inter-
face, a number of memory components of the solid state
storage assigned to a physical partition of the solid state
storage.

8. The method of claim 6, wherein configuring host lanes to
the solid state storage comprises changing, via the interface,
anumber ol bus lanes assigned to carry data to and/or from the
solid state storage.

9. The method of claim 6, wherein configuring device lanes
of the solid state storage comprises changing, via the inter-
face, anumber of device lanes assigned to carry data to and/or
from a physical partition of memory components of the solid
state storage.

10. The method of claim 6, wherein configuring reliability
of the solid state storage comprises changing a number of
memory components assigned as spares.

11. In a computing environment, an apparatus, comprising:

a solid state storage having a device interface and plurality
of solid state memory components, the device interface
operable to provide information regarding characteris-
tics of the solid state storage; and

a processor operable to execute instructions to discover
capabilities of the solid state storage and other solid state
storage, 1f any, of the apparatus and to place data regard-
ing the capabilities 1 a data structure, the other solid
state storage having different capabilities from the solid
state storage, the processor further operable to execute
functions indicated by an interface, the functions for
accessing the data 1n the data structure to provide
requested mformation regarding the solid state storage,
the functions including:

a Tunction for determining capacity of the solid state stor-
age;

a function for determining physical partitioning options for
the solid state storage; and

a function for determining capability of the solid state
storage of allocating a portion of memory of the solid
state storage to use when other memory of the solid state
storage fails.

12. The apparatus of claim 11, wherein the functions indi-

cated by the host interface turther include:

a function for discovering existence of the solid state stor-
age;

a Tunction for determiming wear leveling capabilities of the
solid state storage;

a Tunction for determiming whether the solid state storage
supports automatic failover from failed memory com-
ponents to other memory components;

a function for determining RAID capabilities of the solid
state storage:

a Tunction for determining bandwidth configurations for
the storage, a bandwidth configuration indicating a num-
ber of device lanes to a physical partition of memory of
the solid state storage;

a Tfunction for determining multipath configuration capa-
bilities to the solid state storage and to physical parti-
tions of the solid state storage;

a Tunction for determining power capabilities of the solid
state storage:

a Tunction for determining failure mode capabilities of the
solid state storage;

a function for determining reporting capabilities of the
solid state storage; and

a function for determining encryption capabilities of the
solid state storage.

13. The apparatus of claim 11, wherein the host interface 1s

located outside of the processor.

10

15

20

25

30

35

40

45

50

55

60

20

14. The apparatus of claim 11, wherein the device interface
does not comprise a SCSI, SATA, or PATA 1nterface and

wherein there 1s no SCSI, SATA, or PATA 1nterface disposed
between the processor and the device interface.

15. The apparatus of claim 11, further comprising a remote
management 1interface operable to provide information
returned by the functions to another apparatus, the remote
management interface also operable to provide configuration
requests from the another apparatus to the device interface for
configuring the solid state storage.

16. The apparatus of claim 11, wherein the solid state
storage resides on a card that 1s hot-swappable.

17. The apparatus of claim 11, further comprising a user
interface operable to recerve mput indicative of one or more
configuration settings to apply to the solid state storage, the
configuration settings including configuring one or more
physical partitions, host lanes, device lanes, provisioning of
the solid state storage as a cache, defining one or more poli-
cies for configuring or reconfiguring the host lanes to the solid
state storage and/or device lanes of the solid state storage, and
defining policies that govern automatic provisioning, con-
figuration, and assignment of memory of the solid state stor-
age 1o act as a cache for an operating system or application
thereof.

18. The apparatus of claim 11, further comprising a policy
manager that automatically configures the solid state storage
based on a policy and characteristics of a process.

19. A computer-readable storage memory having com-
puter-executable istructions, which when executed perform
actions, comprising:

receiving, via an interface, input indicative of a configura-

tion command for configuring a solid state storage of a
computer, the solid state storage residing on one or more
hardware components of the computer, the hardware
components having different capabilities, the interface
capable of providing data including;:

data regarding capacity of the solid state storage,

data regarding physical partitioning options for the solid

state storage,
data regarding capability of the solid state storage of allo-
cating a portion of memory of the solid state storage to
use when other memory of the solid state storage fails,

data regarding wear leveling capabilities of the solid state
storage,

data regarding whether the solid state storage supports

automatic failover from failed memory components to
other memory components,

data regarding RAID capabilities of the solid state storage,

data regarding bandwidth configurations for the storage, a

bandwidth configuration indicating a number of device
lanes to a physical partition of memory of the solid state
storage,

data regarding multipath capabailities of the solid state stor-

age,

data regarding power capabilities of the solid state storage,

data regarding failure mode capabilities of the solid state

storage, and

data regarding reporting capabilities of the solid state stor-

age; and

sending one or more requests to the solid state storage to

configure the solid state storage 1n accordance with the
conflguration command.

20. The computer-readable storage memory of claim 19,
wherein receiving, via an interface, imput indicative of a con-
figuration command for configuring a solid state storage com-
prises receiving the input from a user interface or storage
management process.

G ex x = e



	Front Page
	Drawings
	Specification
	Claims

