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INTERACTIVE TOOL FOR VISUALIZING
PERFORMANCE DATA IN REAL-TIME TO

ENABLE ADAPTIVE PERFORMANCE
OPTIMIZATION AND FEEDBACK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s related to U.S. patent application Ser.
No. 11/863,682, entitled “Interactive Tool for Visualizing
Performance Data in Real-Time to Enable Adaptive Perfor-
mance Optimization and Feedback™, filed Sep. 28, 2007, by
Gooding et al. This related patent application 1s herein incor-
porated by reference in 1ts entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to parallel comput-
ing. More specifically, the present invention relates to an
interactive tool for visualizing performance data in real-time
to enable adaptive performance optimization and feedback.

2. Description of the Related Art

Powerful computers may be designed as highly parallel
systems where the processing activity of hundreds, 11 not
thousands, of processors (CPUs) are coordinated to perform
computing tasks. These systems are highly usetul for a broad
variety of applications including, financial modeling, hydro-
dynamics, quantum chemaistry, astronomy, weather modeling
and prediction, geological modeling, prime number factor-
ing, image processing (e.g., CGI animations and rendering),
to name but a few examples.

For example, one family of parallel computing systems has
been (and continues to be) developed by International Busi-
ness Machines (IBM) under the name Blue Gene®. The Blue
Gene/LL architecture provides a scalable, parallel computer
that may be configured with a maximum of 65,536 (2'°)
compute nodes. FEach compute node includes a single appli-
cation specific mtegrated circuit (ASIC) with 2 CPU’s and
memory. The Blue Gene/L architecture has been successiul
and on Oct. 27, 2005, IBM announced that a Blue Gene/L
system had reached an operational speed of 280.6 teraflops
(280.6 trillion floating-point operations per second), making
it the fastest computer 1n the world at that time. Further, as of
June 2003, Blue Gene/L 1installations at various sites world-
wide were among five out of the ten top most powerful com-
puters in the world.

In addition to the Blue Gene architecture developed by
IBM, other highly parallel computer systems have been (and
are being) developed. For example, a Beowulf cluster may be
built from a collection of commodity ofi-the-shell personal
computers. In a Beowult cluster, individual systems are con-
nected using local area network technology (e.g., Gigabit
Ethernet) and system software 1s used to execute programs
written for parallel processing on the cluster of individual
systems.

Compute nodes 1n a parallel system communicate with one
another over one or more communication networks. For
example, the compute nodes of a Blue Gene/LL system are
interconnected using five specialized networks, and the pri-
mary communication strategy for the Blue Gene/L system 1s
message passing over a torus network (1.e., a set of point-to-
point links between pairs of nodes). This message passing,
allows programs written for parallel processing to use high
level interfaces such as Message Passing Interface (MPI) and
Aggregate Remote Memory Copy Interface (ARMCI) to per-
form computing tasks and to distribute data among a set of

10

15

20

25

30

35

40

45

50

55

60

65

2

compute nodes. Other parallel architectures (e.g., a Beowulf
cluster) also use MPI and ARMCI for data communication

between compute nodes. Low level network interfaces com-
municate higher level messages using small messages known
as packets. Typically, MPI messages are encapsulated 1n a set
ol packets which are transmitted from a source node to a
destination node over a communications network (e.g., the
torus network of a Blue Gene system).

Frequently, network contention 1s a major problem for the
scalability of an application on a large parallel system. That
1s, compute nodes may compete with one another for access
to the communication networks interconnecting the nodes on
which the application 1s executing and as more compute
nodes are dedicated to a given application, the more inter-
node communication 1s typically required. Thus, it 1s desir-
able to optimize the configuration a given software applica-
tion, including optimizing network communication patterns
of the application. Further, communication patterns tend to be
different at computational phases of program execution and
are olten quite complex.

Furthermore, supercomputing resources are a scarce com-
modity, and access to a parallel computing system 1s usually
rented and/or allocated 1n small discrete blocks of time. When
optimizing such an application, therefore, 1t 1s important to
gather as much information on as many configurations of a
parallel system and/or an application as 1s possible within an
allotted time window.

Accordingly, there remains a need for an interactive tool
for visualizing performance data in real-time to enable adap-
tive performance optimization and feedback on a large par-
allel computing system.

SUMMARY OF THE INVENTION

One embodiment of the invention provides a method a
computer-implemented method of generating a visual repre-
sentation of performance data for an application running on a
plurality of compute nodes of a parallel computing system.
The method generally includes recerving a selection of one or
more performance counters present on the plurality of com-
pute nodes and receiving a value for each of the selected
performance counters. The values may be recerved without
disrupting the performance of the application running on the
plurality of compute nodes. The method also includes gener-
ating a visual display of the plurality of compute nodes that
depicts the plurality of compute nodes and depicts a perfor-
mance characteristic of the application, as reflected by the
received values for each of the selected performance
counters.

Another embodiment of the invention includes a computer-
readable storage medium containing a program which, when
executed, performs an operation of generating a visual repre-
sentation of performance data for an application running on a
plurality of compute nodes of a parallel computing system.
The operation may generally include receiving a selection of
one or more performance counters present on the plurality of
compute nodes and receiving a value for each of the selected
performance counters. The values may be recerved without
disrupting the performance of the application running on the
plurality of compute nodes. The operation may further
include generating a visual display of the plurality of compute
nodes that depicts the plurality of compute nodes and also
depicts a performance characteristic of the application, as
reflected by the recerved values for each of the selected per-
formance counters.

Yet another embodiment of the invention provides a paral-
lel computing system having a plurality of compute nodes
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executing an application, each of the plurality of compute
nodes having at least a processor and a memory. Each of the
plurality of compute nodes may include one or more perfor-
mance counters. The parallel system may also include a ser-
vice node having at least a processor and a memory contain-
ing an 1interactive performance visualization tool. The
visualization tool may be generally configured to receive a
selection of one or more of the performance counters and
receive a value for each of the selected performance counters.
The values may be recerved without disrupting the perfor-
mance of the application running on the plurality of compute
nodes. The visualization too may be further configured to
generate a visual display of the plurality of compute nodes,
where the visual display depicts the plurality of compute
nodes and also depicts a performance characteristic of the
application, as retlected by the received values for each of the
selected performance counters.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features,
advantages and objects of the present invention are attained
and can be understood 1n detail, a more particular description
of the invention, briefly summarized above, may be had by
reference to the embodiments thereof which are 1llustrated in
the appended drawings.

It 1s to be noted, however, that the appended drawings
illustrate only typical embodiments of this invention and are
therefore not to be considered limiting of 1ts scope, for the
invention may admit to other equally effective embodiments.

FIG. 1 1s a high-level block diagram of components of a
massively parallel computer system, according to one
embodiment of the present invention.

FIG. 2 1s a conceptual illustration of a three dimensional
torus network of the system of FIG. 1, according to one
embodiment of the invention.

FIG. 3 1s a high-level diagram of a compute node of the
system of FIG. 1, according to one embodiment of the inven-
tion.

FI1G. 4 15 a flow diagram 1illustrating a method for visual-
1zing performance data 1n real-time to enable adaptive per-
formance optimization and feedback on a massively parallel
computer system, according to one embodiment of the mven-
tion.

FIGS. SA and 5B 1llustrate an example user interface of an
interactive tool for visualizing performance data in real-time
to enable adaptive performance optimization and feedback,
according to one embodiment of the invention.

FI1G. 6 1llustrates a method for generating a visualization of
performance data in real-time, according to one embodiment
of the mvention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Embodiments of the mvention provide an interactive tool
for visualizing performance data in real-time to enable adap-
tive performance optimization for an application running on a
massively parallel computer system. For example, embodi-
ments of the mnvention may be used to diagnose and alleviate
network congestion problems and improve application scal-
ability on message passing supercomputers such as the Blue
Gene architecture developed by IBM. Of course, embodi-
ments of the mvention may be adapted for use with other
parallel systems that use message passing for node-to-node
communications. In one embodiment, an interactive tool may
be used to visualize the network (and other) performance
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4

counters recorded for an application as the application runs
on the parallel system 1n real-time. Further, a developer may
use the interactive tool to experiment with various tuning
options and optimization approaches on-the-ily.

The developer may use visual displays generated by the
interactive tool to identify bottlenecks in the network com-
munication patterns ol an application as well as to devise
improvements to those bottlenecks. Additionally, by display-
ing the network performance 1n real-time, the developer may
immediately see the effect of a given change, allowing the
developer to evaluate potential changes without having to
repeatedly stop and start the application. This approach
reduces the amount of time required to determine an optimal
configuration for a given application.

In the following, reference 1s made to embodiments of the
imnvention. However, 1t should be understood that the inven-
tion 1s not limited to specifically described embodiments.
Instead, any combination of the following features and ele-
ments, whether related to different embodiments or not, 1s
contemplated to implement and practice the invention. Fur-
thermore, in various embodiments the invention provides
numerous advantages over the prior art. However, although
embodiments of the mvention may achieve advantages over
other possible solutions and/or over the prior art, whether or
not a particular advantage 1s achieved by a given embodiment
1s not limiting of the invention. Thus, the following aspects,
features, embodiments and advantages are merely illustrative
and are not considered elements or limitations of the
appended claims except where explicitly recited 1n a claim(s).
[ikewise, reference to “the invention” shall not be construed
as a generalization of any inventive subject matter disclosed
herein and shall not be considered to be an element or limi-
tation of the appended claims except where explicitly recited
in a claim(s).

One embodiment of the invention 1s implemented as a
program product for use with a computer system. The pro-
gram(s) of the program product defines functions of the
embodiments (including the methods described herein) and
can be contained on a variety of computer-readable media.
I[llustrative computer-readable media include, but are not lim-
ited to: (1) non-writable storage media (e.g., read-only
memory devices within a computer such as CD-ROM or
DVD-ROM disks readable by a CD- or DVD-ROM drive) on
which information 1s permanently stored; (11) writable storage
media (e.g., floppy disks within a diskette drive, a hard-disk
drive, volatile and non-volatile memory such as flash and
dynamic random access memory) on which alterable infor-
mation 1s stored. Other media include communications media
through which information 1s conveyed to a computer, such as
through a computer or telephone network, including wireless
communications networks. The latter embodiment specifi-
cally includes transmitting information to/from the Internet
and other networks. Such computer-readable media, when
carrying computer-readable 1nstructions that direct the tunc-
tions of the present invention, represent embodiments of the
present invention.

In general, the routines executed to implement the embodi-
ments of the invention, may be part of an operating system or
a specific application, component, program, module, object,
or sequence ol instructions. The computer program of the
present invention typically 1s comprised of a multitude of
instructions that will be translated by the native computer into
a machine-readable format and hence executable instruc-
tions. Also, programs are comprised of variables and data
structures that either reside locally to the program or are
found 1n memory or on storage devices. In addition, various
programs described hereinaiter may be 1dentified based upon
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the application for which they are implemented 1n a specific
embodiment of the invention. However, 1t should be appreci-
ated that any particular program nomenclature that follows 1s
used merely for convenience, and thus the invention should
not be limited to use solely 1n any specific application 1den-
tified and/or implied by such nomenclature.

FIG. 1 1s a high-level block diagram of components of a
massively parallel computer system 100, according to one
embodiment of the present invention. Illustratively, computer
system 100 shows the high-level architecture of an IBM Blue
Gene® computer system, it being understood that other par-
allel computer systems could be used, and the description of
a preferred embodiment herein 1s not intended to limit the
present invention.

As shown, computer system 100 includes a compute core
101 having a number of compute nodes arranged 1n a regular
array or matrix, which perform the useful work performed by
system 100. The operation of computer system 100, including
compute core 101, may be controlled by service node 102.
Various additional processors in front-end nodes 103 may
perform auxiliary data processing functions, and file servers
104 provide an interface to data storage devices such as disk
based storage 109A, 109B or other I/O (not shown). Func-
tional network 103 provides the primary data communication
path among compute core 101 and other system components.
For example, data stored in storage devices attached to file
servers 104 1s loaded and stored to other system components
through functional network 105.

Also as shown, compute core 101 includes I/O nodes
111A-C and compute nodes 112A-1. Compute nodes 112
provide the processing capacity of parallel system 100 and are
configured to execute applications written for parallel pro-
cessing. I/O nodes 111 handle 1/O operations on behall of
compute nodes 112. Each I/O node 111 may include a pro-
cessor and iterface hardware that handles 1/0 operations for

a set of N compute nodes 112, the I/O node and its respective
set of N compute nodes are referred to as a Pset. Compute core
101 contains M Psets 115A-C, each including a single 1/0O
node 111 and N compute nodes 112, for a total of MxN
compute nodes 112. The product MxN can be very large. For
example, 1n one implementation M=1024 (1K) and N=64, for
a total of 64K compute nodes.

In general, application programming code and other data
input required by compute core 101 to execute user applica-
tions, as well as data output produced by the compute core
101, 1s communicated over functional network 105. The com-
pute nodes within a Pset 115 communicate with the corre-
sponding I/O node over a corresponding local I/0 tree net-
work 113A-C. The I/O nodes, in turn, are connected to
tfunctional network 103, over which they communicate with
I/0 devices attached to file servers 104, or with other system
components. Thus, the local I/0 tree networks 113 may be
viewed logically as extensions of functional network 105, and
like functional network 105 are used for data I/O, although
they are physically separated from functional network 105.

In a Blue Gene system, compute nodes 112 are connected
by multiple independent networks. Other massively parallel
architectures also use multiple networks for node-to-node
communication. Specifically, in a Blue Gene system, a torus
network connects the compute nodes 112 1n a 3D mesh with
wrap around links. Each compute node 112 1s connected to its
s1x neighbors through the torus network, and 1s addressed by
an (X, v, z) coordinate 1n within the mesh. Thus, each compute
node 112 may transmit a message directly to a neighboring,
node 1in the X+ and X-, the Y+ and Y-, and the Z+ and 7 -

directions.
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FIG. 2 1s a conceptual 1llustration of a three-dimensional
torus network of system 100, according to one embodiment of
the invention. More specifically, FIG. 2 illustrates a 4x4x4
torus 201 of compute nodes, 1n which the interior nodes are
omitted for clarity. Although FIG. 2 shows a 4x4x4 torus
having 64 nodes, 1t will be understood that the actual number
of compute nodes 1n a parallel computing system 1s typically
much larger. For example, a complete Blue Gene/LL system
includes 65,536 compute nodes. Each compute node 112 1n
torus 201 1ncludes a set of six node-to-node communication
links 202A-F which allows each compute nodes 1n torus 201
to communicate with 1ts s1x immediate neighbors, two nodes
in each of the x, v and z coordinate dimensions.

As used herein, the term “torus” includes any regular pat-
tern of nodes and inter-nodal data communications paths in
more than one dimension, such that each node has a defined
set of neighbors, and for any given node, it 1s possible to
determine the set of neighbors of that node. A “neighbor” of
a given node 1s any node which 1s linked to the given node by
a direct inter-nodal data communications path. That 1s, a path
which does not have to traverse another node. The compute
nodes may be linked in a three-dimensional torus 201, as
shown 1n FIG. 2, but may also be configured to have more or
tewer dimensions. Also, 1t 1s not necessarily the case that a
given node’s neighbors are the physically closest nodes to the
given node, although 1t 1s generally desirable to arrange the
nodes 1n such a manner, insofar as possible.

The compute nodes in each of the X, y, or z dimensions
form a torus in that dimension because the point-to-point
communication links logically wrap around. As shown, for
example, links 202D, 202E, and 202F which wrap around
from compute node 203 to other end of compute core 201 1n
cach of the x, y and z dimensions. Thus, although node 203

appears to be at a “corner” of the torus, node-to-node links
202A-F link node 203 to nodes 204, 205, and 206, in the X, v,

and 7 dimensions of torus 201.

Referring again to FIG. 1, another network on the Blue
Gene system1s a global combining network (1.e., tree network
113), which connects compute nodes 112 1n a binary tree. In
the combining network, each compute node 112 has a parent
and two children (although some nodes may have zero or one
chuld, depending on the hardware configuration). It 1s also
important to note that in the Blue Gene architecture, the tree
and torus networks are independent networks. That 1s, these
networks do not share network resources such as links or
packet mjection FIFOs. Communication networks in other
parallel architectures have similar characteristics.

A third network on a Blue Gene system 1s the J'TAG (Joint
Test Action Group) network (i.e., control system network
106), which may be configured to provide a hardware moni-
toring facility. As 1s known, JTAG 1s a standard for providing
external test access to integrated circuits serially, via a four- or
five-pin external interface. The JTAG standard has been
adopted as an IEEE standard. Within the Blue Gene system,
the ITAG network may be used to send performance counter
data to service node 102 1n real-time. That 1s, while an appli-
cation 1s running on compute core 101, performance data may
be gathered and transmitted to service node 102 without
allfecting the performance of that application. For example, 1n
one embodiment, the JTAG network may be used to record
floating point and cache performance on a given compute
node 112, along with the number of network packets that pass
through any of the six network ports (X+, X—-, Y+, Y-, Z+, 7—)
on that compute node 112. These hardware counters allow the
network tratfic (and memory access performance) to be moni-
tored without affecting the performance of the application

being monitored. Further, 1n one embodiment, the JTAG net-
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work may be used to modify the operational state of compute
core 101 while an application i1s running, without disrupting
application performance. For example, the JTAG network
may be used to specily what message passing protocol should
beused by compute nodes 112 (or to adjust a configuration for
a current message passing protocols).

Service node 102 communicates control and state informa-
tion with the nodes of compute core 101 over control system
network 106. Network 106 1s coupled to a set of hardware
controllers 108A-C (e.g., a JTAG controller). Each hardware
controller communicates with the nodes of a respective Pset
115 over a corresponding local hardware control network
114A-C. The hardware controllers 108 and local hardware
control networks 114 are logically an extension of control
system network 106, although physically separate.

In one embodiment, service node 102 may be configured to
direct and/or monitor the operation of the compute nodes 112
in compute core 101. Service node 102 1s a computer that
includes a processor (or processors) 121, mternal memory
120, and local storage 125. A display device 107 provides an
LCD or CRT display monitor. Illustratively, memory 120 of
service node 102 includes a control system 122, an MPI
runtime controller 123, a performance counter query tool
124, and a visualization tool 126.

Control system 122 may be a software application config-
ured to control the allocation of compute nodes 112 in com-
pute core 101, direct the loading of application and data on
compute nodes 111, and perform diagnostic and maintenance
functions, among other things. MPI runtime controller 124
may be a software application used to configure the protocols
used by compute nodes 111 to communicate using MPI (or
other) messages. For example, MPI runtime controller 124
may be used to select between message passing strategies
such as the well-known “eager” and “rendezvous” protocols.
When using the eager protocol, a sending node assumes that
a recerving node can recerve and store the message 111t 1s sent.
The recerving node has the responsibility to buffer the mes-
sage upon its arrival. The eager protocol 1s generally used for
smaller message sizes (typically up to Kbytes 1n size). The
rendezvous protocol 1s used when assumptions about the
receiving process buller space cannot be made, or when a
message size limit specified for the eager protocol 1s
exceeded. The rendezvous protocol requires some type of
“handshaking™ between the sender and the receiver pro-
cesses. Typically, 1n a rendezvous implementation, the sender
must first send a request and receive an acknowledgment
before a message may be transierred.

In one embodiment, performance counter query tool 124
may be a software application configured to query and report
on performance counter data received over control system
network 106. For example, query tool 124 may collect the
counter values representing the number of network packets
that pass through any of the six network ports (X+, X—, Y+,
Y-, Z+, Z—) on a given compute node 112. Visualization tool
126 may be a software application configured to use the
performance counter data received from query tool 124 and
generate a visual representation of the performance of paral-
lel computing system 100. For example, the visualization tool
126 may be configured to alter the colors used to depict a
compute node as the counter value increases. In such a case,
the color may depend on the traffic that passes through a
single network port (e.g., X+) or may be a composite of all
traffic through a given node. To provide a visual display
reflecting network contention, compute nodes 112 in a state
of high contention may be displayed more red than compute
nodes 112 1n a state of low contention. Further, in one
embodiment, visualization tool 126 may also provide a vari-
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ety of visualization techniques which could be employed by
the developer (e.g., adisplay of a selected slice of the compute
nodes or a fly-through animation, etc.).

In addition to service node 102, front-end nodes 103 pro-
vide computer systems used to perform auxiliary functions
which, for efliciency or otherwise, are best performed outside
compute core 101. Functions which mvolve substantial I/O
operations are generally performed in the front-end nodes.
For example, interactive data input, application code editing,
or other user interface functions are generally handled by
front-end nodes 103, as 1s application code compilation.
Front-end nodes 103 are connected to functional network 105
and may communicate with file servers 104.

FIG. 3 1s ahigh-level diagram of a compute node 112 of'the
system 100 of FIG. 1, according to one embodiment of the
invention. As shown, compute node 112 includes processor
cores 301 A and 301B, and also includes memory 302 used by
both processor cores 301; an external control interface 303
which 1s coupled to local hardware control network 114; an
external data communications intertace 304 which is coupled
to the corresponding local I/O tree network 113, and the
corresponding six node-to-node links 202 of the torus net-
work 201; and monitoring and control logic 305 which
receives and responds to control commands recerved through
external control interface 303. Monitoring and control logic
305 may access processor cores 301 and locations in memory
302 on behalf of service node 102 to read (or in some cases
alter) the operational state of node 112. In one embodiment,
cach node 112 may be physically implemented as a single,
discrete mtegrated circuit chip.

As described, functional network 105 may service many
I/0 nodes, and each I/O node 1s shared by multiple compute
nodes 112. Thus, 1t 1s apparent that the I/O resources of
parallel system 100 are relatively sparse when compared to
computing resources. Although it 1s a general purpose com-
puting machine, parallel system 100 1s designed for maxi-
mum efliciency in applications which are computationally
intense.

As shown 1 FIG. 3, memory 302 stores an operating
system 1mage 311, an application code 1image 312, and user
application data structures 313 as required. Some portion of
memory 302 may be allocated as a file cache 314, 1.e., a cache
of data read from or to be written to an I/O file. Operating
system 1mage 311 provides a copy of a simplified-function
operating system running on compute node 112. Operating
system 1mage 311 may includes a minimal set of functions
required to support operation of the compute node 112. In a
Blue Gene system, for example, operating system image 311
contains a version of the Linux® operating system custom-
1zed to run on compute node 112. Of course, other operating
systems may be used, and further it 1s not necessary that all
nodes employ the same operating system. (Also note, Linux®
1s a registered trademark of Linus Torvalds in the United
States and other countries. )

Application code image 312 represents a copy of the appli-
cation code being executed by compute node 112. Applica-
tion code 1mage 302 may include a copy of a computer pro-
gram being executed by system 100. In one embodiment,
cach node may execute an identical copy of the same appli-
cation, where each copy 1s configured to cooperate with oth-
ers. Alternatively, an application may be configured as a col-
lection of dissimilar components configured to perform
specialized tasks as part of the parallel application process-
ing. Memory 302 may also include a call-return stack 3135 for
storing the states of procedures which must be returned to,
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which 1s shown separate from application code 1image 302,
although 1t may be considered part of application code state
data.

As part of ongoing operations, application 312 may be
configured to transmit packets from compute node 112 to
other compute nodes 1n parallel system 100. For example, the
high level MPI call of MPI_Send( ); may be used by applica-
tion 312 to transmit a message (encapsulated 1n a sequence of
packets) from one compute node to another. On the other side
of the communication, the recerving node may invoke the
MPI call MPI_Rece1ve( ); to recerve and process the message.
As described above, 1n one embodiment, each compute node
112 may include hardware based counters configured to
count now many packets are passed over the external data
interface 304 of a given compute node 112 and report this
information to service node 102 over control system network
106 using control network interface 303.

FI1G. 4 15 a flow diagram illustrating a method for visual-
1zing performance data 1n real-time to enable adaptive per-
formance optimization and feedback on a massively parallel
computer system, according to one embodiment of the mnven-
tion. As shown, the method 400 begins at step 405, where data
for a selected performance counter 1s recerved. For example,
as stated, the performance counters may record the number of
messages that pass through a given network port (e.g. X+) of
cach compute node 112 running a given application.

At step 410, a visual display 1s generated that shows the
performance of the parallel system. The visual display depicts
the performance counter data received at step 40S5. For
example, the visual representation may depict network con-
gestion on the 3-D torus of a Blue Gene system. Doing so may
allow application developers and other users to detect
“hotspots™ (1.e., areas of significant network congestion), pat-
terns of usage and potential inetficiency, etc. In one embodi-
ment, the visual display may be generated and displayed in
real-time. That 1s, it may be generated and displayed while the
application 1s actively executing on the compute nodes of the
parallel system. Further, the visual display may be updated in
real-time to reflect the ongoing performance of the applica-
tion running on the parallel computing system as different
functions are performed.

By reviewing the visual display, the developer may formu-
late possible changes to the configuration of the parallel sys-
tem to increase the performance and scalability of the appli-
cation. At step 415, the visualization tool 126 determines
whether the system configuration has been modified. If not,
then the method returns to step 405 and continues to update
the visual representation of application performance on the
parallel system.

Otherwise, at step 420, the parallel system configuration
and/or the monitored performance counters may be updated.
For example, the developer may experiment with application
performance in real-time by trying different routing protocols
or by moditying the values of network communication
parameters. In such a case, the developer could switch the
routing protocol from eager to rendezvous (or vice versa), or
could explore alternative routing schemes (e.g., transporter
nodes, implicit barrier remapping, alternative static routing
heuristics, etc.), adjust MPI environment variables, and other
experiments to evaluate how network performance (and thus
application scaling) 1s affected in real-time. In one embodi-
ment, service node 102 may communicate changes to the
configuration of the parallel system using control system 106
(e.g., via the ITAG network of a Blue Gene system). Depend-
ing on the particular change, the change could take aflect
immediately (e.g., a hardware configuration change). In other
cases, the change could take affect at the next stage of the
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application (e.g., if MPI messages are needed to change pro-
tocols at a defined state or change which performance
counters are monitored).

At step 425, 11 the developer wishes to continue monitor-
ing, then the method 400 returns to step 405. Otherwise, at
step 430, data recorded from a given session may be stored.
For example, the performance counter data may be stored for
later differential analysis and/or a time-lapse payback. That
1s, visualization tool may be configured to display the differ-
ences between two performance measurements. In such a
case, the visualization tool may be used generate a display by
subtracting the performance counter data before and after a
change was made to the network routing. This would allow
the performance changes caused by an experiment to be high-
lighted. For example, the difference between executing an
application on the compute nodes of a parallel system using
the eager protocol versus the rendezvous protocol could be
displayed.

Further, 1n one embodiment, the visualization tool may
facilitate an analysis of the communication patterns of an
application over time. Storing the performance counter data
allows 1t to be used to generate a time-lapse animation
sequence of application performance. The developer may use
an interface provided by visualization tool 126 to rewind back
to previously viewed performance data, pause to study a
certain instance ol network contention, fast forward at a user
selected speed (V2 times (X) faster, 1x, 2x, 3%, etc.), skip
forward or backward to certain phases, eftc.

FIGS. 5A and 3B 1llustrate an example user interface of an
interactive tool for visualizing performance data 1n real-time
to enable adaptive performance optimization and feedback,
according to one embodiment of the invention. As shown 1n
FIG. 5A, visual display 500 depicts a representation of an
application’s network communication pattern projected onto
the compute nodes of a three-dimensional torus network 510
(e.g., a torus network of a Blue Gene system). Illustratively,
the torus network 3510 illustrated 1n visual display 500 has a
high degree of network congestion on the node-to-node com-
munication links, represented by the dense level of darkly
shaded regions of torus network 510. Also, a dialog box 515
includes a node selection tool 505 used to specity and query
for the performance data related to a grven compute node 112.
Dialog box 315 also includes an MPI configuration tool 520.
In this example, MPI configuration tool 520 has been used to
set MPI communications on the torus network to use the
rendezvous protocol.

FIG. 5B shows a visual display 350 after reconfiguring the
application running on torus network 310 to use the eager
protocol for MPI message passing. MPI configuration tool
520 of dialog box 575 now shows that the eager protocol has
been selected. In this example, assume that using eager pro-
tocol leads to substantially less network congestion for the
application running on the torus network 510. Accordingly,
the relative level of congestion shown on the torus network
510 shown 1n visual display 550 depicts mimimally congested
links, relative to the amount of network congestion 1n visual
display 500, 1llustrating the reduction 1n network contention
that resulted from the change from the rendezvous protocol to
the eager protocol.

FIG. 6 1llustrates a method 600 for generating a visualiza-
tion of performance data 1n real-time, such as the visualiza-
tion of torus 510 shown 1n FIGS. 5A and 5B, according to one
embodiment of the mnvention. The method 600 begins at step
605 where visualization tool 126 may determine an active
partition currently running an application. For example, on a
Blue Gene system, applications run on a block of partitions
composed from compute nodes 1n an X, y, and z dimension.
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When the dimensions are the same (1.e., when x=y=z), the
partition forms the shape of a cube, such as the torus 510
shown 1n FIG. 5A.

At step 610, the visualization tool 126 may generate a 3D
wirelrame representing the partition dimensions. And at step
615, the visualization tool 126 may load performance data
related to the application being run on the parallel system. As
described above, in one embodiment, the performance data
may be collected through a JTAG network independently
from the actions of the application. That 1s, the performance
data may be collected without having an impact on the per-
formance of the running application. At step 620, a user may
select which performance counters the user would like to
visualize. For example, as described, performance counters
may record the number of network packets injected on each of
the si1x point-to-point links from each compute node in the
partitton runnming the application. Other performance
counters include the number of floating point multiply opera-
tions performed at each compute node, or memory utilization
counters, €.g., the number of cache misses/hits or the number
of DDR paging operations, performed at each compute node.

At step 625, the visualization tool 126 may determine a
mimmum and maximum value for the performance counter
selected at step 620. In one embodiment, the range between
the maximum and minimum value 1s used to determine a
weighted color value for the performance counter for each
node. For example, if the performance data for network traffic
ranged from 0 to 200 packets per node, this information could
be visualized by assigning different color values to different
ranges of packets. Thus, the color values assigned to the
busiest node (e.g., nodes 1n the top 10% with 180-200 pack-
cts) could be painted on the wirelframe 1n red. In contrast,
color values assigned to the least busy node (e.g., nodes 1n the
bottom 10% with 0-20 packets) could be painted on the wire-
frame 1n blue. Further, 1n one embodiment, thresholds may be
set to prevent intermittent traific from cluttering the visual
display. For example, a threshold may require that a node
exhibit a mimmum amount of network traflic before being
shown on the visualization.

Once the user has specified what performance data to be
visualized, and the visualization tool 126 has retrieved this
data, at step 630 a loop begins to generate a visual display
showing the performance of the application running on the
partition, relative to the performance counter selected at step
620. At step 635, the visualization tool 126 determines
whether the counter data for a current node 1s within any
mimmum or maximum thresholds specified by the user. IT
not, then tool returns to step 630 and evaluates the perfor-
mance counter data for another node. Otherwise, at step 640,
visualization tool 126 calculates a weighed color value for the
current node, based on the range of values for the selected
performance counter and the value of the performance
counter for the current node. At step 645, the color value
determined at step 640 1s used to color a portion of the 3D
wirelrame generated at step 610. In particular, a position
corresponding to the coordinate position of the current node
within the partition.

In one embodiment, the process of loading performance
data (step 615) and the loop of steps 630, 635, 640, and 645,
may continue until the user decides erther to quit or to modify
the system configuration at step 650. Thus, the visualization
may take on the appearance of an animation showing “hot”
regions of the application running on the partition as the
performance characteristics of the application change over
time.

Advantageously, embodiments of the invention may be
used to increase the performance and scalability of an appli-
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cation running on a massively parallel computing system,
such as a Blue Gene system. The performance visualization
tool disclosed herein may be used to visualize the network
(and other) performance counters of the parallel system dur-
ing application execution in real-time. Further, a developer
may experiment with various tuning options and optimization
approaches on-the-tfly. The ability to visualize the network
performance of an application as it executes allows the devel-
oper to 1identily bottlenecks 1n the network communication
patterns of the application and thus devise improvements to
those bottlenecks. Moreover, by displaying the network per-
formance in real-time, the developer may immediately see the
elfect of a given change, allowing the developer to evaluate
potential changes without having to repeatedly stop and start
the application.

While the foregoing i1s directed to embodiments of the
present vention, other and further embodiments of the
invention may be devised without departing from the basic

scope thereof, and the scope thereofl 1s determined by the
claims that follow.

What 1s claimed 1s:
1. A non-transitory computer-readable medium containing
a program which, when executed, performs an operation of
generating a visual representation of performance data for an
application running on a plurality of compute nodes of a
parallel computing system, wherein instances of the applica-
tion communicate with one another using a first network, the
operation comprising;:
recerving a value for each of one or more dedicated hard-
ware performance counters present on the plurality of
compute nodes, wherein the values are recerved without
disrupting the performance of the application running on
the plurality of compute nodes by using a second net-
work that 1s separate from the first network, and wherein
at least one of the dedicated hardware performance
counters 1s configured to count a number of packets that
pass through a plurality of network ports coupled to one
of the plurality of compute nodes;
determiming a maximum value for each of the dedicated
hardware performance counters and a minimum value
for each of the dedicated hardware performance
counters, wherein the maximum value represents the
maximum value for the dedicated hardware perfor-
mance counter across all of the plurality of compute
nodes, and wherein the minimum value represents the
minimum value for the dedicated hardware performance
counter across all of the plurality of compute nodes;
for each of the plurality of compute nodes, determining a
weilghted color value relative to the received values for
the other compute nodes 1n the plurality of compute
nodes, wherein the weighted color value 1s based on the
received value for each respective compute node, the
respective maximum value for the performance counter,
and the respective minimum value for the performance
counter; and
generating a three-dimensional visual display representing,
the plurality of compute nodes, wherein the three-di-
mensional visual display depicts a network topology of
the plurality of compute nodes, and wherein the three-
dimensional visual display 1s colored based on the
weilghted color value determined for each of the plurality
of compute nodes.
2. The non-transitory computer-readable medium of claim
1, wherein the communication links interconnect the plurality
of compute nodes as a multi-dimensional torus.
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3. The non-transitory computer-readable medium claim 1,
wherein the plurality of compute nodes pass messages using,
the Message Passing Interface (MPI) protocol.

4. The non-transitory computer-readable medium of claim
1, wherein a second one of the dedicated hardware perfor-
mance counters measures one of a floating point performance
and a cache performance on a given compute node of the
plurality of compute nodes.

5. The non-transitory computer-readable medium of claim
1, wherein the operation further comprises:

modilying a configuration setting of the plurality of com-
pute nodes of the parallel computing system, wherein
the configuration setting may be modified without dis-
rupting the application running on the plurality of com-
pute nodes; and

receiving an updated value for each of the dedicated hard-
ware performance counters, wherein the updated values
are recerved without disrupting the performance of the
application running on the plurality of compute nodes by
using a dedicated, second network that 1s separate from
the first network; and

generating an updated three-dimensional visual display
representing the plurality of compute nodes, wherein the
updated three-dimensional visual display depicts the
network topology of the plurality of compute nodes, and
wherein the updated three-dimensional visual display 1s
colored based on an updated weighted color value deter-
mined for each of the plurality of compute nodes, based
on the received updates value for each of the plurality of
compute nodes.

6. The non-transitory computer-readable medium of claim

5, wherein the operation further comprises storing the gener-
ated three-dimensional visual display and the updated three-
dimensional visual display.

7. The non-transitory computer-readable medium of claim
1, wherein the operation further comprises, generating a time-
lapse animation depicting changes 1n the dedicated hardware
performance counters that occur while the application 1s run-
ning on the parallel system.

8. A parallel computing system, comprising:;

a plurality of compute nodes executing an application, each
of the plurality of compute nodes having at least a pro-
cessor and a memory, wherein each of the plurality of
compute nodes includes one or more dedicated hard-
ware performance counters, and wherein instances of
the application communicate with one another using a
first network; and

a service node having at least a processor and a memory
containing an interactive performance visualization
tool, wherein the visualization tool 1s configured to:
receive a value for each of the one or more dedicated

hardware performance counters, wherein the values

are recerved without disrupting the performance of

the application running on the plurality of compute
nodes, by using a second network that 1s separate from
the first network, and wherein at least one of the
dedicated hardware performance counters 1s config-
ured to count a number of packets that pass through a
plurality of network ports coupled to one of the plu-
rality of compute nodes,

determine a maximum value for each of the dedicated
hardware performance counters and a minimum value
for each of the dedicated hardware performance
counters, wherein the maximum value represents the
maximum value for the dedicated hardware pertor-
mance counter across all of the plurality of compute
nodes, and wherein the minimum value represents the
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mimimum value for the dedicated hardware perfor-
mance counter across all of the plurality of compute
nodes;

for each of the plurality of compute nodes, determine a
weighted color value relative to the received values
for the other compute nodes 1n the plurality of com-
pute nodes, wherein the weighted color value 1s based
on the recerved value for each respective compute
node, the respective maximum value for the perfor-
mance counter, and the respective minimum value for
the performance counter; and

generate a three-dimensional visual display represent-
ing the plurality of compute nodes, wherein the three-
dimensional visual display depicts a network topol-
ogy of the plurality of compute nodes, and wherein
the three-dimensional visual display 1s colored based
on the weighted color value determined for each of the
plurality of compute nodes.

9. The parallel computing system of claim 8, wherein the
communication links interconnect the plurality of compute
nodes as a multi-dimensional torus.

10. The parallel computing system claim 8, wherein the
plurality of compute nodes pass messages using the Message
Passing Interface (MPI) protocol.

11. The parallel computing system of claim 8, wherein a
second one of the one or more performance counters mea-
sures one of a floating point performance and a cache perfor-
mance on a given compute node of the plurality of compute
nodes.

12. The parallel computing system of claim 8, wherein the
visualization tool 1s further configured to:

modily a configuration setting of the plurality of compute

nodes of the parallel computing system, wherein the
conflguration setting may be modified without disrupt-
ing the application running on the plurality of compute
nodes;

recerve an updated value for each of the dedicated hard-

ware performance counters, wherein the updated values
are recerved without disrupting the performance of the
application running on the plurality of compute nodes by
using a dedicated, second network that 1s separate from
the first network; and

generate an updated three-dimensional visual display rep-

resenting the plurality of compute nodes, wherein the
updated three-dimensional visual display depicts the
network topology of the plurality of compute nodes, and
wherein the updated three-dimensional visual display 1s
colored based on an updated weighted color value deter-
mined for each of the plurality of compute nodes, based
on the recerved updates value for each of the plurality of
compute nodes.

13. The parallel computing system of claim 12, wherein the
visualization tool 1s further configured to store the generated
three-dimensional visual display and the updated three-di-
mensional visual display.

14. The parallel computing system of claim 13, wherein the
visualization tool 1s further configured to generate a time-
lapse animation depicting changes 1n the dedicated hardware
performance counters that occur while the application 1s run-
ning on the parallel system.

15. A non-transitory computer-readable medium contain-
ing a program which, when executed, performs an operation
of generating a visual representation of performance data for
an application running on a plurality of compute nodes of a
parallel computing system, wherein instances of the applica-
tion communicate with one another using a first network, the
operation comprising:
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receiving a value for each of one or more dedicated hard-
ware performance counters present on the plurality of
compute nodes, wherein the values are received without
disrupting the performance of the application running on
the plurality of compute nodes by using a second net-
work that 1s separate from the first network, and wherein
at least one of the dedicated hardware performance
counters 1s configured to count a number of packets that
pass through a plurality of network ports coupled to one
of the plurality of compute nodes;

modilying a configuration setting of the plurality of com-
pute nodes of the parallel computing system, wherein
the configuration setting may be modified without dis-
rupting the application running on the plurality of com-
pute nodes;

receiving an updated value for each of the dedicated hard-
ware performance counters, wherein the updated values
are recerved without disrupting the performance of the
application runming on the plurality of compute nodes,
by using the second network;

calculating a difference between the received value and the
received updated values for each of the plurality of com-
pute nodes for each of the one or more dedicated hard-
ware performance counters;

determining a maximum difference value for the dedicated
hardware performance counter and a minimum differ-
ence value for the dedicated hardware performance
counter, wherein the maximum difference value repre-
sents the maximum value of the calculated difference for
the dedicated hardware performance counter across all
ol the plurality of compute nodes, and wherein the mini-
mum difference value represents the mimmum value of
the calculated difference for the dedicated hardware per-
formance counter across all of the plurality of compute
nodes;

10

15

20

25

30

16

for each of the plurality of compute nodes, determining a
welghted color value for the calculated difference for
cach of the plurality of compute nodes relative to the
calculated differences for the other compute nodes in the
plurality of compute nodes, wherein the weighted color
value 1s based on the value of the calculated difference
for the respective compute node, the maximum differ-
ence value, and the minimum difference value; and

generating a three-dimensional (3D) wireframe 1image rep-
resenting the plurality of compute nodes, wherein the 3D
wireframe 1image depicts the plurality of compute nodes
and further depicts the calculated difference for each of
the plurality of compute nodes, and wherein the 3D
wireframe 1mage 1s colored based on the weighted color
value determined for each of the plurality of compute
nodes.

16. The non-transitory computer-readable medium of
claam 15, wheremn the dedicated hardware performance
counters measure a number of network packets injected onto
a point-to-point network connecting each of the plurality of

compute nodes to one or more neighboring compute nodes.

17. The non-transitory computer-readable medium of
claim 16, wherein the point-to-point network interconnects
the plurality of compute nodes to form a multi-dimensional
torus.

18. The non-transitory computer-readable medium of
claim 15, wherein the performance counter records a number
of floating point operations performed by each of the plurality
of compute nodes.

19. The non-transitory computer-readable medium of
claim 15, wherein the performance counter records a number
of cache hits/misses that occurs on each of the plurality of
compute nodes.
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