US008443257B1
a2 United States Patent (10) Patent No.: US 8.443,257 B1
Zeng et al. 45) Date of Patent: May 14, 2013
(54) RATE-SCALABLE, MULTISTAGE 8,095,859 B1* 1/2012 Petersonetal. .............. 714/801
QUASI-CYCLIC LDPC CODING 8,196,010 Bl 6/2012 Gunnam et al.
8,255,764 Bl 8/2012 Yeo et al.
. . _ 8,255,765 Bl 8/2012 Yeo et al.
(75) Inventors: Lingqi Zeng, San Jose, CA-(U S); Yu 8.347.190 B2 /2013 Brauchle et al.
Kou, San Jose, CA (US); Kin Man Ng, 8,359,515 B2 1/2013 Gunnam
Cupertino, CA (US); Kwok W. Yeung, 2002/0188906 Al  12/2002 Kurtas et al.
Milpitas, CA (US) 2008/0052594 Al 2/2008 Yedidia et al.
j 2008/0126908 A1* 52008 Lin ..oooviiviiiniiiiannn, 714/758
: . . . 2008/0163027 Al 7/2008 Richard t al.
(73) Assignee: SK hynix memory solutions inc., San 2008/0076156 Al 11/200% Glfnna;;(;? ;1‘ 4
Jose, CA (US) 2008/0301521 Al 12/2008 Gunnam et al.
2009/0138785 Al 5/2009 Sakai et al.
( *) Notice: Subject to any disclaimer, the term of this 2009/0150746 Al 6/2009 Chaichanavong et al.
paten‘t 18 extended Or adjusted under 35 2009/0327847 A o 12/2009 Shen et ::11 .................... 714/804
2010/0023838 Al 1/2010 Shen et al.
U.5.C. 154(b) by 261 days. 2010/0153819 Al* 6/2010 Uengetal. ..ocoocrrveen...... 714/763
(21) Appl. No.: 13/039,068 (Continued)
(22) Filed: Mar. 2, 2011 OTHER PUBLICATIONS

L1 et al., “Efficient Encoding of Quasi-Cyclic Low-Density Parity-

Check Codes,” IEEE Transactions on Communications, vol. 54, No.
(63) Continuation-in-part of application No. 12/970,731, 1, Jan. 2006.

filed on Dec. 16, 2010.

(60) Provisional application No. 61/339,564, filed on Mar.
4, 2010, provisional application No. 61/330,627, filed

on May 3, 2010, provisional application No.
61/337,287, filed on Feb. 1, 2010.

Related U.S. Application Data

Primary Examiner — M. Mujtaba K Chaudry
(74) Attorney, Agent, or Firm — Van Pelt, Y1 & James LLP

(37) ABSTRACT
(51) Int.CL
HO3M 15/00 (2006.01) Encoding is performed by dividing a quasi-cyclic low-density
(52) U.S. CL parity-check (QC-LDPC) parity check matrix into a first sub-
USPC e, 714/758: 714/779 matrix and a second sub-matrix. The first sub-matrix includes
(58) Field of Classification Search .................. 714/779,  a plurality of circulant vectors and the plurality ot circulant
714/758 vectors 1s associated with a circulant size. Input data 1s
See application file for complete search history. received having a length which 1s a product of an mteger
multiplier and the circulant size. A first stage of multi-stage
(56) References Cited LDPC encoding 1s performed using the input data and a
subset of the plurality of circulant vectors; the number of
U.S. PATENT DOCUMENTS circulant vectors in the subset equals the integer multiplier.
5,905,666 A 5/1999 Hoffman et al.
6,757,122 B1* 6/2004 Kuznetsovetal ......... 360/53
7,962,828 B2 6/2011 Kyung et al. 24 Claims, 13 Drawing Sheets

(Start)
I

Divide QC-LDPC parity check matrix into a
first sub-matrix and a second sub-matrix,
where the first sub-matrix includes a plurality |- 900
of circulant vectors and the plurality of
circulant vectors are associated with a
circulant size

!

Receive input data having a length which is
a product of integer multiplier and circulant
Size

!

Perform first stage of multi-stage LDPC
encoding using input data and a subset of
the plurality of circulant vectors, where the
number af circulant vectors in the subset is

the integer multiplier

I
(=)

r 902

- 904




US 8,443,257 B1
Page 2

U.S. PATENT DOCUMENTS 2010/0257425 Al1* 10/2010 Yueetal. ..ocoovevvevvnnnn., 714/752
2010/0162074 Al 6/2010 Oh et al. 2012/0221913 Al 8/2012 Anholt et al.

2010/0169736 A1 7/2010 Garani * cited by examiner



U.S. Patent May 14, 2013 Sheet 1 of 13 US 8,443,257 B1

100
Encoded
. L DPC (Write) Data
ata 1n Encoder
102
otorage
104
LDPC
Data Out
Decoder Encoded
(Read) Data

FIG. 1



U.S. Patent May 14, 2013 Sheet 2 of 13 US 8,443,257 B1

200 202 204
First Second
Data LDPC Intermediate LDPC Parity
In Encoding Buffer Encoding Data
Stage Stage
(Low Density sub- (High Density Matrix)
matrix of Parity
Check Matrix)

FIG. 2A



U.S. Patent May 14, 2013 Sheet 3 of 13 US 8,443,257 B1

230

1 Sector 1 Sector 1 Sector 1 Sector

Time Time Time Time
00 00
232
> 250
1 Sector 1 Sector 1 Sector 1 Sector
Time Time Time Time
N N 09

252 254

FIG. 2B



U.S. Patent May 14, 2013 Sheet 4 of 13 US 8,443,257 B1

Start

Encode input data using low density
sub-matrix of parity check matrix to
obtain intermediate data

300

Encode intermediate data using a high

density matrix, which is the inversion of a 302
sub-matrix of parity check matrix, to obtain
LDPC parity data
Combine LDPC parity data with 304

input data to obtain LDPC encoded
data in systematic form

FIG. 3



U.S. Patent May 14, 2013 Sheet 5 of 13 US 8,443,257 B1

400
QObtain parity check matrix

Is parity check
matrix full rank?

. Yes
mxm sub-matrix of
parity check matrix Perform column permutation on
s full rank? parity check matrix?
404

Yes

Set the rest mx(n-m) sub-matrix of the
parity check matrix to be H; 406

Set the full rank mxm sub-matrix of the

parity check matrix to be H, and 408
perform matrix inverse operation to
obtain H,”

FIG. 4



U.S. Patent

;—- ------------------------------------------

May 14, 2013
Ao Aot Az
Ao A Ar
Ao Agr Az

Sheet 6 of 13
—
n=7
Aoz 11 Aos  Aos Ao
Az 11 Ag As A
Aoz 11 Aos  Ass  Agp

-------------------------------------------

Sub-matrix H; (602)

Sub-matrix Hp
(504)

Perform permutations as
needed on parity check matrix
until sub-matrix Hy, is full rank

'— ------------------------------------------

Ao,

A1 Ag2
A1 1 A1 2
AZ 1 A2,2

o
n=7/7/

Ao 4 ' Aoz Ags  Aggs
A1,-4 ii A13 A1,5 A16
A2,4 EE A23 A2,5 AZE

Sub-matrix H;
(552)

Sub-matrix Hp
(554)

FIG. 5

o e

e ——

US 8,443,257 B1

=
1
W

|
ob



U.S. Patent

Hac-Lopc =

May 14, 2013

App =
! _A-o,g::' Ay @@@® Ao
A10 Ay @8 @® A
® @ ®
o @ @
@ @ @
Ac20 A1 @0 @® Acoto
Acig  Actyt @ 0@ Agq o

FIG. 6

Sheet 70f 13

Ac.2 11
Ac-1 1

US 8,443,257 B1



L Ol

US 8,443,257 B1

ejeq (SjUAA)
papoou3

Sheet 8 0f 13

May 14, 2013

U.S. Patent

004

U
ele(d



US 8,443,257 B1

Sheet 9 0of 13

May 14, 2013

U.S. Patent

— 800

Sub-matrix Hp

Sub-matrix H,

N = 7b (804)

(802)

L

)

1

-
1]
n...ﬁﬁ,ﬁ....ﬂ
< < < |
“ )
“55,5m
€ < <
o+ v v
L € < < |
u...33.3..
L € <
. SR T
mAmAAm
| I
& &
m “
S-N- -
| € € < |
.

1

)

0o

-

s,

o

T

lllllllllllllll

lllllllllllllll

IIIIIIIIIIIIII

lllllllllllllll

IIIIIIIIIIIIII

lllllllllllllll

IIIIIIIIIIIIIII

lllllllllllllll

H|,.1 H|,2 H|,3
854 856 858

Hl,U
852

FIG.8



U.S. Patent

May 14, 2013 Sheet 10 of 13

Start

Divide QC-LDPC parity check matrix into a
first sub-matrix and a second sub-matrix,
where the first sub-matrix includes a plurality
of circulant vectors and the plurality of
circulant vectors are associated with a
circulant size

Receive input data having a length which is
a product of integer multiplier and circulant
Size

Perform first stage of multi-stage LDPC
encoding using input data and a subset of
the plurality of circulant vectors, where the
number of circulant vectors in the subset is

the integer multiplier

FIG.9

900

902

904

US 8,443,257 B1



U.S. Patent

May 14, 2013 Sheet 11 of 13

100

1004

LDPC
Encoded
Data

Data Configurable
In Encoder

Stored circulant
information

Controller 1006

Stored code
information

Code Table 1008

1008

1050 1054

Code Code Space
1D
1 Building blocks for parity check and generator
matrices

Building blocks for parity check and generator
matrices

FIG.10

US 8,443,257 B1



U.S. Patent May 14, 2013 Sheet 12 of 13 US 8,443,257 B1

L
(S
-

[

— 1100

" Hoor Hoit @ @@ Hoeo Hot-1
Hqo Hi 1 00 H . Hi -1
@ ® @ ®

Hac-Lppc = ® o ® ® m = cb

@ @ @ @

He2.0 Heo1 ©O© @ @ Heoto  Heotg

He1 0 He11 @ @ @ Heqto  Heq g

FIG.11



U.S. Patent May 14, 2013 Sheet 13 of 13 US 8,443,257 B1

1202
""""""""""" ' 1204
Gop = b=4
— 1200
|
0
® n-m =
Gac-Lope = @ (t-c)b
@
0 0 e | 0 Gicoo ©0 O Gtc2.01
0 0 @@ 0 I Gic1io @ ® Gicoo

FIG.12



US 8,443,257 Bl

1

RATE-SCALABLE, MULTISTAGE
QUASI-CYCLIC LDPC CODING

CROSS REFERENCE TO OTHER
APPLICATIONS

This application 1s a continuation in part of co-pending
U.S. patent application Ser. No. 12/970,731 entitled MULTT-

STAGE LDPC ENCODING filed Dec. 16, 2010, which 1s
incorporated herein by reference for all purposes, which

claims priority to U.S. Provisional Patent Application No.
61/337,287 entitled EFFICIENT ENCODING OF A GEN-

ERAL LDPC CODEfiled Feb. 1, 2010, which 1s incorporated
herein by reference for all purposes; this application also
claims priority to U.S. Provisional Patent Application No.

61/339,564 entitled QUASI-CYCLIC LOW-DENSITY-
PARTY-CHECK CODES ENCODING filed Mar. 4, 2010

which 1s incorporated herein by reference for all purposes and
U.S. Provisional Patent Application No. 61/330,627 entitled

LDPC ENCODER AND DECODER filed May 3, 2010
which 1s incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

Multistage quasi-cyclic low-density parity-check (QC-
LDPC) encoders perform LDPC encoding in multiple stages.
In some applications they may be attractive compared to
single-stage encoders because multi-stage encoders may per-
form fewer matrix operations and/or at least some of the
multi-stage circuitry 1s reused, thus enabling a smaller device
than a single stage encoder. It would be desirable if these
multistage encoders could be further improved upon, for
example, to be able to handle different amounts of mnput data
to encode (e.g., on-the-fly and/or without having to unload an
mappropriately-sized code and load a more appropriately-
s1zed one onto the system).

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed 1n the
tollowing detailed description and the accompanying draw-
Ings.

FIG. 1 1s a diagram showing an embodiment of a system
configured to encode and store data using a low-density par-
ity-check (LDPC) code.

FIG. 2A 1s a diagram showing an embodiment of a two
stage LDPC encoder.

FIG. 2B 1s a diagram showing embodiments of timing
diagrams corresponding to two different implementations of
a second encoding stage of the two-stage approach.

FI1G. 3 1s a flowchart illustrating an embodiment of a pro-
cess for generating LDPC encoded data using a two stage
encoder.

FIG. 4 1s a diagram showing an embodiment of a process
for obtaining a high density matrix Hp'l and low density
sub-matrix H, of a parity check matrix.

FIG. 5 1s a diagram showing an embodiment of a parity
check matrix which s processed to produce a matrix H ,~ "and
the sub-matrix H..

FIG. 6 1s a diagram 1llustrating an embodiment of a QC-
LDPC parity check matrix.

FIG. 7 1s a diagram illustrating an embodiment of a two
stage LDPC encoder which includes AND gates and XOR
(exclusive OR) gates to perform matrix operations.

FIG. 8 1s a diagram showing an embodiment of a QC-
LDPC parity check matrix, which includes sub-matrix H,
which comprises columns of circulants.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 9 1s a flowchart illustrating an embodiment of a pro-
cess for encoding varying amounts of mput data.

FIG. 10 1s a diagram showing an embodiment of a code
table and a programmable encoder configured to store and use
codes 1n a storage efficient manner, including those codes
with non-full rank parity check matrices.

FIG. 11 1s a diagram showing an embodiment of a QC-
LDPC parity check matrix.

FIG. 12 1s a diagram showing an embodiment of a QC-
LDPC generator matrix.

DETAILED DESCRIPTION

The invention can be implemented 1n numerous ways,
including as a process; an apparatus; a system; a composition
ol matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that 1s temporarily configured
to perform the task at a given time or a specific component
that 1s manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention s provided below along with accompanying figures
that 1llustrate the principles of the invention. The mvention 1s
described in connection with such embodiments, but the
invention 1s not limited to any embodiment. The scope of the
invention 1s limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth 1n the
following description 1n order to provide a thorough under-
standing of the invention. These details are provided for the
purpose ol example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clanty, technical material that 1s
known 1n the technical fields related to the mvention has not
been described 1n detail so that the invention 1s not unneces-
sarily obscured.

What 1s described herein 1s a multistage quasi-cyclic (QC-
LDPC) coding system which is rate scalable. In multistage
coding, the coding 1s performed in multiple stages, for
example by breaking a parity check matrix ito multiple,
component matrices and performing multiple matrix opera-
tions using the component matrices. These matrix operations
are performed 1n a prescribed or specified sequence and the
first matrix operation may be expecting or configured to pro-
cess a certain amount of input data. The technique described
herein permits multistate systems to process various amounts
of mput data, thus enabling a rate scalable system. In one
example, a coding system 1s a configurable or programmable
one where a specified or desired code 15 loaded 1nto memory
(e.g., from some external source via an I/O interface or
retrieved from storage) and the system 1s rate scalable without
unloaded the code from memory. Unloading/loading a code
may be time consuming and 1t may be desirable to be able to
adjust the coding rate and/or adapt to various amount of input
data to encode without loading a new code. First, multistage
systems 1n general will be described. Then, embodiments of




US 8,443,257 Bl

3

multistage systems which are rate scalable are described.
Finally, some storage-eificient techniques to store generator
matrices and/or parity check matrices are described.

Multistage LDPC Encoders and Decoders

FIG. 1 1s a diagram showing an embodiment of a system
configured to encode and store data using a low-density par-
ity-check (LDPC) code. In the example shown, LDPC
encoder 100 receives data1n and includes (or 1s based on) data
which 1s desired to be stored. In some embodiments, multiple
layers of coding are performed and the data received 1is
already encoded (e.g., with another type of code such as a
Reed Solomon code). Similarly, after encoding by LDPC
encoder 100, 1n some embodiments another layer of encoding
1s performed.

In the example shown, encoded write data 1s output by
LDPC encoder 100; this data 1s stored in storage 102. In
various embodiments, storage 102 includes a variety of stor-
age types ormedia such as (e.g., magnetic) disk drive storage,
Flash storage, etc. When the stored data 1s requested or oth-
erwise desired (e.g., by an application or user that stored the
data), LDPC decoder 104 accesses storage 102 and retrieves
encoded read data, along with some noise or errors. LDPC
decoding 1s performed on the read-back data by decoder 104
and data out 1s passed to the appropriate entity (e.g., the user
or application which requested 1t). With proper encoding and
decoding, the data in matches the data out.

In LDPC coding, the code 1s defined by or otherwise char-
acterized by a parity check matrix (H). H 1s a matrix of size
mxn, which 1s also an rrxcc array of qxq circulants (1.e.,
rr*g=m and cc*g=n). From the parity check matrix, a second
matrix (G), referred to herein as the generator matrix, 1s
generated. For cases where the parity check matrix (H) 1s a
tull rank matrix, the generator matrix (G) has dimension of
(n—m)xn. A full rank parity check matrix H 1s one where all
rows 1n the matrix are linearly independent of all other rows.
The generator matrix (G) 1s used to generate encoded data
from the iput data. For example, 1f the input data 1s repre-
sented as u, a 1x(n-m) matrix, and the encoded write data 1s
represented as ¢ (a 1xn matrix) then c=u*G, where “* 1

1S a
matrix multiplication. In some cases, the generator matrix (G)
1s manipulated to be 1n a special form (1.e., a systematic
matrix) where G=[1 P] and I 1s the identity matrix and P 1s a
parity generator matrix. In systematic form, the encoded data
(¢) includes the input data (u) 1n its original form. In one
example, the encoded data may be the input data (u) followed
by the parity bits. Parity data (p) may be obtained from u*P
and when combined with the input data generates the code-
word (1.e., the encoded data).

In various embodiments, the system shown may be imple-
mented using a variety of techniques including an applica-
tion-specific integrated circuit (ASIC), a field-programmable
gate array (FPGA), and/or a general purpose processor (e.g.,
an Advanced RISC Machine (ARM) core).

What 1s described below 1s a multistage (e.g., two-stage)
LDPC encoder where the parity check matrix (H) 1s broken
down 1nto two or more sub-matrices and encoding 1s done 1n
two or more stages using the sub-matrices and the transior-
mation (1.e., inversion) of the sub-matrices. The following
figures describe some embodiments of such a multistage
LDPC encoder.

FIG. 2A 1s a diagram showing an embodiment of a two
stage LDPC encoder. In the example shown, a parity check
matrix H (not shown) 1s broken down 1nto two sub-matrices:
a mx(n-m) sub-matrix H; and a mxm sub-matrix H,. The
inversion of the sub-matrix H, has the same size of mxm and
1s a relatively high density matrix (e.g., in one example the
ratio of 1°s to 0’s 1s roughly 1 to 1), denoted by Hp"l; the

10

15

20

25

30

35

40

45

50

55

60

65

4

sub-matrix H, has a relatively low density (e.g., mostly 0’s
with relatively few 1°s). H 1s a low density matrix whereas
the inversion ot H, (1.e., Hp‘l 1s high density. The size of the
two sub-matrices varies depending upon the values of m and
n; in some cases with exemplary and/or typical values for m
and n (1.e., m<<n), the size ot the sub-matrix H, and its
inversion Hp"l 1s much smaller compared to the size of the
sub-matrix H.. In some embodiments, LDPC encoder 100

shown 1n FIG. 1 1s implemented as shown 1n this figure.

The low density sub-matrix and a high density matrix Hp"l
are passed to and used respectively by the first LDPC encod-
ing stage (200) and the second LDPC encoding stage (204).
The first encoding stage (200) performs the operation u*H,*
where u is the 1x(n-m) matrix of input data. H,’ is an
(n—m)xm matrix so the matrix multiplication results in inter-
mediate data (t) 1n the form of a 1xm matrix.

The mtermediate data 1s passed to intermediate butler 202
where 1t 1s stored. For example, second encoding stage 204
may be busy with other intermediate data (e.g., associated
with earlier input data) and when second encoding stage 204
1s iree the stored imntermediate data 1s retrieved from interme-
diate buffer 202. In some embodiments, intermediate butier
202 includes 2 “ping pong” bullers or memories which switch
off. For example, while intermediate data for a first (e.g., later
arriving) set of input data 1s being generated by first encoding
stage 200 and 1s being written to the first buffer, intermediate
data associated with a second (e.g., earlier arriving) set of
input data 1s being passed from the second buifer to the
second encoding stage (204). Once the first butter 1s full and
the second builer has been emptied, the two butlers switch off
(1.e., the first bulfer offloads its intermediate data to the sec-
ond encoding stage while the second buller receives interme-
diate data associated with a third (e.g., even later arriving) set
of input data from the first encoding stage). In some embodi-
ments, buffer 202 includes one or more FIFOs so that first
encoding stage 200 and second encoding stage 204 do not
need to deal with memory addresses when loading or unload-
ing intermediate data (t).

Second encoding stage 204 performs the operation t*
(HP'I)T which produces parity data in the form of a 1xm
matrix. By combining the parity data with the input data (e.g.,
via concatenation), LDPC encoded data 1n systematic form
may be produced.

In some applications, a two-stage encoder 1s used 1n a disk
drive storage system. In some such embodiments, encoding 1s
performed by each stage 1n 1 sector time (1.¢., the amount of
time 1s takes to read 1 sector from the disk) or less and the
latency (1.e., the amount of time from when the last input bat
1s recerved to when the last parity bit 1s output) 1s also 1 sector
time. Some applications may care more about throughput
compared to latency and a 1 sector latency may be acceptable.

Using a two-stage encoding technique as described herein
may have a number of advantages. For example, using two
stages may result 1n fewer actual operations being performed
when generating encoded data. Also, using two-stage encod-
ing techmque requires much less memory storage. The fol-
lowing table shows operations and corresponding sizes of
matrix multiplications that are performed.

TABLE 1
Size of matrix
Operation multiplication  Comments
Integrated p=u*P (1 x (n-m))* This operation generates the
(parity only) ((n—-m)xm) parity dataonly; Gis a

relatively high density matrix



US 8,443,257 Bl

S
TABLE 1-continued

Size of matrix

Operation multiplication  Comments
Stage 1 t=u*HI (1 x(n-m))* H,is lowdensity sub-matrix
((n-m)xm) of parity check matrix
Stage 2 p=t* (Hp'l)f (1 xm)* This operation generates the

parity data only; Hﬁ,'1 1s high
density matrix

(m x m)

In Table 1 shown above, the integrated technique 1s a
straightforward process where the parity data (p) 1s generated
by performing the operation u*P. The size of the matrix opera-
tion of the integrated technique 1s the same as the size of the
matrix operation for the first encoding stage (1.e., a (1x(n—
m))*((n—-m)xm) matrix operation). Of those potential opera-
tions, the integrated approach has a higher percentage of
potential operations which are “actual” operations (i.e., they
are not zeroed out because of multiplication by 0). This 1s
because the G matrix has a relatively high density (e.g.,
roughly the same number of 1°s and 0’s) whereas H, (and
therefore H,”) has a relatively low density (e.g., few 1’s and
mostly 0’s). A relatively high percentage of the multiplica-
tions for the first encoding stage will be zeroed out (because
most of the values in the H,” matrix are 0’s) whereas the G
matrix has a lower density of 0’s and a lower percentage of
operations will be zeroed out. Put another way, if the number
of actual operations=ax(number of potential operations)
where a 1s a scaling factor related to the density of a matrix
(e.g., P or H') which ranges from 0 to 1, the value of a is
lower for the first encoding stage (e.g., typically <0.05) com-
pared to the mtegrated approach, typically ~0.5.

With respect to storage requirements, the integrated
approach needs to store the high density matrix P of size
(n—m)xm. Since the quasi-cyclic structure can help reduce
the storage by a factor of g, the size of the circulant, the
memory requirement for itegrated approach 1s (n—m)xm/q
bits. For two-stage encoding approach, H,” required for first
stage 1s not considered as an addition memory requirement
for encoding because 1t 1s already stored for decoding pur-
pose. So only Hp'l required for second stage encoding is
considered as encoding memory storage, which 1s mxm/q
bits. In storage application, the typical ratio of (n—-m) and m1s
around 10. That 1s, with two-storage encoding approach, the
memory saving 1s ~90%.

Since the matrix Hp"l 1s a high density matrix like P, the
matrix multiplication for the second encoding stage shown in
the table above has roughly the same scaling factor ¢ as that
of matrix multiplication 1n integrated approach. However,
because n—m 1s typically (much) larger than m, the number of
operations associated with the second encoding stage 1s much
smaller than that of integrated approach. Because the two-
stage encoding approach can pipeline the first stage and the
second stage encoding, we have a sector time to do the second
stage encoding. That 1s, the saving on the number of opera-
tions of the second stage encoding compared with that of the
integrated approach can be directly translated into the saving
on the hardware complexity by time-sharing the same hard-
ware.

FIG. 2B 1s a diagram showing embodiments of timing
diagrams corresponding to two different implementations of
a second encoding stage of the two-stage approach. In the
example shown, timing diagram 230 corresponds to an
encoding stage (e.g., a {irst or second encoding stage) where
the encoding stage has all of the logic (e.g., multipliers and
adders) needed to perform the encoding in a single operation.
In the example shown, the system 1s a disk drive system and

5

10

15

20

25

30

35

40

45

50

55

60

65

6

the desired completion time for the (e.g., first or second)
encoding stage 1s a single sector time. Processing time 232
shows the portion of each sector time consumed in perform-
ing the encoding.

Timing diagram 250 shows a timing diagram correspond-
ing to an encoding stage (e.g., a first or second encoding
stage) where the data to be encoded 1s divided 1into multiple
portions (in this example, 4 groups) and the logic (e.g., mul-
tipliers and adders) 1s reused. For example, the encoding stage
corresponding to timing diagram 250 may have 47 the
amount of logic (e.g., multipliers and adders) compared to the
encoding stage corresponding to timing diagram 230. Pro-
cessing time 252 shows the time spent processing the first
fourth of data to be encoded and processing time 252 shows
the time spent processing the last fourth of data to be encoded.
The total amount of processing time (i.e., to process all 4
groups) 1s still less than 1 sector time and the data 1s encoded
in suificient time (1.€., 1s encoded 1n less than 1 sector time) to
meet desired system requirements.

In some applications, including less logic 1n a system and
reusing the logic 1s desirable because the system 1s smaller
and/or less expensive but still fimshes encoding within a
desired amount of time. Some example applications 1n which
this may be desirable include price sensitive storage applica-
tions (e.g., ones in which consumers are very sensitive to the
cost of the system and seek out low prices). For example, the
cost to manufacture a ASIC increases with the amount of
logic and thus reducing logic (e.g., multipliers and adders)
correspondingly reduces manufacturing costs.

FIG. 3 1s a flowchart illustrating an embodiment of a pro-
cess for generating LDPC encoded data using a two stage
encoder. In some embodiments, the process 1s performed
using the system shown in FIG. 2A.

At 300, mput data 1s encoded using a low density sub-
matrix of a parity check matrix to obtain intermediate data.
For example, the parity check matrix (H) 1s broken down into
a mx(n-m) sub-matrix H; and a mxm submatrix H , and H; 1s
input to a first encoding stage. In some embodiments, the and
the inversion of H, are stored in memory and passed to the
various stages when needed. Referring back to FIG. 2A, in
some embodiments, step 300 1s performed by first encoding,
stage 200.

Intermediate data 1s encoded using the inversion of the
sub-matrix H, ot a parity check matrix to obtain LDPC parity
data at 302. In some embodiments, the intermediate data 1s
stored 1n a buffer and step 302 includes retrieving the inter-
mediate data from a buffer. Referring back to FIG. 2A, n
some embodiments, step 302 1s performed by second encod-
ing stage 204.

At 304, the LDPC parity data 1s combined with the mput
data to obtain LDPC encoded data in systematic form. In one
example, the parity data 1s appended to the end of the mput
data to obtained LDPC encoded data. In various embodi-
ments, step 304 1s performed by a variety of processors, either
general purpose processors configured at least temporarily to
perform the combination or specially designed components
permanently so configured. With respect to FIG. 2A, there 1s
no corresponding component 1n F1G. 2A which performs step
304.

The following figures show some examples of how the high
density matrix (Hp‘l) and low density sub-matrix (H,) are
obtained from a parity check matrix. First, a process for
obtaiming H ~ "and H, is described. Then, an exemplary parity
check matrix 1s described and the processing i1s explained
using the exemplary parity check matrix.

FIG. 4 1s a diagram showing an embodiment of a process
for obtaining a high density matrix Hp"l and low density




US 8,443,257 Bl

7

sub-matrix of a parity check matrix. At 400, a parity check
matrix 1s obtained. At 401, it 1s determined if the parity check
matrix 1s a full rank matrix. In this embodiment, the parity
check matrix 1s expected to be a full rank matrix (since with-
out a full rank constraint, the inversion operation 1s not always
possible for H)). If the parity check matrix (H) 1s not a full
rank matrix then a new parity check matrix is obtained at 400.

If the parity check matrix 1s a full rank matrix then 1t 1s
determined at 403 1 a mxm sub-matrix of a parity check
matrix 1s full rank (to ensure 1nversion is possible). In such
embodiments, the determination at 403 includes determining
whether the m columns and m rows on the right (or left) hand
side of the parity check matrix comprise a full rank matrix.

If the mxm sub-matrix on the right hand of the parity check
matrix 1s not a full rank matrix, a permutation 1s performed on
the parity check matrix at 404. For example, 1n case QC-
LDPC code, two circulant-columns (circulant-column refers
to a column of circulants, permutation in unit of circulant-
column can help to maintain the QC structure) switch with
cach other. The process of performing a permutation on the
parity check matrix 1s repeated at 404 until it 1s determined at
403 that the mxm sub-matrix on the right hand of the parity
check matrix 1s a full rank matrix. Otherwise, a new parity
check matrix i1s obtained at 400.

Once the mxm sub-matrix on the right hand of the parity
check matrix 1s a full rank matrix, the low density sub-matrix
on the left hand of the parity check matrix is set to H, at 406.
In some embodiments, the low density sub-matrix comprises
the m rows and (n—-m) columns on the leit hand side of the
parity check matrix and that part of the parity matrix (which
includes any necessary permutations applied) 1s selected to be
H.. At 408, the mxm sub-matrix on the right hand of the parity
check matrix 1s inversed to get a high density matrix H ' For
example, the m columns and m rows on the right hand side of
the parity check matrix (including any permutations) 1s
selected to be H , and a matrix inverse operation is performed
on H,.

In various embodiments, the permutations performed on a
parity check matrix at 404 are not limited to a unique combi-
nation or sequence of permutations. As a result, the sub-
matrix H, and Hp/Hp'l obtained at 406 and 408, respectively,
may result 1n multiple solutions as opposed to a unique solu-
tion (1.e., even 1f the same parity check matrix 1s input to the
process different results may occur). Although there may be
more than one result to the process shown, the strength of the
code and the properness of the resulting encoding using the
obtained sub-matrix H, and matrix Hp‘l are not compro-
mised. Any different sub-matrices of the parity check matrix
which result may produce different parity data, but the coding,
strength and properness of the encoding remains the same.

In some embodiments, the process described above 1s per-
tformed a prior1 and the resulting matrix Hp‘l and sub-matrix
H. are programmed 1nto and stored by a storage system (e.g.,
that shown 1n FIG. 1) or an encoder therein (e.g., the encoder
shown 1n FIG. 2A). In some embodiments, a parity check
matrix 1s input to a storage system and the storage system (or
an encoder within) performs the processing described above.
That 1s, a process of determining the matrix Hp'l and the
sub-matrix H, may be performed internal to or external to an
encoder or a system which includes an encoder.

FIG. 5 1s a diagram showing an embodiment of a parity
check matrix which 1s processed to producea matrix H - "and
the sub-matrix H. The process shown in FIG. 4 will be
explained using parity check matrix 500 as an example.

Parity check matrix 500 1s a 3x7 matrix. Sub-matrix H, 502
in this example comprises the space occupied by the 3 rows
and 4 columns on the left hand side of parity check matrix 500

10

15

20

25

30

35

40

45

50

55

60

65

8

and the space occupied by the 3 columns and 3 rows on the
right hand side of parity check matrix 500 comprise sub-
matrix H, 504.

It 1s determined it the sub-matrix H 504 1s a full rank
matrix. For example, this includes checking that all rows are
independent of all other rows. In this example, the rows of
parity check matrix 500 are Ay ,-Agq A 4-A, ¢ and
As 4 As e

Permutations are performed on parity check matrix 500
as/1t needed until the sub-matrix H , (504) 1s a tull rank matrix.
In one example, 1t the sub-matrix comprised of A, 4-A 4,
A 4-A sand A, 4-A, s1s not full rank, the column(circulant-
column in QC-LDPC case) A. 4 1s switched with column
(circulant-column 1n QC-LDPC case) A. ;.

Processed parity check matrix 550 results from the one or
more permutations and has the property that the elements
located within location 504 comprise a full rank matrix. For
example, the sub-matrix comprised of Ay Ay Ay A 5
A s A gand A, 3 A, 5 A, 18 Tull rank. With this condition
satisfied, the elements located within location 504 are
selected to be sub-matrix (H, ) 554 and the elements located 1n
location 502 are selected to be the sub-matrix (H.) 552.

In some embodiments, each element A, ; 1s itselt a matrix.
In one example of this, each element A; ;1s a matrix which has
quasi-cyclic properties and the parity check matrix 1s a quasi-
cyclic low-density parity-check (QC-LDPC) parity check
matrix. QC-LDPC codes are a subset of LDPC codes where
the parity check matrix (H) has some repetition (e.g., each
row 1s a cyclic shift of the row before 1t). This regularity or
repetition enables smaller storage requirements (e.g., of the
parity check matrix) and/or easier encoder implementation
compared to some other (e.g., unconstrained) LDPC codes. In
some embodiments, the technique described herein uses QC-
LDPC codes (e.g., the parity check matrix 1s a QC-LDPC
parity check matrix). Quasi-cyclic property 1s not, however, a
requirement of the technique and 1n some embodiments non-
QC-LDPC codes and/or non-QC-LDPC parity check matri-
ces are used. Non-QC LDPC codes can be seen as a special
case of QC-LDPC codes with circulant size of 1. The follow-
ing figure shows an example of a QC-LPDC parity check
matrix.

FIG. 6 1s a diagram 1illustrating an embodiment of a QC-
LDPC parity check matrix. In the example shown, QC-LDPC
parity check matrix (H, . ; pp) 18 an mxn matrix where both

m and n 1s the product of two 1ntegers (1.¢., ¢ and b 1n the case
of m and t and b in t. QC-LDPC parity check matrix 600
includes one or more circulants, A, .. A circulant 1s a square
matrix having dimensions bxb where each row 1s a cyclic shift
(e.g., to the right) of the row before 1t. Circulant 602 shows an
example circulant for A, ,. In this example, b=4 and each row
in circulant 602 1s a copy of the previous row which 1s cycli-
cally shifted one place to the right where values at the end
wrap around to the beginning.

Using a parity check matrix which 1s a QC-LDPC parity
check matrix reduces the amount of storage needed to store
the matrix Hp"l and the sub-matrix H. associated with a code.
This 1s because a QC-LDCP parity matrix produces a matrix
Hp"l and a sub-matrix H, for which both matrices have rep-
ctition embedded within and less information needs to be
stored as a result. The table below shows a comparison of
storage requirements for storing a sub-matrix H, and a matrix
H ~' when beginning with a QC-LDPC parity matrix as

P

opposed to a non-QC-LDPC parity matrix.



US 8,443,257 Bl

9
TABL,

T
-

Storage Requirements
for QC-LDPC (Bits)

Storage
Requirements (Bits)

(m x (n—m))/b
(m x m)/b

m x (n —m)
m X Im

FIG. 7 1s a diagram 1llustrating an embodiment of a two
stage LDPC encoder which includes AND gates and XOR
(exclusive OR) gates to perform matrix operations. In some
embodiments, first encoding stage 200, intermediate buifer
202 and second encoding stage 204 are implemented as
shown.

To illustrate the system shown in FIG. 7, consider the
example where the input data u=[u, u, |, the sub-matrix

Ly ;-
AD,D Aﬂ,l
’ ’

i AI,D Al,l |

and the matrix. The table below shows at various points 1n

time what information exists within first encoding stage 700.
The operation performed by the first encoding stage 1is
t=u*H.” or

oy ;-
AD,G AI,D

r=luguy || -
Ao Al

For simplicity, only the processing associated with the first
encoding stage 700 1s described herein; the operation of the
second encoding stage 1s similar.

TABLE 3
Data Output of H, Output of Intermediate Data

In Buffer Multiplexer  Stored in IB

Ug Aoo 0 Up X Ao

Ug Ay o 0 (g X Ao o)s (g X A’ o)
U Ao Ug X A'g o (U X Ago+uy xAg )

(g x A’} o)
U A’ Ug X A’ o (U X Ago+uy xAg )

(ug x Aoty x Aﬂl,,l)

As shown 1n the table above, at a first point 1n time, {irst the
multiplication uyxA'y , 18 performed. Since XOR 706 corre-
sponds to an add (which 1s not needed at this time), the output
of the multiplexer (708)1s a 0 which effectively “turns oif” the
XOR. Adder 706 adds the two 1mnputs passed to 1t, so having a
0 at one of the mputs of the adder turns 1t off. The output of
butfer 7021s A’y , which when combined with the datain (i.e.,
u,) by AND 704 produces the product u,xA'y .

At a second point 1n time, a second multiplication of (u,x
A'| ;) 1s performed, the result of which 1s also stored in an
intermediate butler (e.g., one of the butfers 1n 730). Similar to
the previous step, since no addition 1s being performed, the
output of multiplexer 1s 0 which turns off XOR 706. To
perform the multiplication, A", , 1s retrieved from and output
by H, buffer 702 at the same time u, 1s at the input.

At a third point in time, a third multiplication of (u; xA'; ;)
and this product 1s added to (u,xA'y ) which 1s stored 1n the
intermediate builer. Since an addition 1s being performed at
this time, the output of multiplexer 708 is (uyxA'y,) as
opposed to a 0 (which would “turn off” the adder). This sum
1s then stored 1n the intermediate buifer.

10

15

20

25

30

35

40

45

50

55

60

65

10

At a fourth point in time, a fourth multiplication of (u, x
A', 1) 1s performed which is added to (uyxA'; ;) which 1s
stored 1n the intermediate butler. To perform the multiplica-
tion, A", | 1s retrieved from and output by H, butter 702 at the
same time that input u, 1s coming 1n.

Variable-Length Multistage LDPC Encoders and Decod-
ers

FIG. 8 1s a diagram showing an embodiment of a QC-
LDPC parity check matrix, which includes sub-matrix H,
which comprises columns of circulants. In the example
shown, parity check matrix 800 includes sub-matrices 802
and 804. Sub-matrix (H,) 802 1s associated with a first-stage
of matrix multiplication and sub-matrix (H,) 804 1is associ-
ated with a second stage of matrix multiplication 1n a multi-
stage encoder.

Sub-matrix 802 includes columns of circulants 852-858.
Depending upon the amount of mput data being encoded,
varying combinations or numbers of circulant columns 852-
838 are used. A circulant column may be referred to more
generally as a circulant vectors; another type of circulant

vector 1s a circulant row (1.e., a row of circulants). The table
below shows (for the example of FIG. 8) one embodiment of
various amounts of mput data and corresponding circulant
columns to encode that amount of input data.

TABLE 4
Amount of nput data Input data Sub-matrix to use in first
(b = circulant size) to encode encoding stage
b [ug . . . U(z:--l)] [Hf,3]T
(1 x b matrix) (b x 3b matrix)
2b [Ug . .. 11(2.5-1)] [H; > Hz',,B]T
(1 x 2b matrix) (2b x 3b matrix)
3b [Ug . .. 11(3.5-1)] [H; 1 H;» Hz‘,B]T
(1 x 3b matrix) (3b x 3b matrix)
4b [ug - . . 11(4.5--1)] [H;oH;; H;» Hf,,3]T

(1 x 4b matrix) (4b x 3b matrix)

So 11 the amount of input data being processed 1s b, the first
encoding stage 18 [ug . . . U,_ l)]’I‘[HI.:‘:,.,]T ; for the 2b case the
first encoding stage 1s [Ug . . . Ugs,_1y]*[H; 5 H1.53]T ; for the 3b
casethe firstencoding stage1s [u, . . . U5, [*[H;  H; 5 H, ;5] ’
tor the 4b case the first encoding stage 1s [u,, . . . U, ]*[H; o
H,, H,, HI.!P,]T . All of the amounts of mput data (in this
example, b, 2b, 3b and 4b) will produce the same sized
intermediate data (1.e., a 1x3b matrix) and so no modification
to the second stage 1s necessary.

Table 4 merely shows one embodiment and any sequence
or combination of circulant vectors may be used. Some other
example sequences for the 2b case include the leftmost cir-
culant columns (e.g., [H, ; H, ;]), circulant columns that are
not next to each (e.g., [H,, H,,]) or out-ot-order circulant
columns (e.g., [H, , H, ,]).

FIG. 9 1s a flowchart illustrating an embodiment of a pro-
cess for encoding varying amounts of input data. In the
example shown, the technique permits a multistage encoder
to encode different amounts of 1input data on-the-fly and/or
without unloading and loading different codes.

At 900, a QC-LDPC parity check matrix 1s divided into a
first sub-matrix and a second sub-matrix, where the first sub-
matrix includes a plurality of circulant vectors and the plu-
rality of circulant vectors 1s associated with a circulant size.
For example, sub-matrix 802 1s divided 1n FIG. 8 into column
vectors 852-858, each of which comprises a column of circu-
lants. In some embodiments, at least some of the steps shown
in FIG. 4 are used to divide the parity check matrix nto a
plurality of sub-matrices (e.g., H, and H ).




US 8,443,257 Bl

11

Input data 1s received having a length which 1s a product of
an integer multiplier and a circulant size at 902. For example,
in the 3b case shown 1n the table above, the integer multiplier
would be 3. In various embodiments, the value of the integer
multiplier 1s 1dentified 1n a variety of ways. In some embodi-
ments, an interface (e.g., via which mput data to encode 1s
received) 1s configured to signal the amount of data being
exchanged before the data 1s actually exchanged; the value of
the mteger multiplier 1s thus known before the mnput data 1s
actually recerved. In such embodiments, a multi-stage
encoder may (if desired) be configured with the appropriate
number or amount of circulant vectors to use prior to actually
receiving the mput data and encoding can begin soon after the
input data starts being received. In some other embodiments,
a multistage coding system does not know ahead of time how
much data 1s to be recerved (e.g., until an “end of sector” or
“end of packet” tlag 1s raised). In such embodiments, a buifer
may be used to store the received data and encoding begins
once the integer multiplier 1s determined (e.g., by counting
how much data 1s recerved and then dividing that amount by
the circulant size).

At 904, a first stage of multi-stage LDPC encoding 1s
performed using the input data and a subset of the plurality of
circulant vectors, where the number of circulant vectors 1n the
subset 1s the integer multiplier. For example, the 2b case in the
table above uses circulant vectors which are columns (as
opposed to rows) and specifically circulant columns J; , and
H, ; are used. The data produced at 904 1s the product of a first
stage of multi-stage encoding process.

Onthe decoding side, the same matrix 1s used to decode the
encoded data. In the table above, for example, the imnput data
[ug . .. v,y ] having a length ot b would be decoded using the
circulant column H, ;. In some embodiments, input data may
have varying lengths and one piece of input data may not
necessarily have the same length as a piece of data before or
after 1it. In some embodiments, a table 1s used to track the
amount of mput data which was recerved and/or a specific
sequence of circulant vectors to use when decoding a particu-
lar piece of encoded data. In one example 1n the storage space,
a write controller stores 1n such a table what sequence of
circulant vectors to use in decoding a particular storage loca-
tion or sector. When reading back a storage location or sector,
the read controller accesses the table and uses to stored infor-
mation to determine how to properly decode the information
stored 1n that sector or storage location (e.g., what circulant
vectors were used to encode 1t and thus what circulant vectors
to use to decode 1t).

In some embodiments, a system 1s programmable or con-
figurable and 1s able to operate using a specified or selected
LDPC code. For example, the code may be loaded from an
external source and/or the system may include storage for
storing codes and when instructed (e.g., by some driver, appli-
cation or other entity) one of the stored codes 1s selected and
loaded. The following shows an embodiment where such a
configurable encoder 1s able (using the techniques described
herein) to load and use LDPC codes where the parity check
matrices are both full rank and non-full rank. This may be
desirable since 1t does not limit the set of usable codes to those
with full rank parity check matrices.

FIG. 10 1s a diagram showing an embodiment of a code
table and a programmable encoder configured to store and use
codes 1n a storage efficient manner, imncluding those codes
with non-full rank parity check matrices. In some embodi-
ments, LDPC encoder 100 from FIG. 1 1s implemented as
shown.

Before any data 1s encoded, controller 1006 configures
other components in the system. The programming sequence

10

15

20

25

30

35

40

45

50

55

60

65

12

described herein 1s merely exemplary and 1s not necessarily
limiting. Controller 1006 receives some indication to load a
specified code, for example from some driver, application or
other entity. In response to the indication, controller 1006
accesses code table 1008 and accesses the stored code infor-
mation for the specified code. Using this information, con-
troller 1006 programs configurable encoder 1004 so that the
specified code 1s loaded. In some embodiments, configurable
encoder 1004 1s a “dumb” device and controller 1006 deter-
mines appropriate values for all elements 1n the parity check
matrix and/or generator matrix (e.g., from some smaller
building block(s) stored 1n code table 1008) and provides or
otherwise programs configurable encoder 1004 with all of
those values, e.g., fully populating some matrix space within
configurable encoder 1004. In some other embodiments, con-
figurable encoder 1004 includes some 1ntelligence and once
provided the building block(s) from controller 1006 1s able to
determine the entire matrix (e.g., configurable encoder 1004
knows there 1s some repeatable pattern in the generator matrix
and/or parity check matrix and populates at least some of the
values 1n 1ts internal matrix space with appropriate values).

In this example, the components know beforehand the
values of n and m; in some other embodiments the values of
n and/or m are configurable and controller 1006 programs
appropriate components with the values of n and/or m 1f
needed.

Once controller 1006 has completed programming appro-
priate components, encoding begins. Using the generator or
parity check matrix loaded into 1t, configurable encoder 1004
encodes the mnput data passed to 1t and outputs LDPC encoded
data. The LDPC encoded data may be further processed and
subsequently stored 1n storage media or transmitted over a
communications channel.

The bottom portion of FIG. 10 shows an embodiment of a
code table. In the example shown, each code 1s assigned a
unique code ID (see column 1050) and 1n some embodiments,
a driver or application provides controller 1006 with the
unique code ID of a desired code when speciiying or selecting
a code. Code space 1054 15 used to store information used to
reconstruct or regenerate a parity check matrix and/or gen-
crator matrix associated with a particular code. In some
embodiments, a row vector or column vector from one or
more circulants associated with a matrix are stored 1n code
space 1054.

Storing the Generator Matrix and/or the Parity Check
Matrix

Some systems are configured to store the generator matrix
and/or the parnty check matrix. For example, a system may
store a plurality of matrix pairs, each of which 1s associated
with a different data rate, different error correction capabili-
ties, etc. A user or driver may configure the system to load a
specified matrix pair and encode/decode information using
the loaded matrix pair. Such a system may be more attractive
than a system with a single, hardcoded matrix pair since 1t
offers flexibility and/or multiple modes of operation. In
another example, a system 1s 1mtially “blank’™ and a user or
driver loads a matrix pair ito the system where 1t 1s stored.
For example, some end users may prefer to use a specific
LDPC code and/or not have other people (including a storage
or communication systems manufacture) know what code 1s
being used. The following figures are used to describe some
techniques for storing a generator matrix and/or a parity
check matrix in an efficient manner.

FIG. 11 1s a diagram showing an embodiment of a QC-
LDPC parity check matrix. In the example shown, QC-LDPC
parity check matrix 1100 includes a plurality of circulants.
One of the circulants, H,  (1102), 1s shown and has a circu-




US 8,443,257 Bl

13

lant s1ze of b=4 1n this example. Circulant 1102 includes a
plurality of vectors, including row vector 1104 and column
vector 1106.

FIG. 12 1s a diagram showing an embodiment of a QC-
LDPC generator matrix. In the example shown, QC-LDPC
generator matrix 1200 includes a plurality of circulants; cir-
culant G, , (1202) 1s shown with an example circulant size of
b=4. A plurality of vectors make up circulant 1202, including
row vector 1204 and column vector 1206.

Oftentimes LDPC parity check matrices (which include
QC-LDPC parity check matrices) are low density matrices.
Put another way, the number of 1’s 1n a LPDC parity check
matrix tends to be low. In contrast, an LDPC generator matrix
typically 1s not low density and has a more 1’°s compared to
the parity check matrix.

In some embodiments, for a given one of the circulants
(e.g., associated with a parity check matrix or a generator
matrix), one and only one vector from that circulant 1s stored.
For example, for parity check matrix 1102, the only informa-
tion stored for that circulant 1s row vector 1104. Or, for
generator matrix 1202, the only information stored for that
circulant 1s column vector 1206. In some embodiments, a
single vector 1s stored for each circulant (e.g., a first vector
trom circulant G , 18 stored, a second vector from G ; 18
stored, etc.).

In some embodiments, storing the parity check matrix
includes storing, for at least one of the plurality of circulants,
the location(s) of the 1°s in one vector. For example, for
circulant 1104 associated with QC-LDPC parity check matrix
1100, column vector 1106 1s stored (from which circulant
1104 can be reconstructed). In some embodiments, storing
the location 1s more storage etficient for low density matrices.
As a result, in some embodiments, the technique of storing a
location 1s used for storing information associated with parity
check matrices but not necessarily for generator matrices
which tend to have higher densities. In some embodiments, 1
the number of 1°s 1n a circulant (e.g., one of circulants H, ;) 1s
less than b/(ce1l(log,(b))), where b 1s the circulant size, then
the location of 1°s 1s stored. In some embodiments, this
threshold 1s based on the assumption that the locations are
stored 1n base 2 format.

In some embodiments, when there 1s relatively small num-
ber of 1’s (e.g., in arow vector of the circulant), a non-base 2
format 1s used to store the location of the 1°s. In one example,
if the circulant size (1.e., b) 1s 12 then the valid locations of 1°s
would be (in decimal) 1 (1.e., there 1s a 1 1n the first element of
the vector), 2 (1.e., there 1s a 1 1n the second element of the
vector), ..., 11 and 12. In binary (i.e., base 2), this would be
0001, 0010, ...,1011, and 1100. An example of a non-base
2 format 1s [6 3 2 1] which results 1 all 16 combinations of
0000 thru 1111 being mapped to 0 thru 12 (1n decimal) when
this [6 3 2 1] format 1s used. In some cases this 1s amany to one
mapping (e.g., both 0100 and 0011 1n this format will map to
3 1n decimal). One benefit to using a non-base 2 format to
store locations 1s a more efficient hardware design (e.g., when
implemented as a field-programmable gate array (FPGA) or
application-specific integrated circuit (ASIC)). For example,
addressing the memory 1s made easier and there 1s less routing
congestion. Another advantage 1s that anon-base 2 format can
be used to avoid some or all out-of-bounds addresses. In the [6
3 2 1] example above, 1t 1s 1mpossible to map to 13-15 1n
decimal and thus those out-of-bounds addresses (for this
example where the circulant size b=12) cannot be acciden-
tally accessed. In some embodiments, 0000 (e.g., in base 2
format or some non-base 2 format such as [6 3 2 1]) represents
a special value: an all zero matrix or vector.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention 1s not limited to the details provided. There are
many alternative ways of implementing the imnvention. The
disclosed embodiments are illustrative and not restrictive.

What 1s claimed 1s:

1. A system for encoding, comprising:

a processor configured to divide a quasi-cyclic low-density
parity-check (QC-LDPC) parity check matrix into a first
sub-matrix and a second sub-matrix, wherein the first
sub-matrix includes a plurality of circulant vectors and
the plurality of circulant vectors 1s associated with a

circulant size;

an 1nterface configured to receive iput data having a
length which 1s a product of an integer multiplier and the
circulant size; and

an encoder configured to perform a first stage of multi-

stage LDPC encoding using the input data and a subset
of the plurality of circulant vectors, wherein the number
of circulant vectors 1n the subset equals the integer mul-
tiplier.

2. The system recited in claim 1, wherein the encoder
generates LDPC encoded data and the system further
includes storage configured to store the LDPC encoded data.

3. The system recited in claim 2, wherein the storage
includes one or more of the following: magnetic disk storage
or Flash storage.

4. The system recited 1in claim 1, wherein the plurality of
circulant vectors includes at least one column of circulants.

5. The system recited in claim 1, wherein the subset only
includes circulant vectors which are contiguous to each other
within the first sub-matrix.

6. The system recited 1n claim 1, wherein the iterface 1s
turther configured to obtain the integer multiplier, including
by counting the length of the mnput data.

7. The system recited 1n claim 1 further comprising:

storage configured to store information associated with a

plurality of QC-LDPC codes; and

a controller configured to:

receive a selection of one of the plurality of QC-LDPC
codes; and

in response to recerving the selection: retrieve informa-
tion stored in the storage associated with the selected
one of the plurality of QC-LDPC codes and program
the encoder with at least some of the retrieved infor-
mation.

8. The system recited 1n claim 1, wherein:

the parity check matrix 1s associated with a generator

matrix which includes a plurality of circulants; and

the system further includes storage configured to store the

generator matrix by storing, for at least one of the plu-
rality of circulants, one and only one vector from said at
least one of the plurality of circulants.

9. The system recited 1n claim 1, wherein:

the parity check matrix includes a plurality of circulants;

and

the system further includes storage configured to store the

parity check matrix by storing, for at least one of the
plurality of circulants, one and only one vector from said
at least one of the plurality of circulants.

10. The system recited 1n claim 1, wherein:

the parity check matrix includes a plurality of circulants;

and

the system further includes storage configured to store the

parity check matrix by storing, for at least one of the




US 8,443,257 Bl

15

plurality of circulants, the location(s) of the 1’°s 1n one
and only one vector from said at least one of the plurality
ol circulants.
11. The system recited in claim 10, wherein: storing the
location(s) of the 1°s is performed in the event the number of °
1’s 1n the parity check matrix 1s less than b/(ceil(log,(b)))
where b 1s the circulant size.
12. The system recited in claim 10, wherein storing the
location(s) of the 1’s includes storing the location(s) 1n non
base 2.
13. A method for encoding, comprising:
using a processor to divide a quasi-cyclic low-density par-
ity-check (QC-LDPC) parity check matrix into a first
sub-matrix and a second sub-matrix, wherein the first
sub-matrix includes a plurality of circulant vectors and
the plurality of circulant vectors 1s associated with a
circulant size;
receiving input data having a length which 1s a product of
an mteger multiplier and the circulant size; and

performing a first stage of multi-stage LDPC encoding
using the input data and a subset of the plurality of
circulant vectors, wherein the number of circulant vec-
tors 1n the subset equals the integer multiplier.

14. The method recited 1n claim 13, wherein encoding
generates LDPC encoded data and the method further
includes storage configured to store the LDPC encoded data.

15. The method recited 1n claim 14, wherein the storage
includes one or more of the following: magnetic disk storage
or Flash storage.

16. The method recited 1n claim 13, wherein the plurality of
circulant vectors 1includes at least one column of circulants.

17. The method recited in claim 13, wherein the subset only
includes circulant vectors which are contiguous to each other
within the first sub-matrix.

18. The method recited 1n claim 13, further comprising
obtaining the integer multiplier, including by counting the
length of the mput data.

10

15

20

25

30

35

16

19. The method recited in claim 13 further comprising:

storing 1nformation associated with a plurality of
QC-LDPC codes; and

recerving a selection of one of the plurality of QC-LDPC
codes; and

in response to receiving the selection: retrieving stored
information associated with the selected one of the plu-
rality of QC-LDPC codes and programming an encoder,
which performs first stage of multi-stage LDPC encod-
ing, with at least some of the retrieved information.

20. The method recited 1n claim 13, wherein:

the parity check matrix 1s associated with a generator
matrix which mcludes a plurality of circulants; and

the method further includes storing the generator matrix by
storing, for at least one of the plurality of circulants, one
and only one vector from said at least one of the plurality
of circulants.

21. The method recited 1n claim 13, wherein:

the parity check matrix includes a plurality of circulants;
and

the method further includes storing the parity check matrix
by storing, for at least one of the plurality of circulants,
one and only one vector from said at least one of the
plurality of circulants.

22. The method recited 1n claim 13, wherein:

the parity check matrix includes a plurality of circulants;

and

the method further includes storing the parity check matrix
by storing, for at least one of the plurality of circulants,
the location(s) of the 1°s 1n one and only one vector from
said at least one of the plurality of circulants.

23. The method recited 1n claim 22, wherein: storing the
location(s) of the 1’s 1s performed 1n the event the number of
1’s 1n the parity check matrix 1s less than b/(ceil(log,(b)))
where b 1s the circulant size.

24. The method recited 1n claim 22, wherein storing the

location(s) of the 1’s includes storing the location(s) in non
base 2.



	Front Page
	Drawings
	Specification
	Claims

