US008438653B2
a2 United States Patent (10) Patent No.: US 8.438.658 B2
Hofstee et al. 45) Date of Patent: May 7, 2013
(54) PROVIDING SEALED STORAGE IN A DATA %882? 8(1) é S;ig i é? 3882 E;‘Ehmel etlal.
1 SOy et al.
PROCESSING DEVICE 2006/0200680 Al 9/2006 Ellison et al.
(75) Inventors: H. Peter Hofstee, Austin, TX (US); FOREIGN PATENT DOCUMENTS
Kanna Shimizu, Austin, TX (US) CN 1574730 /2005
JP 2005018770 1/2005
(73) Assignee: International Business Machines OTHER PUBI ICATIONS

Corporation, Armonk, NY (US)
White, “How Computers Work™”, Millennium Edition, 1999, Que

(*) Notice: Subject to any disclaimer, the term of this Corporation, Indianapolis, IN, all pages.*
patent i1s extended or adjusted under 35 Derfler, “How Networks Work”, Bestseller Edition, 1996, Zift-Davis

Press, Emeryville, CA, all pages.™
U.5.C. 154(b) by 1920 days. Gralla, “How the Internet Works”, Millennium Edition, 1999, Que

Corporation, Indianapolis, IN, all pages.™

(21) Appl. No.: 11/345,923 Muller, “Desktop Encyclopedia of the Internet”, 1999, Artech House
Inc., Norwood, MA, all pages.*
(22) Filed: Feb. 2, 2006 U.S. Appl. No. 60/650,754, filed Feb. 7, 2005, Akiyuki Hatakeyama.
U.S. Appl. No. 11/345,848, filed Feb. 2, 2006, Hatakeyama et al.
(65) Prior Publication Data U.S. Appl. No. 11/346,848, 2 pages.
US 2007/0179904 Al Aug. 2, 2007 * cited by examiner
(51) Int.Cl. Primary Examiner — Jacob C. Coppola
GOGE 17/30 (2006.01) (74) Attorney, Agent, or Firm — Stephen J. Walder, Ir.;
GO6F 7/04 (2006.01) Matthew B. Talpis
HO4N 7/16 (2006.01) (57) ABRSTRACT
(52) U.S. CL _ ' _ |
USPC 726/30: 726/26: 726/27: 726/29; Mechanisms that provide a sealed storage in a data processing

705/50: 705/51: 705/55: 705/56 device are provided. Processors of the data processing device

: : : _ may operate in a hardware 1solation mode which allows a
(58) Field of Classification Search 705/3(2);/7396 process to execute 1n an 1solated environment on a processor

L _ and associated memory thereby being protected from access
See application file for complete search history. by other elements of the data processing device. In addition,
a hardware controlled authentication and decryption mecha-
nism 1s provided that 1s based on a hardware core key. These
two features are tied together such that authentication occurs
U.S. PATENT DOCUMENTS every time the 1solation mode 1s entered. Based on the core
6,118,870 A 9/2000 Boyle et al. key, which 1s only accessible from the hardware when in
6,961,852 B2* 11/2005 Craft ... 713/168 isolation mode, a chain of trust is generated by providing
7,203,844 Bl 472007 Oxtord authentication keys for authenticating a next piece of soft-
7,409,570 B2 8/2008 Suzuoki - e -
ware 1n the chain, in each piece of software that must be

(56) References Cited

2004/0003262 Al* 1/2004 England etal. 713/189 | _

2004/0054907 Al 3/2004 Chateau et al. loaded, starting with the core key.

2005/0021944 Al* 1/2005 Craft et al. woooeecevoin.. 713/161

2005/0182948 A 8/2005 Ducharme 28 Claims, 4 Drawing Sheets
0~ {3ENERATE PROTECTED

EXECUTION ENVIRONMENT

!

520~ RETRIEVE CORE KEY(S) |

FROM HARDWARE

'

530~] DECRYPT AND AUTHENTICATE
LOADER MODULE USING CORE KEY{S)

590
NG ALTHENTICATED? * pa

LOAD ADMIN MODULE IN PROTECTED
540 YES EXECUTION ENVIRONMENT

LOAD LOADER MODULE IN PROTECTED '
550~ EXECUTION ENVIRONIMENT DECRYPT APP AUTHEMTICATION

I KEY AND SECOND CECRYPTION

KEY IN ADMIN MODULE USING
DECRYFT ADMIN AUTHENTICATION FIRST DECRYPTION KEY

KEY AND FIRST DECRYPTION KEY %
560~ IN LOADER MOOULE USING CORE 00 l 610
DECRYPTION KEY i
] AUTHENTICATE APP MODULE
AUTHENTIOATE ASMIN MODULE USING APP AUTHENTICATION KEY

570~ USING ADMIN AUTHENTICATION KEY

ND

AUTHENTICATED'?
YES

?
ALUTHENTICATED: vl 620

280 2l LOAD APP MODLLE IN PROTECTED
630~ EXECUTION ENVIRONMENT

!

BECAYPT DATA USING SECOND
DECRYPTION KEY AND RUN
640-"| APPLICATION ON DECRYPTED DATA

|

U.S. Patent May 7, 2013 Sheet 1 of 4 US 8,438,658 B2

FIG. 100

CELL BROADBAND ENGINE
120 122 124 126 128 130 132 134

SPU SPU
144 148
S S
165 167

L
I
159

167
I

MFC MEC MFC MFC MFC
157 | | ||1s8] | | [19] | | |a60] | | |16
BlU BilJ BiU BlU BiU
184 186 188 190 192
B N b B B
K E B B E
EIB
196
b
I
L2
114" CACHE
I
112-"7 cacHe | TFE 198
R 110
11— U
Ly
EXTERNAL
SHARED
199~ MEMORY BUSES/

DEVICES

U.S. Patent May 7, 2013 Sheet 2 of 4

r--—-——~>—~>"="="=—=="""™""™"™"™""""7"1

200
FIG. 2
SYSTEM-ON-A-CHIP
__________________________ -
PROTECTED EXECUTION 220 |
ENVIRONMENT :
I
PROCESSOR LOCAL STORAGE DEVICE :
19 255 PROTECTED MEMORY '
OF LOCAL STORE ,
AUTHENTICATION :
MECHANISM |
I
|
DECRYPTION MECHANISM | |
I
CORE KEY(S) L OAD/EXIT |
STATE MACHINE :
|
|
|
240 250 |
_____________________ R— e —
° 245
410
FIG. 4
440
LOAD

COMMAND /' DOES CODE

AUTHENTICATE
2

YES

LOAD
COMMAND

NON-ISOLATED STOP

SPU (NO (LS AND SPU
ISOLATION EXIT STILL IN
SECTION IN LS) | comMmAND | ISOLATED STATE)

420 450

US 8,438,658 B2

SYSTEM STORAGE

LOAD
NO COMMAND

CODE/DATA
(ENCRYPTED

SECURITY KEYS)

260

400

RUN AUTHENTICATED
PROGRAM IN ISOLATION

SECTION IN LS (SPU IN
ISOLATED STATE)

430

U.S. Patent May 7, 2013 Sheet 3 of 4 US 8.438.658 B2

FIG. 3

APPLICATION

ENCRYPTED USING K

330
340

AUTHENTICATE DECRYPT
APPLICATION ADMINISTRATOR

SOFTWARE MODULE

- ENCRYPTED USING K |

AUTHENTICATE DECRYPT

AUTHENTICATE DECRYPT
HARDWARE

o | Forter | —

U.S. Patent May 7, 2013 Sheet 4 of 4 US 8,438,658 B2

FIG. 5

210~ GENERATE PROTECTED
EXECUTION ENVIRONMENT

520 RETRIEVE CORE KEY(S)
FROM HARDWARE

930 DECRYPT AND AUTHENTICATE
LOADER MODULE USING CORE KEY(S)

NO

390
AUTHENTICATED?

LOAD ADMIN MODULE IN PROTECTED
540 YES EXECUTION ENVIRONMENT

LOAD LOADER MODULE IN PROTECTED
550 EXECUTION ENVIRONMENT DECRYPT APP AUTHENTICATION

KEY AND SECOND DECRYPTION

KEY IN ADMIN MODULE USING
FIRST DECRYPTION KEY

DECRYPT ADMIN AUTHENTICATION
KEY AND FIRST DECRYPTION KEY

560 IN LOADER MODULE USING CORE 600 610

DECRYPTION KEY
AUTHENTICATE APP MODULE
AUTHENTICATE ADMIN MODULE USING APP AUTHENTICATION KEY
570 USING ADMIN AUTHENTICATION KEY
NO

YES

AUTHENTICATED?

?
AUTHENTICATED: -
580 NO LOAD APP MODULE IN PROTECTED
630 EXECUTION ENVIRONMENT

DECRYPT DATA USING SECOND
DECRYPTION KEY AND RUN

640 APPLICATION ON DECRYPTED DATA

END

US 8,438,658 B2

1

PROVIDING SEALED STORAGE IN A DATA
PROCESSING DEVICE

BACKGROUND

1. Technical Field

The present application relates generally to an improved
data processing device. More specifically, the present appli-
cation 1s directed to an apparatus and method for providing
sealed storage 1n a data processing device.

2. Description of Related Art

Maintaining the secrecy of sensitive data in computing
systems 1s a consistent problem in today’s computer-centered
society. Problems associated with identity theft, corporate
espionage, hacking, and the like, are on a rise. Various mea-
sures, €.g., encryption mechamsms, certification mecha-
nisms, and the like, have been devised for making it more
difficult for unauthorized users, programs, and the like, to
access sensitive data.

One endeavor to attempt to create a more secure computing,
environment 1s the development of “Trusted Computing” by
International Business Machines, Inc. (IBM) and the Trusted
Computing Group (TCG), a consortium of several companies
that aims to standardize a hardware module and a software
stack that enable attestation, 1.¢. the ability to prove the integ-
rity of a cryptographic co-processor to remote systems, and
other security services necessary for verifying system integ-
rity. In one version of “Trusted Computing,” the hardware of
a computing device includes a passive monitoring component
that stores a hash of a machine state on start-up. This hash 1s
computed using details of the hardware (audio card, video
card, etc.) and the software (O/S, drivers, etc.). IT the com-
puting device ends up in the ‘approved’ state, the hardware
may make available to the operating system the cryptographic
keys needed to decrypt trusted applications and data. If the
computing device ends up 1n a ‘wrong’ state, the hash will be
wrong and the hardware will not release the right crypto-
graphic key. The computing device may still be able to run
non-trusted applications and access non-trusted data, but pro-
tected applications and data will be unavailable and hence
unusable.

The current “Trusted Computing” solutions provided by
IBM work very well 1in existing computing environments and
provide a mechanism by which data and applications are
cryptographically linked to a specific hardware and software
environment that would be very difficult for an unauthorized
individual to replication. However, with the advent of new
computing architectures, opportunities for improving upon
known security mechanisms and “Trusted Computing” solu-
tions are made available.

SUMMARY

The 1illustrative embodiments provide an apparatus, sys-
tem, and method for providing sealed storage in a data pro-
cessing device. Sealed storage 1s a security measure whereby
data 1s encrypted and stored such that 1t can only be decrypted
and accessed 11 the software and hardware environment are 1n
an expected configuration. Sealed storage protects against
data theft attacks where data 1s copied and accessed in a
different environment.

The illustrative embodiments provide such a sealed storage
in a data processing device that has one or more processors
having a locally accessible memory and an 1solation mode of
operation. One such data processing device may be a Cell
architecture data processing device in which there 1s one
control processor and one or more co-processors that each

10

15

20

25

30

35

40

45

50

55

60

65

2

have alocal store and may operate 1n an 1solation mode. In the
1solation mode of operation, a hardware implemented 1sola-
tion mechanism 1s utilized such that a process can execute in
an 1solated environment on a co-processor and associated
memory thereby being protected from access by other ele-
ments of the data processing device, e.g., other processors and
functional units of the data processing device.

In addition to the 1solation mode of operation, a hardware
controlled authentication mechanism 1s provided that 1s based
on a hardware root of trust, 1.e. a hardware authentication key.
A chain of trust 1s started with this authentication mechanism
within the 1solated environment of the co-processor and asso-
ciated local store by requiring a series of authentication
checks to ensure that each successive software module has (1)
not been tampered with and/or (2) 1s authorized to execute in
this environment. Although the authentication checks for the
second software module and beyond are implemented 1n soft-
ware, 1t 1s critical that the first or the primary authentication 1s
implemented 1 and 1s controlled by hardware. This 1s to
ensure that the root of trust cannot be modified and manipu-
lated.

The two features of 1solation and authentication are tied
together by the mechamsms of the illustrative embodiments
such that authentication occurs every time the 1solation mode
1s entered. Furthermore, the hardware root or core key for
authentication (hereafter referred to as the “core” authentica-
tion key) are only accessible from the hardware when the
Co-processor 1s operating 1n 1solation mode. The core authen-
tication key 1s used to authenticate a first software module that
1s loaded 1n the 1solated environment. This authentication
verifies that the first software module has not been modified
and 1s not “rogue” software. Once this first software module
1s authenticated, it can be trusted to authenticate or check the
second software module and so on. In this way, the trust
system expands to include more and more software and the
entire software stack that 1s active 1n the co-processor can be
trusted.

In addition to the above, an additional feature of the 1llus-
trative embodiments 1s a hardware controlled decryption
mechanism and a hardware root of secrecy. This root of
secrecy, which 1s implemented as a hardware decryption key
(hereafter referred to as the core decryption key), 1s used by
the hardware decryption facility to decrypt data. The
decrypted data 1s placed within the 1solated co-processor’s
protected environment by the hardware-controlled decryp-
tion facility. Thus, any encrypted data that requires the core
decryption key for decrypting into plaintext (unencrypted)
form, whereby 1t can be used or executed, 1s only 1n this useful
and vulnerable form within the protection of the 1solated
CO-Processor.

This system of secrecy can be expanded to include second-
ary keys, tertiary keys and beyond as follows. The secondary
keys are decrypted by the core decryption key via the hard-
ware decryption facility. The secondary keys can be used to
decrypt a third tier of keys by a software-implemented
decryption mechanism, and so on. Because access to the core
decryption key 1s needed to start this “unwrapping” of a tree
ol keys, the core decryption key 1s considered to be the root of
secrecy. Without access or knowledge of this root, none of the
keys are 1n a usable form (1.e. they are still encrypted) and are
thereby protected from a malicious agent.

The two features of authentication and decryption are com-
bined together as described 1n the following system architec-
ture. The first software module, e.g., a loader application, has
an encrypted portion that contains a pair of security keys. A
first security key in the pair of security keys may be an
authentication key for authentication of a second software

US 8,438,658 B2

3

module, e.g., an administration program. The second security
key 1n the pair of security keys may be a decryption security
key for decrypting a portion of the second software module.

The encrypted portion of the first software module may be
decrypted using the core decryption key. Once the first soft-
ware module 1s authenticated using the core authentication
key, the encrypted portion of the first software module 1s
decrypted using the core decryption key and the decrypted
secondary authentication key 1s used to authenticate the sec-
ond software module when the second software module 1s
loaded 1nto the 1solated environment. Stmilarly, the decrypted
secondary decryption key 1n the decrypted portion of the first
soltware module may be used to decrypt a portion of a second
solftware module and/or the authentication and decryption
keys for the third software module. In this way, a particular
order of software execution 1s required before a particular
portion of data or an application may be decrypted and pro-
cessed 1n the 1solated environment.

As mentioned above, both the core decryption and authen-
tication keys are only accessible from within the isolated
environment generated by the co-processor being in an 1s0-
lation mode of operation. As a result, external devices and
applications may not access the core keys. As a result, exter-
nal devices and applications cannot decrypt the security keys
required for processing applications and data 1n the software
stack.

Furthermore, only software that has been authenticated (by
the core authentication key either directly or indirectly
through a chain of authentication) may access the security
keys (which are decrypted either directly or indirectly by the
core decryption key). Therefore, tampered or compromised
soltware cannot access the highly sensitive security keys.

Moreover, cryptographic hashing, 1.e. hashing 1n which
only entities having knowledge of the hash key may correctly
generate a hash value, may be used to generate an authent-
cation value that 1s based on the core key and the first software
module. Similarly, hashing may be used to generate authen-
tication values based on the other security keys used for
authentication and the application and/or data that they are
intended to authenticate. In this way, any modification of the
applications and/or data will result 1n an 1ncorrect hash value
being generated and the authentication check will fail.

The combination of the 1solation environment generated
by the 1solation mode of the co-processor and associated local
memory and the authentication and decryption mechanisms
of the 1llustrative embodiments provides a sealed storage 1n
that data and applications are only accessible within an 1so-
lated environment and only when a particular software stack
1s present. With the mechanisms of the illustrative embodi-
ments, applications/data are only accessible in a hardware
protected environment, 1.¢. an 1solation environment, where
all executing software from the time when the processor
entered the 1nitial 1solation state has been authenticated and
protected. The applications/data cannot be accessed 1n any
other environment or on any other hardware.

With the 1llustrative embodiments, an unauthorized indi-
vidual, program or the like, may not access the sensitive
data/applications because they cannot decrypt the data/appli-
cations outside the i1solated environment and cannot simply
copy the data/applications to another environment and be able
to access them. By requiring a particular chain of software in
the software stack before a particular application/portion of
data 1s accessible 1n the 1solated environment, the software
environment may be verified as not having been tampered
with belfore loading of the application/portion of data. Fur-
thermore, since 1t 1s 1mpossible to decrypt the applications/
data unless the applications/data are residing 1n the 1solated

10

15

20

25

30

35

40

45

50

55

60

65

4

environment of the co-processor and local memory, the appli-
cations/data are protected from tampering after loading of the
applications/data. In addition, snooping of the processing of
the application/data and copying of the decrypted applica-
tion/data 1s prevented by way of the 1solated environment.

In one illustrative embodiment, a method 1s provided for
implementing a sealed storage. The method may comprise
generating a protected execution environment comprising a
portion of a local memory and an associated processor of the
data processing device. The protected execution environment
may be accessible by the processor but may not accessible by
devices external to the protected execution environment. A
soltware stack may be generated within the protected execu-
tion environment by authenticating and loading one or more
pieces ol software. A determination may be made as to
whether the software stack has a specific configuration
required for accessing a portion of imnformation. The portion
of information within the protected execution environment
may be accessed only if the software stack has a specific
configuration required for accessing the portion of informa-
tion.

Generating a software stack within the protected execution
environment may comprise retrieving an on-chip core
authentication key from hardware that 1s hardwired into the
data processing device and using the on-chip core authenti-
cation key to authenticate and load a first piece of software
required to load other pieces of software 1n the software stack.
The on-chip core authentication key may only be accessible
from the hardware from within the protected execution envi-
ronment.

The first piece of software may include an encrypted por-
tion that comprises an authentication key for a next piece of
soltware and/or a decryption key for the next piece of soft-
ware. The encrypted portion may be encrypted using an on-
chip core decryption key. The on-chip core decryption key
may only be accessible from the hardware from within the
protected execution environment. The on-chip core authenti-
cation key and the on-chip core decryption key may be the
same core key.

Using the on-chip core authentication key to authenticate
and load a first piece of software may comprise generating an
authentication value based on the on-chip core authentication
key and contents of the first piece of software. Generating an
authentication value may comprise generating a hash value of
the contents of the first piece of software using a hash function
and the core authentication key as a key for the hash function.

Determining 1f the software stack has a specific configura-
tion required for accessing a portion of information may
comprise decrypting software of each layer of software in the
soltware stack using a decryption key from a previous layer in
the software stack and performing authentication of each
layer of software 1n the software stack using an authentication
key from a previous layer 1n the software stack. A decryption
key from a next to last layer of software 1n the software stack
may be used to decrypt and access the portion of information.

The portion of information may be one of an application or
a portion of data to be processed by an application. The
processor may be a synergistic processing unit and the local
memory may be a local store associated with the synergistic
processing unit. Generating a protected execution environ-
ment may comprise allocating a portion of the local store for
use with an 1solation mode of operation of the synergistic
processing unit and causing the synergistic processing unit to
switch operation to the 1solation mode of operation.

The data processing device may be a heterogeneous mul-
tiprocessor data processing system having a master processor
and one or more co-processors. The master processor and the

US 8,438,658 B2

S

one or more co-processors may operate using different
instruction sets. The data processing device may be a multi-
processor system-on-a-chip.

The data processing device may be an integrated circuit
device. The integrated circuit device may be part of one of a
game machine, a game console, a hand-held computing
device, a personal digital assistant, a communication device,
a wireless telephone, a laptop computing device, a desktop
computing device, or a server computing device.

In another illustrative embodiment, a computer program
product 1s provided that comprises a computer usable
medium having a computer readable program. The computer
readable program, when executed on a computing device,
may cause the computing device to perform the various
operations described above with regard to the method 1llus-
trative embodiment.

In yet another illustrative embodiment an apparatus for
implementing a sealed storage i1s provided. The apparatus
may comprise a processor and a memory coupled to the
processor. The memory may comprise instructions, which
when executed by the processor, cause the processor to per-
form the various operations previous described above with
regard to the method 1llustrative embodiment.

These and other features and advantages of the present
invention will be described 1n, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the exemplary embodiments 1llustra-
tive of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of an illustrative
embodiment of the present mmvention are set forth in the
appended claims. The mmvention 1tself, however, as well as a
preferred mode of use, further objectives and advantages
thereot, will best be understood by reference to the following,
detailed description of an illustrative embodiment when read
in conjunction with the accompanying drawings, wherein:

FIG. 1 1s an exemplary block diagram of a microprocessor
chip 1n which aspects of an 1llustrative embodiment may be
implemented;

FIG. 2 1s an exemplary diagram illustrating an interaction
of the primary operational components of an illustrative
embodiment using on-chip core key(s), an on-chip authenti-
cation mechanism, and an on-chip decryption mechanism;

FI1G. 3 1s an exemplary diagram 1llustrating an authentica-
tion methodology 1n accordance with an 1llustrative embodi-
ment;

FIG. 4 1s an exemplary diagram illustrating transitions
between 1solated and non-1solated states as mnitiated by a
processing unit in accordance with one illustrative embodi-
ment; and

FIG. 5 15 a flowchart outlining an exemplary operation of
one exemplary embodiment 1llustrative of the present mnven-
tion for decrypting off-chip security keys using an on-chip
core key and decryption mechanmism.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The following illustrative embodiment provides an appa-
ratus, system, and method for providing sealed storage 1n a
data processing device. The illustrative embodiment may be
implemented 1n any processor design or architecture in which
an “1solated” or “protected” execution environment may be
provided that 1s not accessible by other data processing
devices outside the “isolated” or “protected” execution envi-

10

15

20

25

30

35

40

45

50

55

60

65

6

ronment. One such processor design or architecture 1n which
the exemplary aspects of the illustrative embodiments may be
implemented 1s the Cell Broadband Engine (CBE) architec-
ture available from International Business Machines, Inc. The
CBE architecture 1s only exemplary of the possible processor
architectures 1n which the illustrative embodiment may be
implemented and the description of such in the following
detailed description 1s not intended to state or imply any
limitation with regard to the types of processor architectures
in which the 1llustrative embodiment may be implemented.

FIG. 1 1s an exemplary block diagram of a microprocessor
chip 1n which aspects of the i1llustrative embodiment may be
implemented. The depicted microprocessor chip 1s one
example of a CBE architecture in which exemplary aspects of
the 1llustrative embodiment may be implemented. As shown
in FIG. 1, the CBE 100 includes a power processor element
(PPE) 110 having a processor (PPU) 116 and its L1 and L2
caches 112 and 114, and multiple synergistic processor ele-
ments (SPEs) 120-134 that each has its own synergistic pro-
cessor unit (SPU) 140-154, memory flow control 155-162,
local memory or store (LLS) 163-170, and bus interface unit
(BIU unit) 180-194 which may be, for example, a combina-
tion direct memory access (DMA), memory management
unmit (MMU), and bus interface unit. A high bandwidth inter-
nal element interconnect bus (EIB) 196, a bus interface con-
troller (BIC) 197, and a memory interface controller (MIC)
198 are also provided.

The CBE 100 may be a system-on-a-chip such that each of
the elements depicted in FIG. 1 may be provided on a single
microprocessor chip. Moreover, the CBE 100 1s a heteroge-
neous processing environment i which each of the SPUs
may receive different instructions from each of the other
SPUs 1n the system. Moreover, the instruction set for the
SPUs 1s different from that of the PPU, e.g., the PPU may
execute Reduced Instruction Set Computer (RISC) based
instructions while the SPUs execute vectorized instructions.

The SPEs 120-134 are coupled to each other and to the L2
cache 114 via the EIB 196. In addition, the SPEs 120-134 are
coupled to MIC 198 and BIC 197 via the EIB 196. The MIC
198 provides a communication interface to shared memory
199. The BIC 197 provides a communication interface
between the CBE 100 and other external buses and devices.

The PPE 110 1s a dual threaded PPE 110. The combination
of this dual threaded PPE 110 and the eight SPEs 120-134
makes the CBE 100 capable of handling 10 simultaneous
threads and over 128 outstanding memory requests. The PPE
110 acts as a controller for the other eight SPEs 120-134
which handle most of the computational workload. The PPE
110 may be used to run conventional operating systems while
the SPEs 120-134 perform vectorized floating point code
execution, for example.

The SPEs 120-134 comprise a synergistic processing unit
(SPU) 140-154, memory flow control units 155-162, local
memory or store 163-170, and an interface unit 180-194. The
local memory or store 163-170, 1n one exemplary embodi-
ment, comprises a 256 KB instruction and data memory
which 1s visible to the PPE 110 and can be addressed directly
by software.

The PPE 110 may load the SPEs 120-134 with small pro-
grams or threads, chaining the SPEs together to handle each
step 1n a complex operation. For example, a set-top box incor-
porating the CBE 100 may load programs for reading a DVD,
video and audio decoding, and display, and the data would be
passed off from SPE to SPE until it finally ended up on the
output display. At4 GHz, each SPE 120-134 gives a theoreti-
cal 32 GFLOPS of performance with the PPE 110 having a

similar level of performance.

US 8,438,658 B2

7

The memory flow control units (MFCs) 155-162 serve as
an 1nterface for an SPU to the rest of the system and other
clements. The MFCs 155-162 provide the primary mecha-
nism for data transfer, protection, and synchronization
between main storage and the local storages 163-170. There >
1s logically an MFC for each SPU in a processor. Some
implementations can share resources of a single MFC
between multiple SPUs. In such a case, all the facilities and
commands defined for the MFC must appear independent to
soltware for each SPU. The eflfects of sharing an MFC are
limited to implementation-dependent facilities and com-
mands.

With the 1llustrative embodiments, an on-chip key storage,
which stores core or root key(s), an on-chip authentication
mechanism, and on-chip decryption mechanism are provided
in the hardware of the microprocessor or system-on-a-chip,
¢.g., the Cell Broadband Engine 100. The on-chip key stor-
age, on-chip authentication mechanism, and on-chip decryp-
tion mechanism may be provided anywhere on the micropro- 20
cessor or system-on-a-chip. In one exemplary embodiment,
the authentication mechanism, decryption mechanism and
the core key(s) are embedded in the PPE 110. In another
embodiment, the authentication mechanism, decryption
mechanism and/or the core key(s) are provided 1n an inde- 25
pendent unit coupled to the EIB 196. In this case, the authen-
tication mechanism and decryption mechanism have the
capability to cryptographically secure communications with
other units over the FIB 196. In another possible embodi-
ment, the authentication mechanism, decryption mechamism 30
and the core key are solely controlled by the SPEs 120-134.

With the mechanisms of the illustrative embodiments, the
core key 1s only accessible by a processor, e.g., a SPU, of the
microprocessor or system-on-a-chip when the processor 1s
operating 1n an 1solation mode of operation. The 1solation 35
mode of operation 1s used to generate a protected execution
environment. This 1solation mode of operation essentially
permits hardware to 1solate a portion of a local store associ-
ated with a processor so that a protected execution environ-
ment 1s created. When 1solated, the isolated portion of the 40
local store cannot be accessed by any other device except the
associated processor. The authentication and decryption of
applications/data using the authentication mechanism,
decryption mechanism, and the core key stored on-chip, may
be performed within this protected execution environment, as 45
described 1n greater detail hereafter. As a result, the integrity
of the application/data 1s ensured.

An example of such an 1solation mode of operation 1s
described 1n co-pending and commonly assigned U.S. Patent
Application Publication 2005/0021944, entitled “Security 50
Architecture for System on Chip,” filed on Jun. 23, 2003 and
published Jan. 27, 2005, which 1s hereby incorporated by
reference. As described 1n this co-pending U.S. Patent appli-
cation, a mechanism for the authentication of code through
the partitioning of a local store (LLS) into an 1solated section 55
and a non-1solated section 1s provided. The mechanism
includes a load/exit state machine (LESM) that contains a
core key which 1s used during a load state machine command.
The core key 1s not otherwise accessible, and can be unique to
cach system. 60

Generally, with the system of this co-pending U.S. Patent
application, secure processing 1s performed within the 1so-
lated section memory area of the LS. The memory inside the
1solated section 1s addressable only by the associated proces-
sor. However, other processors may access memory in the 65
general access area. In other words, the processor can 1ssue
load and store commands to memory locations 1n the local

10

15

8

store 1n either 1solated or non-1solated state, but other proces-
sors are restricted to 1ssuing commands to the non-1solated
region.

Commands to the processor may include the “load™ and
“exit” commands, as well as a variety of other commands
including starting and stopping the processor and a variety of
commands for debug purposes. All commands that provide
direct access to the register file, external debug and control
functions or other state functions of the processor, that are

protected 1n the 1solated state, are disabled when the proces-
sor 1s 1n an 1solated state.

The 1solated section of the LS may be mnvoked by a “load”
command, and be released by an “exit” command. When the
“exit” command 1s i1ssued, the entire LS becomes general
access memory. The load command partitions the LS 1nto a
general access section and an 1solated section. The load com-
mand additionally may transfer code and/or data (load image)
from the system memory to the 1solated region of the local
store, and may 1nitiate authentication and/or decryption of
this code and data using the core key, as described in greater

detail hereafter. Authentication and/or decryption can be per-
formed by such algorithms and functions as secure hash algo-

rithm (SHA), data encryption standard (DES) or Rivest,
Shamir and Adleman algorithm (RSA), but those of skill 1n
the art understand that other authentication and decryption
functions and algorithms are within the scope of the present
invention.

With the illustrative embodiment, when code/data 1s
loaded into the 1solated region of the LS, decrypted and
authenticated, the load/exit state machine, which may be
provided as part of the decryption mechanism, may start
execution of the processor at an address within the loaded
image 1n the 1solated region of the LS. The 1solation section,
1.€. the protected portion of memory, limits access to sensitive
data and code within the 1solated section to commands 1ssued
from the processor. Generally, the partitioning of the LS into
a general section and 1solated section avoids any other device
other than the processor from copying, modifying or other-
wise corrupting any code or data stored within the 1solated
section.

The exit function, invoked by the exit command, 1s the only
way 1n which the 1solated region of the LS can be released to
be used as contiguous with the general access section. The
ex1t command also erases all information 1n the 1solated sec-
tion before releasing the 1solated state to the general access
section. The erasure can occur even if the processing within
the system 1s otherwise 1n a stopped, paused or aborted con-
dition.

When the processor 1s operating in an 1solation mode, the
decryption mechanism associated with the processor may
access the core decryption key stored on-chip and may use the
core decryption key to decrypt applications/data 1n the pro-
tected execution environment and place the decrypted appli-
cations/data 1nto the protected portion of the local store. The
core key(s) may comprise one or more keys that are used for
authentication and/or decryption. In one 1llustrative embodi-
ment, two core key(s) are provided, one for authentication
and another for decryption. In another alternative embodi-
ment, a single core key 1s utilized for both authentication and
decryption. Any number of core keys may be used without
departing from the spirit and scope of the present invention
depending upon the particular implementation.

As described 1n more detail hereatter, with the i1llustrative
embodiments, sensitive software that 1s to be executed 1n a
protected execution environment 1s stored outside of the pro-
tected execution environment with an encrypted portion that

US 8,438,658 B2

9

contains an authentication security key and a decryption key.
The software itsellf may also be encrypted 1n order to ensure
the security of the software.

The authentication security key and decryption key are
stored 1n the software 1n such a manner that a chain of execu-
tion 1s established. In other words, 1n order to access particu-
lar software, the particular software’s authentication security
key must be accessible 1n the protected execution environ-
ment. This authentication security key may be stored 1n an
encrypted manner in hardware or another piece of solftware
that 1s required to be loaded prior to the software that 1s being,
accessed. The software being accessed may 1n turn have an
encrypted portion that stores the decryption key for an
encrypted portion of software or data that 1s to be loaded after
the software being accessed.

Using the above mechanisms, a particular order of loading
of software in the protected execution environment 1is
required for software and data to be accessible. Preferably, the
first piece of software that 1s required to be loaded 1n the
protected execution environment has 1ts authentication secu-
rity key encrypted using a core decryption key stored in the
hardware of the microprocessor or system-on-a-chip. This
ensures that this first piece of software, and any software or
data loaded thereafter, 1s loaded 1n a protected execution
environment of the microprocessor or system-on-a-chip. If
the encrypted software or data 1s copied to another data pro-
cessing device by an unauthorized individual or process, the
software or data will not be accessible because the other data
processing device will not have access to the core decryption
key.

In addition, the first piece of software must be authenti-
cated using a hardware implemented core authentication key
(which 1n some illustrative embodiments may be the same key
as the core decryption key). This core authentication key
should be used to generate a cryptographic hash over the
complete contents of the first piece of software, e.g.,a SHA-1
hash of the first piece of software (e1ther including or exclud-
ing the encrypted portion). The calculated signature may be
used to ensure that the first piece of software 1s not corrupted
prior to loading in the protected execution environment and to
ensure that the software 1s authorized to execute 1n the 1so-
lated environment.

Once decrypted and authenticated, the security keys pro-
vided 1n the encrypted portion of the first piece of software
may be used to decrypt and authenticate a subsequent piece of
software that 1s to be loaded 1n the protected execution envi-
ronment. This process may then be repeated for each subse-
quent level of software/data loaded 1nto the protected execu-
tion environment.

Thus, not only 1s a protected execution environment
required, but a particular arrangement of the software stack in
the protected execution environment 1s required 1n order for
software and data to be accessible. As a result, the software
and data are secure prior to loading due to encryption of the
soltware and data 1n a manner that requires a protected execu-
tion environment with access to the core key. The software
and data are secure during loading of software and data by
way ol encrypted authentication security keys that are only
accessible 1n the protected execution environment and which
ensure that the software and data being loaded has not been
tampered with. Moreover, the software and data are secure
alter loading by way of the hardware mechanisms that prevent
access to a protected execution environment by processors,
devices, and applications outside the protected execution
environment.

FIG. 2 1s an exemplary diagram illustrating an interaction
of the primary operational components of the illustrative

10

15

20

25

30

35

40

45

50

55

60

65

10

embodiment when using on-chip core key(s), an on-chip
authentication mechanism, and an on-chip decryption
mechanism. As shown in FIG. 2, a system-on-a-chip 200, in
accordance with one exemplary embodiment illustrative of
the present invention, includes a processor 210 (such as a SPU
in the case of a Cell Broadband Engine), a local storage device
220, on-chip core key(s) 240, an on-chip decryption mecha-
nism 250, and an on-chip authentication mechanism 255.
Also provided 1n the system, but off-chip, 1s a system storage
260 which may store code, such as software applications, and
data 265 which may be encrypted or have encrypted portions
that include authentication security keys and decryption keys.

The processor 210, executing instructions of an application
or the like, may require that secure operations be performed
on code and/or data loaded 1nto local storage device 220, e.g.,
code/data 263 obtained from system storage 260. As a result,
the processor 210 may 1ssue an 1nstruction to the local storage
device 220 to generate a protected portion of local store 225
for use 1n performing such secure operations. A protected
portion of local store 225, 1n terms of the 1llustrative embodi-
ment, 15 a portion of local storage 220 that 1s only accessible
by the processor 210 and may not be accessed by processors
or other devices located either on-chip or off-chip. As
described above, such a protected portion of local store 225
may comprise an 1solated section of the local storage device
220, for example.

Once this protected portion of local store 225 1s estab-
lished, a designated piece of software may be authenticated
and loaded 1nto the protected portion of local store 225. For
example, 1n one 1llustrative embodiment, a loader module 1s
always loaded first when the protected portion of local store
225 15 generated and 1s started by the hardware, e.g., proces-
sor 210. This loader module 1s coded such that 1t 1s used to
load other software 1n the protected portion of local store 225
ol the protected execution environment 245. The loader mod-
ule 1s authenticated and decrypted using the core key(s) 243
and decryption and authentication mechamsms 250 and 255.
As a result, the loader module cannot be authenticated,
decrypted and loaded outside of the protected execution envi-
ronment 243 since access to the core key(s) 240 1s not pos-
sible outside the protected execution environment 2435,

The core key(s) 240 may include a decryption core key and
an authentication core key (which 1n one 1llustrative embodi-
ment are the same core key). The decryption core key may be
used to decrypt the first piece of software to be loaded 1nto a
protected execution environment, ¢.g., the loader module.
The authentication core key may be used to authenticate the
first piece of soitware to be loaded into the protected execu-
tion environment, e.g., the loader module.

The authentication core key in the core key(s) 240, as well
as other authentication security keys discussed hereafter, only
need to be randomly generated for a symmetric key crypto-
graphic algorithm for example. By using a cryptographic
hash value as the authentication check, modified software
cannot be authenticated using the same hash value. Thus, for
example, any change to the loader module will cause a dii-
ferent hash value to be generated. Therefore, when the
authentication mechanism 2535 generates a hash value based
on a modified loader module, 1t will not match the hash value
attached with the loader module and the authentication
mechanism 2355 will not permit the modified loader module to
be loaded 1nto the protected portion of local store 225. Fur-
thermore, an adversary cannot generate and attach a new hash
value 1n order to attempt to adjust for the modified loader
module because knowledge of the core key 1s necessary to
generate a matching hash value. The adversary does not have
access to the core authentication key. This ensures the integ-

US 8,438,658 B2

11

rity and authenticity of the loader module prior to the loader
module being loaded and started in the protected execution
environment 245,

Once the 1mitial piece of software, e.g., the loader module,
1s decrypted and authenticated using the on-chip core key(s)
240, loaded 1nto the protected portion of local store 2235, and
started by the processor 210, the initial piece of software may
load other software and data. This other software and data
may be obtained from system storage 260 or another on-chip
or oif-chip code/data source, such as a CD-ROM, floppy disk,
magnetic tape, hard drive, or the like, into the protected por-
tion of local store 225. In the process of loading this other
software and/or data, the other software and/or data 1s authen-
ticated based on an authentication security key stored 1n an
encrypted portion of the mitial piece of software. This
encrypted portion of the 1nitial piece of soitware 1s encrypted
using the core decryption key of the core key(s) 240 for a
symmetric key algorithm or a complementary key for an
asymmetric key algorithm and an encryption algorithm cor-
responding to decryption mechanism 250, for example.

If the authentication of this other soiftware and/or data
succeeds, the soltware/data may be decrypted using a decryp-
tion key stored 1n the encrypted portion of the 1nitial piece of
software and loaded nto the protected portion of local store
225 for processing 1n the protected execution environment
245. This other software itself may contain an encrypted
authentication security key and decryption key for authenti-
cating and decrypting a third piece of software or data. This
may continue with any number of levels of software and/or
data being used. As a result, a chain of software/data 1s
required for a particular piece of software or portion of data to
be accessed. That 1s, since each piece of software or portion of
data 1s encrypted and authenticated using security keys that
are present in soltware/data that must be previously loaded, a
particular arrangement of soitware/data in a soitware stack of
the protected execution environment 243 1s required in order
to access a desired piece of software or data.

The decryption and authentication operations described
above for the first layer of authentication and decryption are
preferably performed 1n on-chip decryption and authentica-
tion mechanisms such as decryption mechanism 250 and
authentication mechanism 255. In one illustrative embodi-
ment, the decryption mechanism 250 and authentication
mechanism 255 are hardwired into the chip circuitry. The
decryption mechanism 250 and authentication mechanism
255 may be completely implemented in transistor logic or,
alternatively, may leverage the arithmetic capabilities of the
processor, 1n which case, the corresponding sequence of pro-
cessor instructions may be hardwired into the chip circuitry.
Thus, 1n an 1llustrative embodiment, the decryption mecha-
nism 250 and authentication mechanism 235 operates on a
hardware level rather than a software level.

It should further be noted that while two separate mecha-
nisms are depicted for authentication and decryption, the
present invention 1s not limited to such an embodiment. To the
contrary, the authentication and decryption mechanisms may
be combined 1nto a single unit or be distributed 1nto more than
two units without departing from the spirit and scope of the
present invention.

The decryption and authentication mechanisms of the
illustrative embodiments are better understood with reference
to the following example. In this example, to launch an appli-
cation, 1t 1s assumed that the software stack inside a processor
element, such as a SPE, i1s to first load and start a Loader
module, which 1n turn loads an application administrator
module (Admin), which 1n turn loads the desired application
(App). It should be noted that while three layers are used 1n

10

15

20

25

30

35

40

45

50

55

60

65

12

the software stack of this example, the present invention 1s not
limited to such. Rather, any number of layers in the software
stack may be used with the illustrative embodiments without
departing from the spirit and scope of the present invention.

The decryption and authentication of these layers of the
software stack will be described with reference to FIG. 3. As
shown 1n FIG. 3, when the SPE enters the 1solation mode of
operation, the first portion of code that the SPE executes 1s the
Loader module 320. The Loader module 320 1s decrypted
using the core decryption key K__ . . and the on-chip
decryption mechanism. A hash value on the Loader module
320 1s generated by the on-chip authentication mechanism
using the core authenticationkey K . . retrieved from the
hardware 310 and this hash value 1s compared with the
attached hash value. If the two match, then the L.oader module
320 1s authenticated and may be loaded into the protected
portion of the local store and executed by the SPU. If the
Loader module 320 has been modified from a state when the
attached hash value was created, then the L.oader module 320
will not be authenticated and cannot be loaded and executed
by the SPU.

Again, it 1s noted that thecore key(s) K __.__ . andK .
are only accessible within the protected execution environ-
ment 1s created by the hardware 310 when the SPE operates in
the 1solation mode of operation. Furthermore, while the
exemplary embodiments use a cryptographic hash value (us-
ing the core authenticationkey K__ . 1n an algorithm like
Cipher Block Chaining Mode AES) of the initial software
module that is to be loaded into the protected execution envi-
ronment as the value to be checked, the present invention 1s
not limited to such. Rather, any type of key mechanism may
be used so long as the core authentication key K__ . may
be used to authenticate the mitial software module that 1s to be
loaded 1n the protected execution environment.

The Loader module 320 includes a first encrypted authen-
tication security key K_ . . and a first encrypted decryption
key K. The first authentication security key K_ . . and first
decryption key K, are encrypted using the core decryption
key K__ . ., which 1s only accessible from the hardware
within the protected execution environment. The first authen-
tication security key K_ . . and the first decryption key K,
may be decrypted using the core decryption key K__ . |
following authentication of the Loader module 310 using the
core authentication key K __ .. and stored in the protected
portion of the local store. Thereafter, when the Loader mod-
ule 320 loads the application administrator module 330, the
first authentication security key K _. ~~ may be used to
authenticate the application administrator module 330 1n a
similar manner as the core authentication key K__ . was
used to authenticate the Loader module 320.

Once authenticated, the application administrator module
330 may be decrypted by the first decryption key K, loaded
into the protected portion of the local store, and executed by
the SPU. The application administrator module 330 may in
turn load the application 340 through a similar authentication
and decryption process using the second authentication key
K., and second decryption key K, that are stored i an
encrypted manner 1n the application administrator module
330. Data used by application may also be decrypted using
the second decryption key K.,

Thus, 1 order for the desired application 340 to be acces-
sible and the data for the application 340 to be accessible, the
[Loader module 320 must first be authenticated and executed,
the application administrator module 330 must then be
authenticated and executed, and the application 340 must
then be authenticated prior to being accessed. In other words,
a chain of authentication and decryption 1s created by the

US 8,438,658 B2

13

mechanisms of the 1llustrative embodiments, with the chain
originating with core key(s) that are only accessible from
hardware 1n a protected execution environment. The chain
requires a specific order of loading and execution of software
in the software stack in order for the desired application
and/or data to be made accessible. Moreover, even with this
chain in place, the application and/or data may only be
accessed within the protected execution environment.

The 1llustrative embodiments provide many advantages
over known methods of security of applications and data.
Other methods of security use keys that are not linked with the
hardware. These other methods allow unauthorized individu-
als to possibly unseal or access the applications and data
outside of a protected execution environment. With the 1llus-
trative embodiments, mechanisms are provided such that the
applications and data cannot be accessed outside of the pro-
tected execution environment generated when the processor
1s operating in 1solation mode. As a result, while an unautho-
rized individual may obtain a copy of the applications or data
in their encrypted form, the unauthorized individual will not
be able to access the decrypted form of the applications or
data since the unauthorized individual will not be able to
obtain the core key(s) or recreate the software stack chain that
1s required to obtain access to the keys that will decrypt the
applications or data.

Moreover, with known security methods, although
decrypting can sometimes be limited to being performed 1n a
verified environment, the decrypted applications or data are
still vulnerable since the verified environment 1s not 1solated
from access by external devices, applications, and the like.
With the mechanisms of the illustrative embodiments, since
the applications and data may only be accessed within a
protected execution environment that 1s 1solated, via hard-
ware means, from access by external devices, applications,
and the like, the security of the applications and data after
unsealing or decrypting 1s maintained and the decrypted
applications and data may not be copied outside of the pro-
tected execution environment.

Furthermore, the software stack that 1s verified through the
mechanisms of the illustrative embodiments 1s much smaller
than the entire software stack of the data processing system.
This 1s because the only software stack that 1s verified 1s the
soltware stack associated with the protected execution envi-
ronment. Software executing elsewhere 1n the data processing
system, or elsewhere on the system-on-a-chip, even 1 hacked,
cannot observe or modity the applications or data within the
protected execution environment. Thus, verifying a small
application or portion of data 1s much more feasible than 1n
known security methods that may require veritying or calcu-
lating a hash for an operating system and the entire software
stack from boot time.

In addition, since known security mechamisms do not oper-
ate within an 1solated or protected execution environment,
once the application or data 1s authenticated, 1t becomes vul-
nerable to tampering. With such known security mechanisms
it 1s 1mpossible to guarantee that tampering will not happen
between code or data authentication and when the code or
data needs to be “trusted,” 1.e. the relevant memory region can
be corrupted after verification, for example. With the mecha-
nisms of the illustrative embodiments, hardware 1solation of
the protected execution environment of the SPE eliminates
this vulnerability.

From the above, it can be seen that many of the advantages
of the illustrative embodiments stem from the ability of the
processing unit to operate 1n an 1solated mode of operation.
Specifically, many of the advantages are due to the ability of
the processing unit to generate an 1solated and protected

10

15

20

25

30

35

40

45

50

55

60

65

14

execution environment 1in which to perform the authentica-
tion and decryption according to the required chain of authen-
tication and decryption. FIG. 4 1s provided as an example
state diagram 1llustrating how a processing unit may initiate
and exit from such an 1solated mode of operation.

FIG. 4 1s an exemplary diagram illustrating transitions
between 1solated and non-1solated states as initiated by a
processing unit 1 accordance with one exemplary embodi-
ment 1llustrative of the present invention. As shown in FIG. 4,
in the state diagram 400, after a start transition 410 occurs, the
state diagram then advances to a non-isolated state 420 or
1solated state 430 depending on the 1nitial system configura-
tion. For the purpose of clarity, state diagram 400 1s described
as first advancing to state 420. However, those of skill in the
art understand that the state diagram 400 can step to either
state 420 or to state 430.

In state 420, the LS, e.g., local storage device 220, does not
have an 1solated section, e.g., protected portion of memory
225. Instead, the entire LS 15 1n the general access state. The
processor, €.g., processor 210, 1s referred to as being 1n a
non-isolated state. Generally, this means that the processor
has not been ordered to create an 1solation section 1nside the
LS.

Thereafter, to 1nitiate either a secure loader or a secure
application, as appropriate, the processor, or a control pro-
cessor, such as the PPU 116, 1ssues the load command. In
transition 440, through employment of the core key(s), a load
image consisting of code and/or data 1s loaded, authenticated
and/or decrypted. In one embodiment, this load 1mage 1s a
secure loader, responsible for loading, authenticating, and
decrypting, secure applications and their corresponding data.

In the transition to state 430, after the load command 1s
issued by the processor but before the authentication of the
code, any 1nstructions processing on the local processor have
been discontinued. Also, during the transition to state 430, the
processor local to the LS disregards any external processor
requests to write to the 1solated section of the LS and requests
by external processors to read the 1solated section of the LS
return a value of zero or another constant. The processor
creates the 1solated section of the LS with access restricted to
only local processor initiated load/store commands or
instruction fetches. The processor also disables accesses to all
of the local processor debug/test/diagnostic iterfaces. The
non-isolated/general access region of the LS retains the same
access rights as when the local processor has not issued a
partition command for the 1solated section. In addition, the
local processor disables its asynchronous interrupt when at
least part of the LS 1s in an isolated state, e.g., when an
1solated section 1s present.

In the transition to state 430, some local processor exter-
nally accessible registers are typically accessed to obtain a
direct memory access address. The direct memory access
address corresponds to a specified point of the image of the
code to be loaded to the 1solated section of the local processor.
After finding the code and/or data to be authenticated and/or
decrypted, the 1solated section of the LS 1s written with the
code and/or data to be authenticated and/or decrypted.

However, 11 the loaded code and/or data does not authen-
ticate, state 450 1s reached, and further authentication of
code/data 1s discontinued. If there 1s a failure of authentica-
tion, as 1n state 450, the local processor notifies the control
processor, €.g., PPU 116, of the authentication failure, while
the local processor remains 1n the 1solated state. As a result,
the LS retains the 1solated region. In one embodiment, the
notification of the control processor 1s performed by a stop
and signal command. However, even alter being notified of
the authentication failure, the control processor 1s unable to

US 8,438,658 B2

15

access the code stored within the 1solation section through
commands 1ssued to the local processor.

However, 11 the load 1image 1s authenticated, the local pro-
cessor 1ssues an exit command after the execution of the code
image/accessing of the data within the 1solated section {in-
ishes 1n state 430. After the local processor 1ssues the exit
command, all local processor registers, and the 1solated sec-
tion of the LS, are erased or overwritten. This can be done to
ensure that no code/data that was previously within the 1so-
lated section can be accessed at the instigation of any device
when the 1solated section 1s released back to being contiguous
with the general section. Access to the LS 1s unrestricted, and
access to the local processor debug/test/diagnostic interfaces
are re-enabled upon completion of the exit process.

Finally, the transition to the non-isolated state of the local
processor 1s completed when the local processor notifies the
control processor. This can be done by means of an instruction
that halts the local processor and signals the control proces-
sor, for example.

After the stop state 450 1s entered, the control processor can
1ssue an exit command to the local processor. The exit com-
mand leads to releasing the 1solated section, and stepping to
the state 420. Alternatively, 1n the stop state 4350, the proces-
sor, or the control processor, can 1ssue another load command
to thereby load 1n other or different code/data to be authenti-
cated, decrypted, and accessed in the protected execution
environment.

It should be noted that while 1n state 430, the operations of
the illustrative embodiments for decrypting, authenticating
and loading software/data using the core and encrypted
authentication security keys and decryption keys forming the
required software stack configuration may be performed in
the manner previously described. As shown in FIG. 4, as
programs 1ssue load instructions from within the isolated
section of the LS, the state transitions to authentication state
440. If at any point a program or portion of data does not pass
the authentication performed 1n step 440, such as based on the
authentication security key stored in a previously loaded pro-
gram, the state may transition to step 430.

FIG. 5 1s a flowchart outlining an exemplary operation of
one exemplary embodiment 1llustrative of the present imnven-
tion for decrypting off-chip security keys using an on-chip
core key and decryption mechanism. It will be understood
that each block, and combination of blocks, of the flowchart
illustration 1n FIG. 5, can be implemented by computer pro-
gram 1nstructions. These computer program instructions may
be provided to a processor or other programmable data pro-
cessing apparatus to produce a machine, such that the mstruc-
tions which execute on the processor or other programmable
data processing apparatus create means for implementing the
functions specified in the flowchart block or blocks. These
computer program instructions may also be stored 1n a com-
puter-readable memory or storage medium that can direct a
processor or other programmable data processing apparatus
to function 1n a particular manner, such that the istructions
stored 1n the computer-readable memory or storage medium
produce an article of manufacture including instruction
means which implement the functions specified 1n the flow-
chart block or blocks.

Accordingly, blocks of the flowchart illustration support
combinations of means for performing the specified func-
tions, combinations of steps for performing the specified
functions and program instruction means for performing the
specified functions. It will also be understood that each block
of the flowchart i1llustration, and combinations of blocks in
the flowchart illustration, can be implemented by special
purpose hardware-based computer systems which perform

10

15

20

25

30

35

40

45

50

55

60

65

16

the specified functions or steps, or by combinations of special
purpose hardware and computer instructions.

With the 1llustrative embodiment outlined 1in FIG. 5, athree
layer software stack such as that described above with regard
to FIG. 3 1s assumed. It will be appreciated that additional
steps similar to those shown 1n FIG. 5 may be added to the
outlined tlow for additional software stack layers that may be
required depending upon the particular implementation of the
present invention.

As shown 1n FIG. 5, the operation starts with a protected
execution environment being generated (step 510). The core
key(s) are retrieved from the hardware within the protected
execution environment (step 520). The loader module 1is
decrypted using a core decryption key and authenticated
using a core authentication key (step 530). A determination 1s
made as to whether the loader module was determined to be
authentic (step 340). If not, the operation ends and the loader
module 1s not loaded into the protected execution environ-
ment. Although not explicitly shown in FIG. 5, an error may
be returned to the processor or other device imitiating the
generation of the protected execution environment to inform
the device of the 1nabaility to authenticate the loader module.

If the loader module 1s authentic, the loader module 1s
loaded 1nto the protected execution environment (step 550)
and the application admimistrator authentication key and first
decryption key 1n the loader module are decrypted using the
core decryption key (step 560). The application administrator
module may then be authenticated using the application
administrator authentication key (step 570). A determination
1s then made as to whether the application administrator mod-
ule 1s authentic (step 580). I not, again the application admin-
istrator module 1s not loaded into the protected execution
environment and an error may be returned to the processor or
other device imtiating the protected execution environment.

If the application administrator module 1s authentic, the
application administrator module 1s loaded into the protected
execution environment (step 590) and the application authen-
tication key and second decryption key in the application
administrator module are decrypted using the first decryption
key (step 600). The application module may then be authen-
ticated using the application authentication key (step 610). A
determination 1s then made as to whether the application
module 1s authentic (step 620). If not, again the application
module 1s not loaded 1nto the protected execution environ-
ment and an error may be returned to the processor or other
device mitiating the protected execution environment.

I1 the application module 1s authentic, the application mod-
ule 1s loaded into the protected execution environment (step
630). The data used by the application module may then be
decrypted using the second decryption key and the applica-
tion module may be run on the decrypted data (step 640). The
operation then terminates.

Thus, the illustrative embodiments provide a security
mechanism for ensuring the integrity of applications and data
by tying the applications and data to a particular hardware and
soltware configuration. Moreover, the mechanisms of the
illustrative embodiments ensure that the applications and data
may only be accessed within a protected execution environ-
ment that 1s 1solated from access by devices, applications, and
the like, that are external to the protected execution environ-
ment. In this way, the applications and data are protected from
access by unauthorized devices, applications, and the like.

It should be noted that the above illustrative embodiments
are provided as examples only and are not intended to state or
imply any limitation with regard to the manner by which the
mechanisms of the present invention, as outlined 1n the fol-
lowing claims, may be implemented. For example, while the

US 8,438,658 B2

17

above embodiments describe the protected portion of
memory as being established 1n a local storage device asso-
ciated with a processor, the present invention 1s not limited to
such. Rather, the mechanisms of the present invention may be
applied with use of any protected portion of memory that 1s
provided on-chip.

In addition, while the illustrative embodiment has been
described 1n terms of a single core key stored 1n an on-chip
core key storage, the present invention is not limited to such.
Rather, any number of core keys and sizes of core keys may be
used without departing from the spirit and scope of the
present invention. The primary concept 1s that the same archi-
tecture of the system-on-a-chip or microprocessor may be
used with multiple implementations of data processing sys-
tems meeting customer requires regardless of the number of
core keys or size of core keys stored on the chip.

Similarly, while the exemplary embodiments have been
described 1n terms of a single decryption mechanism being
provided on-chip, the present invention 1s not limited to such.
Rather, any number of decryption mechanisms may be pro-
vided on-chip and may be used 1n a protected execution
environment to perform security operations such as decryp-
tion and authentication. For example, the encrypted code/data
loaded 1nto a protected execution environment may nclude a
bit or series of bits designating an identifier of the encryption
algorithm used to encrypt the code/data. This bit or series of
bits may be used within the protected execution environment
to select a particular on-chip decryption mechanism and/or
on-chip core key to be used 1n performing security operations
on the encrypted code/data.

Moreover, while the exemplary embodiments are
described as having each SPU of a Cell Broadband Engine
store a copy of the core key(s) and each SPU having its own
decryption mechanism, the present invention is not limited to
such an embodiment. Rather, the core key(s) and decryption
mechanism may be provided 1n one or more devices that are
commonly accessible by all of the processors of the system-
on-a-chip or microprocessor.

In addition, while the illustrative embodiment has been
described 1n terms of separate devices for storing the core
key(s) and providing the decryption mechanism, the present
invention 1s not limited to such an embodiment. Rather, the
core key(s) and decryption mechanism may be provided 1n
the same on-chip security device without departing from the
spirit and scope of the present invention. Other modifications
to the exemplary embodiments described above, as will
become apparent to those of ordinary skill in the art 1n view of
the present description, are intended to be within the scope of
the present invention as outlined in the following claims.

The mechanisms of the illustrative embodiment, as
described above, are part of the design for an integrated
circuit chip. The chip design 1s created 1n a graphical com-
puter programming language, and stored 1n a computer stor-
age medium (such as a disk, tape, physical hard drive, or
virtual hard drive such as 1n a storage access network). If the
designer does not fabricate chips or the photolithographic
masks used to fabricate chips, the designer transmits the
resulting design by physical means (e.g., by providing a copy
of the storage medium storing the design) or electromically
(e.g., through the Internet) to such entities, directly or indi-
rectly. The stored design 1s then converted into the appropri-
ate format (e.g., GDSII) for the fabrication of photolitho-
graphic masks, which typically include multiple copies of the
chip design 1n question that are to be formed on a water. The
photolithographic masks are utilized to define areas of the
waler (and/or the layers thereon) to be etched or otherwise
processed.

10

15

20

25

30

35

40

45

50

55

60

65

18

The resulting integrated circuit chips can be distributed by
the fabricator in raw water form (that 1s, as a single water that
has multiple unpackaged chips), as a bare die, or 1n a pack-
aged form. In the latter case the chip 1s mounted in a single
chip package (such as a plastic carrier, with leads that are
ailixed to a motherboard or other higher level carrier) or 1n a
multichip package (such as a ceramic carrier that has either or
both surface interconnections or buried interconnections). In
any case the chip 1s then integrated with other chips, discrete
circuit elements, and/or other signal processing devices as
part of either (a) an intermediate product, such as a mother-
board, or (b) an end product. The end product can be any
product that includes integrated circuit chips, ranging from
toys and other low-end applications to advanced computer
products having a display, a keyboard or other input device,
and a central processor. Moreover, the end products 1n which
the integrated circuit chips may be provided may include
game machines, game consoles, hand-held computing
devices, personal digital assistants, communication devices,
such as wireless telephones and the like, laptop computing
devices, desktop computing devices, server computing
devices, or any other computing device.

The description of the illustrative embodiment has been
presented for purposes of illustration and description, and 1s
not intended to be exhaustive or limited to the imnvention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill 1n the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:
1. A method, 1n a data processing device, for accessing a
soltware application, the method comprising;:
generating a protected execution environment comprising,
aportion of alocal memory of the data processing device
and an associated processor of the data processing
device, wherein the protected execution environment 1s
not accessible by devices external to the protected
execution environment;
generating a software stack within the protected execution
environment, wherein the generating comprises:
retrieving a core decryption key and a core authentica-
tion key, wherein the core keys are hardwired into
hardware of the data processing device such that the
core keys are not modifiable after being hardwired
into the hardware; and
decrypting a first soltware module using the core
decryption key, wherein the first software module
contains an encrypted first decryption key and an
encrypted first authentication key;
authenticating the first software module using the core
authentication key, wherein the authenticating com-
prises generating an authentication value by generat-
ing hash value of the contents of the first software
module using a hash function, and using the core
authentication key as a key for the hash function;
in response to authenticating the first software module,
loading the first software module 1nto the protected
execution environment;
in response to loading the first software module,
decrypting the encrypted first decryption key and the
encrypted key using the core decryption key, wherein
the decrypting 1s performed within the protected
execution environment;

US 8,438,658 B2

19

decrypting a second software module using the first
decryption key, wherein the second software module
contains an encrypted second decryption key and an
encrypted second authentication key;

authenticating the second software module using the
first authentication key;

in response to authenticating the second software mod-
ule, loading the second soitware module into the pro-
tected execution environment:;

in response to loading the second software module,
decrypting the encrypted second decryption key and
an encrypted second authentication key using the first
decryption key, wherein the decrypting 1s performed
within the protected execution environment; and

after loading the first and second sotftware modules into the

protected execution environment, accessing a software

application using the second decryption key and the

second authentication key, the soiftware application

associated with the first and second software modules.

2. The method of claim 1, wherein the on-chip core decryp-
tion key 1s only accessible from the hardware from within the
protected execution environment.

3. The method of claim 1, wherein each piece of software
in the one or more pieces of soltware comprises an encrypted
portion that includes an encryption key for a next piece of
soltware 1n a series of pieces of software 1n the one or more
pieces of software, and where 1n the encrypted portion of each
piece of soltware 1s encrypted using an encryption key of a
previous piece of software 1n the series of pieces of soiftware.

4. The method of claim 1, wheremn determiming 11 the
software stack has a specific configuration required for
accessing a portion of information comprises:

decrypting software of each layer of software in the soft-

ware stack using a decryption key from a previous layer
in the software stack:; and

performing authentication of each layer of software 1n the

soltware stack using an authentication key from a pre-
vious layer in the software stack, and wherein accessing
the portion of information comprises using a decryption
key from a next to last layer of software in the software
stack to decrypt and access the portion of information.

5. The method of claim 1, wherein the portion of informa-
tion 1s one of an application or a portion of data to be pro-
cessed by an application.

6. The method of claim 1, wherein the processor 1s a syn-
ergistic processing unit and the local memory 1s a local store
associated with the synergistic processing unit, and wherein
generating a protected execution environment comprises:

allocating a portion of the local store for use with an 1so-

lation mode of operation of the synergistic processing
unit; and

causing the synergistic processing unit to switch operation

to the 1solation mode of operation.

7. The method of claim 1, wherein the data processing
device 1s a heterogeneous multiprocessor data processing
system having a master processor and one or more co-pro-
cessors, and wherein the master processor and the one or
more co-processors operate using different mstruction sets.

8. The method of claim 1, wherein the data processing
device 1s a multiprocessor system-on-a-chip.

9. The method of claim 1, wherein the data processing
device 1s an 1tegrated circuit device, and wherein the nte-
grated circuit device 1s part of one of a game machine, a game
console, a hand-held computing device, a personal digital
assistant, a commumnication device, a wireless telephone, a
laptop computing device, a desktop computing device, or a
server computing device.

10

15

20

25

30

35

40

45

50

55

60

65

20

10. The method of claim 1, wherein using the on-chip core
authentication key to authenticate and load a first piece of
soltware comprises generating the authentication value by
generating a hash value of the contents of the first piece of
soltware using a hash function, and using the core authenti-
cation key as a key for the hash function.

11. A computer program product comprising a computer
usable medium having a computer readable program,
wherein the computer readable program, when executed on a
data processing device, causes the data processing device to:

generate a protected execution environment comprising a

portion of a local memory of the data processing device
and an associated processor of the data processing
device, wherein the protected execution environment 1s
not accessible by devices external to the protected
execution environment;

generate a software stack within the protected execution

environment, wherein the software stack i1s generated

by:

retrieving a core decryption key and a core authentica-
tion key, wherein the core keys are hardwired into
hardware of the data processing device such that the
core keys are not modifiable after being hardwired
into the hardware:; and

decrypting a first software module using the core
decryption key, wherein the first software module
contains an encrypted first decryption key and an
encrypted first authentication key;

authenticate the first software module using the core

authentication key, wherein the authenticating com-
prises generating an authentication value by generating
a hash value of the contents of the first software module
using a hash function, and using the core authentication
key as a key for the hash function;

load, 1n response to authenticating the first software mod-

ule, the first software module 1nto the protected execu-
tion environment;

decrypt, in response to loading the first software module,

the encrypted first decryption key and the encrypted first
authentication key using the core decryption key,
wherein the decrypting 1s performed within the pro-
tected execution environment;

decrypt a second software module using the first decryp-

tion key, wherein the second software module contains
an encrypted second decryption key and an encrypted
second authentication key;

authenticate the second software module using the first

authentication key;

load, 1n response to authenticating the second software

module, the second soitware module into the protected
execution environment;

decrypt, in response to loading the second software mod-

ule, the encrypted second decryption key and an
encrypted second authentication key using the first
decryption key, wherein the decrypting 1s performed
within the protected execution environment;

access, alter loading the first and second software modules

into the protected execution environment, a software
application using the second decryption key and the
second authentication key, the software application
associated with the first and second software modules.

12. The computer program product of claim 11, wherein
the on-chip core decryption key 1s only accessible from the
hardware from within the protected execution environment.

13. The computer program product of claim 11, wherein
cach piece of software 1n the one or more pieces of software
comprises an encrypted portion that includes an encryption

US 8,438,658 B2

21

key for a next piece of software m a series of pieces of

software 1n the one or more pieces of software, and where 1n
the encrypted portion of each piece of software 1s encrypted
using an encryption key of a previous piece of software in the
series of pieces of software.

14. The computer program product of claim 11, wherein
the computer readable program causes the data processing,
device to determine 1f the software stack has a specific con-
figuration required for accessing a portion of information by:

decrypting software of each layer of software in the soft-

ware stack using a decryption key from a previous layer
in the software stack; and

performing authentication of each layer of software 1n the

soltware stack using an authentication key from a pre-
vious layer 1n the software stack, and wherein accessing
the portion of information comprises using a decryption
key from a next to last layer of software in the software
stack to decrypt and access the portion of information.

15. The computer program product of claim 11, wherein
the portion of information 1s one of an application or a portion
of data to be processed by an application.

16. The computer program product of claim 11, wherein
the processor 1s a synergistic processing unit and the local
memory 1s a local store associated with the synergistic pro-
cessing unit, and wherein generating a protected execution
environment COmprises:

allocating a portion of the local store for use with an 1so-

lation mode of operation of the synergistic processing
unit; and

causing the synergistic processing unit to switch operation

to the 1solation mode of operation.

17. The computer program product of claim 11, wherein
the data processing device 1s a heterogeneous multiprocessor
data processing system having a master processor and one or
more co-processors, and wherein the master processor and
the one or more co-processors operate using different mnstruc-
tion sefts.

18. The computer program product of claim 11, wherein
the data processing device 1s a multiprocessor system-on-a-
chup.

19. The computer program product of claim 11, wherein
the data processing device 1s an integrated circuit device, and
wherein the integrated circuit device 1s part of one of a game
machine, a game console, a hand-held computing device, a
personal digital assistant, a communication device, a wireless
telephone, a laptop computing device, a desktop computing,
device, or a server computing device.

20. The computer program product of claim 11, wherein
using the on-chip core authentication key to authenticate and
load a first piece of software comprises generating the authen-
tication value by generating a hash value of the contents of the
first piece of software using a hash function, and using the
core authentication key as a key for the hash function.

21. A data processing device implementing a sealed stor-
age, comprising:

a processor; and

a memory coupled to the processor, wherein the memory

comprises instructions, which when executed by the
processor, configure the processor to:

generate a protected execution environment comprising a

portion of a local memory of the data processing device
and an associated processor of the data processing
device, wherein the protected execution environment 1s
not accessible by devices external to the protected
execution environment;

10

15

20

25

30

35

40

45

50

55

60

65

22

generate a soltware stack within the protected execution

environment, wherein the software stack 1s generated

by:

retrieving a core decryption key and a core authentica-
tion key, wherein the core keys are hardwired into
hardware of the data processing device such that the
core keys are not modifiable after being hardwired
into the hardware; and

decrypting a first software module using the core
decryption key, wherein the first software module
contains an encrypted first decryption key and an
encrypted first authentication key;

authenticate the first software module using the core

authentication key, wherein the authenticating com-
prises generating an authentication value by generating
a hash value of the contents of the first software module
using a hash function, and using the core authentication
key as a key for the hash function;

load, 1n response to authenticating the first software mod-

ule, the first software module 1nto the protected execu-
tion environment;

decrypt, in response to loading the first software module,

the encrypted first decryption key and the encrypted first
authentication key using the core decryption key,
wherein the decrypting 1s performed within the pro-
tected execution environment;

decrypt a second software module using the first decryp-

tion key, wherein the second software module contains
an encrypted second decryption key and an encrypted
second authentication key;

authenticate the second software module using the first

authentication key;

load, 1n response to authenticating the second software

module, the second soitware module into the protected
execution environment;

decrypt, in response to loading the second soitware mod-

ule, the encrypted second decryption key and an
encrypted second authentication key using the first
decryption key, wherein the decrypting 1s performed
within the protected execution environment;

and

access, alter loading the first and second software modules

into the protected execution environment, a software
application using the second decryption key and the
second authentication key, the software application
associated with the first and second software modules.

22. The data processing device of claim 21, wherein the
on-chip core decryption key 1s only accessible from the hard-
ware Irom within the protected execution environment.

23. The data processing device of claim 21, wherein each
piece ol soltware 1n the one or more pieces of soltware com-
prises an encrypted portion that includes an encryption key
for a next piece of software 1n a series of pieces of software 1n
the one or more pieces ol software, and where 1n the
encrypted portion of each piece of software 1s encrypted using
an encryption key of a previous piece of software in the series
of pieces of software.

24. The data processing device of claim 21, wherein the
instructions cause the processor to determine 11 the software
stack has a specific configuration required for accessing a
portion of information by:

decrypting software of each layer of software in the soft-

ware stack using a decryption key from a previous layer
in the software stack:

performing authentication of each layer of soitware 1n the

soltware stack using an authentication key from a pre-
vious layer 1in the software stack; and

US 8,438,658 B2

23

using a decryption key from a next to last layer of software
in the software stack to decrypt and access the portion of
information.

25. The data processing device of claim 21, wherein the
portion of information 1s one of an application or a portion of
data to be processed by an application.

26. The data processing device of claim 21, wherein the
processor 1s a synergistic processing unit and the memory 1s
a local store associated with the synergistic processing unit,
and wherein the mstructions cause the processor to generate a
protected execution environment by:

allocating a portion of the local store for use with an 1so-

lation mode of operation of the synergistic processing
unit; and

causing the synergistic processing unit to switch operation

to the 1solation mode of operation.

27. The data processing device of claim 21, wherein the
apparatus 1s a heterogeneous multiprocessor data processing
system having a master processor and one or more co-pro-
cessors, and wherein the master processor and the one or
more co-processors operate using different instruction sets.

28. The data processing device of claim 21, wherein the
apparatus 1s an integrated circuit device, and wherein the
integrated circuit device 1s part of one of a game machine, a
game console, a hand-held computing device, a personal digi-
tal assistant, a communication device, a wireless telephone, a
laptop computing device, a desktop computing device, or a
server computing device.

¥ H H ¥ ¥

5

10

15

20

25

24

	Front Page
	Drawings
	Specification
	Claims

