12 United States Patent

Raghavan et al.

US008436726B2

US 8,436,726 B2
May 7, 2013

(10) Patent No.:
45) Date of Patent:

(54) STAGE EVALUATION OF A STATE MACHINE

(75) Inventors: Vijay Raghavan, Brookline, MA (US);
Ebrahim Mehran Mestchian, Newton,
MA (US)

(73) Assignee: The MathWorks, Inc., Natick, MA
(US)
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/283,107

(22) Filed: Oct. 27, 2011
(65) Prior Publication Data
US 2012/0101971 Al Apr. 26, 2012

Related U.S. Application Data

(63) Continuation of application No. 13/106,951, filed on
May 13, 2011, now Pat. No. 8,214,783, which 1s a
continuation of application No. 11/841,743, filed on
Aug. 20, 2007, now Pat. No. 7,945,886, which 1s a
continuation of application No. 11/237,028, filed on

Sep. 28, 2005, now Pat. No. 7,500,209.

(51) Imt. CL.
GO8B 19/00 (2006.01)
(52) U.S. CL
USPC 340/521; 340/506; 340/507; 340/511;
340/3.1
(58) Field of Classification Search 340/506,

340/507, 511, 521, 3.1
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,396,983 A 8/1983 Segarra et al.
5,400,246 A * 3/1995 Wilsonetal.c...o. 700/17

5,652,714 A 7/1997 Peterson et al.
5,801,687 A 9/1998 Peterson et al.
6,044,211 A 3/2000 Jain

6,324,496 Bl 11/2001 Alur et al.
6,408,262 Bl 6/2002 Leerberg et al.
6,421,815 Bl 7/2002 Seawright
6,463,565 B1 10/2002 Kelly et al.
6,629,296 Bl 9/2003 (Ganesan et al.
6,735,743 Bl 5/2004 McElvain
6,880,147 Bl 4/2005 Pauly
6,892,362 Bl 5/2005 Donaghy et al.
6,920,583 Bl 7/2005 Morley et al.
6,990,658 Bl 1/2006 Torvalds et al.
7,020,850 B2 3/2006 Raghavan et al.
7,039,893 B2 5/2006 DenBraber
7,043,416 Bl 5/2006 Lin

7,099,328 B2 8/2006 Galbi et al.
7,380,224 B2 5/2008 Franco et al.
7,433,808 B1 10/2008 Raghavan et al.
7,454,324 B1 11/2008 Seawright et al.
7,730,415 B2 6/2010 Law et al.
7,945,886 B2 5/2011 Raghavan et al.

2002/0023256 Al 2/2002 Seawright

(Continued)

Primary Examiner — Daryl Pope

(74) Attorney, Agent, or Firm — Nelson Mullins Riley &
Scarborough LLP

(57) ABSTRACT

The present invention provides a method and system for stage
evaluation of a state machine model. Two types of transitions
are used: first-stage transitions and second-stage transitions
for a two-stage evaluation. In one embodiment, top-down
processing and bottom-up processing may be combined using
a two-stage evaluation. First-stage transitions are used with
top-down processing while second-stage transitions are used
with bottom-up processing. Certain conditions are used to
determine if a switch from one type of stage processing to
another type of stage processing 1s needed.

20 Claims, 8 Drawing Sheets

Computing Device, 200

Storage, 202

Application, 204

]| Technical Computing
Environment, 206

i Oper;ﬁng System ,

208

i Processor, 270 I

| Pointing Device, 212 l

[Keybﬂard, 214 | | Display, 216 |

: { Microphone, 21§|

6
{’amera, gj_zl

i Network Interface, 218 I

US 8,436,726 B2

Page 2

U.S. PATENT DOCUMENTS

2004/0098240 Al
2005/0004786 Al
2005/0080600 Al
2005/0262473 Al
2005/0278670 Al

2005/0278702 Al

5/2004
1/2005
4/2005
11/2005
12/2005
12/2005

i

T'homason

Thomason
Courtay
Kocka

Brooks et al.
Koyfman et al.

* cited by examiner

2005/0278708 Al
2006/0139587 Al
2006/0235548 Al
2007/0083352 Al
2008/0263524 Al

12/2005
6/2006
10/2006
4/2007
10/2008

Zhao et al.
Rossing et al.
Gaudette

Raghavan et al.
Adams et al.

U.S. Patent May 7, 2013 Sheet 1 of 8 US 8,436,726 B2

[Computing Device, 200
Storage, 202
Appilcatlon 204

' Technical Computing
Environment, 206

A

Pron:essor 210

l Pointing Dewce, 212 I
'Keyboard, 214 I ! Display, _gj_él

Network Interface, 218 |

U.S. Patent May 7, 2013 Sheet 2 of 8 US 8,436,726 B2

238 . -
\1 Server, 224 |

Storage, 226
Chent
220

Application, 228

Technical Computing
Environment, 230

_ Operating System
232

l Procéssor, _._2_.‘3_4 I

| Network Interface, 236 |

Fig. 2b

o

Coniputing Device, 200

Computing Device, 240

| Application, 228 ‘ |

Fig. 2C

U.S. Patent May 7, 2013 Sheet 3 of 8 US 8.436,726 B2

N Fi;ite SmterMémine Méc.iel)
246

| First-Stage Transitions, 248 |
I Second-Stage Transitions, 250 l

L b b o bR e i i S -l e - A i Niar-olr- il ek Sl i g Ny

¢ Third-Stage Transitions, 251

| States, 25__2 l

Applicéﬁbn, 204 B

US 8,436,726 B2

Sheet 4 of 8

May 7, 2013

U.S. Patent

L 31 i
| UQJ)SUBJ] BU BYBIN .
i8)eyssadns

§2C «+—| edbelp ejers ey | AUB aAgl ajels 9t
| AQJoMa Ue Wmeyd |~ CUN) 6)ing mf_._z 800(]

3T

| ~ / andul ue se Jusre
e gce cep _/ 5ok / com%ﬁm wa a1g]s JUelnd auy Jo
&1E]S JUBLING &) ou USAB exe)} 0) UojISLIER :% m_wa%am @_zmm._mcm_mmm%co._m _
O)E]S jualing ol sjejsiadns ay} Bupjew pue Slet pljen AU ahey e X Akl
ajeissadns ey Bupjeul aEislusuna e jo gje}s Jualing 8y} 880 mcml\\ ani
pue uoyoe Bulnp ayel 9¢€ 2JEISIBaNS L) 0} JusAs _ pEE .
s,e)ejsiedns ey bujes _ uopdasxa ay) Hussed mcmﬂ_wmmwm o \S[E)
The _ w UORIPUOD - . _”_ BJE)S JUSLIND Bif) | o} BUnENieA3
| Buipuodserios g pue pze | S1EIs Bueoal el Bupjew
[uofisuel; aje) & Apuap:; _. | pue ays Buinaas) ey o) 008
MFN _ _. - oy puoa an | JU3AD EOHQ@UK@ Bl m_..__mmﬂﬁ_ — __._O_“_ﬁ_EOQ_
seA | __53 mw___m %mw_w_“mn_ 4% £ | Bupuodsatioo s} pue
J.BlEIsIedns 4, P8I8pISUcd 3q 50 | uopysuel) Apea ue Apuep _
AU @ABY B)B)S / 0] UOOBSUED &l ase) 07% 13usAe uopdanxs ue ol
Jusung ey} seoq / OU Aue aAey je)s _ SMOJLL uolae Bupnp y0¢ gsh
— jueLIng el s80Q 0i€ Aes el ssoq /"1 belapisuo oq o)
_ _ UOHISUEL AlBa AU apELL
OyE t. é 0t 2118 Juadnd e seo(
uofyoe Bulnp e)g| s,e)8}s 618} Juan ey uojjoe Bunnp ou
1U2.IN9D 8y} sjnoexy | alejsqns ey BuIxei | Ayee Y} einoaxg 208 .
0S¢ e~ oo Ve~ sor| 826~ o _
/ ¢uopoe Buunp eje) - iejesqns 7 $8]8)s Weuno ey} | e —y
oU wmm,w wﬁ% mwﬁ 1) hﬂm R e T aq %%Dﬂ%mmﬁ% —— %:m%ﬁm Hﬁw«% JO
JUBLINo 8y} s30() ay §80(] Alee m_._m 818U} 8| | 80ualnogo ue fugoals(
GLE - Zle 0L¢ 00¢

U.S. Patent

May 7, 2013 Sheet 5 of 8 US 8.436,726 B2
300
1 352
Initiate top-down
processing

354

Detecting an excepfion
event thrown by a current state

- Jab
Termmating the
top-down processing
358
Initiate the

bottom-up processing
Receiving the exception event at
a superstate of the current state

362
Making the superstaie of the | o
364 yes 366

Determine
if the current state can ™~_no the cumrent state
Jandle the exception ~~ have any superstate .~
. event? _~ ?
yes Tho

Throw an emror event
by the state diagram

- Fig. 54

US 8,436,726 B2

o o) ~
Sy P -
- L
G L
= -~ (Pelapislod
5 —_— 7y ua8aq Jou SBy jey}
= 998 < uoRISUeL} 8]e) JaY)0

Sy DARY 8JE)s Juaun)

~ aU] $80(]
S
™ e

o) ey
=
3:
~ AN ou
> N
m ~

U.S. Patent

Sje|

|

o~
<o
L

uogpuod
Buiplodsedion ey
funenjeas

UQfIpU0Y
Buipuodsaiton |

Sl pug LoyIsue]]
eje| e Ajuep

Juopsuer) _
Aug_ aAel 8)ejs Juslind
a|j) 5800

yLE

’LE

U.S. Patent May 7, 2013 Sheet 7 of 8 US 8.436,726 B2

U.S. Patent May 7, 2013 Sheet 8 of 8 US 8.436,726 B2

/ 400

438

| 436
throw exception

Fig. 68

US 8,436,726 B2

1
STAGE EVALUATION OF A STATE MACHINE

RELATED APPLICATION

This application 1s a continuation application of U.S.
patent application Ser. No. 13/106,951, enfitled “STAGE
EVALUATION OF A STATE MACHINE ” filed May 13,
2011, which 1s a continuation application of U.S. patent apph-
cation Ser. No. 11/841,743, entitled “STAGE EVALUATION
OF A STATE MACHINE,” ﬁledAug 20, 2007, and 1ssued as
U.S. Pat. No. 7,945,886, which 1s a continuation of U.S.
patent apphca‘uon Ser No 11/237,028, entitled “STAGE
EVALUATION OF A SATE MACHINE,” filed Sep. 28,
2005, and 1ssued as U.S. Pat. No. 7,500,209, the disclosure of
which 1s incorporated by reference herein.

TECHNICAL FIELD

The present invention generally relates to state machines.
More particularly, the present invention relates to staged pro-
cessing of states and events 1n a state machine.

BACKGROUND INFORMATION

A finite state machine 1s a representation of an event-driven
(reactive) system. In a finite state machine, a system makes a
transition from one state to another provided that the condi-
tion defining the transition 1s true. A finite state machine may
be described using a state transition table. A state transition
table 1s a truth table describing the relationships among the
inputs, outputs, and states of a finite state machine. Hence, the
state transition table describes the behavior of a system given
specific inputs. Alternatively, the behavior of a system may be
described in terms of transitions among states. A state’s activ-
ity 1s determined based on the occurrence of certain events
under certain conditions. Additionally, a finite state machine
may be graphically represented by a state diagram. A state
diagram 1s a directed graph that illustrates transitions of one
state to another. Stateflow® of MathWorks, Inc. from Natick,
Mass. 1s an example of a technical computing software appli-
cation that utilizes state diagrams to represent a finite state
machine.

Stateflow® 1s an interactive simulation and code genera-
tion tool for event-driven systems. Stateflow® enables the
representation of hierarchical states. States may be organized
within other higher-level states forming a parent/oifspring
structure that may be used to describe complex systems.
Additionally, Stateflow® allows the representation of parallel
states. Hence, two or more states within the same hierarchy
level may be active at the same time. Stateflow® further
provides the functionalities to specily a destination state of a
transition based on historical information. Statetlow® pro-
cesses states and events 1n a top-down processing manner. In
other words, Stateflow® processes states and events from the
top of the hierarchy and works 1ts way down the hierarchy. A
state 1s processed only 1f 1t 1s active. If a state 1s active, its
superstate (parent state) must also be active as well.

In Stateflow®, events drive the Stateflow® diagram execu-
tion. The occurrence of an event causes the status of the states
in the Statetlow® diagram to be evaluated and often causes a
transition to take place. Specifically, an event may be broad-
cast to trigger a transition to occur. Additionally, the broadcast
of an event may also trigger an action to be executed. An
action may be a function call, a broadcast event, a variable
assignment, etc. An action may be executed as part of a
transition from one state to another, or based on a status of a
state. A transition can have either a condition action or a

5

10

15

20

25

30

35

40

45

50

55

60

65

2

transition action. A condition action 1s executed as soon as the
condition 1s evaluated to true but before the transition takes

place. A transition action 1s executed aiter the transition takes
place.

As mentioned above, Statetlow® uses a top-down process-
ing scheme to process events and states. Specifically, when an
event occurs, Stateflow® processes from the top or root of the
Stateflow® state diagram down through the hierarchy of the
diagram. A disadvantage of the current top-down processing
implementation of Stateflow® 1s that 1t may encounter certain
cyclic behaviors. An example 1s given with respect to FIG. 1.
FIG. 1 illustrates a state chart 100 containing state 102 and
state 104. State 104 further contains state 106 and state 108.
Transition 100« 1s the default transition into state 102, which
1s taken when state chart 100 first becomes active. Transition
100c¢ 1s the default transition into state 106, which 1s taken
when state 104 first becomes active. Transitions 11054, 1104,
and 110e are transitions from one state to another. At a certain
point 1n time, assuming that state 108 broadcasts an error
event to 1ts parent state 104 using a send() function call and
because Statetlow® utilizes top-down processing, the pro-
cessing ol the send() function call starts at state 104 as
opposed to starting with state 106 or state 108. If state 104
does not know how to process the error event sent by the send(
) Tunction call, then state 104 passes the error event to 1ts
active child state 108. However, state 108 cannot process this
error event, and state 108 again sends the error event via a
send() function call to 1ts parent state 104. A cyclic behavior
hence occurs. A method 1s needed to avoid cyclic behavior,
especially when a parent state asks 1ts child state to handle an
event that the child state already knows 1t cannot handle.
Theretore, Stateflow®’s top-down approach does not always
make a finite state machine model work as expected. How-
ever, Stateflow®’s top-down approach simplifies the State-
flow® diagram by looking at the transitions out of the super-
state without considering all the details of its substates and
their transitions.

The Unified Modeling Language™ of Object Management
Group® allows one to generate models using state diagrams.
UML processes states and events in such state diagrams 1n a
bottom-up processing manner. One of ordinary skill in the art
will appreciate that bottom-up processing performs error han-
dling better than top-down processing. However, for a super-
state to make a transition to another state 1 a bottom-up
processing environment, all the substates and their transitions
must be evaluated and considered before the superstate may
make a transition. Hence, some processing power 1s wasted
on unnecessary executions of substates and transition or an
undesirable transition may be made by a substate.

SUMMARY OF THE INVENTION

The present invention solves the above-identified problems
by allowing multiple-stage processing. For simplicity, a two-
stage processing combining top-down processing and bot-
tom-up processing in a state diagram 1s demonstrated. Two
types of transitions are introduced for enabling a two-stage
processing, where each type of transition corresponds to a
particular stage in processing the state diagram.

In one aspect of the present invention, a method of process-
ing a representation of a state machine having states and
transitions, wherein each transition has a starting point and an
ending point 1s disclosed. The method includes the steps of
providing a {first evaluation stage and a second evaluation
stage for processing the state machine and detecting an occur-
rence of an event. The method also includes the step of deter-
mining 11 a valid first-stage transition in the first evaluation

US 8,436,726 B2

3

stage exists within the representation of the state machine. If
the valid first-stage transition in the first evaluation stage does
not exist, the method further includes the step of determining
if a valid second-stage transition in the second evaluation
stage exists. In one embodiment of the present invention, the
state machine 1s a finite state machine. In another embodi-
ment of the present invention, the first-stage transition 1s an
carly transition and the second-stage transition 1s a late tran-
sition. In yet another embodiment of the present mnvention,
the valid first-stage transition changes a current state at the
starting point of the valid first-stage transition without exam-
ining any substates the current state has and the valid second-
stage transition changes the current state at the starting point
of the valid second-stage transition after examiming all the
substates that the current state has.

In one embodiment of the present invention, the step of
determining 1f a valid first-stage transition exists further
includes the step of i1dentifying a first state that the state
machine 1s 1n. The step of determining also includes the step
of 1dentifying a first first-stage transition, wherein the first
first-stage transition originates from the first state and ends at
a second state. The step of determining also further includes
the steps of identitying a first condition corresponding to the
first first-stage transition and evaluating the first condition.

In another embodiment of the present invention, the
method 1ncludes the step of evaluating the first condition to
true. The method also includes the step of determiming that the
valid first-stage transition exists. The method further includes
the step of changing the state machine from the first state to
the second state.

In yet another embodiment of the present invention, the
method includes the step of evaluating the first condition to
false. The method turther includes the step of examining 11 the
first state has a third state that 1s a substate of the first state.
The method may also include the steps of determining that the
third state exists and determining 1f the third state has the valid
first-stage transition.

In still another embodiment of the present invention, the
method includes the step of executing a first first-stage during,
action. The method also includes the step of throwing an
exception event during the execution of the first first-stage
during action. The method further includes the step of passing
the exception event to a recewving state to handle. If the
receiving state cannot handle the exception event, the method
then includes the step of passing the exception event to a
superstate of the recerving state.

In yet another embodiment of the present invention, the
step of determining 11 a valid second-stage transition exists
includes the step of i1dentifying a first state that the state
machine 1s 1n. The step of determining also includes the step
of 1dentifying a first second-stage transition that originates
from the first state and ends at a second state. The step of
determining further includes the steps of 1dentifying a first
condition corresponding to the first second-stage transition
and evaluating the first condition.

In still another embodiment of the present invention, the
method includes the steps of evaluating the first condition to
true and determiming that the valid second-stage transition
exists. The method also includes the step of changing the state
machine from the first state to the second state. The method
may also include the steps of evaluating the first condition to
false and determining if the first state has a third state that 1s
a superstate ol the first state. The method may further includes
the steps of determining that the third state exists and deter-
mimng 11 the third state has any valid second-stage transition.

In another aspect of the present invention, a method of
handling exception events 1n a state machine having states

10

15

20

25

30

35

40

45

50

55

60

65

4

and transitions 1s introduced. The method includes the step of
detecting an occurrence of an event. The method also includes
the step of mitiating top-down processing of the plurality of
states. The method further includes the step of detecting an
exception event thrown by one of the plurality of states. The
method also includes the step of recerving the exception event
at a recerving state. The method further includes the step of
terminating the top-down processing and 1nitiating bottom-
up processing from the receiving state.

In one embodiment of the present invention, the method
turther includes the step of determining if the receving state
can handle the exception event. The method may also include
the steps of determining the receiving state cannot handle the
exception event and passing the exception event to a super-
state of the receiving state.

In another aspect of the present invention, a method of
evaluating a representation of a state machine having a plu-
rality of states and a plurality of transitions 1s provided. Each
transition in the state machine has a starting point and an
ending point. The method includes the steps of detecting an
occurrence of a {first event and processing the plurality of
states using a first-stage evaluation. The method further
includes the step of detecting an occurrence of a second event.
The method also includes the steps of terminating the first-
stage evaluation and processing the plurality of states using a
second-stage evaluation.

In yet another aspect of the present invention, a method of
creating a representation of a state machine having states and
transitions 1s provided. The method includes the step of pro-
viding a first type of transition, wherein the first type of
transition 1s used for processing the state machine 1n a first
evaluation stage. The method further includes the step of
providing a second type of transition, wherein the second type
of transition 1s used for processing the state machine 1n a
second evaluation stage. The method also includes the steps
of providing a first state and a second state and creating a
transition having the first state as the starting point and the
second state as the ending point. The method further includes
the step of specifying the transition to be either the first type
of transition or the second type of transition.

In still another aspect of the present invention, a system of
combining top-down processing and bottom-up processing in
a state machine 1s disclosed. The system 1ncludes the element
of a state machine model having a plurality of states and a
plurality of transitions, wherein each transition starts from a
starting point and ends at an ending point and each transition
1s classified as one of a first-stage type and a second-stage
type. The system further includes the element of an applica-
tion, wherein the application comprises an execution engine
that generates an executable representation from the state
machine model and executes the executable representation
and the execution engine executes transitions of the first-stage
type 1n a top-down processing manner and executes transi-
tions of the second-stage type in a bottom-up processing
mannet.

In yet another aspect of the present invention, a system for
utilizing a first-stage evaluation and a second-stage evalua-
tion 1n a state machine 1s itroduced. The system includes a
state machine model having multiple states and multiple tran-
sitions. Each transition in the state machine starts from a
starting point and ends at an ending point and each transition
1s classified as one of a first-stage type and a second-stage
type. The system further includes an application, wherein the
application includes an execution engine that generates an
intermediate or executable representation from the state
machine model.

US 8,436,726 B2

S

In yet another aspect of the present invention, a computing,
device having a medium for storing executable instructions
for amethod of processing a representation of a state machine
having states and transitions, wherein each transition has a
starting point and an ending point, 1s disclosed. The method
includes the steps of providing a first evaluation stage and a
second evaluation stage and detecting an occurrence of an
event. The method also includes the step of determining i1 a
valid first-stage transition in the first evaluation stage exists
within the representation of the state machine. If the valid
first-stage transition in the first evaluation stage does not
exist, the method further includes the step of determining 1f a
valid second-stage transition in the second evaluation stage
exists. In one embodiment of the present invention, the valid
first-stage transition changes a current state at the starting
point of the valid first-stage transition without examining any
substates the current state has and the valid second-stage
transition changes the current state at the starting point of the
valid second-stage transition aiter examining all the substates
that the current state has.

In still another aspect of the present invention, a computing,
device having a medium for storing executable instructions
for a method of handling exception events in the state
machine having states and transitions, wherein each transi-
tion has a starting point and an ending point, 1s provided. The
method includes the step of detecting an occurrence of an
event. The method also includes the step of imitiating top-
down processing of the plurality of states. The method further
includes the step of detecting an exception event thrown by
one of the plurality of states. The method also 1ncludes the
step of recerving the exception event at a recerving state. The
method further includes the step of terminating the top-down
processing and inmitiating bottom-up processing from the
receiving state.

In yet another aspect of the present invention, a computing,
device having a medium for storing executable instructions
for a method of creating a representation of a state machine
having states and transitions, wherein each transition has a
starting point and an ending point, 1s introduced. The method
includes the step of providing a first type ol transition,
wherein the first type of transition 1s used for processing the
state machine 1n a first evaluations stage. The method further
includes the step of providing a second type of transition,
wherein the second type of transition 1s used for processing
the state machine 1n a second evaluation stage. The method
also includes the steps of providing a first state and a second
state and creating a transition having the first state as the
starting point and the second state as the ending point. The
method turther includes the step of specifying the transition
to be either the first type of transition or the second type of
transition. In one embodiment of the present invention, the
first type of transition 1s used for top-down processing and the
second type of transition 1s used for bottom-up processing.

In another aspect of the present invention, a method for
generating code from a state machine model 1s disclosed. The
method includes the step of providing a state machine model
having states and transitions. Each transition in the state
machine starts from a starting point and ends at an ending
point and each transition 1s classified as one of a first-stage
type and a second-stage type. The method also includes the
step of generating executable code or an intermediate repre-
sentation from the state machine model.

In still another aspect of the present invention, a method of
evaluating transitions in stages 1n a representation of a state
machine 1s introduced. The method includes the step of pro-
viding a first stage of processing and a second stage of pro-
cessing. The method also includes the steps of providing a

10

15

20

25

30

35

40

45

50

55

60

65

6

transition and associating the transition with the first stage of
processing or the second stage of processing. In one embodi-
ment of the present invention, the first stage of processing 1s
top-down processing and the second stage ol processing 1s
bottom-up processing.

The details of various embodiments of the invention are set
forth 1n the accompanying drawings and the descriptions
below.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects, features, and
advantages of the invention will become more apparent from
the following description and accompanying drawings, in
which like reference characters refer to the same parts
throughout the different views.

FIG. 1 illustrates an exemplary state diagram with possible
cyclic behavior.

FIG. 2A 1llustrates an exemplary environment that 1s suit-
able for practicing one embodiment of the present invention.

FIG. 2B illustrates another exemplary environment that 1s
suitable for practicing one embodiment of the present inven-
tion.

FIG. 2C illustrates yet another exemplary environment that
1s suitable for practicing one embodiment of the present
ivention.

FIG. 3 illustrates an exemplary system that 1s suitable for
practicing one embodiment of the present invention.

FIG. 4 shows a flow chart that depicts the steps taken to
practice one embodiment of the present invention.

FIG. 5A shows another tlow chart that depicts the steps
taken to practice one embodiment of the present invention.

FIG. 3B shows the detailed steps taken as part of step 364
of FIG. SA.

FIG. 6A 1llustrates an exemplary state diagram that prac-
tices one embodiment of the present mnvention.

FIG. 6B 1illustrates another exemplary state diagram that
practice one embodiment of the present invention

DETAILED DESCRIPTION

The present invention provides a method for allowing mul-
tiple-stage processing of a state machine model. Each transi-
tion 1n the state machine model 1s associated with a particular
stage 1n the multiple-stage processing. For each stage, the
transitions are defined to be processed at a particular process-
ing point of the evaluation of the state machine. For example,
in a three-stage processing, a transition may be indicated to be
associated with the first stage, the second stage, or the third
stage. A transition associated with the first stage may be
defined such that the transition should be taken by the source
state without considering any substates of the source state. A
transition associated with the second stage may be defined
that the transition should be taken by the source state 1f no
valid transitions may be taken by any of its immediate sub-
state. A transition associated with the third stage may be
defined that the transition should be taken by the source state
if no valid transitions may be taken by any of its substates.
One of ordinary skill 1n the art will appreciate that the mul-
tiple-stage processing of a state machine model can overcome
disadvantages in using a single-stage processing, such as
top-down processing or bottom-up processing.

In the following paragraphs, a detailed explanation 1s pre-
sented to show how a multiple-stage processing works 1n
evaluating a state diagram that represents a state machine. For
simplicity, a two-stage processing combinming top-down pro-
cessing and bottom-up processing 1s demonstrated. One of

US 8,436,726 B2

7

ordinary skill in the art will recognize that multiple-stage
processing 1s iherently different from single-stage process-
ing and that neither top-down processing nor bottom-up pro-
cessing 1s needed in a multiple-stage processing. One of
ordinary skill in the art will appreciate that the illustrated
embodiments are used to demonstrate the spirit of the present
invention and should not be used to limit the scope of the
present invention. The illustrated embodiments will be
described for illustrative purposes relative to Stateflow®
from The MathWorks, Inc.; however one of ordinary skill 1n
the art will appreciate that the present invention 1s not limited
to Stateflow® and may be applied to other applications, such
as the Unified Modeling Language™ of Object Management
Group® or other state diagramming applications. One of
ordinary skill in the art will also appreciate that although the
illustrated embodiments will be described for 1llustrated pur-
poses relative to a fimite state machine, the present invention
may also be applied to infinite state machines having an
infinite number of states, such as some examples of Petr1 nets.

A Stateflow® state diagram 1s also referred to as a “‘state
chart”. A state chart 1s formed of states and transitions. Each
state relates to a state of a finite state machine. Each state may
have a superstate. A superstate 1s also sometimes referred to
as a parent state. A state 1s always lower 1n hierarchy than 1ts
superstate or parent state. A state that 1s a child of a superstate
1s referred to as a substate of 1ts superstate, or a child state of
its parent state. A state may have more than one immediate
substate or child state. However a state may only have at most
one immediate superstate or parent state. The activity or
inactivity of a state changes dynamically based on transitions
that are enabled by events and/or conditions. When a State-
flow® state chart 1s active, 1t only considers the active states
and their transitions. A Stateflow® state chart executes when
it 1s triggered by an event. A state chart 1s mitially 1nactive
when 1t 1s first triggered by an event. After the trigger, the state
chart becomes active and once 1t finishes processing the trig-
ger event, the state chart goes to sleep and waits for another
event to occur. When another event takes place, the state chart
wakes up and processes the event. All events are processed
top-down. The existing implementation of Stateflow® only
allows top-down processing of events and states, but not
bottom-up processing of events and states.

To 1ntroduce bottom-up processing into Statetlow®, two
types ol transitions are utilized to enable the differentiation of
the two stages of evaluation, top-down processing and bot-
tom-up processing, of a two-stage processing 1n Statetlow®.
One type of transition associated with top-down processing 1s
referred here as an early transition, and the other type asso-
ciated with bottom-up processing is referred as a late transi-
tion. Early transitions can also be referred to as regular tran-
sitions, or transitions of a regular type. Late transitions can be
referred to as deferred transitions, or transitions of a deferred
type. Each transition has a source (a starting point) and a
destination (an ending point). A source can be either an
explicit state or an 1mplicit state that can cause a transition
into a state at the destination. For example, 1n a graphical user
interface, a source can be explicitly defined by connecting the
beginning of a transition path to a graphical boundary of a
state. Alternatively, a source can be implicitly defined as 1n the
case of a default transition inside the boundary of a parent
state. In thus case, the source of the transition can be any state
in the finite state machine model with a transition path into the
parent state. Each transition may have a corresponding con-
dition, where the transition will only take place 11 the condi-
tion 1s true and the source state of the transition 1s active.
(Given a transition having state A as the source and state B as
the destination, a finite state machine may change 1ts state

5

10

15

20

25

30

35

40

45

50

55

60

65

8

from state A to state B via the transition. If the transition i1s an
carly transition, then once the transition condition 1s true, the
transition takes place without considering any substate that
state A might have. However, 11 the transition type 1s a late
transition, then the transition will not be considered until no
other transition may be made by either state A or any of 1ts
chuld states. A transition is represented graphically using an
arrow 1n Stateflow®. A transition 1s implemented as an object
in Stateflow®. A transition object specifies who are the source
(a beginming point of the transition) and the destination (an
ending point of the transition). A transition may take place n
response to an occurrence of an event.

The occurrence of an event causes a state chart to wake up
and start evaluating the active states in the state chart. An
event can represent the point at which the temperature 1n a
room exceeds a given temperature. An event can represent the
point that water 1n a container reaches 1ts top level shutting off
of the water mput source. Events are represented as non-
graphical objects 1n Stateflow®. Alternatively, events may be
represented using a conditional statement 1n code.

When a state 1s being evaluated, an action may be executed,
which is called a “during action”. A during action may further
be divided into an *“early during action™ and a “late during
action”, where the early during action 1s executed during
top-down processing, and the late during action 1s executed
during bottom-up processing. An “early during action” and
“late during action” may be implemented as function calls. If
a state has an early transition, then the checking of the early
transition will be 1included 1n an “early during action™ func-
tion call. On the other hand, 1f a state has a late transition, then
the checking of the late transition will be included 1n a “late
during action” function call. A state may further include an
“entry action” and an “‘exit action”, where the entry action 1s
executed when the state first becomes active, and the exit
action 1s executed right before the state becomes 1nactive. An
“entry action” and “‘exit action” may also be implemented
using function calls. When the state chart finishes evaluating
the active states and optionally making a transition under
certain condition, the state chart goes back to sleep and waits
for another event to take place. One of ordinary skill 1n the art
will appreciate that there are many ways other than function
calls 1n which “during action”, “entry action” and “exit
action” may be implemented.

Stateflow® processes all early transitions using top-down
processing and all late transitions using bottom-up process-
ing. Therefore a user may specily a transition to be an early
transition 1f the user wants the transition to be processed
top-down or a user may specily a transition to be a late
transition 1f the user wants the transition to be processed
bottom-up. One of ordinary skill in the art will appreciate that
the type of transition may be specified or changed using
methods such as a mouse right-click menu, property dialog
box, and command line API.

FIG. 2A illustrates an exemplary environment that 1s suit-
able for practicing one embodiment of the present invention.
Computing Device 200 includes a storage 202, such as a hard
drive or CD-ROM, for storing application 204 and operating
system 208. Application 204 provides a technical computing
environment 206 for executing a finite state machine model.
The finite state machine model may be a graphical represen-
tation of a state machine, a state transition table, or the like.
Computing device 200 may be any computer system, such as
a desktop computer, laptop, workstation, server, handheld
computer, or other forms of computing or telecommunication
device that 1s capable of communication and that has suifi-
cient computing power to perform the operations described
herein. Computing device 200 further includes a display 216

US 8,436,726 B2

9

through which a user may interface with computing device
200 using I/O devices such as a microphone 215, a camera
217, a keyboard 214 and a pointing device 212, such as a
mouse or a stylus. Computing device 200 also includes a
processor 210 for running operating system 208, application
204, and other software 1n storage 202. Computing device
200 may also further include a network interface 218 to
interface to a Local Area Network (LAN), Wide Area Net-
work (WAN) or the Internet through a variety of connections
including, but not limited to, standard telephone lines, LAN
or WAN links, broadband connections, wireless connections,
or some combination of any or all of the above. The network
interface 218 allows computing device 200 to interface with
another computing device that 1s capable of execution 1n a
distributed and/or parallel computing environment.

FIG. 2B 1llustrates another exemplary environment suit-
able for practicing one embodiment of the present invention.
This environment 1s a client-server computing environment.
Client 220 1s coupled to network 222, such as the Internet, or
an intranet, or other network either wired, wireless, or a
hybrid of wired or wireless, to communicate with a server 224
that interfaces to network 222 using a network interface 236.
Server 224 1s adaptable to also include a processor 234 and
storage 226 for storing operating system 232 and an applica-
tion 228 which includes a technical computing environment
230. Client 220 may be a computing device such as comput-
ing device 200. Client 220 may or may not have a copy of
application 228 1n 1ts own storage. Client 220 also may or may
not have enough processing power to execute application
228. Those skilled 1n the art will recognize that there are many
different ways one may practice the present invention 1n a
client-server computing environment.

FI1G. 2C depicts another exemplary distributed computing
environment that 1s suitable to practice one embodiment of
the present invention. In this distributed environment, com-
puting device 200 and computing device 240 are coupled to
network 222. Computing device 240 includes at least an
application 242 for executing a portion of a fimite state
machine model. One of ordinary skill in the art will appreciate
that execution of a state machine model may be distributed in
many different ways 1n a distributed computing environment.

FIG. 3 illustrates a number of the components used in the
illustrative embodiment to practice the present invention. One
ol the components 1s a finite state machine model 246, which
may be held in storage 202 (see FIG. 2A). The finite state
machine model 246 orgamizes its building blocks into three
categories: states 2352, first-stage transitions 248, second-
stage transitions 230, and optionally third-stage transitions
251 and other additional stage transitions. Finite state
machine model 246 1s supplied to application 204 for code
generation and execution by execution engine 248.

Execution engine 248 1s capable of taking the finite state
machine model 246 and generating corresponding executable
code. The high level representation of the finite state machine
model 246 can be translated to low level code for execution.
As way ol an example, Statetlow® uses textual action lan-
guage to describe states and transitions in a finite state
machine model. The textual action language statements in
cach Stateflow® object (states and transitions) are first parsed
and translated to Abstract Syntax Trees (ASTs). One of ordi-
nary skill in the art will appreciate that there are many other
structures and intermediate representation that can be used to
describe states and transitions. The generated ASTs are then
attached to their corresponding Statetlow® object. The
semantics of the finite state machine model 1s then analyzed
and an intermediate representation of the finite state machine
model 1s generated using Code Generation Intermediate Rep-

10

15

20

25

30

35

40

45

50

55

60

65

10

resentation (CGIR). CGIR has basic objects, such as, types,
constants, variables, and functions, to represent elements of a
finite state machine built 1n Statetlow®. States and various
types of functions 1n the finite state machine get translated
into CGIR functions. Transitions and junctions yield control-
flow graphs (CFGs) that form the bodies of the functions.
CFGs show how functions call each other 1n order to achieve
a specific processing and execution of a finite state machine
model. CFGs are constructed using the CGIR functions to
capture the high-level notions of a finite state machine, such
as, activating and 1nactivating a state.

Analysis and optimizations are applied to the CGIR repre-
sentation of the finite state machine model to transform the
CGIR representation to a lower-level representation that 1s
convertible to a desired low level target language that can be
compiled by a general purpose compiler, such as a C/C++
compiler, to generate executables that can numerically repro-
duce the simulation scenarios described in the original finite
state model. The target language may be C/C++, HDL, JAVA
programming language, Ada, and the like. The process of
transforming the CGIR representation to a lower-level repre-
sentation that 1s convertible to a desired low level target
language 1s referred to as “lowering”. There may be many
stages ol lowering processes 1n the transformation of the
CGIR representation to a lower-level representation. The
same lowering process may be employved more than once. The
purpose ol these lowering processes 1s to transform the CGIR
representation to a state that 1s most suitable to the backend of
the code generation process. Optimizations may also be
employed in the code generation process to improve the efi-
ciency and the effectiveness of the generated code as well as
the code generation process itself. As way of an example, a
vector 1s used 1n a finite state machine model and the target
language 1s C, then one of the lowering processes can be
transforming calculations related to the vector to a for loop.
For example, given an expression

y=x1+x2;

where all the variables 1n the expression represent vectors, the
expression can be translated into a for loop such as the fol-
lowing;:

for (i=0; i<n; i++){y[i]=x1[i]+x2[i];}

Once the CGIR representation has been transtormed into a
lower-level representation, a backend utility of CGIR 1s used
to generate executable code 1n the target language.

A staged evaluation of transitions allows the code to be
generated where 1t needs to be 1n a sequential set of mstruc-
tions. In the case of preemption semantics, references may be
required in the generated code to jump to the code fragment
that needs to be executed, and hence less efficient code 1s
generated using preemption semantics as done in related
applications of finite state machine.

Referring back to FIG. 3, Execution engine 248 also 1s
capable of executing finite state machine model 246 1n a
multiple-stage processing manner, and in the specific
example ol two-stage processing, a top-down processing
manner or a bottom-up processing manner. In one embodi-
ment of the present invention, first-stage transitions 248 are
processed by the execution engine 248 1n a top-down process-
ing manner while second-stage transitions 250 are processed
by the execution engine 248 1n a bottom-up processing man-
ner. In another embodiment of the present invention, states in
states 252 may be processed by either top-down or bottom-up
depending on the type of the transitions that are being pro-
cessed at a certain point during execution. Statetflow® uses
top-down processing by default, but can be modified to switch

US 8,436,726 B2

11

to bottom-up processing under certain circumstances. For
example, when an exception event 1s thrown by a state, the
execution engine 248 changes to bottom-up processing to
process the exception event. Another example 1s when execu-
tion engine 248 has finished top-down processing of all the
active states and that 1t encounters one or more late transitions
while 1t traverses down the state hierarchy, then execution
engine 248 changes from top-down processing to bottom-up
processing aiter reaching the bottom of the state hierarchy (a
leat state). One of ordinary skill 1n the art will appreciate that
the coordination of top-down processing and bottom-up pro-
cessing may be implemented 1n many different ways. For
example, 1 Stateflow®, “early during actions™ are called
before “late during actions” to ensure that early transitions are
considered before late transitions. However, one of ordinary
skill 1in the art will appreciate that the scope of the present
invention 1s not limited to this specific order of processing and
the present invention also allows other order of processing,
such as first bottom-up processing then top-down processing
or a combination of bottom-up and top-down processing.

FIG. 4 illustrates a flow chart depicting steps taken to
practice one embodiment of the present invention. A State-
tlow® state chart wakes up after detecting an occurrence of an
event and 1dentifies a current state in step 300. A current state
1s a state that 1s presently being evaluated or processed by the
execution engine 248. Since the state chart just wakes up,
execution engine 248 initiates top-down processing of the
active states. Execution engine 248 proceeds to step 310 to
check 1if there 1s any early during action function call that
needs to be executed prior to checking 11 the current state has
any substate. I the current state does have an early during
action, the early during action 1s executed 1n step 328. Execu-
tion engine 248 checks 1f the early during action throws an
exception event 1n step 330. If an exception event 1s thrown,
execution engine 248 stops top-down processing and
switches to bottom-up processing. Execution engine 248
passes the exception event to the recerving state and makes
the recerving state the current state in step 332. Execution
engine 248 then checks 1n step 334 11 the current state has any
valid late transition to take given the exception event as an
input. If there 1s a valid late transition, the transition 1s taken
in step 326 and the state chart goes to sleep and waits for
another event to happen 1n step 350. 1T 1n step 334, the current
state does not have any valid late transition to take, execution
engine 248 checks 1n step 335 1f the current state has any
superstate. If the current state does not have any superstate,
then an error 1s returned by state chart 1n step 338. Otherwise,
execution engine 248 passes the exception event to the super-
state of the current state and makes the superstate the current
step 1n step 336, aiter which the execution engine 248 returns
to step 334.

It back in step 310, the current state does not have any early
during action to execute, execution engine 248 proceeds to
step 312 to check if the current state has any substate. I the
current state has at least one sub state, execution engine 248
makes the immediate active substate as the current state in
step 314 and returns to step 310.

Back in step 330, 1 no exception event 1s thrown, execution
engine 248 proceeds to step 302 to check if the current state
has any early transition to be considered. If the current state
has at least one early transition, execution engine 248 1denti-
fies an early transition and 1ts corresponding condition 1n step
304. Then execution engine 248 evaluates the corresponding
condition 1n step 306. If the condition 1s evaluated to true, the
transition 1s taken in step 308 without processing any substate
that the current state might have. If the current state has any
exit action, the exit action 1s executed before the transition 1s

10

15

20

25

30

35

40

45

50

55

60

65

12

made to a next state. If the next state has any entry action, the
entry action 1s executed after the transition 1s made. The state
chart then goes to sleep and waits for another event to take
place 1n step 350. If 1n step 306, the condition 1s evaluated to
false, execution engine 248 returns to step 302.

If 1n step 302, the execution engine 248 cannot find any
carly transition to consider because either all available early
transitions have been considered or the current state does not
have any early transition, execution engine 248 proceeds to
312 to check if the current state has any substate.

If 1n step 312, the execution engine 248 does not find any
substate, execution engine 248 moves to step 315 and checks
i the current state or any of 1ts superstate have a late during
action. If not, then the state chart goes to sleep and waits for
another event to take place 1n step 350. If the current state or
at least one of 1ts superstates has a late during action, execu-
tion engine 248 stops top-down processing and switches to
bottom-up processing. Execution engine 248 then executes
the current state’s late during action 1n step 316. Next, execu-
tion engine 248 checks 11 the current state has any late tran-
sition to consider 1n step 317. If the current state has at least a
late transition, execution engine 248 identifies a late transi-
tion and 1ts corresponding condition 1n step 318. The corre-
sponding condition 1s then evaluated 1n step 324. It the con-
dition 1s evaluated to true, the late transition 1s taken 1n step
326 and the state chart goes to sleep and waits for another
event to occur 1n step 350. If the condition 1s evaluated to
false, execution engine 248 returns to step 316.

If 1n step 317, the current state does not have any late
transition to consider because either all the late transitions
have been considered or the current state does not have any
late transition, execution engine 248 proceeds to step 340 to
check 11 the current state has any superstate. If the current
state does not have any superstate, the state chart goes to sleep
and waits for another event to take place 1n step 350. On the
other hand, if the current state does have at least one super-
state, execution engine 248 calls the superstate’s late during
action and makes the immediate superstate the current state in
step 342 and returns to step 316. The execution engine 248
continues up the state hierarchy to find a valid late transition.
If one 1s found, the transition 1s taken. Otherwise, the excep-
tion event 1s passed to state chart and an error 1s returned by
the state chart.

FIGS. 5A and 5B show another flow chart to practice one
embodiment of the present invention. After an occurrence of
an event 1s detected, the state chart initiates top-down pro-
cessing 1n step 352. The state chart processes the states in the
finite state machine 1n a top-down manner and attempts to find
an early transition to take. When the state chart detects an
exception event thrown by a current state 1n step 354 prior to
finding an early transition to take, the state chart terminates
top-down processing in step 356 and 1nitiates bottom-up pro-
cessing 1n step 358. The exception event 15 recerved at the
immediate superstate of the current state i step 360. The
superstate 1s made the current state 1n step 362. The state chart
determines if the exception event can be handled at the current
state 1n step 364. If the exception event can be handled, then
the state chart proceeds to step 326. If the exception event
cannot be handled by the current state, then the state chart
checks if the current state has any superstate in step 366. I the
current state has a superstate, then the state chart goes back to
step 360. I the current state does not have any superstate, the
state chart throws an error event 1n step 368 and then proceeds
to 350 to sleep and wait for another event to take place.

FIG. 3B shows 1n detail the steps taken to determine 11 the
current state can handle the exception event 1n step 364. The
state chart first checks 1f the current state has any late transi-

US 8,436,726 B2

13

tion 1 step 370. If the current state does not have any late
transition, the state chart proceeds to step 366. If the current
state has a late transition, the state chart identifies a late
transition and its corresponding condition in step 372. Next,
the state chart evaluates the corresponding condition 1n step
374. If the condition 1s evaluated to true, the state chart pro-
ceeds to step 326. It the condition 1s evaluated to false, the
state chart then checks if the current state has another late
transition that has not been considered in step 376. It the
current state has another late transition that has not been
considered, the state chart goes back to step 372 to 1dentily
another late transition. If the current state has no late transi-
tion that has not been considered, the start chart proceeds to
step 366.

FIG. 6A 1s an exemplary state diagram that helps to 1llus-
trate the steps of FI1G. 4. State chart 400 includes state 402 and
state 404 at the first level of hierarchy. Transition 430 1s a
default transition that specifies that state 402, instead of state
404, 1s entered by default when the state chart 400 first
becomes active. State 402 may make a transition to state 404
via early transition 414. Early transitions are denoted graphi-
cally by a regular arrow whereas late transitions are denoted
graphically by an arrow with a curly tail. One of ordinary skill
in the art will appreciate that many different visual affor-
dances may be used to designate a transition of a specific
stage and the scope of the present invention 1s not limited to a
specific visual affordance for both the early transitions and
late transitions. Early transition 414 only takes place 1f 1t 1s
triggered by an event E,. State 404 may make a transition to
state 402 via late transition 416 when an event E, occurs. Late
transitions are not usually considered and taken until all the
possible early transitions are considered. State 404 includes
state 406 and state 408. Both state 406 and state 408 are
immediate substates of state 404. State 404 1s a superstate of
both state 406 and state 408. Default transition 428 specifies
that by default, state 408 1s entered instead of state 406. State
406 may make a transition to state 408 via early transition 420
when event E , takes place. State 408 may make a transition to
state 406 via early transition 418 1f event E, occurs. State 408
includes state 410 and state 412. Default transition 426 speci-
fies that state 410 1s entered instead of state 412 by default.
State 410 may make a transition to state 412 via early transi-
tion 422 11 event E, occurs. On the other hand, state 412 may
make a transition back to state 410 via early transition 424 11
event E, occurs.

Assuming that at a point during the execution, state chart
400 wakes up because of an occurrence of an event E, and
state 404, state 408 and state 410 are active. Execution engine
248 1dentifies the current state as state 404 1n step 300 and
checks 1n step 310 11 state 404 has any early during action to
be executed. State 404 does not have any early during action,
so execution engine 248 checks in step 312 1f the current state
has any substate. Since state 404 does have at least one sub-
state, execution engine 248 makes the immediate active sub-
state 408 the current state 1n step 314 and returns to step 310.

In step 310, execution engine 248 checks if state 408 has
any early during action to be executed and executes the early
during action 1n step 328. There 1s no exception event thrown
in the early during action in step 330 so execution engine 248
proceeds to step 302. In step 302, execution engine 248 finds
that state 408 has at least one early transition to be considered
and 1dentifies early transition 418 and 1ts corresponding con-
dition 1n step 304. The corresponding condition 1s then evalu-
ated 1n step 306. Execution engine 248 evaluates the condi-
tion to false and returns to step 302 to check 11 state 408 has
any other early transition to be considered. Since state 408
does not have any other early transition other than early

10

15

20

25

30

35

40

45

50

55

60

65

14

transition 418, execution engine 248 proceeds to step 312. In
step 312, execution engine 248 checks 11 the state 408 has any
substate. Execution engine 248 finds that state 408 has at least
one substate, and proceeds to step 314 to make the immediate
active substate 410 the current state. Execution engine 248
then returns to step 310.

Execution engine 248 checks in step 310 11 state 410 has
any early during action to be executed and executes the early
during action in step 328. There 1s no exception event thrown
in the early during action in step 330 so execution engine 248
proceeds to step 302. In step 302, execution engine 248
checks 11 state 410 has any early transition to be considered.
Early transition 422 1s then 1dentified with 1ts corresponding
condition 1n step 304. Execution engine 248 then evaluates
the corresponding condition 1n step 3035. The condition 1s
evaluated to true, and the transition 1s made from state 410 to
state 412 1n step 308. Execution engine 248 proceeds to step
350 and state chart goes to sleep and waits for another event
to take place.

It state 412 1s active instead of state 410, then after state 408
1s processed, execution engine 248 proceeds to process state
412. Execution engine 248 first checks 1f state 412 has any
carly during action to be executed in step 310 and then
executes the early during action in step 328. There 1s no
exception event thrown 1n the early during action 1n step 330
and execution engine 248 proceeds to step 302. Execution
engine 248 finds that state 412 has an early transition in step
302 and identifies early transition 424 and 1ts corresponding
condition 1n step 304. Execution engine 248 then evaluates
the corresponding condition 1n state 306. The condition 1s
evaluated to false and execution engine 248 returns to step
302 to check 11 state 412 has another early transition that can
be considered. Since state 412 only has one early transition
(early transition 424), execution engine 248 proceeds to step
312 to check if the current state has any substate. However,
state 412 1s the leatf state of the state diagram and does not
have any substate, so execution engine 248 goes to step 3135
and checks 1f state 412 or any of 1ts superstate has a late during
action.

Execution engine 248 executes the current state’s late dur-
ing action in step 316 and finds that either state 412 or one of
its superstates has a late transition, so execution engine 248
stops top-down processing and switches to bottom-up pro-
cessing. Execution engine 248 first checks if state 412 has any
late transition to be considered in step 317. State 412 does not
have any late transition, and execution engine 248 proceeds to
step 340 to check 11 state 412 has any superstate. State 412
does have a superstate, and execution engine 248 calls the
superstate’s late during action and makes the immediate
superstate 408 the current state in step 342. Execution engine
248 returns to step 316 to execute late during action of state
408. Execution engine 248 then checks if the state 408 has any
late transition to be considered in step 317. State 408 does not
have any late transition so execution engine 248 proceeds to
step 340 again. In step 340, execution engine 248 finds that
state 408 has a superstate and proceeds to step 342 to call the
superstate’s late during action and make the immediate super-
state 404 the current state. Execution engine 248 returns to
step 316 and executes the late during action of state 404.
Execution engine 248 then checks 1f state 404 has any late
transition to be considered 1n step 317. State 404 {inds that
state 404 has a late transition and 1dentifies late transition 416
and 1ts corresponding condition 1n step 318. The correspond-
ing condition 1s evaluated to true in step 324 and the transition
1s made from state 404 to state 402 1n step 326. After transition
416 1s taken, the state chart goes to sleep and waits for another
event to take place 1n step 350.

US 8,436,726 B2

15

FIG. 6B illustrates an exemplary state diagram that prac-
tices the steps depicted in FIG. 5A and FIG. 5B. State chart
400 mncludes state 430 and state 432. Detfault transition 438
speciflies that state 432 1s entered instead of state 430 by
default. State 432 has two transitions that start from state 432
and end at state 430. They are early transition 440 and late
transition 444. Early transition 440 may be taken 11 condition
C, 1s true. Late transition 444 may be taken only 11 no early
transitions may be taken by state 432 and no other transitions
may be taken by substates of state 432 when condition C, 1s
satisiied. State 432 has a substate 434. Substate 434 has late
transition 442 that lets state 434 make a transition to state 430
under condition C,. Again, late transition 442 1s not taken
unless there 1s no other early transition for state 434 to take
and no transitions for substates of 434 to take. State 434 has a
substate 436 that does not have any transitions.

Assume that at some point during the execution, state 432,
state 434, and state 436 are active. An event takes place and
the state chart wakes up and 1dentifies that the current state 1s
state 432. The state chart initiates top-down processing from
state 432 1n step 352 and continues down the state hierarchy
to find an early transition to take. During top-down process-
ing, late transitions are not considered. Assuming that condi-
tion C, 1s not satisfied and state chart executes state 432’s
immediate active substate 434. Once again, the state chart
cannot find any valid early transition to take from state 434
and proceeds to execute state 434°s immediate active substate
436. While the state chart executes state 436, the state chart
detects an exception event 1s thrown by state 436 1n step 354.
Top-down processing 1s then terminated 1n step 356 and bot-
tom-up processing 1s started in step 358. State 436°s super-
state 434 receives the exception event 1n step 362. The state
chart then determines 1f state 434 can handle the exception
event 1n step 364. If the exception event causes condition C,
to be true, then transition 442 1s taken and the state chart goes
back to sleep and waits for another event to take place 1n step
350. If condition C, 1s not satisfied, the state chart checks 1f
state 434 has any superstate 1n step 366. The state chart finds
that state 434 has superstate 432 and superstate 432 recerves
the exception event 1n step 360. Once again, the state chart
determines if state 432 can handle the exception event. If
condition C, 1s satisfied, transition 444 1s taken from state 440
to state 430 1n step 326. If condition C, 1s not satisfied, and the
state chart cannot find a superstate for state 432 1n step 366,
the state chart throws an error event in step 368, aiter which
the state chart goes back to sleep and wait for another event to

ake place 1n step 350.

One of ordinary skill 1in the art will appreciate that two-
stage processing combining top-down processing and bot-
tom-up processing 1s not limited to use top-down processing,
first and bottom-up processing second as shown in the
example of Stateflow®. One may choose to use bottom-up
processing first and top-down processing second. Further-
more, one may use a rule to determine when to use top-down
processing or bottom-up processing in processing a finite
state machine. Furthermore, one of ordinary skill in the art
will appreciate that in a multiple-stage processing, any num-
ber and manner of processing may be utilized in evaluating a
state machine model. One of ordinary skill 1n the art will also
appreciate that instead of marking transitions to be associated
with a particular stage, states can be marked to indicate that a
particular processing method 1s used with a particular state.

Many alterations and modifications may be made by those
having ordinary skill in the art without departing from the
spirit and scope of the invention. Therefore, 1t must be
expressly understood that the 1llustrated embodiments have
been shown only for the purposes of example and should not

10

15

20

25

30

35

40

45

50

55

60

65

16

be taken as limiting the invention, which 1s defined by the
following claims. These claims are to be read as including
what they set forth literally and also those equivalent elements
which are insubstantially different, even though not identical
in other respects to what 1s shown and described 1n the above
illustrations.

What 1s claimed 1s:

1. A non-transitory computer-readable medium that stores
instructions executable by at least one processor, the com-
puter-readable medium storing one or more instructions for:

detecting an event thrown by a first state that 1s part of a

representation of a state machine having states and tran-
sitions, the event being thrown during a top-down pro-
cessing ol the representation;

switching from the top-down processing of the represen-

tation to a bottom-up processing of the representation;
determining that the event cannot be handled by the first
state; and

throwing the event to a second state that i1s part of the

representation, the second state being a superstate of the
{irst state.

2. The medium of claim 1, further storing one or more
instructions for:

processing the event at the second state.

3. The medium of claim 1, further storing one or more
instructions for:

determiming that the event cannot be handled by the second

state; and

throwing the event to a third state that 1s part of the repre-

sentation, the third state being a superstate of the second
state.

4. The medium of claim 1, further storing one or more
instructions for:

determining that the event cannot be handled by the second

state; and

throwing an error event.

5. The medium of claim 1, further storing one or more
instructions for:

determiming that the event can be handled by the second

state; and

taking a transition from the second state to a third state that

1s part of the representation.

6. The medium of claim 5, wherein the transition 1s a late
transition.

7. The medium of claim 1, wherein the first state 1s asso-
ciated with a transition and the transition 1s associated with a
condition, and wherein 1t 1s determined that the event cannot
be handled by the first state based on the event not causing the
condition to be satisfied.

8. The medium of claim 7, further storing one or more
instructions for:

catching the event at the second state; and

processing the event at the second state.

9. The medium of claim 7, further storing one or more
instructions for:

determiming the event cannot be handled by the second

state; and

throwing the event to a third state that 1s part of the repre-

sentation, the third state being a superstate of the second
state.

10. A method comprising:

detecting an event thrown by a first state that 1s part of a

representation of a state machine having the first state, a
second state, and transitions; and

throwing the event to the second state, the second state

being a superstate of the first state, the event being

US 8,436,726 B2

17

thrown to the second state when the first state 1s 1nca-
pable of handling the event.
11. The method of claim 10, wherein the method further

COmMprises:

catching the event at the second state; and

processing the event at the second state.

12. The method of claim 10, wherein the method further
COMprises:

determining the event cannot be handled by the second

state; and

throwing the event to a third state that 1s part of the repre-

sentation, the third state being a superstate of the second
state.

13. The method of claim 10, turther comprising;:

determining that the event can be handled by the second

state; and

taking a transition from the second state to a third state that

1s part of the representation.

14. The method of claim 13, wherein the transition 1s a late
transition.

15. The method of claim 10, wherein the first state 1s
associated with a transition and the transition 1s associated
with a condition, and wherein the first state 1s determined as
not being capable of handling the event based on the eventnot
causing the condition to be satisfied.

16. A non-transitory computer-readable medium that
stores 1nstructions executable by at least one processor, the
computer-readable medium storing one or more instructions
for:

10

15

20

25

18

detecting an event thrown 1n a first state that 1s part of a
representation of a state machine having states and tran-
sitions, the event being thrown during a top-down pro-

cessing ol the representation; and
throwing the event to a second state that 1s part of the
representation, the second state being a superstate of the
first state, the event being thrown to the second state
based on the first state not being capable of handling the
event.
17. The medium of claim 16, further storing one or more
instructions for:
catching the event at the second state; and
throwing the event to a third state of the representation, the
third state being a superstate of the second state.
18. The medium of claim 16, further storing one or more
instructions for:
catching the event at the second state; and
throwing an error event.
19. The medium of claim 16, further storing one or more
instructions for:
catching the event at the second state; and
processing the event at the second state, the processing
including;:
taking a transition from the second state to a third state
that 1s part of the representation.
20. The medium of claim 19, wherein the transition 1s a late
transition.

	Front Page
	Drawings
	Specification
	Claims

