US008433846B2
a2 United States Patent (10) Patent No.: US 8,433,846 B2
Keays 45) Date of Patent: *Apr. 30, 2013
(54) METHODS AND APPARATUS READING (58) Field of Classification Search 711/103,
ERASE BLOCK MANAGEMENT DATA IN 711/154, 156, 162, 170; 365/185.33, 185.29;
SUBSETS OF SECTORS HAVING USER DATA 714/7763
AND CONTROL DATA SECTIONS See application file for complete search history.
(75) Inventor: Brady L. Keays, Halt Moon Bay, CA (56) References Cited
(US) U.S. PATENT DOCUMENTS
(73) Assignee: Micron Technology, Inc., Boise, ID 3,576,982 A 5/1971 Duke
(US) 5,608,684 A 3/1997 Reasoner et al.
5,907,856 A 5/1999 Estakhr et al.
(*) Notice: Subject. to any disclaimer,. the term of this g:gg:g% i ;;ggg ?)/Iga;if etal
patent 1s extended or adjusted under 35 5,966,720 A 10/1999 TItoh et al.
U.S.C. 154(b) by 0 days. 5,987,563 A * 11/1999 Ttohetal. ... 711/103
| | | - 6,144,607 A 11/2000 Sassa
This patent 1s subject to a terminal dis- 6,149316 A 11/2000 Harari et al.
claimer. 6,154,808 A * 11/2000 Nagaseetal. 711/103
6,209,069 Bl 3/2001 Baltar
. 6,230,233 Bl 5/2001 Lofgren et al.
(21) Appl. No.: 13/367,012 6.278.654 Bl 82001 Roohparvar
: 6,304,497 B1 10/2001 Roohparvar
(22) Filed: Feb. 6,2012 6,307,779 Bl 10/2001 Roohparvar
6,345,333 Bl 2/2002 Sassa et al.
(65) Prior Publication Data 6,411,404 Bl 6/2002 Matsuo et al.
6,411,546 Bl 6/2002 Estakhri et al.
US 2012/0137056 Al May 31, 2012 6,426,893 Bl 7/2002 Conley et al.
6,427,186 Bl 7/2002 Lin et al.
6,513,095 B1* 1/2003 Tomortcccoeevrrnnnnn, 711/103
Related U_S_ Application Data 6,772,274 B1* 8/2004 Estakhrtccocoovvvvininin, 711/103
(63) Continuation of application No. 12/272,358, filed on (Continued)

Nov. 17, 2008, now Pat. No. 8,112,573, which is a frimary Exmmer—Hon_g Kim f_
continuation of application No. 11/199,481, filed on (74) Attorney, Agent, or Firm — Letlert Jay & Polglaze PA

Aug. 8, 2005, now Pat. No. 7,434,558, which 1s a (57) ABRSTRACT
continuation of application No. 09/938,782, filed on . . .
Aug. 24, 2001, now Pat. No. 6,948,026 Methods of operating memory devices, and memory devices
7 j T configured to perform such methods, including reading Erase
(51) Int.Cl. Block Management (EBM) data from an erase block of an
GO6F 12/00 (2006.01) array of memory cells. The EBM data, corresponding to a
(52) U.S.Cl state of the particular erase block, 1s stored 1n control data
USPC T11/103: 711/154 711/156: 711/162- spaces of a subset of sectors of the particular erase block.
711/170; 365/185.33; 365/185.29; 714/763 25 Claims, 8 Drawing Sheets
EBM Fields
Erase Biock 500 ya St
302 — Sector 0 BM A
- Frase o1]EBM}
504—-\“ Vel ::zttz: z Egm} 516 Erase Block States ~600 j_ﬁoﬁ — 608 - 610
s06 602 EBM Fieids/ 604/ /
N . Sectord EBM c12_ |Erase Block State | EBM Sectors 0/1 __EBM Secltors 2/3 _EBM Sectors 4/5
— Partial goctors EBM) c1a_ [Invalid invalid invalid invalid
™| Er AAS5AA Erased Erased
5”3< Sector 6 616~ gaﬁ:ﬁy s | AdBoAA Erased Blook Igentier
Sector 7 oI8—~ Fully Valid AAS5AA Block Identifier Block Identifier
Sector 8
510 /—512
Sector 126 |

\ Sector 127

US 8,433,846 B2

Page 2
U.S. PATENT DOCUMENTS 2002/0013879 Al 1/2002 Han
2002/0024850 Al 2/2002 Tamada et al.
6,845,438 Bl 1/2005 Tanaka et al. 2002/0026566 Al 2/2002 Awada et al.

6,948,026 B2 9/2005 Keays
2001/0029565 Al 10/2001 Kaki et al. * cited by examiner

U.S. Patent Apr. 30,2013 Sheet 1 of 8 US 8,433,846 B2

/—120 122
] =

: / !

16— |18 Sectord -
\ T —

[—
—
0

—
o
o0

Control State
Machine

110

—
[R—
00

-
—
Qo0

—
—
o0

_dector6 oo

B—)
—
0O

L}
r
F
=
n
-
=

Q0

[
=
n
=
r
r
=
r
L}
n
-
=
n
F
=

Erase Block O

Flash Memory

100 /120 ; /—122

. SectorQ
Sector |

oSector2 i
o Sector 4

Sector6 o

"
[—
o0

o

—
[—
e

"
——
o0

e

[—

—

j
—
—
o0

[
[—
o0

r
3
]
[
.
.
[
L
"
1
L
L
.
r
'

NV EBM Control

Registers and :
Tables 128 ' Erase Block 1

RAM Control
Registers and

Tables 114

Flash Memory

Array "

FIG. 1
Prior Art

¢ 9l

US 8,433,846 B2

Sheet 2 of 8

Apr. 30, 2013

e

i Avlly
AIOUWSIA YSe[]

v1c

SIIYL],
pue SINSIINY
[onuo) NV

| YO0|g aseld

g

IWHH @ 10199 Q¢
- .”___n __ m HO“—UDWI|M|N @ ﬁ N

N 7 10109G T3

- 97C

VCC

00T
AJOWIIN Usel]

0 xoo_m. ASBIY

90¢

NGdi | CJ101099S R[(
B (O T e
WAL gdowes 81T
L 7101098

91¢C 01z

QUIYIBN \ 702
2e1§ [0NUC))
507 JOSSI001]

U.S. Patent

D) =

US 8,433,846 B2

coilg | | aiAd 0 91g |
EwEm_ano_EmEm_ano juswajdwon| g 91Ag | 9]Ag 0 9IAg N\ 00b
voy — 2oy —~" sa9lAg NG 10109S

L
I~
-
- |
: € "Dl
-
7 jeulio4 10}09S £CIN
NG 9J3 | |
m _ soljAd 9 soljAg 8 eieQ Josn sAIAg 21 /Imo.m
g | |
2 p1g — \ \
- 181004 Ol oot
Ml — . | 1eWiO-] 101098 Z2¥IN
NG 2 E o
salAg 9 “ soiig g ejeq 49 JO soIAg 21S T~— 00¢

g—" / \
1€ 80€ __+0¢

U.S. Patent

U.S. Patent Apr. 30,2013 Sheet 4 of 8 US 8,433,846 B2

EBM Fields
500 514
Erase Block / /
502—\(Sector0 = |[EBM h
| Erase = or EBM |‘
504ﬂ\ ' Sector 2 EBM
— Valld —5ector3 EBM}_ r316
506jK —_ Sector 4 EBM|
— Partal o s eBM| [
508< Sector 6 |
Sector 7
Sector 8
s10 /}512
Sector 126
Sector 127

FIG. 5

Erase Block States

600 606 608 610
602 EBM Fields/ 604 / '

612 Frase Block State | EBM Sectors 0/1 EBM Sectors 2/3 EBM Sectors 4/5
614 Invalid Invalid | Invalid Invalid
616—\ | Erased AAS5AA Erased Erased
g 18“\ Partially Filled AAS5AA | Erased Block Identifier
[Fully Valid 'AA55AA Block Identifier | Block Identifier |

FIG. 6

US 8,433,846 B2

Sheet 5 of 8

Apr. 30, 2013

U.S. Patent

el Sl i il

L 9l

[0°2] vS1

NOhl\ —

0

[8°G1L] VST _

0:|_.\

[91°81]
VS

0l1 o?o_o_
Z
an \

91Ag na3

SS94ppYy 101095 |ed1bo] pajeaday jo Moo|g ‘¢ adAL Anug ng3

3oy | | [0/ ven

ogl\

0
30L \

1
rOL |\

8 11]
- vd

o

0

O

¢ / -91Ag Ng3
90L

S.101099 JO)20|g [ed1bo1 ‘L adAL Aug nNg3

U.S. Patent Apr. 30,2013

e 802

Erased

Sheet 6 of 8

EBM Bytes:

Sector 0 : XXXXXX
Sector 1 1 XOXXXXX
Sector 2 : Not Valid
Sector 3: Not Valid
Sector 4 : Not Valid
Sector 5 :Not Valid

Sector
Sector
Sector
Sector
Sector
Secior

Partially Filled

Data: Some Sectors

EBM Bytes:

. AASSAA
: 55AA55
- BLOCK ID
: BLOCK ID’
: BLOCK ID
' BLOCK ID’

cn-lamm—uc:::

US 8,433,846 B2

806
e

Data: All Sectors Erased - Q12 Written, Some Erased
EBM Bytes: EEBM Bﬁes "
Sector 0 : AAS5AA Sgﬁgﬁ (1J : 55;5?255
Sector 1:55AA55 Sactor 2 Erased
Sector 2 : Erased Sector 3 - Erased
gggg 3; E;gggg Sector 4 :BLOCK ID
Sector . Erased Sector 5:BLOCKID
810
S 800 814
~—R16 /o
/—808
_ s 04 | -
Invalid Fully Valid
Data: Unknown Data: All Sectors Written
e 818

US 8,433,846 B2

Sheet 7 of 8

Apr. 30, 2013

U.S. Patent

0l 9l
0 a1Ag NG3 _ | oiAg z% 0001

Aoy _ ubluvad | Mol vad

G 81Ag 9lAg \ g 91Ag 2 9lAg / L OAg 0 9lAg
.uu\\ 001 2001

[xopur]pt >o0[q uado

9001

6 Ol

| Au3

é_,:._n____% d _______________._ MO| VEad — VR
g (291607 “ | 1 xo0|g [eoibo] |vad - | g1i¥

- H ...

m m;m 2 9Ag | mam

o

06

[eqrjeqd 017 eq]

U.S. Patent Apr. 30,2013 Sheet 8 of 8 US 8,433,846 B2

1100 open_block_flags[index]
\ hit /—- 1102 bit
1104 0 > ———— 128

\I T

\/

1200
open_block_count|[index |

yte
bvte 2

FIG. 12

1300
e
block_1nvalid_flags|block]
PN block] —— 1302
bit 1
bit 2

FIG. 13

1400
/_

block_erased_flags{block]

US 8,433,846 B2

1

METHODS AND APPARATUS READING
ERASE BLOCK MANAGEMENT DATA IN
SUBSETS OF SECTORS HAVING USER DATA
AND CONTROL DATA SECTIONS

RELATED APPLICATION

This application 1s a Continuation of U.S. application Ser.
No. 12/272,358 (now U.S. Pat. No. 8,112,573), filed Nov. 17,
2008, which 1s a Continuation of U.S. application Ser. No.
11/199,481 (now U.S. Pat. No. 7,454,558), filed Aug. 8, 2005,
which 1s a Continuation of U.S. application Ser. No. 09/938,
782 (now U.S. Pat. No. 6,948,026), filed Aug. 24, 2001, tatled

“ERASE BLOCK MANAGEMENT,” each of which 1s com-
monly assigned and incorporated herein by reference.

TECHNICAL FIELD OF THE INVENTION

The present ivention relates generally to integrated cir-
cuits and 1n particular the present invention relates to erase
block management of Flash memory devices.

BACKGROUND OF THE INVENTION

Memory devices are typically provided as internal storage
areas 1n the computer. The term memory 1dentifies data stor-
age that comes in the form of integrated circuit chips. There
are several different types of memory used 1n modern elec-
tronics, one common type 1s RAM (random-access memory).
RAM 1s characteristically found in use as main memory 1n a
computer environment. RAM refers to read and write
memory; that 1s, you can both write data into RAM and read
data from RAM. This 1s 1n contrast to ROM, which permits
you only to read data. Most RAM 1s volatile, which means
that it requires a steady flow of electricity to maintain its
contents. As soon as the power 1s turned oif, whatever data
was 1n RAM 1s lost.

Computers almost always contain a small amount of read-
only memory (ROM) that holds instructions for starting up
the computer. Unlike RAM, ROM cannot be written to. An
EEPROM (electrically erasable programmable read-only
memory) 1s a special type non-volatile ROM that can be
erased by exposing it to an electrical charge. EEPROM com-
prise a large number of memory cells having electrically
1solated gates (tloating gates). Data 1s stored in the memory
cells 1 the form of charge on the floating gates. Charge 1s
transported to or removed from the floating gates by special-
1zed programming and erase operations, respectively.

Yet another type of non-volatile memory 1s a Flash
memory. A Flash memory is a type of EEPROM that can be
erased and reprogrammed 1n blocks 1nstead of one byte at a
time. A typical Flash memory comprises a memory array,
which includes a large number of memory cells. Each of the
memory cells includes a floating gate field-efiect transistor
capable of holding a charge. The data 1n a cell 1s determined
by the presence or absence of the charge 1n the floating gate.
The cells are usually grouped into sections called “erase
blocks™. Each of the cells within an erase block can be elec-
trically programmed in a random basis by charging the tloat-
ing gate. The charge can be removed from the floating gate by
a block erase operation, wherein all floating gate memory
cells 1n the erase block are erased in a single operation.

Because all the cells 1n an erase block of a Flash memory
device must be erased all at once, one cannot directly rewrite
a Flash memory cell without first engaging 1n a block erase
operation. Erase block management (EBM) provides an
abstraction layer for this to the host, allowing the Flash device

10

15

20

25

30

35

40

45

50

55

60

65

2

to appear as a Ireely rewrite-able device. Erase block man-
agement also allows for load leveling of the internal floating
gate memory cells to help prevent write fatigue failure. Write
fatigue 1s where the floating gate memory cell, after repetitive
writes and erasures, no longer properly erases and removes
charge from the floating gate. Load leveling procedures
increase the mean time between failure of the erase block and
Flash memory device as a whole.

As stated above, the erase block management routines
provide the necessary linkage between the host and the inter-
nal Flash memory device erase block array. Logically map-
ping logical sectors to physical sectors on the Flash device
and managing block erasure. In many modern Flash memory
devices implementations, the host interface and erase block
management routines additionally allow the Flash memory
device to appear as a read/write mass storage device (1.e., a
magnetic disk) to the host.

One such approach 1s to conform the interface to the Flash
memory to be 1dentical to a standard interface for a conven-
tional magnetic hard disk drive allowing the Flash memory

device to appear as a block read/write mass storage device or
disk. This approach has been codified by the PCMCIA stan-
dardization committee, which promulgated a standard for
supporting Flash memory systems with a hard disk drive
protocol. A Flash memory device or Flash memory card (in-
cluding one or more Flash memory array chips) whose inter-
face meets this standard can be plugged 1nto a host system
having a standard DOS or compatible operating system with
a PCMCIA-ATA (or standard ATA) interface.

Many of the modern computer operating systems, such as
“DOS” (Disk Operating System), were developed to support
the physical characteristics of hard drive structures; support-
ing file structures based on heads, cylinders and sectors. The
DOS software stores and retrieves data based on these physi-
cal attributes. Magnetic hard disk drives operate by storing
polarities on magnetic material. This material 1s able to be
rewritten quickly and as often as desired. These characteris-
tics have allowed DOS to develop a file structure that stores
files at a given location which 1s updated by a rewrite of that
location as information 1s changed. Essentially all locations 1n
DOS are viewed as fixed and do not change over the life of the
disk drive being used therewith, and are easily updated by
rewrites of the smallest supported block of this structure. A
sector (of a magnetic disk drive) 1s the smallest unit of storage
that the DOS operating system supports. In particular, a sector
has come to mean 512 bytes of information for DOS and most
other operating systems 1n existence. Flash memory systems
that emulate the storage characteristics of hard disk drives are
preferably structured to support storage in 512 byte blocks
along with additional storage for overhead associated with
mass storage, such as ECC (error correction code) bits and/or
redundant bits.

To not lose the state of the various erase blocks 1n a Flash
memory device, erase block management routines keep sum-
mary erase block management data, such as available blocks,
invalid blocks to be erased, logical to physical address map-
ping, valid (full) blocks, partially tull block, and etc. This
erase block management data 1n a Flash device of the prior art
1s kept 1n special non-volatile tables within the Flash device.
To improve performance of the device, this erase block man-
agement data 1s copied into internal RAM data structures to
improve overall device operation. The non-volatile tables,
however, must be updated with each change made to the Flash
memory device erase blocks and erase block management
data to prevent loss of the Flash memory state data 1n case of
power failure.

US 8,433,846 B2

3

The update to the non-volatile erase block management
data table often requires that the non-volatile erase block
management data table themselves be erased before they can
be updated. This introduces additional overhead 1n the Flash
memory device update process, requiring at least two or more
Flash block writes and/or erases for each data write to the
Flash memory; one for the user data and one for the erase
block management data, with possible block erasures
required. This has the effect of slowing overall Flash device
operation. In addition, with the concentration of writes and
erasures 1n the non-volatile erase block management data
tables, the non-volatile erase block management data tables
are thus, ronically, some of most likely to see errors from
floating gate memory cell write fatigue.

FIG. 1 shows a simplified diagram of a Flash memory of
the prior art. Internally to the Flash memory device a control
state machine 110 directs internal operation of the Flash
memory device; managing the Flash memory array 112 and
updating RAM control registers and tables 114 and the non-
volatile erase block management registers and tables 128. The
RAM control registers and tables 114 are loaded at power up
from the non-volatile erase block management registers and
tables 128 by the control state machine 110. The Flash

memory array 112 contains a sequence of erase blocks 116.
Each erase block 116 contains a series of sectors 118 that
include a user data space 120 and a control data space 122.
The control data space 122 contains overhead information for
operation of the sector, such as an error correction code (not
shown). The user data space 120 in each sector 118 1s typi-
cally 512 bytes long. In a typical Flash memory device 100
cach erase block 116 typically contains 128 sectors 118.

For the reasons stated above, and for other reasons stated
below which will become apparent to those skilled 1n the art
upon reading and understanding the present specification,
there 1s a need 1n the art for a Flash memory device that has an
crase block management method and data that allows for
single write/erase updates of the Flash memory device. There
1s also aneed 1n the art for an erase block management method
and data that has improved write fatigue characteristics.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 details a prior art Flash memory.

FI1G. 2 details a memory system with Flash memory of the
present invention.

FIG. 3 details sector formats of a Flash memory of the
present invention.

FI1G. 4 details the EBM bytes of a sector of a Flash memory
of the present invention.

FIG. 5 details sector formats and states of an erase block of
a Flash memory of the present invention.

FIG. 6 details a table showing the possible erase block
states and the EMB sectors and field values that correspond.

FIG. 7 details the formats of Logical Block of Sectors
(LBS) and Repeated Logical Sector (RLS) EBM block 1den-
tifier field entries of a Flash memory of the present invention.

FIG. 8 details an erase block state transition diagram and
EBM sector field values for a Flash memory of the present
invention.

FIG. 9 details a logical block address to physical block

address RAM table of a Flash memory of the present mnven-
tion.

FIG. 10 details an open block i1dentifier RAM table of a
Flash memory of the present invention.

FIG. 11 details an open block tlags RAM table of a Flash

memory of the present invention.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 12 details an open block count RAM table of a Flash
memory of the present invention.

FIG. 13 details a block mnvalid flags RAM table of a Flash
memory of the present invention.
FIG. 14 details a block erased tlags RAM table of a Flash

memory of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description of the preferred
embodiments, reference 1s made to the accompanying draw-
ings that form a part hereof, and 1n which 1s shown by way of
illustration specific preferred embodiments 1n which the
inventions may be practiced. These embodiments are
described 1n sullicient detail to enable those skilled 1n the art
to practice the invention, and 1t 1s to be understood that other
embodiments may be utilized and that logical, mechanical
and electrical changes may be made without departing from
the spirit and scope of the present mnvention. The following
detailed description 1s, therefore, not to be taken 1n a limiting
sense, and the scope of the present invention 1s defined only
by the claims.

To overcome the reliance on separate centralized non-vola-
tile erase block management tables with the above detailed
1ssues of write fatigue, dual NV block writes for user data and
EBM data, and the operational overhead thereof, a Flash
memory of the present invention manages the EBM data in a
decentralized approach. A Flash memory embodiment of the
present invention incorporates the erase block management
information for an individual erase block (EB) 1n an extended
area of the control data section of the first several sectors 1n
the erase block. This allows for single write non-volatile
block updates and block writes. These single write block

operations are inherently faster resulting 1n an improved per-
formance.

The distributed EBM data contained 1n the erase blocks 1s
also inherently load leveling and resistant to write fatigue. If
the EBM fields of an erase block are damaged or succumb to
write fatigue, only that write block 1s affected. The erase
block management system of a Flash memory embodiment of
the present invention can continue to operate with the EBM
information fields in the unafiected erase blocks.

Shown 1n FIG. 2 1s a simplified diagram of a Flash memory
device embodiment of the present invention 200 coupled to a
processor 202 with an address 204, control 206, and data bus
208. Internally to the Flash memory device a control state
machine 210 directs internal operation of the Flash memory
device; managing the Flash memory array 212 and updating
RAM control registers and tables 214. The Flash memory
array 212 contains a sequence of erase blocks 216. Each erase
block 216 contains a series of sectors 218 that contain a user
data space 220 and a control data space 222. The control data
space 222 contains overhead information for operation of the
sector 218, such as an error correction code (not shown) or an
erase block management data field area 224. The first six
sectors 226 of an erase block 216 of a Flash memory device
200 embodiment of the present invention contain erase block
management data fields 224 that contain the decentralized
erase block management data 1n their control data space 222.
The RAM control registers and tables 214 are loaded at power
up from the erase block management data fields 224 held in
the first s1x sectors 226 of each erase block 216 by the control
state machine 210. The user data space 220 1n each sector 218
1s typically 512 bytes long. In a Flash memory device 200
embodiment of the present invention each erase block 216
typically contains 128 sectors 218 and has 6 byte EBM data
fields 224 1n each sector 218. It 1s noted that other formats for

US 8,433,846 B2

S

the erase blocks 216 and sectors 218 are possible and should
be apparent to those skilled 1in the art with benefit of the
present disclosure.

FIG. 3 further details two examples 300, 302 of the many
possible sector formats for a Flash memory erase block of the
present mvention. Both the M42 sector format 300 and the
M353 sector format 302 contain space for 512 bytes of user

data 304, 306, 8 bytes of ECC 308, 310, and 6 bytes of EBM
data 312, 314. The formats differ, however, 1n that the M42
sector format 300 contains additional data space for format
specific functions 316, while the M53 sector format 302 does
not contain such space. Other sector formats are of course
possible and should be apparent to those skilled in the art with
the benefit of the present disclosure.

In FI1G. 4 1s shown a diagram of a EBM data field of 6 bytes
400 as would be used 1n a sector of an erase block of an
embodiment of the present invention. In the EBM data field
bytes 0to 2,402, contain EBM data. While the EBM data field
bytes 3 to 6, 404, contain the 1s complement of the data in
EBM data field bytes O to 2, 402, for error redundancy pur-
poses.

In FIG. 5, an erase block 500 of 128 sectors 508 1s detailed.
For the erase block management method detailed herein, the
erase block management fields of the first six sectors of an
erase block of a Flash memory of the present invention are
paired together 1n 3 groups of 2 sectors each 502, 504, 506.
This improves the EBM data redundancy and general fault
tolerance of the Flash memory device. Each sector 508 of the
erase block 500 has a 512 byte user data space 510 and a
control data space 512. The control data space 512 contains an
EBM data field of 6 bytes 514. The EBM data fields of the first
s1X sectors 516 are utilized 1n erase block management 1n a
Flash memory device of the present invention. In the first six
sectors 516, sectors 0 and 1 are paired 502, sectors 2 and 3 are
paired 504, and sectors 4 and 5 are paired 506. Identical EBM
data 1s redundantly written to the EBM data fields of each
sector in each pair. As long as one sector 1n the pair can be read
the EBM data stored 1n the sector pair 1s considered valid. It
1s noted that other sector EBM data field formats and erase
block EBM field arrangements are possible and should be
apparent to those skilled 1n the art with benefit of the present
disclosure.

In a Flash memory device of the present invention, the
erase blocks can have one of four states: “invalid” (unavail-
able and 1n need of block erasure), “erased” (available for
use), “partially filled” (partially written with user data), and
“fully valid” (full of user data). FIG. 6 shows a table 600
which details the state of an erase block 602 and the contents
of the EBM fields 604 of each pair ol the first six sectors of the
erase block. The state of any erase block of an embodiment of
the present invention can be determined at any time by read-
ing the contents of each pair of the first six sectors of the erase
block. The erase block management firmware software of a
Flash memory device of the present invention reads these
fields for each erase block of the device upon power up and
retains the information 1n the internal RAM tables to improve
operation performance.

As shown 1n the table of FIG. 6, when a Flash memory
device embodiment of the present invention 1s 1n the “invalid”
state 612, the EBM data fields of sectors 0/1 606, sectors 2/3
608, and sectors 4/5 610 will have an “invalid” pattern written
into each sector. The ivalid pattern for the present embodi-
ment of a Flash memory device of the present invention 1s that
of all zeros.

An erase block in the “erased” state 614 will have the
hexadecimal pattern “AAS55AA” and 1ts complement written
into sectors 0/1 606. The remaining sectors, sectors 2/3 608

10

15

20

25

30

35

40

45

50

55

60

65

6

and sectors 4/5 610, will be 1n the “erased” state; which 1s a
pattern of hexadecimal “FFFFFF” for the present embodi-
ment of a Flash memory of the present invention. The pres-
ence of the “AAS5AA” pattern 1s required to indicate the
successiul completion of the erasure procedure on the erase
block.

For an erase block in the “partially filled” state 616, the
erase block will have the hexadecimal pattern “AASSAA”
and 1ts complement written 1nto sectors 0/1 606, and sectors
4/5 610 will contain a valid block identifier and 1ts comple-
ment. The block identifier indicates the logical address or
address range and type of user data written to the erase block.
The sectors 2/3 608 will be 1n the “erased” state, indicating
that the erase block 1s not closed and that space remains to be
written. The partially filled state allows for any number of
physical sectors between 0 and 128 to be written.

For an erase block in the “fully valid” state 618, the erase
block will have the hexadecimal pattern “AAS5S5AA” and its
complement written 1nto sectors 0/1 606. Both sectors 2/3 608
and sectors 4/5 610 will contain a valid block 1dentifiers and
their complement. The block identifiers indicate the logical
address or address range and type of user data written to the
crase block. With both sectors 2/3 608 and sectors 4/5 610
containing valid block 1dentifiers, the erase block 1s consid-
ered closed by the EBM control and that no space remains to
be written. The fully valid state 1s an aid to power up 1nitial-
1zation, immediately indicating the validity of all sectors of
the erase block without further verification.

To better use and manage a Flash memory device of the
present mvention and 1ts erase blocks, by helping to avoid
unnecessary block erasures and floating gate memory cell
write fatigue, there are multiple types of erase block uses and
block 1dentifiers within a Flash memory device of the present
invention. One such erase block use and block 1dentifier type
1s the Logical Block of Sectors (LBS). In a LBS utilized erase
block, the erase block contains a contiguous range of logical
sector addresses, much like a conventional magnetic disk
block device would. If the LBS utilized erase block 1s “par-
tially filled”, as described above in the table of FIG. 6, only
sectors 4/5 will be written with a valid LBS block identifier in
the EBM data field. Sectors 2/3 of the LBS utilized erase
block will be “erased”, and sectors 0/1 will contain the pattern
“AASSAA”. When all the sectors of a LBS utilized erase
block are written, or the remaining sectors of a “partially
filled” LLBS utilized erase block are written, the erase block 1s
considered tull. The LBS utilized erase block will then be
marked as being the “fully valid” state by having a valid LBS

block i1dentifier written 1nto the EBM data fields of both
sectors 2/3 and sectors 4/5.

Another such erase block use and block identifier type 1s
the Block of Repeated Logical Sector Address (RLS). RLS 1s
designed to be utilized by the Flash memory device to con-
veniently deal with a sector that 1s heavily written and rewrit-
ten by the host while minimizing write fatigue and the number
of time consuming block erasures the Flash memory needs to
do. In a RLS utilized erase block, the erase block contains a
single repeated logical sector. When the logical sectoris again
written by the host 1t 1s simply written to the next available
physical sector in the erase block. If the RLS utilized erase
block 1s “partially filled”, as described above 1n the table of
FIG. 6, only sectors 4/5 will be written with a valid RLS block
identifier 1n the EBM data field. Sectors 2/3 of the RLS
utilized erase block will be “erased”, and sectors 0/1 waill
contain the pattern “AAS5S3SAA”. When all the sectors ofa RLS
utilized erase block have written, the erase block 1s consid-
ered full. The RLS utilized erase block can be marked as
being the “fully valid” state by having a valid RLS block

US 8,433,846 B2

7

identifier written into the EBM data fields of both sectors 2/3
and sectors 4/5. Although, the RLS utilized erase block may
be optionally left marked as if 1n the “partially filled” state for,
as stated above, the “partially filled” state allows for the
sectors between 0 and 128 in an erase block to have been
written. When a RLS utilized erase block 1s full, 1n either the
“partially filled” or “fully valid” state, the EBM control will
open a new erase block for the logical sector to be written to
next and mark the current RLS utilized erase block as having,
the “invalid” state and ready for erasure by writing the invalid
state 1nto all EBM data fields as previously describe in the

table of FIG. 6. It 1s therefore possible for an RLS utilized

erase block to go directly from the “partially filled™ state, 11 all
128 sectors filled, to the “invalid” state, thus avoiding having
to pass through the “fully valid” state first, potentially reduc-
ing Flash operation overhead. Or, alternatively, to sequence
from the “partially filled” state, to *“tully valid”, to the

“mvalid” state.
FIG. 7 details the EFBM data fields for both a LBS block
identifier 700 and a RLS block identifier 702. For simplicity

of 1llustration, only bytes O, 1, and 2 are shown and the 1s
complement versions in bytes 3, 4, and 5 are omitted.

An LBS block identifier indicates the section of 128 con-
tiguous logical sectors stored 1n this physical erase block. For
embodiments of the present invention, this 1s accomplished
by the 12 bit logical block address (LBA) 704 that 1s written
into bytes 1 and 2 of the EBM data field. The remaining 4 bits
of EBM data field byte 2 706 are filled with zeros. The LBS
block identifier also contains an 8 bit AGE descriptor 708 in
byte 0 of the EBM data field, indicating the validity of the data
stored in the erase block. As multiple blocks may be identified
on the Flash memory device with the same logical block
address, this AGE descriptor 1s utilized by the EBM control to
determine the validity of the stored data and retrieve/operate
on the most recent.

An RLS blockidentifier indicates the logical sector address
for the single logical sector of data stored in this physical
erase block. As stated above, the same logical sector 1s written
to 1ncreasing sector addresses within the erase block. The
highest written sector 1s therefore the most recent data. For
this reason there 1s no “AGE” data for an RLS erase block
identifier, for only one will exist for a given logical sector 1n
an RLS utilized erase block at a time. An RLS block identifier
for embodiments of the present invention contains a 19 bit
logical sector address 710 written into bytes O, 1, and 2 of the
EBM data field. The remaining 5 bits of byte 2 are filled with
the bit pattern “00010”” 712. It 1s noted that other variations of
block 1dentifiers are possible and should be apparent to those
skilled 1n the art with the benefit of the present disclosure.

FIG. 8 details an erase block state transition diagram 800
tor Flash memory devices of the present invention, showing
the “erased” 802, “invalid” 804, “partially filled” 806, and
“fully valid” 808 states and their allowed previous and next
states. Also detailed are the contents of the EBM data fields of
the first s1x sectors of the erase block when the erase block 1s
in each state. As shown 1n FIG. 8, the “erased” state 802 can
only be entered from the “invalid” state 804 after a successiul
erase operation 810. The “erased” state 802 can then be exited
by a transition to the “partially filled” state 806 when data 1s
written to the physical sectors of the erase block 812. As
described above, the “partially filled” state 806 can be exited
by either transitioning to the “fully valid” state 808, by filling,
the remaining sectors of the erase block 814, or by transition-
ing directly to the “invalid” state 804. Therefore saving over-
head by not having to transition through the “tully valid” state
808 first if there 1s no need to keep the data 1n the erase block.

10

15

20

25

30

35

40

45

50

55

60

65

8

The *“fully valid™ state 808 can be exited by transitioning back
to the “invalid” state 804, when the erase block data 1s no
longer necessary 818.

Erase Block Management firmware utilizes the following
R AM data variable structures 1n control of the erase blocks of
an embodiment of the Flash memory device of the present
invention: Iba_to_pballba], open_block_1d[index],
open_block_flags[index], open_block_count[index],
block_invalid_flags[block], block_erased_flags [block] The
index utilized to access the RAM data structure 1s shown 1n
brackets in the above listing. These tables are primarily
shown as a guide to understanding the present invention and

should not be regarded as limiting.
The lba_to_pba RAM table, shown in FI1G. 9, 1s a randomly

addressable array 900 of 12 bit Physical Block Addresses
(PBA) 902 indexed by a logical block address (LBA) value
904 (Iba_to_pballba]). An entry of OxFFF 1n the array 900
indicates that the LBA has no corresponding PBA present. On
power-up this table 1s mitialized to all OxFFF and filled with
LBA to PBA mappings as the EBM data fields are read from
the individual erase blocks. In operation, an entry 1s placed in
this table when a physical erase block 1s transitioned into the
“fully valid” state.

The open_block_1d RAM table, an entry 1000 of which 1s
shown 1n FIG. 10, contains the block i1dentifier information
(EBM) 1002 and physical block address (PBA) 1004 for all
“partially filled” state erase blocks in the Flash memory
device as well as an activity indication 1006 for the entry
itself. Each entry 1s 6 bytes 1n size 1000 and accessed by an
index value (open_block_id[index]). Entries are ordered by
address and age. The most recently updated entry 1s given an
activity value of 0 and all other activity values are incre-
mented. An entry of all ‘FF’s 1s invalid and power-up 1nitial-
izes this table to invalid entries. The open_block _1d RAM
table 1s filled during the initialization with erase blocks 1n the
“partially filled” state as the EBM data fields are read from the
individual erase blocks.

The open_block_flags table 1100, shown 1n FIG. 11, con-
tains 128 bit flags 1102 for each “partially filled” erase block
of the Flash memory device. The table represents each “par-
tially filled” erase block that 1s present on the Flash memory
device or Flash card. The open_block_flags table 1s accessed
by an index value 1104 (open_block_flags[index]). A bit flag
1102 1s set to 1 for each sector in the erase block which
contains valid data. This table 1s 1nitialized to all zeros on
power-up and filled as the EBM data fields are read and
“partially filled” erase blocks 1dentified and scanned for all
sectors that contain valid data.

The open_block _count table 1200, a representation of
which shown 1in FI1G. 12, indicates the number of valid sectors
in each “partially filled” erase block on the Flash memory
device or Flash card. Each entry 1s a single byte 1202 and 1s
accessed by an index value 1204 (open_block_count[index]).
This table 1s mitialized to all zeros on power-up and filled as
the EBM data fields are read and “partially filled” erase
blocks 1dentified and scanned for all sectors that contain valid
data.

The block_invalid_flags table 1300, a representation of
which shown 1n FIG. 13, contains a bit flag 1302 for each
physical erase block on the card. The block_invalid_flags
table 1s accessed by an erase block 1dentifier 1304 (block_in-
valid_tlags[block]). A bit tlag 1302 1s set to 1 for each erase
block which 1s 1n the “1nvalid” state. This table 1s imtialized to
all zeros on power-up and filled as the EBM data fields are
read and “invalid” state erase blocks 1dentified.

The block_erased_flags table 1400, shown 1n FIG. 14,

contains a bit flag 1402 for each physical erase block on the

US 8,433,846 B2

9

card. The block_erased_tlags table 1s accessed by an erase
block identifier 1404 (block_erased_tlags[block]). A bit flag
1402 1s set to 1 for each block which 1s in the “erased” state.
This table 1s mitialized to all zeros on power-up and filled as
the EBM data fields are read and erase blocks 1n the “erased”
state 1dentified.

The functions of erase block management firmware of a
Flash memory device of the present invention are summa-
rized in the following descriptions of the different processes
of Initialization, Read Location, and Write Allocation.

Inttialization: during power-up initialization, the Flash
memory RAM tables are first filled with their power-up
default values. The state of all erase blocks 1s then determined
and recorded 1n controller RAM tables by reading the EBM
data fields of all erase blocks on the card or Flash memory
device to determine each erase block’s state and logical block
address 1nformation. The lba_to_pba, open_block 1id,
block_invalid_flags and block_erased flags tables are
updated using this mnformation.

All sectors of each “partially filled” erase block located 1n
the previous sub-process are read to determine the valid state
of sectors within the erase block 1n order to update the
open_block_flags and open_block count tables.

Read Location: 1n order to perform a read command and
return a written sector data to the host, erase block manage-
ment control must locate the requested sector data on the
Flash memory device. The Read Location process will be
given an input start logical sector address (LSA) and a Sector
Count from the host. The Read Location process then returns
with an indication of successiul location of data (or not) and,
if data 1s located, a starting Chip, Block and Sector location as
well as a Sector Count. The returned count will be equal to or
less than the requested count.

The RAM open_block_1d and open_block_flags tables are
first searched for the requested data. Repeated logical sector
(RLS) entries are considered by default to be the most recent.
Logical blocks of sectors (LBS) entries have the AGE param-
cter allowing the most recent data to be 1dentified. Entries
which locate some of the requested data, but not the first
requested sector, force the sector count to be clipped to a value
which will exclude sectors in that entry.

Any requestnot located 1n the erase blocks with a “partially
tull” state 1s next searched for in the Iba_to_pba table of erase
blocks with a “fully valid” state. When no entry 1s present,
then the Read Location process returns with the indication
that data was not located.

Write Allocation: in order to perform a write command and
write host supplied sector data to the Flash memory device,
the erase block management control must allocate the
requested erased sector space on the Flash memory. The
Write Allocation process will be given an mput starting logi-
cal sector address (LSA) and a Sector Count from the host.
The Write Allocation process then returns with an indication
of successtul allocation of space (or not) and, 1f space 1s
allocated, a starting Chip, Block and Sector location as well as
a Sector Count 1s returned. The returned count will be equal to
or less than the requested count.

In a Write Allocation, the RAM open_block 1d and
open_block_flags tables are mnitially searched for space 1n a
“partially filled” state erase block for the requested sectors.
Repeated logical sector (RLS) utilized erase blocks are
selected over logical blocks of sectors (LBS) utilized erase
blocks by default. If multiple LBS entries are present and
applicable to the requested LSA, then only the most recent 1n
AGE 1s searched. If no space 1s found for at least the first

10

15

20

25

30

35

40

45

50

55

60

65

10

requested sector in the current “partially filled” state erase
blocks, then a new “partially filled” erase block must be
opened.

A new “partially filled” erase block 1s “opened” by first
searching the open_block_id table for the correct ordered
location and AGE to use for the new entry. A physical erase
block 1n the “erased” state 1s selected. This information 1s
entered into the correct entry position in the open_block_1d
table. The open_block_flags bits for this entry are set to all
zeros and the Activity value of this entry 1s set to 0. The
Activity value of all other entries 1s mncremented, up to a
maximum value of 20. The selected physical erase block’s
Partial EBM data field (sectors 4/5) 1s written.

Ifno space 1s available in the open_block_1d table for a new
entry, then an entry 1n this table must be closed. If no physical
erase block 1n the “erased” state 1s available, then an erase
block in the “mvalid” state must be erased in an erasure
procedure. If no erase blocks in the “invalid” state are avail-
able, then an entry 1n the open_block_1d table must be closed.

Closing an erase block 1n the “partially filled” state 1s
fundamentally the process of removing 1ts entry from the
open_block_i1d table. The processes of accomplishing this are
the most complicated 1n erase block management firmware
and differs depending on the type of erase block in the “par-
tially filled” state mvolved and the number of other erase
block 1n the “partially filled” state open at the time.

An erase block 1n the “partially filled” state, with sectors
for an LBA which 1s currently not open 1n any other erase
block, 1s closed by writing any remaining unwritten sectors
using data from any currently existing erase block in the
“fully valid” state that contains this data. The erase block 1n
the “fully valid” state 1s invalidated by programming 1ts EBM
data field entries to “invalid”. Its PBA location 1s then marked
in the block_invalid_flags table. The “partially filled” erase
block 1s then marked as in the “fully valid” state through its
EBM data field entries and entered into the lba_to_pba table.
Finally, the newly closed erase block i1s removed from the
open block 1d table, removing its entry.

An erase block 1n the “partially filled” state that contains
sectors of an LBA open 1n other “partially filled” erase blocks,
and thus have open_block_id entries, can only be closed 1f 1t
1s the oldest entry (1ts AGE value 1s the lowest for that LBA).
It 1s closed by writing any valid sectors 1n 1ts block for which
no valid sectors 1 younger blocks appear into the youngest
block for this LBA. The “partially filled” erase block can now
be 1nvalidated by programming 1ts EBM entries. Its entry in
the open_block_id table can then be mvalidated.

A Repeated Logical Sectors (RLS) utilized erase block 1n
the “partially filled” state 1s closed by first moving 1ts content
of the single most recent data sector it contains into an Logical
Block of sectors (LBS) utilized erase block 1n the “partially
filled” state. The physical RLS utilized erase block 1s then
invalidated and marked 1n the block_invalid_flags and the
entry 1n the open_block_1d table 1s then removed.

This process 1s straight-forward 1t an LBS utilized erase
block 1n the “partially filled” state 1s already open to receive
the sector data needed to be moved. If no such block 1s open
(or 1t does not have space for the sector) then this process
becomes convoluted. A new LBS utilized erase block has to
actually be opened to recerve the data. In this case, the
Repeated Logical Sector (RLS) entry 1s removed from the
open_block_i1d table, but 1t 1s actually replaced by an new
LBS entry. Note: the typical purpose for closing a block 1s to
make an entry available 1n the open_block_id table. The last
type of block closure described does not accomplish this by
itsell and requires a follow-up closure of another block (or
even more than 1) to make an open_block_1d entry available.

US 8,433,846 B2

11

Erased Block Selection: an erase block 1n the “erased” state
1s selected, for purposes of opening a “partially filled” state
erase block, by searching the block_erased_tlags table for a
non-zero flag bit. For purposes of leveling wear among the
erase blocks of the Flash memory device or card, anew search
through this table will always begin at the block after the last
search completed. This process will return with an indication
ol success or failure 1n locating an erased block, and the
physical block address located 11 successtul.

Invalid Block Selection: an erase block in the “imnvalid”
state 1s selected for erasure by searching the block_
invalid_tlags table for a non-zero flag bit. For purposes of
leveling wear among the Erase Blocks of the Flash memory
device or card, a new search through this table will always
begin at the block after the last search completed. This pro-
cess will return with an indication of success or failure 1n
locating an ivalid block. The process will return also with the

physical block address (PBA) located 11 successtul.

CONCLUSION

An improved Flash memory device with a distributed erase
block management (EBM) scheme has been detailed that
enhances operation and helps minimize write fatigue of the
floating gate memory cells of the Flash memory device. In the
prior art, erase block management of a Flash memory device,
which provides logical sector to physical sector mapping and
provides a virtual rewriteable 1nterface for the host, requires
that erase block management data be keptin specialized EBM
data tables to keep the state of the Flash memory device 1n
case of loss of power. This placement of EBM data 1n a
separate erase block location from the user data slows the
Flash memory operation by requiring up to two writes and/or
block erasures for every update of the user data. Additionally,
one of the goals of the EBM control 1s to minimize write
fatigue of the non-volatile floating gate memory cells of the
Flash memory device erase blocks by re-mapping and distrib-
uting heavily rewritten user data sectors 1n a process called
load leveling so that no one erase block gets overused too
quickly and reduce the expected lifespan of the Flash memory
device. The EBM data structures, however, are some of the
most heavily rewritten non-volatile floating gate memory
cells 1n the device and thus, while helping to reduce write
fatigue 1n the Flash memory device, are some of the data
structures most susceptible to the process of fatigue. The
Flash memory device of the detailed invention combines the
EBM data 1n a user data erase block by placing 1t in an EBM
data field of the control data section of the erase block sectors.
Therefore distributing the EBM data within the Flash
memory erase block structure. This allows the detailed Flash
memory to update and/or erase the user data and the EBM
data 1n a single operation, reducing overhead and speeding
operation. The detailed Flash memory also reduces the pro-
cess of EBM data structure write fatigue by allowing the
EBM data fields to be load leveled by rotating them with the
erase blocks they describe.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement, which 1s calculated to
achieve the same purpose, may be substituted for the specific
embodiment shown. This application 1s intended to cover any
adaptations or variations of the present invention. Therefore,
it 1s manifestly intended that this invention be limited only by
the claims and the equivalents thereof.

10

15

20

25

30

35

40

45

50

55

60

65

12

What 1s claimed 1s:
1. A method of operating a memory device, the method
comprising;
reading Erase Block Management (EBM) data from a par-
ticular erase block of an array of memory cells arranged
in a plurality of erase blocks, wherein each erase block
comprises a plurality of sectors and where each sector
comprises a user data space and a control data space; and

updating one or more data structures with the EBM data
read from the particular erase block;

wherein the EBM data 1s stored 1in control data spaces of a

subset of sectors of the particular erase block;

wherein the EBM data comprises data corresponding to a

state of the particular erase block 1n which the EBM data
1s stored; and

wherein updating the one or more data structures with the
EBM data read from the particular erase block further

comprises updating one or more data structures selected
from the group consisting of logical block address to
physical block address table, an open block Identifica-
tion (ID) Random Access Memory (RAM) table, an
open block flags table, an open block count table, a block
invalid flags table and a block erased flags table.

2. The method of claim 1, wherein updating one or more
data structures with the EBM data further comprises updating
one or more data structures stored 1n a RAM memory portion
of the memory device.

3. The method of claim 2, further comprising updating the
data structures responsive to a change of state of the particular
erase block.

4. The method of claim 1, wherein updating one or more
data structures with the EBM data turther comprises updating
the one or more data structures with the EBM data as part of
a power-up initialization of the memory device.

5. The method of claim 1, further comprising initializing,
the data structures with default values prior to updating the
data structures with the EBM data corresponding to the par-
ticular erase block.

6. The method of claim 1, further comprising updating
EBM data corresponding to the particular erase block and
storing the updated EBM data 1n the particular erase block.

7. The method of claim 1, wherein the state of the particular

erase block 1s one of 1nvalid, erased, partially filled, or tully
valid.

8. The method of claim 7, further comprising changing a
state of the particular erase block 1n response to a change
made to the particular erase block.

9. The method of claim 1, wherein reading the EBM data
from a particular erase block 1s facilitated by erase block
management firmware.

10. A method of operating a memory device, the method
comprising;

imtializing one or more data structures stored 1n a RAM

memory portion of the memory device;
reading Erase Block Management (EBM) data from a par-
ticular erase block of an array of memory cells arranged
in a plurality of erase blocks, wherein each erase block
comprises a plurality of sectors and where each sector
comprises a user data space and a control data space; and

updating the one or more data structures with the EBM data
read from the particular erase block;

wherein the EBM data 1s stored 1in control data spaces of a

subset of sectors of the particular erase block;

wherein the EBM data comprises data corresponding to a

state of the particular erase block 1n which the EBM data
1s stored; and

US 8,433,846 B2

13

wherein updating the one or more data structures with the
EBM data read from the particular erase block further
comprises updating one or more data structures selected
from the group consisting of logical block address to
physical block address table, an open block Identifica-
tion (ID) Random Access Memory (RAM) table, an

open block flags table, an open block count table, ablock
invalid tlags table and a block erased flags table.

11. The method of claim 10, wherein 1mitializing one or
more data structures further comprises mnitializing one or
more data structures with default data as part of a power-up
initialization of the memory device.

12. The method of claim 10, further comprising updating
the EBM data corresponding to the particular erase block in

response to a change made to the particular erase block,
wherein the EBM data corresponding to the state of the par-
ticular erase block comprises a plurality of EBM fields stored
in the control data spaces of the subset of sectors of the
particular erase block.

13. The method of claim 12, further comprising changing
the contents of one or more EBM fields to change the state of
the particular erase block.

14. The method of claim 13, wherein the state of the par-
ticular erase block 1s one of invalid, erased, partially filled, or
tully valid.

15. The method of claim 13, further comprising updating
one or more of the data structures 1n response to changing the
state of the particular erase block.

16. A memory device, comprising:

an array of memory cells arranged 1n a plurality of erase

blocks, wherein each erase block comprises a plurality
of sectors and where each sector comprises a user data
space and a control data space; and

control circuitry, wherein the control circuitry 1s config-

ured to:

read Erase Block Management (EBM) data from one or
more erase blocks of the plurality of erase blocks;

update one or more data structures with the EBM data
read from the one or more erase blocks:

wherein the EBM data 1s stored 1n control data spaces of
a subset of sectors of each erase block;

wherein the EBM data stored in each erase block com-
prises data corresponding to a state of the erase block
in which the EBM data 1s stored; and

wherein the one or more data structures are selected
from the group consisting of logical block address to
physical block address table, an open block Identifi-
cation (ID) Random Access Memory (RAM) table, an
open block flags table, an open block count table, a
block invalid flags table and a block erased tlags table.

10

15

20

25

30

35

40

45

14

17. The memory device of claim 16, further comprising a
Random Access Memory (RAM) memory portion.
18. The memory device of claim 17, wherein the control
circuitry 1s further configured to imnitialize the one or more
data structures 1n the RAM memory portion.
19. The memory device of claim 18, wherein the control
circuitry 1s further configured to update the one or more data
structures 1n the RAM memory portion.
20. The memory device of claim 19, wherein the control
circuitry 1s further configured to update the one or more data
structures 1n the RAM memory portion after EBM data has
been read from one or more erase blocks of the plurality of
erase blocks.
21. The memory device of claim 19, wherein the control
circuitry 1s further configured to utilize erase block manage-
ment firmware to update the one or more data structures in the
RAM memory portion.
22. The memory device of claim 16, wherein the control
circuitry 1s further configured to update one or more EBM
fields comprising the EBM data of a particular erase block 1n
response to a change made to the particular erase block.
23. The memory device of claim 22, wherein the control
circuitry 1s further configured to utilize erase block manage-
ment firmware to update the EBM data.
24. The memory device of claim 16, wherein the array of
memory cells comprises an array of non-volatile memory
cells.
25. A method of operating a memory device, the method
comprising:
reading Erase Block Management (EBM) data from a par-
ticular erase block of an array of memory cells arranged
in a plurality of erase blocks, wherein each erase block
comprises a plurality of sectors and where each sector
comprises a user data space and a control data space; and

updating one or more data structures with the EBM data
read from the particular erase block;

wherein the EBM data 1s stored 1n control data spaces of at

least two sectors of a subset of sectors of the particular
erase block:

wherein the EBM data comprises data corresponding to a

state of the particular erase block 1n which the EBM data
1s stored; and

wherein updating one or more data structures with the
EBM data read from the particular erase block turther
comprises updating one or more data structures selected
from the group consisting of logical block address to
physical block address table, an open block Identifica-
tion (ID) Random Access Memory (RAM) table, an
open block flags table, an open block count table, a block
invalid flags table and a block erased flags table.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

