United States Patent

US008417903B2

(12) (10) Patent No.: US 8,417,903 B2
Alvarez et al. 45) Date of Patent: Apr. 9, 2013
(54) PRESELECT LIST USING HIDDEN PAGES 7,139,879 B2 11/2006 Loafman
2002/0013887 Al* 1/2002 Ting ...cooooovviveviiiininnnnnn, 711/160
: : : 2006/0129780 Al 6/2006 Dunshea et al.
(75) Inventors: ibaahanll)mvirez’ i“St.m’gé %Js) 2007/0055843 Al 3/2007 Lameter
ndrew Dunshea, Austin, (US); 2007/0094450 Al* 4/2007 VanderWiel 711/133
Douglas J. Griftith, Georgetown, 1X
(US) OTHER PUBLICATIONS
(73) Assignee: International Business Machines Author: National Center for Supercomputing Applications at The
BHes Corporation, Armonk, NY (US) University of Illinois; Title: Performance Overview of the Virtual
j j Memory Manager (VMM); article; Date: Feb. 24, 2007, pp. 9; Pub-
(*) Notice: Subject to any disclaimer, the term of this lisher; National Center for Supercomputing Applications at the Uni-
patent is extended or adjusted under 35 versity of Illinois at Urbana-Champaign; Location: Champaign, Illi-
U.S.C. 154(b) by 948 days. nois, USA.
(21) Appl. No.: 12/339,443 * cited by examiner
(22) Filed: Dec. 19, 2008 Primary Examiner — Christian P Chace
Assistant Examiner — Alan Otto
(65) Prior Publication Data (74) Attorney, Agent, or Firm — David Mims; Robert C.
US 2010/0161934 A1 Jun. 24, 2010 Rolnik
(51) Int.CL. (57) ABSTRACT
GO6F 12/12 (2006.01) Disclosed 1s a computer implemented method, computer pro-
(52) U.S.CL gram product, and apparatus for maintaining a preselect list.
USPC 711/159: 711/133; 711/134; 711/136; Themethod comprises soltware components detecting a page
711/160: 711/206 fault of a memory page. In response to detecting a page fault,
(58) Field of Classification Search None the software components determine whether the memory
See application file for complete search history. page 1s referenced in the preselect list and unhide the memory
page. Upon determining whether the memory page 1s refer-
(56) References Cited enced 1n the preselect list, the software components remove

U.S. PATENT DOCUMENTS

6,073,226 A 6/2000 Cutshall et al.
6,378,059 Bl 4/2002 Miyoshi
7,007,005 B2 2/2006 Rautenback et al.

PRESELECT LIST
210

an entry of the preselect list corresponding to the memory
page to form at least one removed candidate page and skip
paging-out of the at least one removed candidate page.

18 Claims, 4 Drawing Sheets

VIRTUAL MEMORY
200

,ﬁ=\=\

215~_

\
[reomacar |,

U.S. Patent Apr. 9, 2013 Sheet 1 of 4 US 8,417,903 B2

FI1G. 1 00
106~ PROCESSOR /
110 102 108 116 136
\ \ / / /
GRAPHICS MAIN AUDIO
PROCESSOR NB/MCH MEMORY \ ADAPTER | | S1©
138
BUS
¢_ SB/ICH W J_
HARD USB AND KEYBOARD
nisk | |co-RoM '1%2’;,’?2; OTHER ;g\'ﬁgg AND MOUSE | | MoDEM | | ROM
DRIVE PORTS ADAPTER

126 130 112 132 134 120 122 124
FI1G. 2A
PRESELECT LIST VIRTUAL MEMORY
210 200
/ﬁ
215~
.
.‘_
\ ~ .
\ ~
~ 221
\ ~_ ¥

\\ VIRTUAL MEMORY PAGE
\| REFERENCE BIT 223

U.S. Patent Apr. 9, 2013 Sheet 2 of 4 US 8,417,903 B2

210 200
\ 251 '/
4
267~ CANDIDATE PAGE A >
262~ CANDIDATE PAGE B —
263~1 CANDIDATE PAGE C “\\
264~ CANDIDATE PAGE D [\ TR 9 252
\ 4
3
FIG. 2B 253 254
210 200
CANDIDATE PAGE A >
202~ CANDIDATE PAGE B ~ |~ |_ _
CANDIDATE PAGE C I M NS
CANDIDATE PAGE D ~P\ I 252
—
— [| 4
3

FIG. 2C

U.S. Patent Apr. 9, 2013 Sheet 3 of 4 US 8,417,903 B2

BEGIN
311 ACCESS VIRTUAL MEMORY PAGE
313

>

HIDDEN PAGE
STILL IN PRHYSICAL

MEMORY
?

317 UNHIDE THE MEMORY PAGE

NO

PHYSICAL PAGE
REFERENCED IN THE
PRESELECT LIST

319

REMOVE THE VIRTUAL ADDRESS
321 ENTRY FROM THE PRESELECT LIST

U.S. Patent Apr. 9, 2013 Sheet 4 of 4 US 8,417,903 B2

329

ENTRIES
EXIST IN A PRESELECTED
LIST?

NO

YES
331

TIME TO
PAGE-OUT BLOCK
OF CANDIDATE

PAGES
?

YES

333 OBTAIN THE NEXT
CANDIDATE PAGE IN THE
PRESELECT LIST

ENTRIES FOR
CANDIDATE PAGES

EXRAUSTED
?

YES

335

REMOVE CANDIDATE
341 PAGE REFERENCE
FROM PRESELECT LIST

PAGE-OUT THE
343 CANDIDATE PAGE

FIG. 3B

US 8,417,903 B2

1
PRESELECT LIST USING HIDDEN PAGES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present ivention relates generally to a computer
implemented method, data processing system, and computer
program product for caching disk data to memory. More
specifically, the present invention relates to tracking potential
candidate pages for paging-out and re-assessing their candi-
dacy belfore a page-out occurs.

2. Description of the Related Art

In a computer system, Random Access Memory (RAM)
contains the mnstructions or program to execute and the data
necessary to execute those instructions. The resulting data
from execution of the program code 1s also stored back into
the RAM.

Modern computer systems use a Virtual Memory Manager
(VMM) to provide on-demand paging to extend the size of
memory. Such computer systems provide this feature because
only the actual instructions and data required at a given point
in time for execution need to reside 1n memory. The remain-
ing portions of a program’s instructions may be stored on disk
until they are needed. The space where such instructions are
stored 1s sometimes called paging space. Such a system can
be complicated when there are multiple applications that run
concurrently, or otherwise compete to use system resources.

System architects divide memory 1nto units, often of equal
s1zes. These units are referred to as pages or frames. When a
portion of a program’s code or data 1s needed in RAM, 1t will
be brought 1n one page at a time. Similarly, when a portion of
a program or data 1s no longer needed 1n RAM it will be
removed from the RAM to make room for other instructions
or data. Thus, a memory page 1s a virtual block of storage, 1n
either physical memory or persistent storage. Physical
memory 1s volatile storage, such as, for example, RAM. Per-
sistent storage 1s memory that requires no refreshing current
to maintain data within the device.

The VMM manages the translation between the effective
s1ze of memory and the physical size of memory. The effec-
tive size of memory 1s also called the effective memory
address range. The physical size of memory 1s also called the
physical memory address range. The VMM maintains a map,
which 1s used to translate the effective address of a page to the
physical location of that page in RAM. This feature 1s known
as a page translation. The entries in this map are called Page
Translation Entries (PTE). When an effective memory
address 1s accessed, which 1s not 1n physical memory, a page
tault occurs. To satisiy the page fault and allow execution to
continue, a memory page in physical memory will be selected
tor replacement 11 there are no free pages 1 physical memory.
A page fault 1s an interrupt or an exception to the software
raised by the undergirding hardware to indicate that a
memory page mapped in address space 1s not resident 1n a
particular place of physical memory. The reasons for the fault
may vary. For example, the memory page may only be present
in persistent storage and not found in physical memory. A
page fault may also occur when a memory page 1s present in
physical memory, but its status 1s not updated as present in
hardware, at least with respect to the particular place ol physi-
cal memory to which the memory page had primarily been
assigned.

The VMM 1s responsible for steps such as selecting the
memory page to replace, removing the contents of that page
out of RAM, removing the PTE, loading the replacement

10

15

20

25

30

35

40

45

50

55

60

65

2

memory page into physical memory, and adding a PTE. The
data processing system continues program execution follow-
ing these steps.

The VMM can use a variety of page replacement criteria
when selecting memory pages in physical memory to be
replaced with newly requested data. These criteria may be
based on, for example, freshness of memory page access, and
a number of times the memory page has been brought back
into physical memory (re-paged). One example of a page
replacement policy 1s based on a Least Recently Used (LRU)
algorithm. Further examples may use LRU as a weighting
factor 1n determining whether to remove a memory page as
compared to other potential candidate pages. In some cases,
many memory pages will need to be examined in RAM before
suitable candidate pages for paging-out can be found. A can-
didate page 1s a memory page that 1s selected by a data
processing system’s page replacement software for paging-
out to persistent storage when the next page-out cycle occurs.
Paging-out 1s an operation where the contents of a physical
memory corresponding to the memory page are copied to
persistent storage, and optlonally, a status bit 1s set to indicate
that the physical memory 1s unused. Various user-tunable
thresholds influence the operation of the page-replacement
algorlthm Such thresholds include, for example, miniree, the
minimum acceptable number of real memory page frames in
the free list, and maxiree, the maximum size to which the free
list will grow by VMM page stealing.

Finding a suitable candidate page in physical memory to
replace can be a lengthy process. In addition, paging-out of a
memory page from physical memory can be a lengthy process
since the contents of the memory page being paged-out are
saved to persistent storage 1f 1ts contents have changed since
being loaded 1nto the physical memory. Accordingly, process
improvements may occur if a list of candidate pages were
limited to a more compact set of better candidates for paging
out.

SUMMARY OF THE INVENTION

The present mvention provides a computer implemented
method, data processing system, and computer program
product for paging-out memory pages 1n a virtual memory
system. The method comprises software components detect-
ing a page fault of a memory page. In response to detecting a
page fault, the software components determine whether the
memory page 1s referenced in the preselect list and unhide the
memory page. Upon determining whether the memory page
1s referenced in the preselect list, the software components
remove an entry of the preselect list corresponding to the
memory page to form at least one removed candidate page
and skip paging-out of the at least one removed candidate

page.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objectives
and advantages thereot, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 1s a data processing system 1n accordance with an
illustrative embodiment of the invention;

FIG. 2A shows a pair of data structures used to track
memory pages for paging-out in accordance with an illustra-
tive embodiment of the invention;

US 8,417,903 B2

3

FIG. 2B 1s a preselect list and virtual memory occupied by
memory pages in accordance with an illustrative embodiment
of the invention;

FIG. 2C shows a state of the preselect list and page frame
table at a time after FI1G. 2B 1n accordance with an illustrative
embodiment of the invention;

FIG. 3A 1s a flowchart performed by software components
to maintain the preselect list in accordance with an 1llustrative
embodiment of the invention; and

FI1G. 3B 1s a flowchart of steps to page-out candidate pages
found 1n the preselect list in accordance with an 1illustrative
embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference now to the figures and 1n particular with
reference to FIG. 1, a block diagram of a data processing,
system 1s shown 1n which aspects of an illustrative embodi-
ment may be implemented. Data processing system 100 1s an
example of a computer, 1n which code or 1nstructions 1mple-
menting the processes of the present mvention may be
located. In the depicted example, data processing system 100
employs a hub architecture including a north bridge and
memory controller hub (NB/MCH) 102 and a south bridge
and mput/output (I/0) controller hub (SB/ICH) 104. Proces-

sor 106, main memory 108, and graphics processor 110 con-
nect to north bridge and memory controller hub 102. Graphics
processor 110 may connect to the NB/MCH through an accel-
erated graphics port (AGP), for example.

In the depicted example, local area network (L AN) adapter
112 connects to south bridge and 1/O controller hub 104 and
audio adapter 116, keyboard and mouse adapter 120, modem

122, read only memory (ROM) 124, hard disk drive (HDD)
126, CD-ROM drive 130, universal serial bus (USB) ports
and other communications ports 132, and PCI/PCle devices

134 connect to south bridge and I/O controller hub 104
through bus 138 and bus 140. PCI/PCle devices may include,
tor example, Ethernet adapters, add-in cards, and PC cards for
notebook computers. PCI uses a card bus controller, while

PCle does not. ROM 124 may be, for example, a flash binary
input/output system (BIOS). Hard disk drive 126 and CD-
ROM drive 130 may use, for example, an integrated drive

clectronics (IDE) or serial advanced technology attachment
(SATA) mterface. A super I/O (S10) device 136 may be
connected to south bridge and I/O controller hub 104.

An operating system runs on processor 106 and coordi-
nates and provides control of various components within data
processing system 100 1n FIG. 1. The operating system may
be a commercially available operating system such as
Microsoit® Windows® XP. Microsoft and Windows are
trademarks of Microsoit Corporation in the United States,
other countries, or both. An object oriented programming
system, such as the Java™ programming system, may run in
conjunction with the operating system and provides calls to
the operating system from Java™ programs or applications
executing on data processing system 100. Java™ 1s a trade-
mark of Sun Microsystems, Inc. in the United States, other
countries, or both.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as hard disk drive 126, and
may be loaded 1into main memory 108 for execution by pro-
cessor 106. The processes of the present mvention can be
performed by processor 106 using computer implemented

10

15

20

25

30

35

40

45

50

55

60

65

4

instructions, which may be located 1n a memory such as, for
example, main memory 108, read only memory 124, or in one
or more peripheral devices.

Those of ordmary skill in the art will appreciate that the
hardware 1n FIG. 1 may vary depending on the implementa-
tion. Other internal hardware or peripheral devices, such as
flash memory, equivalent non-volatile memory, and the like,
may be used 1n addition to or in place of the hardware depicted
in FI1G. 1. In addition, the processes of the illustrative embodi-
ments may be applied to a multiprocessor data processing
system.

In some 1illustrative examples, data processing system 100

may be a personal digital assistant (PDA), which 1s config-
ured with tlash memory to provide non-volatile memory for
storing operating system files and/or user-generated data. A
bus system may be comprised of one or more buses, such as
a system bus, an I/O bus and a PCI bus. Of course, the bus
system may be implemented using any type of communica-
tions fabric or architecture that provides for a transfer of data
between different components or devices attached to the fab-
ric or architecture. A communication unit may include one or
more devices used to transmit and recetve data, such as a
modem or a network adapter. A memory may be, for example,
main memory 108 or a cache such as found 1n north bridge
and memory controller hub 102. A processing unit may
include one or more processors or CPUs. The depicted
example 1n FIG. 1 1s not meant to imply architectural limita-
tions. For example, data processing system 100 also may be a
tablet computer, laptop computer, or telephone device in
addition to taking the form of a PDA.
The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an”, and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
turther understood that the terms “comprises” and/or “com-
prising,” when used 1n this specification, specity the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
clements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements 1n the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present mvention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described 1n order to best explain the principles of the mven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

As will be appreciated by one skilled 1n the art, the present
invention may be embodied as a system, method or computer
program product. Accordingly, the present mmvention may
take the form of an entirely hardware embodiment, an entirely
soltware embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “‘circuit,” “module”, or “system.” Furthermore, the
present invention may take the form of a computer program

US 8,417,903 B2

S

product embodied 1n any tangible medium of expression hav-
ing computer usable program code embodied 1n the medium.

Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, inirared, or semiconductor system, apparatus,
device, or propagation medium. More specific examples (a
non-exhaustive list) of the computer-readable medium would
include the following: an electrical connection having one or
more wires, a portable computer diskette, a hard disk, a ran-
dom access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a transmission
media such as those supporting the Internet or an intranet, or
a magnetic storage device. Note that the computer-usable or
computer-readable medium could even be paper or another
suitable medium upon which the program 1s printed, as the
program can be electronically captured, via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, or otherwise processed 1n a suitable man-
ner, 1f necessary, and then stored 1n a computer memory. In the
context of this document, a computer-usable or computer-
readable medium may be any medium that can contain, store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system, appa-
ratus, or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code embodied therewith, either 1n baseband or as part of a
carrier wave. The computer usable program code may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc.

Computer program code for carrying out operations of the
present invention may be written 1n any combination of one or
more programming languages, mcluding an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

The present invention 1s described below with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart i1llustrations and/or block
diagrams, and combinations of blocks in the flowchart 1llus-
trations and/or block diagrams, can be implemented by com-
puter program mstructions. These computer program instruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified 1n the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable medium that can direct a computer or
other programmable data processing apparatus to function 1in

10

15

20

25

30

35

40

45

50

55

60

65

6

a particular manner, such that the mstructions stored in the
computer-readable medium produce an article of manufac-
ture including mstruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the tflowchart and/or block diagram
block or blocks.

The aspects of the illustrative embodiments provide a com-
puter implemented method, data processing system, and
computer program product for reducing a number of memory
pages that are paged-out during a replacement page cycle.
Removed candidate pages that had been formerly available 1n
a preselect list are 1gnored for purposes of paging-out.

FIG. 2A shows a pair of data structures used to track
memory pages for paging-out in accordance with an illustra-
tive embodiment of the invention. The structures include a
preselect list 210, and virtual memory 200. A preselect list 1s
a list of page references that identity addresses in virtual
memory. An entry of the preselect list may be a virtual
memory page reference and may include a valid bit. A refer-
ence 1s an address that directly 1dentifies a virtual memory
address such that a processor may use the address to access
the memory. The valid bit can indicate whether the entry
continues reference a valid candidate page for re-paging.
Accordingly, in some illustrative embodiments of the mnven-
tion, the preselect list may contain a list of candidate pages
that are marked for paging-out.

Each entry of preselect list 210 can be orgamized according,
to virtual page reference 215. The virtual memory 200 and
preselect list 210 are empty 1n FI1G. 2A.

Virtual memory 200 comprises virtual memory pages, for
example, virtual memory page 221. Each memory page has
reference bit 223 associated with 1t. A reference bit1s a bit that
1s set by the Virtual Memory Manager (VMM) or other soft-
ware component whenever the page 1s accessed. Reference
bits may indicate a status for the virtual memory page con-
cerning whether the virtual memory page has been retferenced
in a recent period, or whether the physical memory page has
been modified in a recent period. When a soitware component
hides a memory page, it omits associated translations for the
memory page. Accordingly, hiding the memory page may
force an address translation to occur when accessing the
memory page. Memory pages referenced by the preselect list
can be hidden 1n this manner.

FIG. 2B 1s a preselect list and virtual memory occupied by
memory pages 1n accordance with an 1llustrative embodiment
of the invention. As such, FIG. 2B represents a condition of
memory after a time 1llustrated 1n FIG. 2A. Virtual memory
pages may be in use, but hidden. Such physical memory pages
include virtual memory page 1 2351, virtual memory page 2
252, virtual memory page 3 253, and virtual memory page 4
254. Such pages are not tracked by the VMM, but instead are
locatable by using a page fault handler and corresponding
references 1n preselect list 210. Arrows provided 1n FIG. 2B
signal the manner in which a virtual page reference actually
refers to a virtual page.

I[lustrative embodiments of the invention may establish the
preselect list to include four candidate pages for paging-out,
namely candidate page A 261, candidate page B 262, candi-
date page C 263, and candidate page D 264. Each candidate

US 8,417,903 B2

7

page references virtual memory page 1 231, virtual memory
page 2 252, virtual memory page 3 253, and virtual memory
page 4 254, respectively.

FIG. 2C shows a state of the preselect list and page frame
table at a time after FIG. 2B in accordance with an illustrative
embodiment of the invention. At this time, the page fault
handler has recently accessed virtual memory page 2 252.
The absence of a valid candidate page B pointing to virtual
memory 1s represented in a dashed arrow.

For embodiments that track valid preselect entries by set-
ting or resetting valid bits, a software component can reset
such a bit to binary ‘0”. Thus, the entry 1n the preselect l1st 210
entry corresponding virtual memory page 2 252, that 1s, the
entry holding candidate page B 262, can have a corresponding
valid bit reset to “not valid”. Resetting may mvolve setting a
bit to a binary ‘0’, which, accordingly, may represent a state
of “not valid”. In effect, the resetting of the entry of candidate
page B 262 removes the preselect list entry containing the
reference to virtual memory page 2 252. Those skilled in the
art will appreciate that additional ways to remove a preselect
list may be used. Accordingly, the embodiments of the mnven-
tion are not limited by the manner 1n which a preselect list
entry 1s removed.

The process steps, described below, may be performed by
two or more processes operating asynchronously but coop-
eratively. One process may be a process that runs continu-
ously for as long as a system operates without rebooting. This
process may be, for example, a daemon used to add virtual
memory pages to a preselect list. In addition, the process steps
below may be 1n part performed by one or more applications
that signal or otherwise identify candidate pages not suitable
for paging out. The steps of FIGS. 3A and 3B, below, may be
prefaced by a page replacement daemon adding candidate
pages to a preselect list.

FIG. 3A 1s a lowchart performed by software components
to maintain the preselect list in accordance with an illustrative
embodiment of the invention. The software components may
include a daemon running in the operating system of, for
example, data processing system 100 of FIG. 1. The daemon
can be, for example, a page replacement daemon. Initially the
data processing system accesses a virtual memory page (step
311). Next, the data processing system determines whether a
page fault has occurred (step 313). If no page fault occurred,
the data processing system may continue to access memory
pages at step 311. However, if a page fault occurred, the data
processing system may determine whether the memory page
corresponding to the page fault has a counterpart physical
page that continues to hold valid data of the memory page.
The data processing system determines 11 a hidden page 1s still
in physical memory (step 315) such that the hidden page 1s the
backing store of the page-faulting memory page. This step
may be performed by a process that runs on the data process-
ing system. Nevertheless, this step 1s distinct from the process
that determines a page fault in step 313.

A negative determination at step 315 causes processing to
terminate. However, a positive determination may cause the
data processing system to unhide the memory page (step
317). Next, the data processing system determines whether
the physical page 1s referenced 1n the preselect list (step 319).
The preselect list can be, for example, and indexed array, a
linked list, or the like. If the memory page 1s not referenced by
the preselect list, then the data processing system stops pro-
cessing the steps of the flowchart. Generally, the data process-
ing system performs a remove operation on the entry of the
preselect list that references the physical page as determined
in step 319. For example, a positive result at step 319 can
cause the data processing system to remove the virtual

10

15

20

25

30

35

40

45

50

55

60

65

8

address entry from the preselect list (step 321). Step 321 may
be performed 1n a number of different ways. For example, the
data processing system may be using a linked list as a prese-
lect list. Accordingly, an entry stored by a node in the linked
list may be removed by adjusting pointer references of neigh-
boring nodes to the list to skip the removed node. Alternatives
to this housekeeping function can include adjusting entries in
an array to remove the selected entry. Removed entries are
skipped over or otherwise not considered when determining
candidate pages for paging out, as explained further in the
flowchart of FIG. 3B, below. It 1s appreciated that steps 317
through 321 can be performed by an application that uses the
memory page. In effect, the application shortens the list of
pages to be paged-out. As a result, I/O efficiency can be
improved by causing fewer pages to page out than otherwise
would occur. In addition, since pages removed from the pre-
select list are themselves highly likely to be used again by an
associated process or application, the I/O subsystem 1s also
protected from having to page-1n pages removed from the list
by step 321. Importantly, though the flowchart above shows
continuity from one step to the next, each step can be sepa-
rated periods of varying lengths based on availability of sys-
tem resources and number of processes competing for such
resources. Various schemes to provide for parallelism or
cooperation between processes can make each step occur
asynchronously and 1n response to signals sent between and
among several processes.

FIG. 3B 1s a flowchart of steps to page-out candidate pages
found 1n the preselect list in accordance with an 1illustrative
embodiment of the mmvention. The data processing system
may begin by determining whether one or more entries exist
in a preselect list (step 329). A negative outcome results 1in the
process terminating thereatfter. If the data processing system
determines one or more entries exist, the data processing
system determines 11 an event or other indication triggers the
time to page-out a block of candidate pages (step 331). If not,
the data processing system may repeatedly check for the time
to page-out blocks 1 accordance with user-tuned thresholds.
The determination made at step 331 can determine that 1t 1s
time to page-out a block of candidate pages, that 1s, the data
processing system reaches a positive determination. This
determination may be because suificient processing band-
width exists on an I/O subsystem to perform paging. Next, the
data processing system may obtain the next candidate page in
the preselect list (step 333). The data processing system may
determine that entries for candidate pages are exhausted (step
335). If so, processing terminates thereafter. IT not, the data
processing system may remove the candidate page reference
from the preselect list (step 341). A removed candidate page
1s a candidate page removed 1n this manner. Next, the data
processing system may page-out remaining candidate page
references from the preselect list (step 343). Accordingly, the
data processing system may skip paging-out removed candi-
date pages. Processing terminates thereafter.

Steps 329 through 341 may be performed by a software
component that cooperates with a virtual memory manager.
The actual page-out step, step 343, can be performed by the
virtual memory manager.

In addition, a software component may prepare the prese-
lect list by determining 1f the memory page 1s a candidate
page for paging-out. Such a process can be described as
preselection. Responsive to that determination, the software
component may hide or otherwise mark as hidden the
memory page. The software component can add a virtual
page reference entry to the preselect list as a reference to the
memory page.

US 8,417,903 B2

9

It 1s appreciated that the preselect list may be formed from
a linked list that includes a page reference at each node of the
linked l1st. Nodes that are to be removed can be unlinked from
such a linked list embodiment. Similarly, the addition of a
new node or entry to the preselect list may involve adding an
additional node to one end of the underlying linked list data
structure. It 1s appreciated that the embodiments are not lim-
ited merely to arrays and linked lists, and that other suitable
data structures known 1n the art may be used as alternatives to
these implementations of a preselect list.

The 1llustrative embodiments of the mmvention permit a
soltware component to efficiently begin paging-out pages by
relying on a preselect list. A preselect list may be prepared
ahead of a page-out so that rescanning may be minimized.
Scanning and rescanning 1s the process of looking for candi-
date pages 1n order to replace such pages in physical memory.
The illustrative embodiments of the invention create a prese-
lect list of such candidate pages so that further evaluation 1s
limited only to such candidate pages prior to paging-out one
or more such candidate pages. Accordingly, since candidate
pages can be already referenced via the preselect list, scan-
ning 1s no longer required. The embodiments of the invention
may reduce the occurrence of paging-out pages that are still
needed.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, 1n some alternative imple-
mentations, the functions noted 1n the block may occur out of
the order noted 1n the figures. For example, two blocks shown
in succession may, in fact be executed substantially concur-
rently, or the blocks may sometimes be executed inthe reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or tlowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

The mvention can take the form of an enftirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention 1s implemented 1n soft-
ware, which includes but 1s not limited to firmware, resident
software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer readable medium can be any tangible
apparatus that can contain, store, communicate, propagate, or
transport the program for use by or 1n connection with the
instruction execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
or device) or a propagation medium. Examples of a computer-
readable medium 1include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of

10

15

20

25

30

35

40

45

50

55

60

65

10

optical disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories, which provide temporary stor-
age of at least some program code 1n order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/0 control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Fthernet cards are just a few of the currently
available types of network adapters.

The description of the present invention has been presented
for purposes of 1illustration and description, and i1s not
intended to be exhaustive or limited to the invention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill 1n the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:

1. A method for maintaining a preselect list, the method
comprising: a computer detecting a page fault of a memory
page;

the computer, responsive to detecting the page fault, deter-

mining whether the memory page 1s referenced 1n the
preselect list, wherein the preselect list comprises a list
of page references which i1dentity addresses in virtual
memory; the computer, responsive to a determination
that the memory page 1s referenced in the preselect list,
unhiding the memory page; the computer, responsive to
the determination that the memory page 1s referenced 1n
the preselect list, removing an entry of the preselect list
corresponding to the memory page to form at least one
removed candidate page; the computer skipping paging-
out of the at least one removed candidate page; the
computer determining 1f the memory page 1s a candidate
page for paging-out; responsive to a determination that
the memory page 1s a candidate page for paging-out, the
computer hiding the memory page, wherein hiding com-
prises setting a valid bit to an 1nvalid indication in the
preselect list; and the computer adding the entry to the
preselect list, the entry having a reference to the memory
page.

2. The method of claim 1, further comprising: obtaining the
entry on the preselect list; determining 11 a valid bit 1s reset,
wherein the valid bit 1s reset contemporaneously with remov-
ing the entry; and responsive to a determination that the valid
bit 1s reset, skipping paging-out the physical page referenced
by the entry.

3. A method for mamtaiming a preselect list, the method
comprising: a computer detecting a page fault of a memory
page;

the computer, responsive to detecting the page fault, deter-

mining whether the memory page 1s referenced 1n the
preselect list, wherein the preselect list 1s an array of at

US 8,417,903 B2

11

least one entry, each entry having a virtual memory page
reference and a valid bit; the computer, responsive to a
determination that the memory page is referenced in the
preselect list, unhiding the memory page; the computer,
responsive to the determination that the memory page 1s
referenced 1n the preselect list, removing an entry of the
preselect list corresponding to the memory page to form
at least one removed candidate page; the computer skip-
ping paging-out of the at least one removed candidate
page;

the computer determiming 1f the memory page 1s a candi-

date page for paging-out;

responsive to a determination that the memory page 1s a

candidate page for paging-out, the computer hiding the
memory page, wherein hiding comprises setting a valid
bit to an 1nvalid indication 1n the preselect list; and the
computer adding the entry to the preselect list, the entry
having a reference to the memory page.

4. The method of claim 1, further comprising: obtaining a
second entry of the preselect list; and responsive to obtaining
the second entry, paging-out the page referenced by the sec-
ond entry.

5. The method of claim 4, wherein the preselect list 1s a
linked list of entries, each entry having a memory page ret-
erence.

6. The method of claim 5, wherein removing the entry from
the preselect list comprises unlinking the entry from the pre-
select list.

7. A computer program product for maintaining a preselect
list, the computer program product comprising: a non-transi-
tory computer readable storage device having computer
usable program code embodied therewith, the computer pro-
gram product comprising: computer usable program code
configured to detect a page fault of a memory page; computer
usable program code configured to determine whether the
memory page 1s referenced in the preselect list, wherein the
preselect list comprises a list of page references which iden-
tify addresses 1n virtual memory; computer usable program
code configured to unhide the memory page, responsive to a
determination that the memory page 1s referenced 1n the pre-
select list; computer usable program code configured to
remove an entry of the preselect list corresponding to the
memory page, responsive to a determination that the memory
page 1s referenced 1n the preselect list, removing the entry to
form at least one removed candidate page; computer usable
program code configured to skip paging-out of the at least one
removed candidate page; computer usable program code con-
figured to determine 11 the memory page 1s a candidate page
for paging-out; computer usable program code configured to
hide the memory page, responsive to a determination that the
memory page 1s a candidate page for paging-out, wherein
hiding comprises setting a valid bit to an 1mnvalid indication in
the preselect list; and computer usable program code config-
ured to add the entry to the preselect list, the entry having a
reference to the memory page.

8. The computer program product of claim 7, further com-
prising;:

computer usable program code configured to obtain the

entry on the preselect list;
computer usable program code configured to determine 11
the valid bit 1s reset, wherein the valid bit 1s reset con-
temporaneously with removing the entry; and

computer usable program code configured to skip paging-
out the physical page referenced by the entry responsive
to a determination that the valid bit 1s reset.

9. A computer program product for maintaining a preselect
list, the computer program product comprising: a non-transi-

10

15

20

25

30

35

40

45

50

55

60

65

12

tory computer readable storage device having computer
usable program code embodied therewith, the computer pro-
gram product comprising: computer usable program code
configured to detect a page fault of a memory page; computer
usable program code configured to determine whether the
memory page 1s referenced in the preselect list, wherein the
preselect list is an array of at least one entry, each entry having
a virtual memory page reference and a valid bit; computer
usable program code configured to unhide the memory page,
responsive to a determination that the memory page is refer-
enced 1n the preselect list; computer usable program code
configured to remove an entry of the preselect list correspond-
ing to the memory page, responsive to a determination that the
memory page 1s referenced 1n the preselect list, removing the
entry to form at least one removed candidate page; computer
usable program code configured to skip paging-out of the at
least one removed candidate page; computer usable program
code configured to determine 1f the memory page 1s a candi-
date page for paging-out; computer usable program code
configured to hide the memory page, responsive to a deter-
mination that the memory page 1s a candidate page for pag-
ing-out, wherein hiding comprises setting a valid bit to an
invalid indication in the preselect list; and computer usable
program code configured to add the entry to the preselect list,
the entry having a reference to the memory page.

10. The computer program product of claim 7, further
comprising: computer usable program code configured to
obtain a second entry on the preselect list; and computer
usable program code configured to page-out the physical
page referenced by the entry responsive to obtaining the sec-
ond entry.

11. The computer program product of claim 10, wherein
the preselect list 1s a linked list of entries, each entry having a
memory page reference.

12. The computer program product of claim 11, wherein
removing the entry from the preselect list comprises unlink-
ing the entry from the preselect list.

13. A data processing system comprising: a bus; a storage
device connected to the bus, wherein computer usable code 1s
located 1n the storage device; a communication unit con-
nected to the bus; a processing unit connected to the bus,
wherein the processing unit executes the computer usable
code for maintaining a preselect list, wherein the preselect list
comprises a list of page references which 1dentity addresses
in virtual memory and wherein the processing unit executes
the computer usable program code to detect a page fault of a
memory page; determine whether the memory page is refer-
enced 1n the preselect list responsive to detecting the page
fault; unhide the memory page responsive to a determination
that the memory page 1s referenced 1n the preselect list;
remove an entry of the preselect list corresponding to the
memory page to form at least one removed candidate page,
responsive to the determination that the memory page 1s ref-
erenced 1n the preselect list; skip paging-out of the at least one
removed candidate page; determine 11 the memory page 1s a
candidate page for paging-out; hide the memory page,
responsive to a determination that the memory page 1s a
candidate page for paging-out, wherein hiding comprises set-
ting a valid bit to an invalid indication 1n the preselect list; and
add the entry to the preselect list, the entry having a reference
to the memory page.

14. The data processing system of claim 13, wherein the
processing unit processor further executes computer usable
code to obtain the entry on the preselect list; determine 11 a
valid bit 1s reset, wherein the valid bit 1s reset contemporane-

US 8,417,903 B2

13

ously with removing the entry; and skip paging-out the physi-
cal page referenced by the entry responsive to a determination
that the valid bit 1s reset.

15. A data processing system comprising: a bus; a storage
device connected to the bus, wherein computer usable code 1s
located 1n the storage device; a communication unit con-
nected to the bus; a processing unit connected to the bus,
wherein the processing unit executes the computer usable
code for maintaining a preselect list, wherein the preselect list
1s an array of at least one entry, each entry having a virtual
memory page reference and a valid bit and wherein the pro-
cessing unit executes the computer usable program code to
detect a page fault of a memory page; determine whether the
memory page 1s referenced in the preselect list responsive to
detecting the page fault; unhide the memory page responsive
to a determination that the memory page 1s referenced 1n the
preselect list; remove an entry of the preselect list correspond-
ing to the memory page to form at least one removed candi-
date page, responsive to the determination that the memory
page 1s referenced 1n the preselect list; skip paging-out of the

10

15

14

at least one removed candidate page; determine 1 the memory
page 1s a candidate page for paging-out; hide the memory
page, responsive to a determination that the memory page 1s
a candidate page for paging-out, wherein hiding comprises
setting a valid bit to an invalid indication 1n the preselect list;
and add the entry to the preselect list, the entry having a
reference to the memory page.

16. The data processing system of claim 13, wherein the
processing unit processor further executes computer usable
code to obtain a second entry on the preselect list; and page-
out the physical page referenced by the second entry respon-
s1ve to obtaining the second entry.

17. The data processing system of claim 16, wherein the
preselect list 1s a linked list of entries, each entry having a
memory page reference.

18. The data processing system of claam 17, wherein
removing the entry from the preselect list comprises unlink-
ing the entry from the preselect list.

	Front Page
	Drawings
	Specification
	Claims

