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AUDIO IDENTIFICATION USING
WAVELET-BASED SIGNATURES

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 60/823,881, filed Aug. 29, 2006, and entitled
“Waveprint: Efficient Wavelet-Based Audio Fingerprinting,”
the content of which 1s hereby incorporated by reference 1n its
entirety.

BACKGROUND

The advent of highly distributable, high volume data stor-
age has allowed for the storage of vast amounts of information
on a variety of topics and 1n a variety of forms such as text,
images, music, and videos.

The availability and ease of communications continues to
increase. Accompanying this increase 1s an interest 1n coms-
bining various communications with additional information.
For example, an individual may hear one communication
(e.g. a song) and want to know additional information, such as
the song title, artist, etc. about what was heard.

The problem of efficiently finding similar items 1n a large
corpus of high-dimensional data points arises 1n many real-
world tasks, such as music, image, and video retrieval.
Beyond the scaling difficulties that arise with lookups 1n large
data sets, the complexity 1n these domains 1s exacerbated by
an 1mprecise definition of similarity. Capturing items can
introduce anomalies that are not similar across capture
mechanisms and can be atfiected by the capture environment,
adding additional complexity.

SUMMARY

In one aspect, a method 1s described that includes 1nitial-
1zing one or more data repositories and evaluating a target
sample. Initializing one or more data repositories includes
providing one or more samples to a data processing system,
converting the audio portion of each sample to a spectrogram,
creating one or more itensity images from the spectrogram,
computing wavelets for each intensity image, selecting the
top wavelet coellicients, and storing the top wavelet coetli-
cients 1n one or more data repositories. Evaluating a target
sample includes providing the target sample to a data process-
ing system, converting the audio portion of the target sample
to a spectrogram, creating one or more mtensity images from
the spectrogram, computing wavelets for each intensity
image, selecting the top wavelet coellicients, and locating
matching samples in the one or more data repositories using,
the top wavelet coelflicients of the intensity images of the
target sample.

The steps of converting, creating, computing, selecting,
and storing can be repeated a plurality of times.

The samples and target sample can be audio samples. The
samples and target sample can be multi-media samples
including audio.

Locating matching samples in the one or more data reposi-
tories using the top wavelet coellicients of the target sample
can mnclude comparing the top wavelet coellicients of one or
more 1mages of the target sample with the top wavelet coet-
ficients of the samples stored 1n the one or more data reposi-
tories, determining the samples that match the images, and
identifying the target sample based on the samples from the
one or more data repositories that have the greatest number of
matches with the one or more 1mages.

10

15

20

25

30

35

40

45

50

55

60

65

2

Locating matching samples 1n the one or more data reposi-
tories using the top wavelet coellicients of the target sample
can mnclude comparing the top wavelet coellicients of one or
more 1images of the target sample with the top wavelet coet-
ficients of the samples stored 1n the one or more data reposi-
tories, constructing the temporal order of the images of the
target sample, determining the samples that match the
images, and identifying the target sample based on the
sequential ordering of the one or more 1images of the target
sample.

Locating matching samples 1in the one or more data reposi-
tories using the top wavelet coetlicients of the target sample
can include comparing a representation of the top wavelets of
one or more 1mages of the target sample with a representation
of the top wavelets of the samples stored 1n the one or more
data repositories, determining the samples that have matching
representations, comparing the top wavelet coelficients of
one or more 1images of the target sample with the top wavelet
coellicients of the identified samples, and identifying the
target sample based on the samples from the one or more data
repositories that have the greatest number of matches with the
one or more 1mages.

Comparing arepresentation o the top wavelets can include
using a hashing process. Comparing a representation of the
top wavelets can include using a compression process. Com-
paring a representation of the top wavelets may include a
comparison process using Min-Hash and LSH.

Initializing one or more data repositories can include pro-
viding corpus samples to a data processing system and plac-
ing each sample 1n the data repositories in accordance with
the top wavelet coellicients computed by the data processing
system.

In another aspect, a method 1s described including provid-
ing a target sample including audio, producing a spectrogram
of the audio portion, and computing wavelet coelficients for
the spectrogram. The method can also include matching
wavelet coelficients of the target sample against samples
including wavelet coelficients in one or more data reposito-
ries, and 1dentifying the target sample.

Computing wavelet coetficients can include producing an
intensity image from the spectrogram and using the intensity
image to create the wavelet coellicients of the spectrogram.
Computing wavelet coellicients can include selecting the top
wavelets of the wavelet representation. The top wavelets can
include less than about 20% of the total wavelets. The top
wavelets can include less than about 10% of the total wave-
lets.

Matching can include comparing the top wavelet coelli-
cients ol one or more 1mages of the target sample with the top
wavelet coelficients of the samples stored in the one or more
data repositories, and determining the samples that match the
images. Matching can include comparing a representation of
the top wavelets of one or more 1mages of the target sample
with a representation of the top wavelets of the samples stored
in the one or more data repositories, and determining the
samples that have matching representations. Matching can
include using a hashing process.

Identifying can include constructing the temporal order of
the 1mages of the target sample, and 1dentitying the target
sample based on the sequential ordering of the images of the
target sample.

In another aspect a method 1s described including convert-
ing the audio portion of one or more samples to one or more
representations including wavelet coelficients, inmitializing a
data repository including storing the one or more representa-
tions of samples that are to be included as entries in the data
repository, and evaluating a target sample for a match to the
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samples 1n the data repository including locating one or more
matches 1n the data repository using wavelet coetlicients of
the target sample and wavelet coellicients of the samples in
the data repository.

Evaluating can include comparing compressed representa-
tions of the wavelet coellicients, can include comparing top
wavelet coellicients of the target sample and top wavelet
coellicients of the samples 1n the data repository, or can
include comparing representations of the wavelet coetli-
cients.

In another aspect, a method 1s described including produc-
ing an audio spectrogram from a target sample, creating one
or more 1mntensity images from the spectrogram, generating a
number of target representations based on the one or more
intensity 1mages, matching the representations with sample
representations in a data repository, and identifying the target
sample based on the matches found 1n the data repository.

The representations can be based on wavelet coetlicients.
Matching can include matching compressed or reduced ver-
sions of the representations. Identifying can include using a
cumulative voting scheme of the samples matched in the data
repository over the target representations. Identifying can
include using a temporal constraint of the sample represen-
tations matched in the data repository over the target repre-
sentations. Dynamic programming can be used to determine
the temporal constraints.

In another aspect, an apparatus 1s described including
means for imtializing a data repository including mapping
samples that are to be included as entries in the data repository
to locations 1n the data repository using wavelet coetlicients
of the audio portion of each sample, and means for evaluating
a target sample for a best match to the samples 1n the data
repository mncluding using wavelet coelficients of the audio
portion of the target sample to 1dentily one or more matches
in the data repository.

In another aspect, a method 1s described including convert-
ing the audio portion of one or more samples to one or more
representations, mitializing a data repository mcluding stor-
ing the one or more representations of samples that are to be
included as entries 1n the data repository, and evaluating a
target sample for a match to the samples 1n the data repository
including utilizing hashing in combination with a voting
scheme having a threshold value greater than 1 to reduce the
number of possible matches of the samples 1n the data reposi-
tory.

There exists aneed to 1dentily and/or retrieve similar audio,
image and video data from extensive corpuses ol data. The
large number of elements 1n the corpuses, the high dimen-
sionality of the points, and the imprecise nature of “similar”
make this task challenging in real world systems. In addition,
real world effects, introduced by the sampling environment,
sampling device, transmission, etc. can affect the data used.
These etlects can include increased noise, competing signals,
signal degradation, low signal strength, and signal modifica-
tion. These may be present due to signal capturing, which
may be accomplished by capturing an audio signal using a
microphone (such as with a cell phone, hand held device,
etc.), by digital transter, or by signal capturing by a presen-
tation device (such as a query based on a radio, television, or
digital transmission). One or more of these difficulties can be
overcome as will be discussed below.

The details of one or more implementations of the mven-
tion are set forth in the accompanying drawings and the
description below. Other features, objects, and advantages of
the mnvention will be apparent from the description and draw-
ings, and from the claims.
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4
DESCRIPTION OF DRAWINGS

FIG. 1 1s a flow chart illustrating an exemplary method for
processing audio samples.

FIG. 2 1s a flow chart illustrating an exemplary method for
processing and comparing audio samples.

FIG. 3 1s a flow chart illustrating an exemplary method for
comparing representations.

FIG. 4 1s a block diagram 1illustrating an exemplary system
for processing and comparing audio samples.

FIG. 5 1s a block diagram of an example of a generic
computer system.

Like reference symbols 1n the various drawings indicate
like elements.

DETAILED DESCRIPTION

A system for finding similar sounding matches 1n a data
repository using representations of samples for matching 1s
described. The system takes an audio signal and converts 1t to
a series of representations. These representations can be a
small set of wavelet coelficients. The system can store the
representations, and the representations can be used for
matching purposes.

The benefits of using this approach include the ability to
match songs and samples taken under a variety of condi-
tions—such as when transmission 1s poor, when noise 1s
added to the sample, when there 1s another song playing in the
background, when a song 1s encoded 1n any of the numerous
possible standards (such as WAV, mps, real, etc.), when any
standard 1s used with different compression/quality settings,
ctc. In addition, the system 1s able to match or identify target
samples even when there have been perturbations/distortions
in the sample—such as poor recording conditions, increased
or decreased bass or treble levels, time-scale modification, or
other change.

FIG. 1 1s a flow chart illustrating an exemplary method for
processing audio samples.

A method 100 will be described in reference to a data
processing system that implements the method to process
audio samples. These processed samples can be used 1n vari-
ous ways. In one implementation, the audio sample 1s created
from an audio source (such as a song). In other implementa-
tions, the audio sample 1s created from the audio component
of other media (such as films, commercials, television shows,
etc.). An audio sample produced from a multi-media source
can be processed using the same method.

In one 1mplementation, representations of the processed
audio samples can be stored for later use, such as using the
stored representations of the audio samples as a database for
comparison against incoming audio samples. Thus, the steps
110-170 of the method can be applied against a large set of
songs or other audio samples to produce one or more data
repositories or databases of samples.

The method 100 begins with the receipt 110 of a song or
other audio sample. The system can receive one or more
songs or audio samples from various sources. For example,
the songs or audio samples can be provided from a database,
from external media (such as a CD, CD-R, DVD, DVD-R,
tape, MP3 player, etc. ), from samples that have been uploaded
to the system by a user, or from other sources.

In some implementations, the audio sample can be pre-
processed 120 before conversion. This may be done for vari-
ous reasons. For example, 1t can be more computationally
elficient to pre-filter the audio sample before conversion, or 1t
can be more efficient to pre-process the sample to reduce the
noise of the audio sample, improve the signal-noise ratio, or
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pre-processing can be done for other reasons. In one 1imple-
mentation, pre-processing can include the application of a
low-pass filter to the input audio at some value above the top
of a selected frequency range and downsampling of the {il-
tered signal.

After the audio sample 1s recerved, and after any optional
pre-processing, each audio sample 1s converted 130 from the
audio format of the sample (e.g., MP3, wav, etc.) to an alter-
native representation. In one implementation, the alternative
representation 1s a magnitude-only spectrogram over a pre-
selected frequency range. For implementations using a multi-
media sample, 1t 1s the audio portion of the sample that 1s
converted.

The magnitude-only spectrogram can use any one of a
variety of sample spacings across frequency, including linear,
logarithmic, or mel-scale spacing. Once the spacing scheme
1s determined, the same spacing scheme can be used for the
processing of all audio samples to be used 1n a database.
Generally, the sample spacing may range from 1 up to any
number. With a final number of frequency samples designated
as B, the audio sample 1s binned into B bins. The audio sample
1s also processed using a time step scale. The spectrogram-
slice sampling rate 1n time (1.e. the slice step size, or slice
period) 1s determined for the samples and designated S. Gen-
erally, S will be determined and established to be consistent
for all samples 1n a database. However, as S can have a range
of values, a most effective value of S may depend on charac-
teristics of the audio samples. In other words, the most effec-
tive and eflicient slice period may be different for a data
repository or database of speeches than for a data repository
or database of songs. Therefore, different implementations
can have different values of S.

Once the system has converted the received audio sample,
a series of intensity images are created 140 for the represen-
tation (e.g., the spectrograms). The intensity images can be of
the form of 2-dimensional 1images composed of B samples
and L periods. In one implementation, the intensity image can
be formed with B samples (across frequency) on the X-axis
and L periods (across time) on the Y-axis. Each pixel of the
intensity image contains a value. In one implementation, each
pixel value 1s scaled to a value between 1 and 255. In one
implementation, the values are not re-scaled. In other imple-
mentations, other scaling ranges are used, such as linear,
logarithmic, or other scaling scheme. Subsequent intensity
images can be created by going forward 1n time a number of
steps and generating a new image. The number of steps
moved forward to generate the next image 1s measured by the
number of L periods, and 1s designated F. In one implemen-
tation, F 1s less than L. Successive images can overlap (e.g.,
the end of 1image N can be the start of image N+1). The
amount of overlap can be set, and in one implementation,
overlap 1s greater than 50%.

The intensity 1images can be converted 150 into wavelets.
Wavelets are a mathematical tool for hierarchically decom-
posing functions. Wavelets allow a function to be described
by 1ts overall shape and successively increasing details.
Wavelets can be defined using many different basis functions,
such as Haar, Coiflet, or other. In one implementation, 1ni1-
tially, there 1s no compression in the wavelet representation,
therefore a BxL 1image 1s described by BxL wavelets.

In one 1mplementation, the system can simultaneously
compute intensity images and wavelet representations. Since
only the wavelet representations are needed 1n subsequent
steps, relaxing the requirement to temporarily store the inten-
sity 1mages can have beneficial effects, such as reduced stor-
age requirements and improved computational efficiency.
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Instead ol using all wavelets for describing a sample, in one
implementation, the method can describe an audio sample/
song using only characteristic wavelets. In this implementa-
tion, a certain number of wavelets (designated T) are
extracted from the BxL wavelets. In one implementation,
these top T wavelets are selected by magnitude. In one imple-
mentation, the wavelets having the highest amount of change,
either positive or negative, are selected. Various parameters of
the wavelets can be stored. For example the sign, location,
amplitude, or other information can be retained for each
selected wavelet. In one implementation, T 1s selected and
defined such that T 1s less than BxL. In another implementa-
tion, T 1s selected and defined such that T 1s substantially less
than BxL. Once these T wavelets are extracted, the system
uses the wavelets and does not need the original intensity
1mage.

The method continues with the creation of representations
160 of the processed audio sample.

In one implementation, the representation can be based on
the top wavelets. Top wavelets can be represented as the top
magnitude coellicients of the wavelets. In one implementa-
tion, once the top magnitudes are determined, they can be
scaled into a scaled representation. In one implementation,
this representation can be described as a series of negative
ones, zeros and ones, where the negative ones represent the
negative top magnitudes, ones represent the positive top mag-
nitudes, and zeros represent every other magnitude in the
wavelet.

In one implementation, the representation can be based
upon a compressed version of the top wavelets. One suitable
compression technique 1s run-length encoding. Run-length
encoding combines like values into a smaller representation.
For example, the representation {A, B, B, B, B, B, B, C, A,
Alcan be compressed into {A, 6B, C, 2A}. Other suitable
compression techniques, such as Min-hash, can also be used.

The data structure for these representations can be 1n vari-

ous forms. In one implementation, the representation can be
based on the wavelets. For example, the data structure can be
an array or linked list where each element of the data structure
includes a coellicient, or a hash table where each hash bin
includes one or more coellicients of related samples.
The type of data structure can define how the information s
managed. For example, a linked list node can maintain a
coellicient, the head of the node points to the previous coet-
ficient (1.¢., node) of the sample, and the tail of the node points
to the next coellicient (1.€., node) of the sample. Alternatively,
cach index of the array can maintain a coeificient, where each
array index (e.g.,[0...N-1]or[1...N])specifies an ordering
to the coetlicients. For example, a coellicient at index x-1
comes from an earlier point 1n time than the coetlicient at
index x. In some implementations, different types of data
structures can be used simultaneously to represent the infor-
mation. For example, an array or linked list can be used to
represent a single sample, while a hash table can be used to
bin like samples into similar locations.

After the representations are computed, these representa-
tions can be stored 170 1n a data repository for later use. Inone
implementation, the representations can be used for matching
or 1dentification purposes of later target samples. These rep-
resentations can include additional information 1n addition to
the representation data. In one implementation, the represen-
tation also includes time information related to the original
audio sample. For example, the representation can include the
time at which the representation begins, such as 1000 ms after
the start of the song from which the representation derives. In
one 1implementation, the representation also includes infor-
mation about the original audio sample, such as the title,
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artist, etc. In one implementation, the representation includes
an indicator that can be used to obtain additional information.
For example, the indicator may be used as a key to retrieve
information from another data structure or database. The key
can be used as an index mto a look-up table or an associative
array, can be used as the basis for a hash function, can be used
as a hash result specifying a location 1n a hash table, or can be
used to specily some other way to retrieve the mformation.

FI1G. 2 1s a flow chart illustrating an exemplary method for
processing and comparing audio samples.

A method 200 will be described 1n reference to a data
processing system that implements the method to process and
compare audio samples.

The method 200 begins with the receipt 210 of a target
sample. The target sample can be a complete audio samples
(such as an entire song), or can be a portion of a song or other
audio sample. In one implementation, the target sample can
be created from solely an audio source (such as a song). In
other implementations, the target sample can be created from
the audio component of other media (such as films, commer-
cials, television shows, etc.). An audio sample produced from
a multi-media source can be processed using the same
method 200. The target sample received can vary in length
and quality. In one implementation, the system can receive a
target sample from a variety of sources.

In one implementation, the target sample can be pre-pro-
cessed 220. Pre-processing of samples can be done for vari-
ous reasons, as described earlier. In one implementation, prior
to computing a representation, the system can apply a low-
pass lilter to the input audio at some value above the top of the
selected frequency range, and then the system can down-
sample the input audio accordingly.

The target sample received by the system can be of a
different quality than the audio samples used to produce the
samples stored 1n the data repository. Often, the target sample
may be of a poorer quality than the audio samples used to
populate the data repository (corpus samples). In one 1mple-
mentation, the target sample can be pre-processed to a greater
degree than the corpus samples. In one implementation, 1n
addition to a low pass filter, the target sample can be high pass
filtered. In one implementation, the target sample can be
filtered more than one time at varying frequencies to reduce
noise levels.

The target sample 1s then converted 230 1nto an alternative
representation (e.g., spectrogram ). The representation can be
of the form of a magnitude-only spectrogram and can use any
one of a variety of sample spacings across frequency, includ-
ing linear, logarithmic, or mel-scale spacing. The target
sample can be converted into a spectrogram as described
carlier. The target sample can be processed using the same
sample spacing as was used to process the samples to popu-
late the data repository.

The representation 1s then used to create 240 one or more
intensity 1mages. The intensity images can be of the form of
2-dimensional images composed of B samples and L periods.
These images can be produced as described earlier. The num-
ber of steps moved forward to generate the next image 1s
designated F and measured by the number of L periods. Inone
implementation, F (or the separation window) can be the
same as was used to process the corpus samples. In one
implementation, separation window F, 1s different than was
used to process the corpus samples. In one implementation,
the separation window F can vary. Thus, the separation win-
dow can be pre-determined, or generated randomly. In one
implementation, the separation window F 1s generated ran-
domly. In one implementation, the separation window F 1s
generated randomly and constrained to values related to the
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original slice window. For example, 11 the original separation
window was 10, the random separation window can be con-
strained between 5 and 15. In one implementation, each sepa-
ration window can be computed separately for each intensity
1mage. Successive 1images can overlap (e.g., the end of image
N can be the start of image N+1) as discussed above.

The intensity 1mages can be converted 250 1nto an alterna-
tive representation, €.g., wavelets. Wavelets are a mathemati-
cal tool for hierarchically decomposing functions. This con-
version can be done as described previously. Initially, as there
1s no compression in the wavelet representation, a BxL image
1s described by BxL wavelets (a full computed wavelet).

In one implementation, the raw computed wavelets can be
stored and used for matching. However, there can be changes
in the wavelet values due to small changes 1n the audio sample
(1.e. noise, echo, background sound), resulting in a number of
wavelets that are likely to be different than a wavelet pro-
duced from a sample taken under different conditions. These
differences increase the difficulty of matching.

In one implementation, the system extracts the top wavelet
coellicients. A certain number of wavelets (designated T) are
extracted from the BxL wavelets. In one implementation,
these top T wavelets are selected by magnitude. Various
parameters ol the wavelets can be stored. For example the
s1gn, location, amplitude, or other information can be retained
for each selected wavelet. In one implementation, T 1is
selected and defined such that T 1s less than BxL. In another
implementation, T 1s selected and defined such that T 1s much
less than BxL. Once these T wavelets are extracted, the sys-
tem uses the wavelets and does not need the original intensity
image.

The system then creates representations 260 of the pro-
cessed audio sample. As described above, various represen-
tations may be used. In one implementation, the representa-
tion can be based on the top wavelets. In one implementation,
the representatlon can be based on scaled top wavelets and
described as a series of negative ones, zeros and ones, where
the negative ones represent the negative top magnitudes, ones
represent the positive top magnitudes, and zeros represent
every other magnitude 1n the wavelet. In one 1mplementat10n
the representation can be based upona compressed version of
the wavelets. Suitable compression techniques include run-
length encoding, Min-Hash, and other approaches.

The data structure for these representations can be in vari-

ous forms. In one implementation, the representation can be
based on the wavelets. For example, the data structure can be
an array or linked list where each element of the data structure
includes a coellicient, or a hash table where each hash bin
includes one or more coellicients of related samples.
The system can store 270 these representations. In one
implementation, the representations are stored. Storage of the
representations provides an ability to retain and compare the
target sample against corpus samples previously stored.
Matching can be the result of the proximity (e.g., in the same
bin or 1n a location 1n the data repository) of the target sample
to other previously stored corpus samples. In one implemen-
tation, the representations are stored only temporarily for
comparison purposes. In one implementation, the represen-
tations are not stored.

As described previously, the data structure can be repre-
sented 1n many forms, including an array, a linked list, or a
hash table. The data structures store the current representation
in a way that 1s easily retrievable during subsequent steps. For
example, the data structure can be saved to local storage (e.g.,
a hard disk), remote storage, or some combination thereof.

Using the representations computed from the target sample
(and optionally stored), by the previously mentioned steps
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210-270, the system can compare 280 recerved target samples
to samples stored 1n the database. The comparison process,
described 1n more detail 1n reference to FIG. 3, uses repre-
sentations of the target sample and database samples. Com-
parisons ol the representations can be made directly using
representation data, or indirectly by mapping one or more
groups of data using hash information, bin location, etc. Fur-
thermore, although any of numerous transformations or
methods may be used to convert an audio sample to a repre-
sentation, the same method that was used to convert the
corpus audio samples to populate the database must be used to
convert the target sample for comparison and 1dentification
with the database.

In one implementation, the comparison process 1s carried
out indirectly. In one implementation, the comparison can
include mapping each target representation to a data structure
including the sample representations. The sample represen-
tations located at the same mapping location are considered to
be a match. This process can be repeated for all of the target
representations.

In one implementation, the comparison process can be
carried out by a direct comparison of each target representa-
tion to the designated sample representations. A direct com-
parison can be done on an mdividual sample basis to deter-
mine matching samples. In one implementation, the target
representation and sample representations may be directly
compared using scaled top wavelets. A direct comparison can
also be done on a group basis, where non-matching sample
representations can be eliminated 1n a recursive or stepwise
tashion.

FI1G. 3 1s a flow chart illustrating an exemplary method for
comparing representations.

A method 300 will be described 1n reference to a data
processing system that implements the method to compare
representations. A target audio sample can be matched and
identified using representations. In one implementation, a
match can be determined by using the number of top-wavelet
coellicients that are the same 1n a representation of a target
sample, and representations 1n a data repository. In one imple-
mentation, every sample representation 1n a database 1s com-
pared to new target representations from a recerved target
audio sample. This can be very computationally expensive,
depending on the number of songs and song 1images in the
database. Because of the computational complexity, 1t 1s not
desirable or necessary to match samples or songs using all of
the wavelets. In some i1mplementations, a compression
scheme, such as Min-Hash or a hashing scheme, such as LSH,
or both, can be used to reduce the complexity. Hashing the
representation can generate a hash value. The hash value can
be used to specily a bin 1n a hash table.

A compression scheme, such as Min-Hash, can be used to
create a new signature based on the top wavelet signature. For
example, 11 1000 top wavelets are used, the compressed sig-
nature could be 50 or 100 long. Other hashing schemes, such
as LSH, or locality sensitive hashing, can be used by the
system to determine which signatures the system should com-
pare the new signature against. Using compression enables
the system to compare smaller signatures. Using a hashing
scheme enables the system to compare a target sample signa-
ture against a smaller number of signatures, rather than
against every signature in the database. Furthermore, 1t 1s
possible to combine hashing and compression techniques to
turther improve computational efficiency. In one implemen-
tation, Min-Hash can be combined with LSH to yield a sys-
tem that has a smaller number of searchable signatures, where
cach signature 1s a compressed representation of the original
target sample spectrogram.
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One or more representations can be retrieved 310 for a
target sample. These representations may be retrieved from
storage 1n a data repository, or may be retrieved from a prior
step 1 a data processing system, and can be referred to as
target representations. In one implementation, the target rep-
resentations can be processed in such a way to reduce the
number of direct comparisons or matching of the target rep-
resentations required. In one implementation, hashing
schemes (e.g., LSH) can be used to reduce the number of
representations retrieved for comparison and matching.

The retrieved representations of the target sample can be
used to compute and match 320 a hash value. The represen-
tation 1s computed by a hash function that generates a hash
value. In one implementation, the hash value can be used to
match the target representations to a hash bin. As described
above, 11 certain steps are employed (e.g., LSH), information
with stmilar qualities will, with high probability, exist in the
same bin, whereas information with dissimilar qualities waill,
with high probability, exist in different bins. Using the hashed
value, the system can limit the match of the target represent to
a subset of the samples with the most similar qualities.

The system can then designate 330 each sample represen-
tation in the matched hash bin. In one implementation, only
these designated sample representations are used for further
matching purposes. This reduces the number (and hence time
and resources required) of comparisons required between the
target representations and sample representations.

In one embodiment, a voting scheme can be used on these
sample representations in the matching hash bins. In this case,
all of the sample representations from all of the hash bins can
be 1dentified, and the number of occurrences of each sample
designation summed. And, only those sample representations
that occur 1 excess of a certain threshold are designated.
Thus, 1n one embodiment, rather than designating all sample
representations in all matching hash bins, only the sample
representations from matching hash bins that exceed a voting,
threshold are designated.

Once the one or more sample representations have been
designated, the sample representations are retrieved and the
target representations compared 340 against the retrieved
sample representations. The closest match for each target
representation 1s the sample representation that 1s the most
similar. In one implementation, similarity 1s measured based
on the most similar wavelet coelficients. Evaluating samples
using wavelet coellicients can include using the original
wavelets, using some portion of the wavelet coelficients,
using scaled coelficients, using a representation of the coet-
ficients, using parameters dertved from the wavelet coetll-
cients, or any other evaluation or comparison based 1n whole
or 1n part on the representation stored.

The system can compare multiple representations from the
target sample to the representations in the data repository or
database. In various implementations, a target sample can
include a few seconds or minutes of a song from which the
system dertves multiple images, and hence multiple represen-
tations. The system can track the total number of matches for
cach song 1n the database using the previously mentioned
steps of comparing representations. For example, 11 the sys-
tem 1s matching representations ol 100 images from the target
sample, then the maximum number of matches a sample can
have equals 100.

In one implementation, the system then applies 350 a tem-
poral constraint to the matching criteria. Instead of only
counting the number of matches that the target representa-
tions have to an identifier representing an audio sample (such
as a song), the system can determine 11 the target representa-
tions are matched in a correct order, as specified by the rep-
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resentations of the audio samples they are matching. In one
implementation, dynamic programming 1s used to determine
the temporal constraints.

Temporal coherence can be used for various purposes. For
example, even 11 a target sample was ‘sped-up’ relative to the
actual timing, the system can use temporal coherence to
determine a match. In one implementation, temporal coher-
ence can be used as an additional factor for matching pur-
poses. Even 1f an audio sample 1s time shifted, the matches
will still most likely occur in order. For example, SongA can
be 1dentified as a better match to a target sample than SongB
in certain cases where the matches to the representations of
SongB occur out of order. In one implementation, the notion
of temporal coherence can be implemented as a penalty to the
matching score of songs that occur out of order.

After the temporal constraints have been applied, the
matching audio sample 1s determined 360. The determination
can be made based on the matching score to a number of
sample representations, the temporal constraint score, or
some combination thereof. Thus, the matching audio sample
1s determined by matching a number of representations, the
representations produced by the process described above.

In one implementation, the matching score can be deter-
mined using additional information from the sample repre-
sentations matched by the target representations. Each
sample representation 1n the database also has an i1dentifier.
Thus, the process of matching target representations to
sample representations can include a summation over the
identifiers of all matching representations. For example,
using 100 target representations, identifierl may have a total
of 94 based on the matches of target representations, 1denti-
fier2 may have a total of 79 based on the matches of target
representations, and 1dentifier3 may have a total of 37 based
on the matches of target representations. In one implementa-
tion, the matching score can be modified by the temporal
coherence determined earlier.

In one implementation, the processed target samples can be
compared against a database of stored samples for matching
and 1dentifying the processed target sample. This matching
and 1dentification can be done to provide information to a user
(such as song title, artist, etc.) about the target sample. This
matching and identification can also be done to match the
target sample against a catalog to determine if they already
ex1st 1n a database, 11 the uploaded target samples are copy-
righted material, or for other purposes.

FI1G. 4 15 a block diagram 1llustrating an exemplary system
for processing and comparing audio samples.

The example system 400 includes a client machine, such as
a computer 410, a digital assistant 412, a cell phone 414, or
other device. The example system 400 also includes a net-
work 420, and one or more servers 430. The client machine
410-414 can send data, such as a song or audio sample,
through the network 420 to one or more servers 430. The
servers 430 can process the data, as described above, and can
return results to the client 410-414 through the network 420.
In one implementation, the data encompasses a song sample,
and the servers 430 can return a list of one or more songs that
can be the matching song. In another implementation, the
system 400 can use the returned similarity information to
determine if matching songs are copyrighted, or if the songs
already exist 1n a centralized location, such as the servers 430.

FIG. 5 1s a block diagram of an example of a generic
computer system. The system 500 can be used for the opera-
tions described 1n association with the methods discussed
above according to one implementation.

The system 300 includes a processor 5310, a memory 520, a
storage device 330, and an mput/output device 5340. Each of
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the components 510, 520, 530, and 540 are interconnected
using a system bus 550. The processor 510 1s capable of
processing 1nstructions for execution within the system 500.
In one implementation, the processor 510 1s a single-threaded
processor. In another implementation, the processor 510 1s a
multi-threaded processor. The processor 510 1s capable of
processing instructions stored in the memory 520 or on the
storage device 330 to display graphical information for a user
interface on the mput/output device 540.

The memory 520 stores information within the system 300.
In one implementation, the memory 520 1s a computer-read-
able medium. In one implementation, the memory 520 1s a
volatile memory unit. In another implementation, the
memory 520 1s a non-volatile memory unat.

The storage device 530 1s capable of providing mass stor-
age for the system 400. In one implementation, the storage
device 530 1s a computer-readable medium. In various differ-
ent implementations, the storage device 530 may be a floppy
disk device, a hard disk device, an optical disk device, or a
tape device.

The mput/output device 540 provides iput/output opera-
tions for the system 500. In one implementation, the input/
output device 340 includes a keyboard and/or pointing
device. In another implementation, the mput/output device
540 includes a display unit for displaying graphical user
interfaces.

Implementations of the subject matter and the functional
operations described 1n this specification can be implemented
in digital electronic circuitry, or in computer software, firm-
ware, or hardware, including the structures disclosed 1n this
specification and their structural equivalents, or in combina-
tions ol one or more of them. Implementations of the subject
matter described in this specification can be implemented as
one or more computer program products, 1.e., one or more
modules of computer program instructions encoded on a
computer readable medium for execution by, or to control the
operation of, data processing apparatus. The computer read-
able medium can be a machine-readable storage device, a
machine-readable storage substrate, amemory device, a com-
position of matter effecting a machine-readable propagated
signal, or a combination of one or more of them. The term
“data processing apparatus” encompasses all apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. The apparatus can include, in
addition to hardware, code that creates an execution environ-
ment for the computer program in question, €.g., code that
constitutes processor firmware, a protocol stack, a database
management system, an operating system, or a combination
of one or more of them. A propagated signal 1s an artificially
generated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal, that 1s generated to encode
information for transmission to suitable receiver apparatus.

A computer program (also known as a program, software,
soltware application, script, or code) can be written 1n any
form of programming language, including compiled or inter-
preted languages, and 1t can be deployed 1n any form, imclud-
ing as a stand alone program or as a module, component,
subroutine, or other unit suitable for use 1n a computing
environment. A computer program does not necessarily cor-
respond to a file 1n a file system. A program can be stored in
a portion of a file that holds other programs or data (e.g., one
or more scripts stored in a markup language document), in a
single file dedicated to the program 1n question, or in multiple
coordinated files (e.g., files that store one or more modules,
sub programs, or portions of code). A computer program can
be deployed to be executed on one computer or on multiple



US 8,411,977 B

13

computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work.

The processes and logic tlows described 1n this specifica-
tion can be performed by one or more programmable proces-
sOrs executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, €.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing nstructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transier data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto optical disks, or optical disks. However, a computer
need not have such devices. Moreover, a computer can be
embedded 1n another device, e.g., a mobile telephone, a per-
sonal digital assistant (PDA), a mobile audio player, a Global
Positioning System (GPS) recerver, to name just a few. Com-

puter readable media suitable for storing computer program
instructions and data include all forms of non volatile
memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto optical disks;
and CD ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated 1n, special
purpose logic circuitry.

To provide for interaction with a user, implementations of
the subject matter described in this specification can be
implemented on a computer having a display device, e.g., a
CRT (cathode ray tube) or LCD (liquid crystal display) moni-
tor, for displaying information to the user and a keyboard and
a pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of devices
can be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be recetved in
any form, including acoustic, speech, or tactile input.

Implementations of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, €.g., an application server,
or that includes a front end component, ¢.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
subject matter described 1s this specification, or any combi-
nation of one or more such back end, middleware, or front end
components. The components of the system can be 1ntercon-
nected by any form or medium of digital data communication,
¢.g., acommunication network. Examples of communication
networks 1nclude a local area network (“LAN") and a wide
area network (“WAN”), e.g., the Internet.

The computing system can 1nclude clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
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programs running on the respective computers and having a
client-server relationship to each other.

While this specification contains many specifics, these
should not be construed as limitations on the scope of the
invention or of what may be claimed, but rather as descrip-
tions of features specific to particular implementations of the
invention. Certain features that are described in this specifi-
cation in the context of separate implementations can also be
implemented in combination in a single implementation.
Conversely, various features that are described 1n the context
of a single implementation can also be implemented 1n mul-
tiple implementations separately or 1n any suitable subcom-
bination. Moreover, although features may be described
above as acting 1n certain combinations and even initially
claimed as such, one or more features from a claimed com-
bination can 1n some cases be excised from the combination,
and the claimed combination may be directed to a subcom-
bination or varniation of a subcombination.

Similarly, while operations are depicted 1n the drawings in
a particular order, this should not be understood as requiring
that such operations be performed 1n the particular order
shown or 1n sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents i the implementations described above should not be
understood as requiring such separation in all implementa-
tions, and 1t should be understood that the described program
components and systems can generally be integrated together
in a single software product or packaged into multiple soft-
ware products.

EXAMPLES

Example 1

In one example implementation, a database was created
using 6,500 songs, with 200 audio samples (each approxi-
mately ~1.5 seconds) extracted from each song, with a result-
ing total of 1,300,000 samples. Thus, each song was con-
verted 1nto a series of samples for storage in the database.

Each song was converted from a typical audio format (e.g.,
mp3, way, etc.) to a mel-frequency spectrogram with tilt and
amplitude normalization over a pre-selected frequency range
(400 Hz to 4 kHz). For computational efficiency, the input
audio was low-pass filtered to about 5/4 of the top of the
selected frequency range and then down sampled accord-
ingly. For example, using 4 kHz as the top of our frequency
range of interest and using 44.1 kHz as the mput audio sam-
pling rate, we low-pass filtered using a simple FIR filter with
an approximate frequency cut between 5 and 5.5 kHz and
then subsampled to a 11.0235 kHz sampling rate. To minimize
volume-change effects, the audio sample energy was normal-
ized using the local average energy, taken over a tapered,
centered 10-second window. To minimize aperture artifacts,
the average energy was also computed using a tapered Ham-
ming window.

A spectrogram “‘slice rate” of 100 Hz (that 1s, a slice step
s1ze of 10 ms) was used. For the slices, audio data was taken,
and a tapered window (to avoid discontinuity artifacts in the
output) applied, and then an appropniately sized Fourier trans-
form was applied. The Fourier magnitudes were “de-tilted”
using a single-pole filter to reduce the eflects of low-Ire-
quency bias and then “binned” (averaged) into B frequency

samples at mel-scale frequency spacing (e.g., B=32).

Example 2

The process for creating an audio spectrogram described in
Example 1 1s followed, with the additional steps of creating
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intensity 1mages, generating wavelets from the intensity
images, extracting the top wavelets and storing the wavelet
coellicients.

A series of intensity images are converted from the audio
spectrogram. These fingerprint intensity images are formed
by a number of slices timewise along the spectrogram. The
length of the fingerprint 1s set to be 1.5 seconds. Using a
sampling rate of 256 (1.e., L as previously described) for each
fingerprint yields a time step of 5.8 milliseconds. Ateach time
step, the spectrogram 1s sampled. Thus, the intensity image 1s
composed of 32 frequency samplesx256 time samples. The
next fingerprint begins a certain number of time steps after the
first fingerprint (1.e. F as previously described). In this imple-
mentation, F 1s selected to be 50. Therefore, the first finger-
print begins at time=0 of the spectrogram, and 1s formed of
256 slices (of 32 frequency samples) for a total length of 1.5
seconds. The next fingerprint begins at time=0.292 seconds,
and 1s formed of 256 slices (of 32 frequency samples) for a
total length of 1.5 seconds. It can be seen that there 1s a large
overlap between one fingerprint sample and the next finger-
print sample. The same process continues over the whole
probe length.

The intensity images formed from 256 slicesx32 frequency
samples (8192 1n total) in each fingerprint are then scaled
from 1 to 2355 using a logarithmic scale. This BxL image can
be described using BxL Haar wavelets. At this point, only the
wavelets are retained, and prior representations (spectro-
gram, intensity image) are no longer needed or used.

Then, the top wavelets are extracted, and the top 1000
wavelet coellicients are identified (using magnitude only),
and all other wavelet coellicients are set to 0. Then, the top
1000 wavelet coetlicients are set to be 1 or —1, using the sign
of the original wavelet coelficient. At this point, only these
torced wavelet coetlicients (1/0/-1) are retained, and all prior
representation (including the full wavelet representation) are
no longer needed or used. This produces a series of subfin-
gerprints for the samples. The wavelet representation (e.g., a
series of 1, 0, and -1 coeflicients) are stored 1n the database.
The coetlicients can be run length encoded to reduce their
storage footprint.

Example 3

In one implementation, a target audio sample 1s received
for identification. A system {irst processes the received audio
by creating an audio comparison sample (“probe”) by taking,
the first 10 seconds of the recerved audio sample. Then, the
probe sample was converted in the same manner as in
Example 1. This sampling produced a magnitude-only spec-
trogram.

A series of intensity images are converted from this spec-
trogram. These images are created 1n the same manner as in
Example 2. The mtensity images are converted to wavelets,
and the top wavelets extracted, as described in Example 2.
This produces a series of subfingerprints for the probe.

Each of the forced top wavelet representations (subfinger-
print) of the probe 1s then described using run length encoding
(e.g., Min-Hashing). First, the subfingerprints are converted
to binary. Then, the run length encoding process creates a
description using multiple (100) passes 1n the data.

This run-length description of each subfingerprint of the
probe 1s then compared against a database using soit hashing,
(e.g., LSH, or Locality Sensitive Hashing) to identily a subset
of samples. In general, this process uses cumulative voting
across a number of hash keys. After a number of passes
comparing each run length encoded portion of the probe to the
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database, samples that meet a certain threshold (at least 2
matches) using LSH are 1dentified.

The probe 1s then compared to the identified samples using,
full run length encoding. The sample that best matches the
probe using Min-Hashing 1s declared the matching sample.

The target sample 1s then 1dentified by the greatest number
of samples matched. These matched samples include addi-
tional information (such as song title, artist, speaker, location,
etc.). Theretore, the additional information for the greatest
number of matched samples 1s considered to be, and can be
reported as, the identification information for the target
sample.

Example 4

The process of Example 3 1s followed, with the addition
that after samples have been 1dentified using LSH, there 1s an
additional step.

The probe can use the order of the subfingerprints to further
refine the audio sample’s score. During the pre-processing
described 1n previous examples, time 1ndexes of the subiin-
gerprints are stored, defining a sequence of subfingerptints 1n
time. When the probe 1s comparing recerved samples with
samples 1n the database, uses the timing information as a
strong indicator of a correct match.

For example, the system may take 5 samples (N1, N2, N3,
N4, and N5) from a target sample having a length of 10
seconds. The system stores and therefore “knows™ the order
in which the samples occur. If, the 5 samples match, say, 5
samples 1n 2 different songs (e.g., SongA and SongB), the
system can take into account the order of the match as well as
the number of matches. For example, SongB’s score will be
assessed with a larger negative modifier. This 1s illustrated 1n
the following table:

TABLE 1
Sample Song Image #
N1 SOngA 12
N2 SOngA 14
N3 SongA 15
N4 SOngA 16
N> SongA 17
N1 SongB 19
N2 SongB 5
N3 SongB 112
N4 SongB 101
N> SongB 18

If SongB’s match score was originally marginally higher
than SongA’s match score, for example 100 and 90 respec-
tively, the negative modifier can be large enough to name
SongA the winner.

If SongB’s match score was originally substantially higher
than SongA’s match score, for example 100 and 30 respec-
tively, the negative modifier may not be large enough to
impact the final results. For example, 1t may be that even
though SongB is less ordered than SongA, because it matched

substantially more subfingerprints, 1t 1s an overall better
match.

Example 5

This example describes one possible process for identify-
ing a subset of samples using soft hashing (generally
described in Example 3).

In this example, a subfingerprint of 20 integers 1s divided
using LSH 1nto 5 regions, each of 4 integers. This assists in
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finding signatures i1n a database that may not match on all
regions, but match on at least one region. In addition, a voting
scheme 1s implemented on top of the LSH process.

Subfingerprint = ABCD EFGH IJKL MNOP QRST

REGION 1: hash-key ABCD
finds: songl - second 12.2
song3 - second 4.5
songl9 - second 110.0
REGION 2: hash-key EFGH
finds: songl9 - second 2.9
song30 - second 23.2
songl79 - second 5.0
REGION 3: hash-key ITKL
finds: songl - second 2.9
song309 - second 13.7
songl22 - second 25.0
REGION 4: hash-key MNOP
finds: songl - second 2.9
songl22 - second 25.0
REGION 5: hash-key QRST

finds:

songl - second 2.9

The istances of each of the identified items are then
summed across all regions as votes:

Sample Votes
songl - second 12.2 1
songl - second 2.9 3
song3 - second 4.5 ]
songlY - second 110.0

songl9 - second 2.9

song30 - second 23.2 1
songl22 - second 25.0 2
songl79 - second 5.0 1
song309 - second 13.7 1

A mimimum threshold of votes 1s then set (1.e. at least 2
votes) 1n order to be considered for a match. Thus, instead of
designating and checking all of the items found, only two
items would be designated and checked:

(s

songl - second 2.9
songl2?2 - second 25.0 2

Particular implementations of the subject matter described
in this specification have been described. Nevertheless, 1t will
be understood that various modifications may be made with-
out departing from the spirit and scope of the invention. For
example, the actions recited 1n the claims can be performed 1n
a different order and still achieve desirable results. Other
implementations are within the scope of the following claims.

What 1s claimed 1s:

1. A method comprising:

generating, by a device including a processor, a spectro-
gram of a first audio sample;

computing, by the device, wavelet coetlicients for the spec-
trogram of the first audio sample;

comparing, by the device using a first searching algorithm,
the computed wavelet coellicients for the spectrogram
of the first audio sample to stored wavelet coellficients
for other spectrograms of other audio samples to 1dentity
a subset of the other spectrograms, respectively having a
plurality of wavelet coetficients that match a plurality of
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the wavelet coellicients of the spectrogram of the first
audio sample, 1n which to employ a second searching
algorithm, whereimn the {first searching algorithm
employs a voting scheme that identify the subset of the
other spectrograms that exceed a voting threshold; and
identitying, by the device using the second searching algo-
rithm, from the subset of the spectrograms, a second
audio sample that corresponds to one of the subset of the
other spectrograms that matches the spectrogram.

2. The method of claim 1, wherein computing wavelet
coellicients includes producing at least one intensity image
from the spectrogram and using the at least one intensity
image to create the wavelet coetlicients for the spectrogram.

3. The method of claim 1, wherein the first searching algo-
rithm employs a hashing function to place respective wavelet
coellicients mnto respective hash bins.

4. The method of claiam 3, wherein the voting scheme
determines a number of hash bins 1n which respective wavelet
coellicients of the spectrogram match hash bins 1n which
respective wavelet coelficients of another spectrogram have
been placed.

5. The method of claim 1, wherein the spectrogram 1s
generated using a first time separation window that 1s con-
strained to a predefined range of values from a second time
separation window value employed 1n the other spectro-
grams.

6. The method of claim 5, further comprising randomly
selecting the first time separation window of the spectrogram.

7. The method of claim 5, wherein the spectrogram 1s
generated using a time separation window selected based
upon one or more characteristics of the first audio sample.

8. The method of claim 1, wherein generating the spectro-
gram further comprises highpass filtering the first audio
sample.

9. The method of claim 1, wherein the wavelet coefficients
are compressed wavelet coellicients.

10. A non-transitory computer readable storage medium
having 1nstructions stored thereon that, 1n response to execu-
tion, cause at least one device including a processor to per-
form operation comprising:

generating a spectrogram of a first audio sample;

computing wavelet coellicients for the spectrogram;

comparing, using a first searching algorithm, the computed
wavelet coeflicients for the spectrogram of the first
audio sample to wavelet coellicients for other spectro-
grams ol other audio samples to 1dentily a subset of the
other spectrograms, respectively having a plurality of
wavelet coellicients that match a plurality of the wavelet
coellicients of the spectrogram of the first audio sample,
in which to employ a second searching algorithm,
wherein the first searching algorithm employs a voting
scheme that identify the subset of the other spectrograms
that exceed a voting threshold; and

identitying, using the second searching algorithm, from the

subset of the spectrograms, a second audio sample that
corresponds to one of the subset of the other spectro-
grams that matches the spectrogram.

11. The non-transitory computer readable storage medium
of claim 10, where computing wavelet coelficients includes
producing at least one intensity image from the spectrogram
and using the at least one intensity image to create the wavelet
coellicients for the spectrogram.

12. The non-transitory computer readable storage medium
of claim 10, wherein the first searching algorithm employs a
hashing function to place respective wavelet coetlicients 1nto
respective hash bins.
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13. The non-transitory computer readable storage medium
of claim 12, wherein the voting scheme determines a number
of hash bins 1n which respective wavelet coelficients of the
spectrogram match hash bins 1n which respective wavelet
coellicients of another spectrogram have been placed.

14. The non-transitory computer readable storage medium
of claim 10, wherein the spectrogram 1s generated using a first
time separation window that 1s constrained to a predefined
range of values from a second time separation window value
employed 1n the other spectrograms.

15. The non-transitory computer readable storage medium
of claam 14, wherein the operations further comprise ran-
domly selecting the first time separation window of the spec-
trogram.

16. The non-transitory computer readable storage medium
of claim 14, wherein the spectrogram 1s generated using a
time separation window selected based upon one or more
characteristics of the first audio sample.

17. The non-transitory computer readable storage medium
of claim 10, wherein generating the spectrogram further com-
prises high-pass filtering of the first audio sample.

18. The non-transitory computer readable storage medium
of claim 10, wherein the wavelet coellicients are compressed
wavelet coetlicients.

19. A system comprising:

at least one memory having stored therein computer-ex-

ecutable instructions;

at least one processor communicatively coupled to the at

least one memory, the at least processor configured to
execute the computer-executable instructions to perform
operations comprising:
generating a spectrogram of a first audio sample;
computing wavelet coelficients for the spectrogram;
comparing, using a first searching algorithm, the com-
puted wavelet coellicients for the spectrogram of the
first audio sample to wavelet coellicients for other
spectrograms of other audio samples to identily a
subset of the other spectrograms, respectively having
a plurality of wavelet coetlicients that match a plural-
ity of the wavelet coellicients of the first audio
sample, in which to employ a second searching algo-
rithm, wherein the first searching algorithm employs
a voting scheme that 1identify the subset of the other
spectrograms that exceed a voting threshold; and
identifying, using the second searching algorithm, from
the subset of the spectrograms, a second audio sample
that corresponds to one of the subset of the other
spectrograms that matches the spectrogram.

20. The system of claam 19, where computing wavelet
coellicients includes producing at least one intensity image
from the spectrogram and using the at least one intensity
image to create the wavelet coellicients for the spectrogram.

21. The system of claim 19, wherein the first searching
algorithm employs a hashing function to place respective
wavelet coellicients into respective hash bins.

22. The system of claim 21, wherein the voting scheme
determines a number of hash bins 1n which respective wavelet
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coellicients of the spectrogram match hash bins 1n which
respective wavelet coetlicients ol another spectrogram have
been placed.

23. The system of claim 19, wherein the spectrogram 1s
generated using a first time separation window that 1s con-
strained to a predefined range of values from a second time
separation window value employed in the other spectro-
grams.

24. The system of claim 23, wherein the operations further
comprise randomly selecting the time first separation window
of the spectrogram.

25. The system of claim 23, wherein the spectrogram 1s
generated using a time separation window selected based
upon one or more characteristics of the first audio sample.

26. The system of claim 19, wherein generating the spec-
trogram further comprises high-pass filtering of the first audio
sample.

27. The system of claim 19, wherein the wavelet coelli-
cients are compressed wavelet coellicients.

28. A system comprising:

means for generating a spectrogram of a first audio sample;

means for computing wavelet coellicients for the spectro-

gram,

means for comparing, using a first searching algorithm, the

computed wavelet coellicients for the spectrogram of
the first audio sample to wavelet coetlicients for other
spectrograms of other audio samples to 1dentify a subset
of the other spectrograms, respectively having a plural-
ity of wavelet coeflicients that match a plurality of the
wavelet coellicients of the first audio sample, 1n which to
employ a second searching algorithm, wherein the first
searching algorithm employs a voting scheme that 1den-
tify the subset of the other spectrograms that exceed a
voting threshold; and

means for identifying, using the second searching algo-

rithm, from the subset of the spectrograms, a second
audio sample that corresponds to one of the subset of the
other spectrograms that matches the spectrogram.

29. The system of claim 28, where computing wavelet
coellicients includes producing at least one intensity image
from the spectrogram and using the at least one intensity
image to create the wavelet coetlicients for the spectrogram.

30. The system of claim 28, wherein the first searching
algorithm employs a hashing function to place respective
wavelet coellicients 1nto respective hash bins.

31. The system of claim 30, wherein the voting scheme
determines a number of hash bins 1n which respective wavelet
coellicients of the spectrogram match hash bins in which
respective wavelet coetlicients ol another spectrogram have
been placed.

32. The system of claim 28, wherein the spectrogram 1s
generated using a first time separation window that 1s con-
strained to a predefined range of values from a second time
separation window value employed in the other spectro-
grams.

33. The system of claim 32, further comprising means for
randomly selecting the first time separation window of the
spectrogram.
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