12 United States Patent

Halter et al.

US008397206B2

US 8,397,206 B2
Mar. 12, 2013

(10) Patent No.:
45) Date of Patent:

(54) XML BOARD SUPPORT CUSTOMIZATION

(75) Inventors: Steven L. Halter, Rochester, MN (US);
Adam D. Dirstine, Rochester, MN (US);
David J. Hutchison, Rochester, MN
(US); Pamela A. Wright, Rochester,
MN (US); Jeffrey M. Ryan, Byron, MN
(US)

(73) Assignee: Digi International Inc., Minnetonka,
MN (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1579 days.

(21) Appl. No.: 11/777,870

(22) Filed: Jul. 13, 2007
(65) Prior Publication Data
US 2009/0019423 Al Jan. 15, 2009
(51) Int.CL
GO6IF 9/44 (2006.01)
(52) US.CL ... 717/100; 717/104; °717/105; 717/109
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

0,754,882 Bl 6/2004 Sanchez et al.
6,996,796 B2 2/2006 Sanchez et al.

<Caonfigquration
cflags=""

asimLflags="-Wa,-—defsym, GHU

7,761,845 B1* 7/2010 Perrinetal. 717/109
8,069434 B2* 11/2011 Ploesseretal. 717/104
8,117,587 B1* 2/2012 Testardrcocooeeernn, 717/100
2003/0140333 Al* 7/2003 Odakaetal. ... 717/115
2003/0200532 A1 10/2003 Gensel
2004/0003388 Al 1/2004 Jacquemot et al.
2004/0194022 Al 9/2004 Cleraux et al.
2005/0177816 Al* 8/2005 Kudukolietal. 717/105
2008/0320436 Al* 12/2008 Hughesooceeeeen, 717/100
OTHER PUBLICATIONS

Dig1 International Inc., Digi ESP for Python Development Environ-
ment, 2012, 4 pages, <http://ftpl .digl.com/support/documentation/
90001308__A.pdf>.*

Dig1 International Inc., Digi Applicaion Development Kit for
Android, 2012, 2 pages, <http://www.digi.com/pdf/fs_ androidap-
pdevkit.pdf>.*

* cited by examiner

Primary Examiner — Thuy Dao
(74) Attorney, Agent, or Firm — Fogg & Powers LLC

(57) ABSTRACT

A markup language file comprises soitware build options
usable to determine at least one software build configuration
setting. One or more soitware build options are specified in a
markup language file to specity one or more software build
confliguration settings for use in compilation of software. The
markup language 1s an XML {ile, 1s editable in an Integrated
Development Environment such as via a Graphical User
Interface, and includes settings specific to an embedded pro-
cessor system configuration.

17 Claims, 4 Drawing Sheets

=1 -Wa,--defsyn,NETOS GU TOOLS=1

-Wa , --defsym ,NET 08=1 -Wa,--defsym,NET WORKS=1 -Wa, --

defsym, POSIX SOURCE=1 -Wa, -EB"
linkoptions=" -T

S (METOSDIR) /sre/besp/platforms/S (PLATFORM) /image. 1d

$(HETDS_$SELIEERTH]/r&set.ﬂ ${NETGS_BSPLIBPETH}/mﬂmﬂpy.ﬂ S{STARTFILE}
-Wl,--start-group ${(APP LIBS) ${STD CLIES) -Wl,--end-group -Wl,

-Map , lmage . map "
makefilerunle="noipsacriule”

bspbuildﬂebugparamﬂter=”BUILQ_?GGTLGADEE;EELSE“
bspbuildreleaseparameter="BUILD_pOGTLQADER=TRUE”

>

<makefilevar value="5TD CLIBS

lgce -1lm -lstdct+' />

<symbol value="_ @&NU "/>

-L 5 (METOSDIR) /lib/32k/gnu -1lc -

<library path="5 (METOS BSPLIBFATH)/libbsp.a"/>

<include path="5{NETOSDIR}/L" />

<option name="File System" type="boolean"

id="includerilesystemCLib">
<location>

<file path="BEPPLATFORMDIR" name="bsp.h"
tagtype="define" tagname="BSP_ INCLUDE FILESYSTEM FOR CLIBRARY" />

</location>

<librarv path=”${HETOS_;IBEATH}flibfilesys.a"/}

<description’>

Set this constant to TRUE to have the BSE initialize

the file system

according to configuration values 1o
startfilesystem.c, and enable
the C Library file I/0 functions as well as the file

system' s native

APT.
</description>
</option>

U.S. Patent Mar. 12, 2013 Sheet 1 of 4 US 8,397.206 B2

<Configuration

cflags=""

asmflags="-Wa,--defsym, GNU =1 -Wa,--defsym, NETOS GNU TOOLS=1
-Wa, --defsym ,NET 05=1 -Wa,--defsym NET WORKS5=1 -Wa, --
defsym, POSIX SOURCE=1 -Wa, -EB"

linkoptions=" -T
5 (NETOSDIR) /sro/bsp/platforms/S (PLATFORM) /image. 1d
${NETOS_33PLIEEATH)freset,ﬂ ${HETD$_ESELIBEATH}fm&mcpy.ﬂ S{STARTFILE }
-Wl,--start-group 5 (APP LIBS) 5(STD CLIBS) -Wl,--end-group -WL1,
-Map ,i1mage map "

makefilerule="nolipsecrile"

bspbullddebugparameter="BUILD BOOTLOADER=FALSE"

bspbulldreleaseparameter="BUILD BOOTLOADER=TRUE"

:;..

<makefilevar wvalue="STD CLIBS = -L $(NETOSDIR)/lib/22b/gnu -lc -
lgee -1lm -lstde++" />

<symbol value=" GNU "/>

<library path="35 (METOS BSPFLIBPATH) /libbsp.a"/>
<include path="${NETOSDIR}/h" />
<option name="File System" type="boolean"
id="1ncludeFilesvstemCLib" >
<location>
<file path="BSPPLATFORMDIR" name="bsp.h"
tagtvpe="define" tagname="BSE_INCLUDE_EILESISTEM_FGR;PLIBRARY”/}

</location>
<library path="$&(NETOS LIBEPATH) /libfilesys.a"/>
<description’-
Set this constant to TRUE to have the BESP i1nitialize
the file system

according to configuration values in
startfilesystam.c, and enable

the € Library file I/0 functions as well as the file
syvstem'=s native

AFPL.
</description>
</option>

FIG. 1

U.S. Patent Mar. 12, 2013 Sheet 2 of 4 US 8,397.206 B2

<device name="ConnectCore 92C"
type="connectcoredc a"
Chip="MNS2360"
cflags="-mkig-endian -mcpu=arm?tdmi -fno-builtin”
asmElags=""
linkoptions="-mbig-endian -nostartfiles -mcpu=arm9tdmi">
<makefilevar walue="PROCESSOR=arm9" />
<makefllevar value="NETOS LIBFPATH =
5 (NETOSDIR) /1ib /S (PROCESSOR) /32b/gnu” />
<svmbol value="PROCESSOR=ns9%9360" />
<library path="%(NETOS LIBPATH) /libgdb.a"/>
<include path="S${NETOSDIR}/h/arm9" />
<opticonref id="includeFilesvstemCLib" />
<option name="Serial Port B multiplexing”
type="string list" id="secrialportbmux">
<location>
<file path="BSPPLATFORMDIR" name="gplic.h"
tagtype="define"
tagname="BSP GPIO MUX SERIAL B" />
</location>
<list>
<item name="Internal use only”

value="BSP GEID_NME_;HTERNAL_USE_QHLE”/}

<item name="2 wire UART"
value="BSFEF GPF IG_I\:[U'.E{_S EEIAL_E _WI RE_UART T ,v’ o

<item name="4 wire UART"
value="BSP GFIO MUX SERIAL 4 WIRE UART"/>
<ltem name="SPI application”

value="BSP GPIO MUX SERIAL SPI APP"/>

</list>
<selection type="XOR"/>
<description>
This directive controls how Serial Port B 1s
multiplexed.
The signals can stay internal (allowing GPIQ ok
cther
special functions to multiplex) or can be
routed to GPIO
pins based on the particular serial
configuration.

< /description>

FIG. 2

U.S. Patent Mar. 12, 2013 Sheet 3 of 4 US 8,397.206 B2

<template name="Application Builder" path="appbuilder"

1d="appbuilder" category="appbulilder”>
<symbol value="AFP FILE SYSTEM" />
<library path="$ (NETOS LIBPATH) /libftpsvr.a" />
<library path="5 (NETOS LIBPATH) /libemailc.a" />
<library path="$ (NETOS LIBPATH) /libtelnsvr.a"/>
<library path="$ (NETOS LIBPATH) /librphttpd.a" />
<library path="$ (NETOS LIBPATH) /libmanapi.a" />
<library path="$ (NETOS LIBPATH) /libssl.a" />
<library path="& (NETOS LIBPATH) /libcrypto.a” />
<include path="S${NETOSDIR}/src/bsp/h" />
<gsetoption id="includeFilesystemCLib" wvalue="TRUE" />
<setoption id="includeCLIl" wvalue="TRUE" />
<setoption id="includeCLIInBsp" value="TRUE" />

<setoption id="includeCLITELNET" value="TRUE" />
<setoption id="includeCLISERIAL" value="FALSE" />

<cption name="CPU Load Monitor" type="boolean”
1d=" CPU MONITOR SERVER ENABLED™>
<location>
<file path="PROJECTDIR/sys"
name="appservices.h" tagtvpe="define"
tagname="CPFU LOAD MEASURING" />
</location>
<description:-
Turn this opticon on to enable
monitoring of the CPU load through the Web UIL.
Enabling the monitor
delays the startup time by approximately 10 seconds
while an idle ¢pu baseline is established.
</description>
</option>
<coption name="Webk Server" type="hoolean”
id=”HTTE_SEHVEE_EHEELED”}
<location>
<file path="PROJECTDIR/3vys"
name="appservices. . h" tagtvpe="define"
tagname="HTTP SEEVER ENABLED" />
</location>
<description:-
Turn this cption on to enakble the HTTP server.
</description>
</option>
. .. additional opticns not shown
</template>

FIG. 3

U.S. Patent Mar. 12, 2013 Sheet 4 of 4 US 8,397.206 B2

US 8,397,206 B2

1
XML BOARD SUPPORT CUSTOMIZATION

FIELD OF THE INVENTION

The mvention relates generally to configuration of com-
puter system boards, and more specifically to customization
of a board support package using an XML f{ile.

LIMITED COPYRIGHT WAIVER

A portion of the disclosure of this patent document con-
tains material to which the claim of copyright protection 1s
made. The copyright owner has no objection to the facsimile
reproduction by any person of the patent document or the
patent disclosure, as 1t appears 1n the U.S. Patent and Trade-
mark Office file or records, but reserves all other rights what-
soever.

BACKGROUND

Computerized devices often use similar processors and
circuits to perform different tasks, relying on the general-
purpose nature of many processors to provide a relatively
inexpensive and fast means to produce a specialized comput-
erized device. Some processors are specifically designed to
be embedded in customized applications, and include a wide
variety ol features such as analog and digital inputs and
outputs, network support, and specialized software libraries
supporting such features to make soltware design for such
systems relatively easy.

Some such systems are called embedded systems, reflect-
ing that a processor or computerized system 1s embedded 1n
the system to perform a specific task, which distinguishes an
embedded system from a general-purpose computer that usu-
ally lacks the software and hardware configured to perform
one or more specific tasks 1n a specific embedded environ-
ment. Examples of embedded systems include controllers for
industnal processes, remote monitoring and sensing systems,
as well as handheld devices such as cell phones and personal
digital assistants. Although some of these devices such as
personal digital assistants often include general-purpose soft-
ware execution among their features, their construction and
configuration resembles that of traditional embedded system
devices and so they are often considered embedded systems.

Embedded systems can also often be customized to a
greater extent than general-purpose computers, discarding
hardware components and software drivers not used in a
specific application of an embedded system. Embedded pro-
cessor providers typically provide support for a variety of
hardware through very robust software packages supporting a
variety of different configurations, such as USB, analog, net-
work, serial, analog-to digital, digital-to-analog, and other
interfaces. It 1s therefore desirable to manage the hardware
and software support included 1n a specific board configura-
tion.

SUMMARY

One example embodiment of the mvention comprises a
markup language file comprising soiftware build options
usable to determine at least one software build configuration
setting. In another embodiment, a method of configuring
soltware for an embedded processor system comprises using
one or more software build options specified 1n a markup
language file to specily one or more software build configu-
ration settings for use 1n compilation of software. The markup
language 1n various embodiments 1s an XML file, 1s editable

10

15

20

25

30

35

40

45

50

55

60

65

2

in an Integrated Development Environment such as via a
Graphical User Interface, and includes settings specific to an
embedded processor system configuration.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows an XML configuration file, as may be used to
practice some embodiments of the invention.

FIG. 2 shows an XML configuration file, as may be used to
practice some embodiments of the invention.

FIG. 3 shows an XML configuration file, as may be used to
practice some embodiments of the ivention.

FIG. 4 shows a system comprising a personal computer
401, a machine-readable medium comprising an Integrated
Development Environment and a markup language file, and

an embedded processor system, consistent with an example
embodiment of the invention.

DETAILED DESCRIPTION

In the following detailed description of example embodi-
ments of the invention, reference 1s made to specific example
embodiments of the mnvention by way of drawings and 1llus-
trations. These examples are described 1n suificient detail to
enable those skilled 1n the art to practice the invention, and
serve to 1llustrate how the invention may be applied to various
purposes or embodiments. Other embodiments of the inven-
tion exist and are within the scope of the mvention, and
logical, mechanical, electrical, and other changes may be
made without departing from the subject or scope of the
present invention. Features or limitations of various embodi-
ments of the invention described herein, however essential to
the example embodiments in which they are incorporated, do
not limit other embodiments of the invention or the invention
as a whole, and any reference to the ivention, 1ts elements,
operation, and application do not limit the mvention as a
whole but serve only to define these example embodiments.
The following detailed description does not, therefore, limait
the scope of the invention, which 1s defined only by the
appended claims.

Embedded systems including processors and associated
hardware configured to perform a specific function are used to
make a variety of common devices, including medical
devices, aviation instrumentation, home automation prod-
ucts, communications devices such as routers, handheld com-
puters such as personal digital assistants and cell phones,
video game systems, industrial control systems, automotive
computers, and a wide variety of other such computerized
devices.

Although many of these systems could be easily built using
the same embedded processor, the hardware around the pro-
cessor will likely differ from application to application. A
router, for example, will likely have several wired network
ports, but will not have wireless network capability or other
data mterfaces. An industrial controller might have a variety
of analog-to-digital converter inputs to digitize analog signals
being sensed, and provide control output via a digital-to-
analog converter, but may not include any network function-
ality or USB ports.

Design of embedded systems such as these typically
involves use of a prototype or evaluation circuit board having
the desired hardware incorporated into the circuit, along with
an integrated development environment (IDE) including soft-
ware support for a wide variety of hardware devices that are
supported by the embedded processor provider. The IDE
typically includes a source code editor and a compiler, as well
as a variety of libraries of functions to provide easier pro-

US 8,397,206 B2

3

grammer interface to various hardware elements such as net-
working, USB, and other interfaces. The program segments
are sometimes provided as part of what 1s known as a software
development kit (SDK), which can include application pro-
gramming interface (API), dynamic linked library (DLL),
and other support for referencing external software or system
services Irom a computer program. This makes it easier for a
programmer to quickly and efficiently write software that
uses a variety of different hardware components, without
having to learn or program common functions of the various
hardware components.

In one such example, a programmer using a wireless net-
work interface can use pre-existing software provided as a
part of the software development kit to perform functions
such as setting the IP address of a network device or config-
uring wireless network encryption by specilying certain con-
figuration information, and does not need to write the actual
soltware that manages the wireless network connection and
provides a TCP/IP interface to other software.

But, 1t 1s sometimes difficult to ensure that the proper
provided software 1s included 1n a program, or to ensure that
the software provided or that 1s indicated as available to the
programmer 1n the SDK or IDE 1s associated with hardware
that 1s 1ncluded 1n the specific configuration on which the
programmer 1s designing soiftware to run. For example, an

embedded system that includes a wireless network interface
but not a wired or Ethernet interface does not need drivers for
a wired Ethernet port included 1n the completed application,
but needs a network stack such as TCP/IP and needs drivers
tor the wireless network interface. Managing this information
to ensure that the right software 1s included or linked to the
program under development when 1t 1s compiled 1s made
casier 1n an embodiment of the invention by using an XML
f1le to configure a board support package so that the hardware-
specific program configuration and code 1s included when
needed.

Prior board support packages used documentation to
describe the various hardware options, and the associated
software and configuration parameters. Changing these set-
tings relied on the programmer to either manipulate the con-
figuration files manually, such as by using an editor to find and
change the settings 1n various configuration files, or use a
soltware configuration tool such as the IDE to make configu-
ration changes. In some solftware configuration tool
examples, all changes made to the configuration must be
made via the configuration tool as the resulting configuration
data 1s stored 1n a proprietary format that 1sn’t user-readable.
In other examples, the user can either manually edit the con-
figuration files, or can start over and make a new set of
configuration files using the support tools.

Some embodiments of the invention seek to make manage-
ment of this type of configuration information easier by using,
a programmer-readable XML file to store board support
information for a specific project or board configuration,
making 1t easy to change the configuration by editing the
XML file directly or by using the IDE to make changes to the
XML file. The parameters set via the XML file are presented
in the IDE 1n some embodiments via a graphical user inter-
face, such as a menu having selection boxes, radio buttons,
and prompts for configuration information.

In one such example, a wireless network button 1s made
available based on the board configuration’s incorporation of
wireless networking hardware as indicated 1n the XML file
provided with the IDE. In another example, the presence of
the wireless networking hardware 1s detected by the IDE, or
can be configured by the programmer so that a board lacking

10

15

20

25

30

35

40

45

50

55

60

65

4

certain hardware can be used to develop software for an
embedded system that will include the hardware or other
different configuration.

In this example, a variety of wireless networking param-
cters are selectable via the IDE once the wireless network
button 1s selected, including IP address selection, wireless
encryption method and key, and other such configuration
parameters. These can be entered easily via the IDE without
having to find a specific wireless networking-specific con-
figuration file, and can further be read and modified 1n a single
XML file that 1s used to configure other hardware on the
board. By modeling the board support package configuration
in XML, the IDE can refer to a single representation of the
board configuration in the XML file, which contains the con-
tent and relationships between configuration elements.
Details of the board support package are therefore managed
via a single imterface and a single XML configuration file,
even 1n embodiments where the XML information 1s used by
the IDE or compiler to configure other files such as board
support package variables, build options, template applica-
tions, and makefiles based on the configuration information
specified in the XML {ile.

FIG. 1 1llustrates a portion of an example XML file, con-
sistent with an example embodiment of the invention. XML
stands for eXtensible Markup Language, 1s a markup lan-
guage that combines both text data and information about the
text data interspersed with the text data. As shown 1n FIG. 1,
the XML file includes a variety of parameter names as well as
settings or text associated with those names. The Integrated
Development Environment (IDE) the programmer uses to
create soltware and configure the board uses the XML file to
read the various settings available for a particular board or
system 1n the XML file, and uses these parameters to config-
ure the board or 1n compiling software. The settings and
parameters specified in the XML file are 1n some embodi-
ments specified 1n such a way that only options or settings
appropriate to a particular board configuration are made
available via the IDE, which substantially reduces the burden
of board configuration to the programmer

The XML file 1n some examples describes the options
available for a particular board, but does not itself hold the
configured values. For example, 1n FIG. 1, there 1s a config-
urable option called “File System™. This 1s a boolean value

that 1s stored 1n a source file called bsp.h located i the
“BSPPLATFORMDIR” directory of the developer’s com-

puter system, using the tag BSP_INCLUDE_FILE-
SYSTEM_FOR_CLIBRARY. When the board support pack-
age 1s created, the graphical user interface presented via the
Integrated Development Environment displays a check box,
indicating whether the File System option has been selected.
If the box 1s checked, the IDE tool edits the bsp.h file and
changes the tag to indicate that a file system 1s to be included.
Alternately, the user can manually edit the bsp.h file to make
the change, and the IDE will recognize the changed setting
when reading the tag specified 1n the XML file and indicate
that a file system has been selected as an option.

For example, line 11 of FIG. 1 includes a makefilerule that
1s applied when building a make file, or when compiling a
program into executable code, and in this example 1nstructs
the compiler whether to include IPSec security protocol soft-
ware for supporting a certain type of security over Internet
Protocol connections with the markup language instruction
makefilerule="noipsecrule”. This parameter can be set by
deselecting an IPSec button 1n a network configuration screen
presented to a programmer working with a board that has a
network interface, or can be manually added or removed by
editing the configuration files identified in the XML file

US 8,397,206 B2

S

directly. Because the XML file 1dentifies the individual files
that can also be manually edited, changes made via one
method will be observable and changeable via the other,
climinating the need to manage multiple configuration files
and compiler settings 1n different locations 1n completing a
project.

The example of FIG. 1 illustrates a variety of settings used
in compiling a real-time operating system (RTOS, or real-
time OS), including the network support example previously
discussed as well as other setting such as debugging settings
and the location of various files used 1n compiling the oper-
ating system. In this example, the settings made 1n the XML
file of FIG. 1 are settings that are specific to a NET+0OS
operating system, and are applicable to all board types that
use this operating system. Other portions of the XML file, or
in some embodiments other XML files, are used to configure
other settings and to provide other information, as shown 1n
FIG. 2.

FI1G. 2 1llustrates a portion of an XML file for a particular
board configuration, including board-specific variables and
build options, consistent with an example embodiment of the
invention. The file identifies the device as a ConnectCore 9C
board, operating with big-endian data and an ARMO9TDI pro-
cessor. Support files and parameters for various serial ports,
UART interface chips, and other hardware are specified,
along with other board-specific parameters.

Similarly, FIG. 3 illustrates a portion of an XML file for a
specific program or application, consistent with an example
embodiment of the invention. A variety of library paths are
specified, identifying software code libraries for performing
functions used 1n the application such as operating and FTP
server, communicating e-mail, inclusion of a CPU load moni-
tor, and using SSL and other software-level encryption ser-
vices. Some parts of the XML file include comments as well
as parameters and settings, such as the description of the CPU
[Load Monitor function, which can be used to make 1t easier to
manually edit the XML file, or can be imported into a graphi-
cal user interface presentation as a description field for the
relevant configuration option. Much like the operating sys-
tem-specific settings of FIG. 1, the application settings in
FIG. 3 may be applicable to more than one board type.

The Integrated Development Environment in this example
guides the program developer through selecting various set-
tings 1n the three levels of configuration represented by the
XML files illustrated and described in FIGS. 1-3, and uses the
selected settings to create an embedded application.

In some embodiments, the XML file provided identifies all
settings applicable to any board configuration for a specific
board type, processor, or family, and only those portions of
the XML file relevant to the particular board configuration are
displayed in the IDE graphical environment. For example, the
XML file may contain a variety of Ethernet, wireless network,
Internet protocol, network security, and other networking
configuration settings, but the IDE will not present them to a
user working on a project for a board that does not have
network capability.

The various levels of configuration options 1illustrated in
these three applications show how build options such as com-
piler and linker options, libraries, and operating system fea-
tures can be 1dentified via an XML markup language file, and
can be understood and edited by working directly with the
configuration files or by working with the configuration file
data specified 1n an XML file through a graphical user inter-
face 1 an Integrated Development Environment. Because
option changes are automatically saved to the appropnate
configuration files when changed 1n the IDE, the chances for
error 1n managing settings across a large number of configu-

10

15

20

25

30

35

40

45

50

55

60

65

6

ration files, compiler settings, and other project elements 1s
reduced. Further, understanding the structure and operation
of the features available 1s enhanced by the relatively easy
readability of the XML file, and by integrating the settings
stored there with presentation of a hierarchy of settings made
selectively available 1n the IDE.

The underlying structure of the integrated development

environment, such as the libraries of code and the various
configuration files used in a project can remain as they were 1n
some embodiments, so that the original structure of the pro-
gramming environment remains compatible with prior pro-
gramming projects and 1s easily understood by experienced
programmers. These settings are in some embodiments man-
aged via a central XML file to make management of the
settings more convenient and more easily understood, an so
that the IDE can present the settings 1n a more useful way such
as by requiring all needed settings be specified or ensuring
that only available parameters are chosen.

FIG. 4 shows a system, comprising a personal computer
401, a machine-readable medium 402, and an embedded pro-
cessor system 403. The machine-readable medium 402 1s 1n
some examples a compact disc or DVD, and 1s used to 1nstall
an Integrated Development Environment (IDE), a markup
language file, and other soitware onto personal computer 401.
The personal computer 401 1s then operable to run the
installed Integrated Development Environment, to compile
soltware developed in the IDE, and to work with the markup
language file loaded onto the personal computer and compris-
ing various software build options for one or more software
projects. A soltware project 1s typically produced in the IDE,
where 1t 1s written, compiled, and debugged before being
loaded from the development environment on the personal
computer onto the embedded processor system 403.

Although specific embodiments have been 1illustrated and
described herein, 1t will be appreciated by those of ordinary
skill 1n the art that any arrangement that achieve the same
purpose, structure, or function may be substituted for the
specific embodiments shown. This application 1s intended to
cover any adaptations or variations of the example embodi-
ments of the invention described herein. It 1s intended that this
invention be limited only by the claims, and the full scope of
equivalents thereof.

We claim:

1. A method, executed by a processor, of configuring soft-
ware for an embedded processor system, comprising:

providing an Integrated Development Environment (IDE)

configured to work with a markup language file appli-
cable to a board having a processor and one or more
hardware configurations;
receving the one or more software build options to be
specified in the markup language file via the IDE;

setting, by the IDE, the one or more build options for the
board having a first hardware configuration in the
markup language file such that the markup language file
can be manually edited;

using one or more software build options specified 1n the

markup language file to specily one or more software
build configuration settings for use 1n compilation of
soltware compatible with the first hardware configura-
tion of the board.

2. The method of configuring software for an embedded
processor system of claim 1, wherein the one or more soft-
ware build configuration settings comprise at least one of
hardware support and operating system configuration
options.

US 8,397,206 B2

7

3. The method of configuring software for an embedded
processor system of claim 1, wherein the markup language
file 1s an XML file.

4. The method of configuring software for an embedded
processor system of claim 1, wherein the software build
options set in the markup language file by the Integrated

Development Environment are hardware configuration-spe-
cific.

5. The method of configuring software for an embedded
processor system of claim 1, wherein the IDE detects the first
hardware configuration, and provides a user with an option to
specily a second configuration that includes a component that
1s not present 1n the first hardware configuration.

6. A non-transitory machine-readable medium, compris-
ng:

a markup language file comprising software build options
usable to determine at least one software build configu-
ration setting applicable to a board having a processor
and one or more individual hardware configurations;

an Integrated Development Environment (IDE) configured
to detect a hardware component on the board, and to
mampulate the markup language file such that a hard-
ware-specific program configuration and code 1s avail-

able for a particular hardware configuration of the board;
and

a compiler configured to use the software build options
specified 1n the markup language file to compile soft-
ware compatible with the particular hardware configu-
ration for the board;

wherein the software build options are specified via the
IDE, and the IDE 1s presented via a graphical user inter-
face.

7. The non-transitory machine-readable medium of claim

1, wherein the software build options presented via the Inte-
grated Development Environment are hardware configura-
tion-specific.

8. The non-transitory machine-readable medium of claim
1, wherein the software build options comprise an embedded
hardware system configuration.

9. The non-transitory machine-readable medium of claim
1, wherein the markup language file 1s an XML file.

10. The non-transitory machine-readable medium of claim
1, wherein the IDE detects a first hardware configuration, and
provides a user with an option to specily a second configura-
tion that includes a component that 1s not present in the first
hardware configuration.

11. An Integrated Development Environment (IDE), stored
in a non-transitory tangible machine-readable medium, com-
prising:

a markup language file encoded on a machine-readable
medium and comprising soitware build options usable
to determine at least one software build configuration
setting applicable to a board having a processor and one
or more 1ndividual hardware configurations;

10

15

20

25

30

35

40

45

50

8

a software configuration tool configured to detect the pres-
ence of a hardware component on the board, and to work
with the markup language file such that a hardware-
specific program configuration and code 1s available for
a particular hardware configuration of the board; and

a compiler configured to use the software build options
specified in the markup language file to compile soft-
ware compatible with the particular hardware configu-

ration for the board;
wherein the software build options are specified via the

soltware configuration tool, and the software configura-
tion tool 1s operable to allow a user to edit one or more
soltware build options specified 1n the markup language
file via a Graphical User Interface.

12. The Integrated Development Environment of claim 11,
wherein the markup language file 1s an XML file.

13. The Integrated Development Environment of claim 11,
wherein the Integrated Development Environment 1s oper-
able to edit the markup language file.

14. The Integrated Development Environment of claim 11,
wherein the one or more software build options the user 1s
allowed to edit via the Graphical User Interface comprise
options based on at least one of hardware configuration and
operating system configuration of an embedded system.

15. The Integrated Development Environment (IDE) of
claim 11, wherein the software configuration tool detects a
first hardware configuration, and provides a user with an
option to specily a second configuration that includes a com-
ponent that 1s not present 1n the first hardware configuration.

16. An embedded processor system kit, comprising:

a circuit comprising a processor and other components 1n a
hardware board configuration;

an Integrated Development Environment (IDE) configured
to detect the presence of a hardware component of a
specific hardware board configuration, and to work with
the markup language file such that a hardware-specific
program configuration and code 1s available for a par-
ticular hardware board configuration;

a markup language file comprising software build options
usable to determine at least one software build configu-
ration setting, the markup language file editable via the
Integrated Development Environment; and

a compiler configured to use the software build options
specified 1in the markup language file to compile soft-
ware compatible with the particular hardware board
configuration;

wherein the software build options are specified via the
IDE, and the IDE 1s presented via a Graphical User
Interface.

17. The embedded processor system kit of claim 16,
wherein the IDE detects a first hardware configuration, and
provides a user with an option to specily a second configura-
tion that includes a component that 1s not present in the first
hardware configuration.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

