12 United States Patent

Nethi et al.

US008397158B1

US 8,397,158 B1
Mar. 12, 2013

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR PARTIAL
PARSING OF XML DOCUMENTS AND
MODIFICATION THEREOF
(75) Inventors: Ramesh Nethi, Bangalore (IN); Kousik
Nandy, Bangalore (IN)

(73) Assignee: Sonoa Networks India (PVT) Ltd,
Bangalore (IN)

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 827 days.

(21) Appl. No.: 12/058,762

(22) Filed: Mar. 31, 2008

(51) Int.CL
GO6F 15/00 (2006.01)

(52) US.CL ... 715/234; °715/255;°715/237; 715/240

(58) Field of Classification Search 715/234,

715/237, 255

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

7,073,123 B2* 7/2006 Friedmanetal. 715/240
7,120,663 B2* 10/2006 Maesakaetal. 709/203
7,499,921 B2* 3/2009 Raghavachart 1/1
7,665,016 B2 2/2010 Behrensetal. 715/237
2004/0034830 Al* 2/2004 Fuchsetal. 715/501.1
2004/0167864 Al* 8/2004 Wangetal. 707/1
2004/0172599 Al1* 9/2004 Calahan 715/513
2004/0261019 Al1* 12/2004 Imamuraetal. 715/513
2005/0055355 Al1* 3/2005 Murthyetal. 707/100

input

Receive a modification script including a
context node Xpath expression and at least
one stop Xpath expression 1n response to an

:

Configure the context node Xpath
expression and at least one stop Xpath
expression

:

Receive the XML document

\a15

!

Identify a context nodeset in the XML

document using the context node Xpath
expression

oo

!

Mark a stop node in the XML document

!

Generate sequence of event tokens

document

corresponding to the nodes in the XML \
230

!

Generate Xpath results by evaluating the

stop Xpath expression

context Xpath expression and at least one
\235

!

Monitor Xpath results

using the at least one stop Xpath expression
s

9/2005
5/2006

2005/0203957 Al
2006/0106831 Al
2007/0198919 Al* 8/2007
2007/0283245 Al 12/2007
2007/0288840 Al* 12/2007 Giurleetal. 715/513
2009/0271695 Al* 10/2009 Ruellanetal. 715/227

OTHER PUBLICATIONS

Jeow L1 Fook, Integrity Constraints and XML: Semantic XPath
Query Transformation, 2005/2006, Department of Computer Sci-
ence School of Computing National University of Singapore,

Honours Year Project Report.*
Michael Benedikt et al, PLAN-X 2007 Programming Language
Technologies for XML, Jan. 20, 2007, ACM SIGPLAN.*

Wang

Nakanishi

Clarke et al.on.... 715/513
Masood

* cited by examiner

Primary Examiner — Cesar Paula
Assistant Examiner — Mohammed-Ibrahim Zuberi

(74) Attorney, Agent, or Firm — Bvergreen Valley Law
Group, P.C.; Kanika Radhakrishnan

(57) ABSTRACT

Moditying a partially parsed Extensible Markup Language
(XML) document. A stop node in an XML document 1s
marked using at least one stop XPath expression. The XML
document 1s then parsed till the stop node 1dentified by the at
least one stop XPath expression. Modifications to the XML
document are specified i a modification script, including at
least one modification instruction. A modification 1nstruction
includes a context node XPath expression which identifies a
context nodeset requiring modifications, and the actual modi-
fication content. Sequence of event tokens corresponding to
the parsed XML document are then stored. Further, the XML
document 1s modified according to the modification script.

13 Claims, 5 Drawing Sheets

200

d

\205

o1

Is the Xpath
result a stop
Xpath
expression?

NO

245

\oa

N}

Stop parsing the XML

document
\250

U.S. Patent Mar. 12, 2013 Sheet 1 of 5 US 8,397.158 B1

100

\

Xpath Expressions

Event Token

Xpath
Input XML XML Parser Processor

Document Event Token

105 110

Xpath Result

Xpath Result

FIG. 1

U.S. Patent Mar. 12, 2013 Sheet 2 of 5 US 8,397.158 B1

200

Receive a modification script including a

context node Xpath expression and at least /

one stop Xpath expression in response to an
input

\o05

Configure the context node Xpath
expression and at least one stop Xpath
expression \21 0

Receive the XML document

215

Identify a context nodeset in the XML
document using the context node Xpath
expression

220 [s the Xpath

result a stop
Xpath
expression’?’

NO
Mark a stop node in the XML, document

using the at least one stop Xpath expression

2l 245

(Generate sequence of event tokens YES
corresponding to the nodes in the XML

document Stop parsing the XML

document

2
>0 250

Generate Xpath results by evaluating the
context Xpath expression and at least one
stop Xpath expression

235

Monitor Xpath results

240

FIG. 2

U.S. Patent Mar. 12, 2013 Sheet 3 of 5 US 8,397.158 B1

300

Store sequence of event tokens
corresponding to the partially parsed XML

document (parsed butters)

10
Modity the XML document according to the
modification script
315
Output the modified XML document
320

FIG. 3

U.S. Patent Mar. 12, 2013 Sheet 4 of 5 US 8,397.158 B1

400
\ Modification
Script
Modification
script
430 | Modification
compiler Instruction
Stop Xpath Context node
expression Xpath expression
Modification
Xpath Parser Engine
405 Modified
XML
Document
Xpath
410 Processor | results Xpath
420 Handler
Sequence of
Event Tokens
input XML Stop parsing signal
Document | <ML Parser PP g 518

415

FIG. 4

U.S. Patent Mar. 12, 2013 Sheet 5 of 5 US 8,397.158 B1

500

510

335

Bus Interface

530

Storage Communication Internet
d35 Device Interface

FIG. 5

US 8,397,158 Bl

1

SYSTEM AND METHOD FOR PARTIAL
PARSING OF XML DOCUMENTS AND
MODIFICATION THEREOF

BACKGROUND

1. Technical Field

Embodiments of the invention relate generally to informa-
tion processing and more particularly to partial parsing and
modification of Extensible Markup Language (XML) docu-
ments.

2. Prior Art

XML refers to (World Wide Web Consortium) W3C stan-
dard for creating markup languages that describe the structure
and mterrelationships of data. XML 1s not a single, predefined
markup language rather a metalanguage (a language for
describing other languages). Last few years, XML has
become lingua-franca of the internet and World Wide Web
(WWW). It has become the most common mechanism for
structured data representation, exchange and storage.

In the atorementioned XML applications, 1t 1s critical that
the data contained 1n XML documents be processed. There
are several ways 1n which XML documents can be processed.,
modified and data retrieved therefrom. Several languages
such as XPath, XSLT and XQuery allow performing queries
on XML documents to locate information items, process and
modity XML documents. XPath refers to a language stan-
dardized by W3C for querying XML documents. It treats an
XML document as a logically ordered tree of nodes and
provides a means to locate and identify XML elements and
attributes.

In traditional approaches to XML modification, a Docu-
ment Object Model (DOM) 1s followed. In following the
DOM approach, the XML document 1s converted to a tree
format with the help of a DOM parser and this DOM tree 1s
stored 1n memory. While this approach works 1n case of
smaller documents, 1t has severe limitations when 1t comes to
processing of larger XML documents especially because the
s1ze of the document to be stored 1s usually 7-10 times the s1ze
of the original XML document. Thus, in case of large docu-
ments, following the DOM approach 1s a constraint in terms
of memory, time, cost and application performance. Further,
DOM allows modification of XML documents only 1 a com-
plete in-memory data structure 1s formed. Thus, a DOM
approach to modify an XML document has 1ts limitations 1n
instances where owing to memory limitations, a complete
DOM tree cannot be stored in memory.

In order to address the challenges posed by DOM
approach, alternative approaches such as Simple API for
XML (SAX) were developed. In contrast to DOM approach,
SAX approach does not require loading of the complete XML
document into memory. Rather SAX refers to presenting the
document as a serialized stream of events. In other words,
SAX 1s event driven and relies on a programmer to specily a
particular event upon the happening of which event, XML
processing happens. However, SAX approach has its own
limitations as well. In following a SAX approach, the ability
to navigate back and forth within 1n the XML document in
order to make modification 1s restricted. This 1s a severe
limitation of a SAX approach.

In the atorementioned approaches, the entire XML docu-
ment needs to be parsed 1n its entirety for a modification of a
portion of the XML document, regardless of how minor the
modificationis. This parsing of the entire document including,
paring of portions of an XML document that do not require
modification leads to unnecessary usage of the Central Pro-

cessing Unit (CPU).

10

15

20

25

30

35

40

45

50

55

60

65

2

Further, parsing and in-memory representation of an XML
document requires significant amount of memory usage.
Especially in DOM approach, 11 the XML document which
needs to be modified 1s larger than, say 100 KB, memory
requirements can be significantly large for a minor modifica-
tion. Further, moditying an XML document using DOM API
1s highly programmatic and requires code changes for every
new type ol modification. Another problem arises 1n these
approaches when the XML document has to be de-serialized
and serialized. Sernialization 1s mvolved while creating the
in-memory data structure from the XML document and de-
serialization 1s mvolved 1n converting the in-memory data
structure back to the XML document. Both serialization and
de-serialization are costly as well as time consuming.

Hence, there 1s a need to provide a method and system for
parsing and moditying XML documents efficiently.

SUMMARY

Embodiments of the invention described herein provide a
computer implemented method, system and a machine-read-
able medium product for modifying partially parsed Exten-
sible Markup Language (XML) documents.

An exemplary embodiment of the invention provides a
method for partially parsing and moditying an XML docu-
ment. A stop node 1n an XML document 1s marked using at
least one stop XPath expression. The XML document is then
parsed t1ll the stop node 1dentified by the at least one stop
XPath expression. A context nodeset in an XML document 1s
also 1dentified using a context node XPath expression which
needs modification. A modification script as an input includes
the context node XPath expression which i1dentifies the con-
text nodeset requiring modifications and the modification
instruction. Further, the XML document 1s modified accord-
ing to the modification istructions 1n the modification script.

An exemplary embodiment of the invention provides a
system for partially parsing and modifying an XML docu-
ment. The system includes an XPath parser for parsing at least
one stop XPath expression. The at least one stop XPath
expression 1dentifies a stop node in the XML document and
the stop node 1s further marked. Further, the system includes
an XML parser for parsing the XML document. An XPath
handler monitors XPath results generated by an XPath pro-
cessor and stops the XML parser i1f the XPath result1s the stop
XPath expression. The system also includes a modification
script compiler for compiling a modification script including,
modification mstructions which includes at least one context
node XPath expression. The context node XPath expression
identifies a context nodeset 1n an XML document for modi-
fication. Further, amodification engine 1n the system modifies
the XML document according to the modification script.

An exemplary embodiment of the invention provides a
machine-readable medium product for partially parsing and
moditying an XML document. The machine-readable
medium product includes 1nstructions operable to cause a
programmable processor to perform marking a stop node in
an XML document using at least one stop XPath expression;
and parsing the XML document t1ll the stop node identified by
the at least one stop XPath expression.

Other aspects and example embodiments are provided 1n
the Figures and the Detailed Description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an environment according to
an embodiment of the invention;

US 8,397,158 Bl

3

FIG. 2 1s a flow diagram 1llustrating a method for partially
parsing an XML document according to an embodiment of

the 1nvention;

FI1G. 3 1s a flow diagram 1llustrating a method for modify-
ing partially parsed XML document according to an embodi-
ment of the invention:

FIG. 4 1s a block diagram 1illustrating an exemplary imple-
mentation of a system according to an embodiment of the
invention; and

FIG. S1s ablock diagram of an exemplary computer system
upon which embodiments of the mvention may be imple-
mented.

DETAILED DESCRIPTION OF TH
EMBODIMENTS

L1l

Embodiments of the invention described herein provide a
computer implemented method, system and a machine-read-
able medium product for partially parsing Extensible Markup
Language (XML) documents and modifying them. One
embodiment of the mvention provides a method for parsing
only part of an XML document. Using various embodiments
of the mvention, the XML document can be parsed till a
selected XML node (stop node) and thereby the entire XML
document need not be parsed. XML parsing can be stopped
after the stop node.

Embodiments of the mvention have been explained using

XML document as an example. However, 1t will be appreci-
ated that embodiments of the invention can be used to par-
tially parse and modily any structured document which
includes information represented in a logical order. Examples
of structured documents include but not limited to, Standard
Generalized Markup Language (SGML) documents XML
documents and Extensible HyperText Markup Language
(XHTML) documents.
In various embodiments of the invention, a modification
script may include at least one modification imstruction which
includes a context node XPath expression which specifies
where to make modifications along with modification instruc-
tion on how to modily 1.e. whether a particular node has to be
deleted, added, appended and so on.

FIG. 1 1s a block diagram of an environment 100 in accor-
dance with an embodiment of the invention. Environment 100
includes an XML parser 105 and an XPath processor 110.
XML parser 105 recetves mput XML document. In an
embodiment of the invention, XML parser receives the XML
document as a linked list of buffers. A builer includes a
temporary memory space where the XML document frag-
ments are stored as they are received. An XML parser 105
may include an application program interface (API), for
example, Simple API XML (SAX), for parsing XML docu-
ments. XML parser 105 parses an XML document to create
SAX events. Fach SAX event may generate multiple tokens
which are hereinafter referred to as a sequence of event
tokens. Further, 1n various embodiments of the invention, a
sequence of event tokens may include binary representation
of XML nodes of the XML document. An event token may
turther include information about the token type, unique 1d of
the token, length of the token, flags and hash of the token text.
Further, sequence of event tokens includes a direct pointer to
the text in the XML document buifer.

XPath processor 110 1s configured with XPath expressions.
XPath processor 110 registers with XML parser 105 for
receiving sequence of event tokens. XPath processor 110
evaluates XPath expressions on the sequence of event tokens.
XPath processor 110 matches the sequence of event tokens to
XPath expressions and returns matched XPath results. In an

10

15

20

25

30

35

40

45

50

55

60

65

4

embodiment of the invention, XPath processor 110 may pro-
cess one event token at a time and may evaluate several XPath
expressions on the event token simultaneously.

FIG. 2 1s a flow diagram 200 illustrating a method for
partially parsing an XML document according to an embodi-
ment of the mvention. A context node XPath expression and
at least one stop XPath expression is received at step 205. In
an embodiment of the invention, a set of XPath expressions
may be configured and marked as stop XPath expressions and
context node XPath expressions. Various embodiments of the
invention have been explained using one context node XPath
expression and one stop XPath expression as examples. At
step 210, the context node XPath expression and stop XPath
expression are configured i the XML processing system.
These XPath expressions are parsed, compiled and fed to the
XML processing system. In an embodiment of the invention,
run time operations are optimized by parsing and compiling
XPath expressions during the configuration time of the XML
processing system.

In an embodiment of the invention, context node XPath
expression 1s used for identifying a context nodeset in the
XML document which needs modification. A context nodeset
includes one or more nodes 1dentified by the context node
XPath expression. A context node XPath expression will be
specified for each modification instruction 1n the modification
script. The modification script may include one or more
modification instructions including but not limited to,
append, move, modily, add, delete, replace and wrap the
XML nodes. Further, various embodiments of the invention
have been explained using one modification mstruction com-
prising a context node XPath expression as an example. The
stop XPath expression 1s used for identitying and marking a
stop node of the XML document which needs modification.
For example, 11 a new node named <title> needs to be added
between the nodes <document> and <chapter>, the context
node XPath expression identifies the node <document> and
the stop XPath expression 1dentifies the stop node <chapter>
in the XML document. An XML document may include
several such nodes. At step 215, an XML document 1s
received as a linked list of buflers. At step 220, a context
nodeset 1n the XML document 1s 1dentified using the context
node XPath expression for modification. Similarly, at step
225, a stop node 1n the XML document 1s marked using the
stop XPath expression. Further, the XML document 1s parsed
at step 230. Parsing an XML document generates sequence of
event tokens corresponding to the nodes in the XML docu-
ment at step 230. The context node and stop XPath expres-
s10ons are evaluated against this sequence of event tokens and
XPath results are generated at step 235.

At step 240, the XPath results are monitored. Further, a
check 1s performed at step 245 to find 11 any of the XPath
results 1s matching with the stop XPath expression. Parsing
the XML document 1s stopped 1f any of the XPath result 1s the
stop XPath expression. In other words, XML processing will
be stopped 1 the stop node marked 1in the XML document
(stop node 1dentified by stop XPath expression) 1s parsed. On
the other hand, 1f any of the XPath results 1s not matching with
the stop XPath expression, step 230 to step 245 are repeated.
In an embodiment of the invention, the butlers are parsed and
the sequence of event tokens 1s generated as and when they
are available. XPath results are generated for each event token
serially. Hence, parsing can be stopped as soon as the XML
document 1s parsed till the stop node.

FIG. 3 15 a flow diagram 1llustrating a method for modify-
ing partially parsed XML document according to an embodi-
ment of the invention. The XML document 1s partially parsed
using the method 200 of FIG. 2 according to an embodiment

US 8,397,158 Bl

S

of the mmvention. After partially parsing the XML document,
at step 310, the sequence of event tokens corresponding to the
partially parsed XML document are stored. Sequence of
event tokens are generated for the corresponding nodes 1n the
XML document which 1s recerved as a linked list of butfers. In
an embodiment of the invention, sequence of events tokens
corresponding to the parsed bulfers for modification till the
stop node 1s stored. Storing only the event tokens correspond-
ing to the parsed XML document provides a memory efficient
and compact representation of parsed datastructure that point
to locations 1n the parsed XML document.

At step 315, the XML document 1s modified according to
the modification script. The modification script may include
modification instructions to append, move, modily, add,
delete, replace and wrap the XML nodes. These modification
instructions are captured using references to XPath expres-
sions. At step 315, the XML document 1s modified according
to the modification script. During the evaluation, each
istruction 1n the modification script readjusts the linked list
of butlers to retlect the desired output using information from
XPath results and parsed sequence of event tokens. Further, at
step 320, the modified XML document 1s made available as
the output.

FI1G. 4 1s a block diagram illustrating an exemplary imple-
mentation of an XML modifying system 400 according to an
embodiment of the invention. The XML modilying system
400 includes an XPath parser 405, an XPath processor 410, an
XML parser 415, an XPath handler 420, a modification script
compiler 430 and a modification engine 425. The XML modi-
tying system 400 recerves at least one stop XPath expression
and modification script which includes context node XPath
expression as mputs. The modification script 1s an XML
based transformation language based on XPath expressions
which 1ncludes modification instructions. A modification
instruction 1includes a context node XPath expression which
identifies a context nodeset requiring modifications, and the
actual modification content. The context node XPath expres-
s10n 1s used to 1dentily a context nodeset 1n the XML docu-
ment which requires modification. A context node XPath
expression has to be specified for every modification istruc-
tion in the modification script. The modification script com-
piler 430 compiles a modification script and provides the
context node XPath expression to the XPath parser 405 and
supplies the modification instructions to a modification
engine 425. The XPath parser 405 also recerves a stop XPath
expression as mput to the XML modifying system 400. The
stop XPath expression 1s used to 1dentity and mark the stop
node 1 the XML document which requires modification.
Both XPath expressions are parsed using the XPath parser
405, complied and fed into the XPath processor 410. Further,
modification script 1s also provided to the modification
engine 425. XPath expressions are parsed and compiled dur-
ing configuration of the XML moditying system 400.

XML moditying system 400 further includes XML docu-
ments as input to the XML parser 415. The input XML
document 1s received as a linked list of butlfers. XML parser
415 parses the mput XML document to create sequence of
event tokens corresponding to the nodes 1n the XML docu-
ment as explained earlier. Sequence of event tokens are
encoded 1n a compact manner and include suificient informa-
tion to manipulate the XML nodes. In an embodiment of the
invention, memory operations such as bulk allocation and
bulk move can be optimized since sequence of event tokens
are of fixed length 1n size. XPath processor 410 receives the
sequence of event tokens from the XML parser 415. XPath
processor 410 also recetves parsed XPath expressions (con-
text node XPath expression and stop XPath expression) from

10

15

20

25

30

35

40

45

50

55

60

65

6

the XPath parser 405. XPath processor 410 evaluates the
XPath expressions on the sequence of event tokens and gen-
crates XPath results. Each XPath result indicates the type of
node, whether the node 1s an element, an attribute, or a text,
and also includes pointers to relevant event tokens. XPath
results are fed into the XPath handler 420. XPath handler 420
monitors the XPath results and checks 1f any of the XPath
result 1s the stop XPath expression. If the XPath result 1s the
stop XPath expression (stop node marked in the XML docu-
ment), the XPath handler 420 sends a ‘stop parsing signal’ the
XML parser 415 to stop parsing. In this manner, the linked list
ol butfers 1s not completely parsed and event tokens are stored
only for those portions of the buflers which are parsed. How-
ever, XPath results combined with event tokens enable navi-
gation of the partially parsed XML document.

In an embodiment of the invention, the modification engine
425 receives the XPath results generated from the XPath
processor 410. Modification engine 425 evaluates the modi-
fication script recerved as the mput and performs the mstruc-
tions 1n the modification script by capturing the modification
instructions using references to XPath expressions. Further,
modification engine 423 readjusts the linked list of builers
according to the modification mstructions 1n the modification
script to retlect the desired output. Modified XML document
1s the output from the XML moditying system 400.

In an embodiment of the invention, various modules of
FIG. 4 may include one or more algorithms to perform
respective functions.

One or more steps of the method 1llustrated in FIG. 2 and
FIG. 3 may be implemented using a computer system. An
exemplary computer system 1s explained in details 1n con-
junction with FI1G. 5.

FIG. 51s ablock diagram of an exemplary computer system
500 upon which various embodiments of the invention may
be implemented. Computer system 500 includes a processing
unit 5355 mcluding a main memory 520, such as a Random
Access Memory (RAM) or other dynamic storage device,
coupled to a bus interface 530 for storing information and
instructions to be executed by processor 325. A storage device
535, such as a magnetic disk or optical disk, 1s provided and
coupled to bus interface 530 for storing information and
instructions. Computer system 500 may be coupled via bus
interface 530 to a display 510 for displaying information to a
user. An mput device 305, including alphanumeric and other
keys, 1s coupled to bus interface 530 for commumnicating
information and command selections to processor 525.

Embodiments of the mvention are related to the use of
computer system 300 for implementing the techniques
described herein. According to one embodiment of the inven-
tion, those techniques are performed by computer system 500
1in response to processor 525 executing one or more sequences
of one or more structions included 1n main memory 520.
Such instructions may be read into main memory 520 from
another machine-readable medium product, such as storage
device 535. Execution of the sequences of instructions
included 1in main memory 520 causes processor 325 to per-
form the method embodiment of the invention described
herein. In alternative embodiments, hard-wired circuitry may
be used 1n place of or 1n combination with soitware nstruc-
tions to implement the mvention. Thus, embodiments of the
invention are not limited to any specific combination of hard-
ware circuitry and software.

The term “machine-readable medium product” as used
herein refers to any medium that participates in providing,
data that causes a machine to operation 1n a specific fashion.
Examples of the machine-readable medium product include
but are not limited to memory devices, tapes, disks, cassettes,

US 8,397,158 Bl

7

integrated circuits, servers, online software, download links,
installation links, and online links.

In an embodiment implemented using computer system
500, wvarious machine-readable medium products are
involved, for example, 1n providing instructions to processor
525 for execution. Computer system 500 also includes a
communication interface 540 coupled to bus interface 530.
Communication interface 340 provides a two-way data com-
munication coupling to internet 550 that 1s coupled a server
545. Server 545 might transmit a requested code for an appli-
cation program through internet 350 and communication
interface 540.

Embodiments of the invention can be used in web services
intermediary for performing light-weight transformations in
streaming mode. Examples of light weight transformations
include service versioning use cases, wire-format translations
for converting between Simple Object Access Protocol
(SOAP) and Representational State Transfer (REST). Fur-
ther, embodiments of the invention can be used as an addition
to Extensible Style sheet Language Transformations (XSLT)
and XUpdate approaches for making modifications 1n XML
documents. XSL'T 1s an XML-based language used for the
transformation of XML documents and XUpdate 1s a light-
weilght XML query language for modifying XML docu-
ments.

The forgoing description sets forth numerous specific
details to convey a thorough understanding of the invention.
However, 1t will be apparent to one skilled 1n the art that the
invention may be practiced without these specific details.
Well-known features are sometimes not described 1n detail in
order to avoid obscuring the invention. Other vanations and
embodiments are possible in light of above teachings, and 1t 1s
thus intended that the scope of invention not be limited by this
Detailed Description, but only by the following Claims.

What is claimed 1s:
1. A computer implemented method to modity an XML
document, comprising:

receiving a modification script, the modification script
comprising at least one context node XPath expression
and modification instructions, and at least one stop
XPath expression;

identifying a context node set 1n an XML document using,
a context node XPath expression;

marking, by a computer, a stop node 1 a modification
script of an XML document using at least one stop XPath
expression to stop processing of the XML document, the
modification script comprising more than one XPath
expression that indicates which modifications to make
and where to make the modifications:

parsing only a portion of the XML document using the
modification script up to a stop node;

responsive to parsing the stop node, generating a feedback
signal for discontinuing parsing of the XML document;
and

processing modifications to the parsed XML document up
to the stop node.

2. The computer implemented method of claim 1, wherein

the parsing comprises:

receiving the XML document as a linked list of buffers;

generating a sequence of event tokens corresponding to the
nodes 1n the XML document;

generating XPath results by evaluating the context node
XPath expression and at least one stop XPath expression
on the sequence of event tokens; and

storing event tokens only corresponding to the parsed buil-
ers.

10

15

20

25

30

35

40

45

50

55

60

65

8

3. The computer implemented method of claim 1, wherein
the modification script comprises instructions for each of
appending, moving, moditying, deleting, adding, replacing,
wrapping and capturing.

4. The computer implemented method of claim 1, wherein
the XML document 1s modified inline without creating an
in-memory datastructure of the entire XML document.

5. The computer implemented method of claim 1, wherein
moditying the XML document comprises:

readjusting the linked list of buifers according to the modi-
fication script.

6. A computer implemented system, at least partially

implemented 1n hardware, comprising:

a modification script compiler for compiling a modifica-
tion script, the modification script comprising modifica-
tion structions including a context node XPath expres-
sion, wheremn the context node XPath expression
identifies a context nodeset 1n an XML document for
modification;

an XPath parser for parsing at least one stop XPath expres-
s1on to stop processing of the XML document, wherein
the at least one stop XPath expression marks a stop node
in the modification script of the XML document, the
modification script comprising more than one XPath
expression that indicates which modifications to make
and where to make the modifications:

an XML parser for parsing only a portion of the XML
document received as a linked list of butlers up to the
stop node; and

an XPath handler for monitoring XPath results generated
by an XPath processor, wherein the XML parser, respon-
stve to parsing the stop node, generating a feedback
signal for discontinuing parsing of the XML document.

7. The computer implemented system of claim 6 further
comprising;

a modification script compiler for compiling a modifica-
tion script, the modification script comprising modifica-
tion instructions including a context node XPath expres-
sion, wheremn the context node XPath expression
identifies a context nodeset 1n an XML document for
modification; and

a modification engine for modifying the XML document
according to the modification script, wherein the modi-
fication engine readjusts the linked list of buifers accord-
ing to the modification script.

8. The computer implemented system of claim 6, wherein
the XML parser generates a sequence of event tokens corre-
sponding to the nodes in the XML document.

9. The computer implemented system of claim 6, wherein
the event tokens are stored only for the parsed builers.

10. The computer implemented system of claim 6, wherein
the XPath processor generates XPath results by evaluating the
context node XPath expression and the at least one stop XPath
eXpression.

11. A non-transitory machine-readable medium product,
comprising instructions operable to cause a programmable
processor to perform a method, the method comprising;:

recerving a modification script, the modification script
comprising at least one context node XPath expression
and modification instructions, and at least one stop
XPath expression;

identifying a context node set 1n an XML document using,
a context node XPath expression;

marking, by a computer, a stop node in a modification
script of an XML document using at least one stop XPath
expression to stop processing of the XML document, the
modification script comprising more than one XPath

US 8,397,158 Bl
9 10

expression that indicates which modifications to make generating a sequence of event tokens corresponding to the
and where to make the modifications; nodes 1n the XML document;

parsing only a portion of the XML document using the generating XPath results by evaluating the context node
modification script up to a stop node; XPath expression and at least one stop XPath expression

on the sequence of event tokens; and
storing event tokens only corresponding to the parsed buil-
ers.
13. The machine-readable medium product of claim 11,
wherein modifying the XML document comprises:
10 readjusting the linked list of buffers according to the modi-
fication script.

responsive to parsing the stop node, generating a feedback -
signal for discontinuing parsing of the XML document;

and

processing modifications to the parsed XML document up
to the stop node.

12. The machine-readable medium product of claim 11,
wherein the parsing comprises:

receiving the XML document as a linked list of butfers; ok % % %

	Front Page
	Drawings
	Specification
	Claims

