12 United States Patent

Nicholas et al.

US008397029B2

US 8,397,029 B2
Mar. 12, 2013

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(1)
(52)

(58)

(56)

SYSTEM AND METHOD FOR CACHE
COHERENCY IN A MULTIPROCESSOR
SYSTEM

Richard Nicholas, Round Rock, TX
(US); Jason Alan Cox, Raleigh, NC
(US); Robert John Dorsey, Durham,
NC (US); Hien Minh Le, Cedar Park,
TX (US); Eric Francis Robinson,
Raleigh, NC (US); Thuong Quang
Truong, Austin, TX (US)

Inventors:

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 899 days.

Notice:

Appl. No.: 11/959,793

Filed: Dec. 19, 2007
Prior Publication Data
US 2009/0164735 Al Jun. 25, 2009
Int. Cl.
GOl 12/00 (2006.01)
US.CL ... 711/141;711/118;711/119;711/122;
711/124;,711/144;,°711/145;711/146; 711/154
Field of Classification Search 711/118,

711/119, 122, 124, 141, 144146, 134
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,460,114 B1 10/2002 Jeddeloh
6,970,976 B1 11/2005 Arimll et al.
7,076,609 B2 7/2006 Garg et al.

7,085,897 B2* 8/2006 Blakeetal 711/144

2006/0123206 Al 6/2006 Barrett et al.
2006/0179235 Al 8/2006 Bell, Jr. et al.
2006/0179243 Al* 82006 Fieldsetal. 711/141
2006/0179250 Al1* 82006 Guthrieetal. 711/143
2006/0184742 Al 8/2006 Clark et al.
2006/0184743 A 8/2006 QGuthrie et al.
2006/0230252 A 10/2006 Dombrowski et al.
(Continued)
OTHER PUBLICATIONS

Speight, Evan et al., Adaptive Mechanisms and Policies for Manag-
ing Cache Hierarchies in Chip Multiprocessors, International Con-
ference on Computer Architecture; Proceedings of the 32nd Annual
International Symposium on Computer Architecture, 2005, pp. 346-
356.

(Continued)

Primary Examiner — Arpan P. Savla

(74) Attorney, Agent, or Firm — Patrick E. Caldwell, Esq.;
The Caldwell Firm, LL.C

(57) ABSTRACT

A method for maintaining cache coherency operates in a data
processing system with a system memory and a plurality of
processing units (PUs), each PU having a cache, and each PU
coupled to at least another one of the plurality of PUs. A first
PU receives a first data block for storage in a first cache of the
first PU. The first PU stores the first data block 1n the first
cache. The first PU assigns a first coherency state and a first
tag to the first data block, wherein the first coherency state 1s
one of a plurality of coherency states that indicate whether the
first PU has accessed the first data block. The plurality of
coherency states further indicate whether, 1n the event the first

PU has not accessed the first data block, the first PU received

5758.120 A * 5/1998 Kahleetal. ...ocvovovvvin... 711/150 _ _
6,247,098 Bl * 6/2001 Arimillietal. .oco.oo...... 711/141 the first data block trom a neighboring PU.
6,272,603 Bl* 872001 Arimillietal. .o.ooco...... 711/146

6,385,695 Bl 5/2002 Arimilli et al. 20 Claims, 3 Drawing Sheets

300

US 8,397,029 B2
Page 2

U.S. PATENT DOCUMENTS
2006/0236037 Al 10/2006 Guthrie et al.

OTHER PUBLICATTONS

Zhang, Michael et al., Victim Replication: Maximizing Capacity
while Hiding Wire Delay in Tiled Chip Multiprocessors, Interna-
tional Conference on Computer Architecture; Proceedings of the

32nd Annual International Symposium on Computer Architecture,

2005, pp. 336-345.

Memik, Gokhan et al., Reducing energy and delay using efficient
victim caches, International Symposium on Low Power Electronics
and Design; Proceedings of the 2003 international symposium on
Low power electronics and design; Seoul, Korea; Session: Power
efficient cache design, 2003, pp. 262-265.

Allu, Bramha et al., Exploiting the replication cache to improve
performance for multiple-issue microprocessors, ACM SIGARCH

Computer Architecture News archive; vol. 33, Issue 3 Special 1ssue:
MEDEA 2004 workshop; col. Regular contributions, 2005, pp.

03-71.

Naz, Afrin et al., Making a case for split data caches for embedded
applications, Memory Performance: Dealing With Applications, Sys-
tems and Architecture; Proceedings of the 2005 workshop on
Memory performance: Dealing with Applications , systems and
architecture; Saint Louis, Missouri; Special Issue: MEDEA’QS,
2006, pp. 19-26.

Dybdahl, Haakon et al., An LRU-based replacement algorithm aug-
mented with frequency of access in shared chip-multiprocessor
caches, Memory Performance: Dealing With Applications, Systems
and Architecture, Proceedings of the 2005 workshop on Memory
performance: Dealing with Applications, 2006, pp. 45-52.

Temam, Olivier, Investigating optimal local memory performance,
Architectural Support for Programming Languages and Operating
Systems; Proceedings of the eighth international conference on

Architectural support for programming languages and operating sys-
tems; San Jose, California, United States, 1998, pp. 218-227.

* cited by examiner

U.S. Patent Mar. 12, 2013 Sheet 1 of 3 US 8,397,029 B2

120

FIG. 1

N
-
—

110

MEMORY

140
|
—

-
o
~

142
400

5/

e

| =
Y=
=12
=~ 0

144

120¢

LL
T
O
<
O
QP
|
LL]
=
LL
|

146

40a
.
-
/O

104

V1VQ SNLVLS OV A7

US 8,397,029 B2

Vivd SNLVLS OV1L 317

<

I_
-
N

Sheet 2 of 3

V1va SNLVLS Ov1 317

V1va SNLVLS
V1va SNLVLS OV 1)17

V1V SNLYLS OV N2
022 0% 0€2

Mar. 12, 2013

\

¢ OIA

U.S. Patent
=

U.S. Patent Mar. 12, 2013 Sheet 3 of 3

.\\ e

‘\ g A
\

Ny
,4.

FIG. 3

US 8,397,029 B2

1

SYSTEM AND METHOD FOR CACHE
COHERENCY IN A MULTIPROCESSOR
SYSTEM

TECHNICAL FIELD

The present invention relates generally to the field of com-
puter networking and parallel processing and, more particu-
larly, to a system and method for improved cache coherency
in a multiprocessor system.

BACKGROUND OF THE INVENTION

Modern electronic devices often include multiple proces-
sors, each sometimes referred to as a processing unit (PU),
that each include core logic (a “core™), a level one (LL1) cache,
and a level 2 (L2) cache. Typically, each core can access only
its own dedicated L2 cache, and cannot normally access the
L.2 cache of a nearby PU.

One skilled 1n the art will understand that there are many
scenar1os 1n which a core does not use 1ts dedicated 1.2 cache
to the maximum extent possible. For example, this may occur
when a core executes code that uses the L2 cache only slightly
or code from locked cache ways, when a core 1s powered
down or 1n sleep mode, or when a core has been disabled, as,
for example, 1 response to a detected manufacturing defect.
These examples are but a sample of the many common sce-
narios 1n which a core underutilizes 1ts dedicated L2 cache.

In light of this underutilization, there have been several
attempts to improve cache performance, including some sys-
tems wherein one or more PUs share certain levels of their
caches with each other. Each of the current approaches suifers
from one or more disadvantages. Generally, one set of solu-
tions focuses on castout handling, wherein the PU selects a
cache line to “cast out” of 1its cache, ordinarily in order to
make room for an incoming cache block that will be stored in
the cache location currently occupied by the cache line
selected for castout.

For example, one simple solution 1s to evict or “cast out” all
cache lines to memory. That 1s, the simplest solution 1s to
write back castout cache lines to memory when they are cast
out. The castout lines can subsequently be retrieved over a
common coherent bus, to which all L2 caches (and their
associated PUs) are attached. However, this approach sutfers
from the obvious drawback that casting out all lines all the
way to memory 1s ineflicient and hinders performance. Fur-
ther, this method does not enable one core to share another
core’s cache when that cache 1s underutilized. Additionally,
this approach does not allow a cache to be employed when its
core 1s powered down 1n sleep mode or has been deactivated
because of a core manufacturing defect.

Another conventional approach provides a dedicated vic-
tim cache for each L2 cache. In this approach, evicted lines
are cast out to the victim cache, and the victim cache 1s
typically configured to hold only cache lines evicted from the
[.2 cache on a cache miss. This approach, however, adds an
extra cache and supporting hardware, which consumes a
greater area and power than the L2 cache by itself. Addition-
ally, typical victim caches ordinarily allot space for only one
or two lines per congruence class, compared to the six to eight
lines 1n a standard cache, which therefore provides only a
limited solution.

In another approach, heremafiter referred to as the Former
approach, the PUs couple to a common L3 cache, and the L3
cache preselects one of three neighboring 1.2 caches to serve
as a makeshift victim cache. Once the L3 cache selects the
victim cache, the L3 cache and victim cache perform a

10

15

20

25

30

35

40

45

50

55

60

65

2

request/grant handshake via a private communication, fol-
lowed by a data-only transier on a data bus coupling the 1.3

and L2 caches.

The Former approach sufiers from the disadvantage that it
lacks a mechanism to track whether a cache line has been
previously moved. As such, evicted lines in the Former sys-
tem can circulate from cache to cache indefinitely, which can
cause unnecessary bandwidth costs and hamper system per-
formance. Further, the Former victim cache, the castout target
cache, must accept the incoming cache line, which can
require the victim cache to evict a cache line that 1t otherwise
would have kept in the cache. As such, the Former approach
can enhance the performance of one cache at the expense of
another.

In another approach, hereinafter referred to as the Garg
approach, illustrated by U.S. Pat. No. 7,076,609, the cores
share two L2 caches, splitting the associativity across the 1.2
caches equally. The PUs share combined replacement con-
trols, such as, for example, for L2 miss detection and han-
dling. Specifically, the Garg approach allocates a new line,
retrieved from memory in response to an L2 cache miss, into
either of the L.2s, depending on the replacement policy at that
time. Further, the Garg approach searches both L2 caches
simultaneously 1n response to an L1 miss.

As such, the Garg approach provides a shared, multi-bank
level 2 cache, with a wide associativity. The Garg approach
therefore also sufifers from the disadvantages of a single
shared cache. Specifically, Garg line replacement methods
must search multiple L2 caches, which increases search time.
Further, because the associativity in Garg extends across L2
caches, each Garg L2 cache must be searched whenever any
one L.2 cache must be searched, not only 1n the event of alocal
[.2 cache miss. Additionally, because no Garg cache contains
all the associativity for a particular congruence class, a cache
replacement placed 1 one L2 cache will still miss 1n a local
[.2 not containing the cache line, which would ordinarily hit
in a conventional system.

Therefore, there 1s a need for a system and/or method for
cache coherency 1n a multiprocessor system that addresses at
least some of the problems and disadvantages associated with
conventional systems and methods.

BRIEF SUMMARY

The following summary 1s provided to facilitate an under-
standing of some of the innovative features unique to the
embodiments disclosed and 1s not intended to be a full
description. A full appreciation of the various aspects of the
embodiments can be gained by taking into consideration the
entire specification, claims, drawings, and abstract as a
whole.

It 1s, therefore, one aspect of the present invention to pro-
vide for an improved cache coherency method.

It 1s a turther aspect of the present invention to provide for
an improved cache coherency system.

It 1s a turther aspect of the present invention to provide for
an improved system for cache coherency 1n a multiprocessor
system.

It 1s a further aspect of the present invention to provide for
an improved method for cache coherency in a multiprocessor
system.

The aforementioned aspects and other objectives and
advantages can now be achieved as described herein. A
method for maintaining cache coherency operates in a data
processing system with a system memory and a plurality of
processing units (PUs), each PU having a cache, and each PU
coupled to at least another one of the plurality of PUs. A first

US 8,397,029 B2

3

PU receives a first data block for storage 1n a first cache of the
first PU. The first PU stores the first data block 1n the first

cache. The first PU assigns a {irst coherency state and a {first
tag to the first data block, wherein the first coherency state 1s
one of a plurality of coherency states that indicate whether the
first PU has accessed the first data block. The plurality of
coherency states further indicate whether, 1n the event the first
PU has not accessed the first data block, the first PU received
the first data block from a neighboring PU.

In an alternate embodiment, a system comprises a system
memory and a plurality of processing units (PUs) coupled to
the system memory, each PU further coupled to at least one
other of the plurality of PUs, wherein each PU comprises a
cache. Each PU 1s configured to receive a first data block for
storage 1n a first cache of the first PU and store the first data
block in the first cache; each PU assigns a first coherency state
and a first tag to the first data block. The first coherency state
1s one of a plurality of coherency states that indicate whether
the first PU has accessed the first data block and, 1n the event
the first PU has not accessed the first data block, whether the
first PU recerved the first data block from a neighboring PU.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures, in which like reference numer-
als refer to 1identical or Ifunctionally-similar elements
throughout the separate views and which are incorporated in
and form a part of the specification, further illustrate the
embodiments and, together with the detailed description,
serve to explain the embodiments disclosed herein.

FIG. 1 illustrates a block diagram showing a computer
system 1n accordance with a preferred embodiment;

FI1G. 2 illustrates a block diagram showing a cache direc-
tory 1n accordance with a preferred embodiment; and

FI1G. 3 illustrates a high-level state diagram depicting logi-
cal states of an improved cache coherency protocol, which
can be implemented 1n accordance with a preferred embodi-
ment.

DETAILED DESCRIPTION

The particular values and configurations discussed in these
non-limiting examples can be varied and are cited merely to
illustrate at least one embodiment and are not intended to
limit the scope of the invention.

In the following discussion, numerous specific details are
set forth to provide a thorough understanding of the present
invention. Those skilled 1in the art will appreciate that the
present invention may be practiced without such specific
details. In other instances, well-known elements have been
illustrated 1n schematic or block diagram form 1n order not to
obscure the present invention in unnecessary detail. Addition-
ally, for the most part, details concerning network communi-
cations, electromagnetic signaling techniques, user interface
or input/output techniques, and the like, have been omitted
inasmuch as such details are not considered necessary to
obtain a complete understanding of the present invention, and
are considered to be within the understanding of persons of
ordinary skill in the relevant art.

It 1s further noted that, unless indicated otherwise, all func-
tions described herein may be performed 1n either hardware
or soltware, or 1n some combinations thereof. In a preferred
embodiment, however, the functions are performed by a pro-
cessor such as a computer or an electronic data processor 1n
accordance with code such as computer program code, sofit-
ware, and/or integrated circuits that are coded to perform such
functions, unless indicated otherwise.

5

10

15

20

25

30

35

40

45

50

55

60

65

4
The mvention can take the form of an entirely hardware
embodiment, an entirely software embodiment, or an
embodiment containing both hardware and software ele-
ments. In one embodiment, the invention 1s implemented in
software, which includes but 1s not limited to firmware, resi-
dent software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer-readable medium can be any apparatus or
otherwise tangible medium that can contain, store, commu-
nicate, propagate, or transport the program for use by or in
connection with the mstruction execution system, apparatus,
or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
or device). Examples of a computer-readable medium include
a semiconductor or solid-state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a ngid magnetic disk
and an optical disk. Current examples of optical disks include
compact disk-read only memory (CD-ROM), compact disk-
read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code 1n order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

Referring now to the drawings, FIG. 1 1s a high-level block
diagram 1illustrating certain components of a system 100 for
improved cache coherency, 1n accordance with a preferred
embodiment of the present invention. System 100 comprises
a system bus 102.

Generally, system bus 102 1s an otherwise conventional
computer system bus, modified as described below, to which
the various components of system 100 couple. More specifi-
cally, computer system 100 includes an mput/output (I/0)
system 104. I/O system 104 couples to system bus 102 and 1s
an otherwise conventional I/O system, including software
and hardware to provide an interface between system 100
and, for example, a user, another computer system, the Inter-
net, or other suitable external entity. Generally, I/O system
104 1s the collection of common components and software
that make up an input/output system for a modern computer
system, not otherwise described herein, as one skilled 1n the
art will understand.

System 100 also includes memory 110. Memory 110
couples to system bus 102 and 1s an otherwise conventional
computer system memory. System 100 also includes one or
more multi-core systems (MCS) 120. Generally, as described
in more detail below, each MCS 120 1s a processor or plurality
of processors, including caches and other support hardware,

US 8,397,029 B2

S

configured to perform typical computer tasks, in accordance
with one or more preferred embodiments described herein. In
the 1llustrated embodiment, system 100 includes two MCSs,
MCS 120 and MCS 120aq. In an alternate embodiment, one
MSC 120 can be replaced with a conventional processing unit
(PU). One skilled 1n the art will understand that system 100
can also be configured with more than two MCSs 120, one or
more of which can be replaced with a conventional PU. In the
illustrated embodiment, MCS 120a represents these various
options collectively. Generally, MCS 120 and MCS 120q
receive and process data for system 100.

Generally, 1 the illustrated embodiment, MCS 120
couples to the other components of system 100 through a
level 3 (IL3) cache 130 coupled to system bus 102. L3 cache
130 1s an otherwise conventional .3 cache, modified as
described herein, and contains instructions and/or data for
processing units (PUs) of MCS 120. L3 cache 130 also
couples to a secondary bus 132. Secondary bus 132 1s con-
tained entirely within MCS 120, and 1s an otherwise conven-

tional computer system bus.

MCS 120 includes a plurality of processing units (PUs)
140 that couple to one or more other PUs and to secondary bus
132. In the 1llustrated embodiment, MCS 120 includes three
exemplary PUs 140, PU 1404, PU 1405, and PU 140c¢, each of
which couple to secondary bus 132. Generally, each PU 140
1s configured to communicate with L3 cache 130 through
secondary bus 132. Further, each PU 140 generally receives
data and 1nstructions for processing, processes the recerved
data and 1nstructions, and returns results to one or more other
components of system 100.

Each PU 140 couples to one or more other PUs through a
plurality of communication channels. FIG. 1 illustrates three
such communication channels 1 an exemplary embodiment.
Specifically, each PU 140 1n system 100 couples to a down-
stream PU through an interconnect link 142 and link 144.
Similarly, each PU 140 in system 100 couples to an upstream
PU through an interconnect link 146. As used herein, “each”
means all of a particular subset. Links 142, 144, and 146 are
otherwise conventional communication channels, 1intercon-
nects, or other connection suitable to couple the PUs to each
other for data/instruction transier, control communications,
or other suitable operations.

As used herein, the terms “upstream” and “downstream”
refer to the PUs 1n relation to each other, whether organized
into a ring, star, or other topology. That is, a target PU receives
cast-in cache lines, described 1n more detail below, from an
“upstream’ neighboring PU. Similarly, a PU casts out cache
lines to a neighboring “downstream” PU. As used herein, a
“neighboring PU” 1s a PU coupled to another PU so as to
exchange control information, data, and 1nstructions with the
other PU.

Hach PU 140 includes a core 150, shown as 150a, 1505,
and 150c. Each core 150 includes core logic 152, shown as
152a, 152b, and 152¢. Core logic 152 1s an otherwise con-
ventional core logic, modified as described herein. Each core
logic 152 couples to a dedicated level 1 (L1) cache 154,
shown as 154a, 1545, and 154¢. L.1 cache 154 1s an otherwise
conventional [.1 cache, modified as described herein.

Each core 150 couples to a dedicated level 2 (IL2) cache
160, shown as 160a, 1605, and 160c¢. .2 cache 160 1s an
otherwise conventional .2 cache, modified as described
herein. As described 1n more detail below, each PU 140 1s
configured to 1nitiate a cast out of certain cache lines, under
certain circumstances, from its own L2 cache 160 to a neigh-
boring PU’s L2 cache 160.

For example, in one embodiment, PU 140q casts out a
cache line from its L2 cache 160a to downstream PU 14056°s

10

15

20

25

30

35

40

45

50

55

60

65

6

[.2 cache 160b. L2 cache 1605 receives the cache line as a
“cast-in”” cache line. Similarly, 1n one embodiment, PU 140c¢
casts out a cache line from 1ts .2 cache 160¢ to downstream
PU 140a’s L2 cache 160a. L2 cache 160a recerves the cache
line as a “cast-1n"’ cache line. Thus, the PUs 140 of MCS 120
are generally configured to cast out cache lines to a neighbor-
ing PU’s L2 cache, under certain circumstances described 1n
more detail below.

Additionally, exemplary system 100 illustrates the features
of the cast-out/cast-in operations described herein with
respect to L2-to-L2 transactions. One skilled 1n the art wall
understand that the principles of the embodiments disclosed
herein can also be applied to operate in L3-to-1.3 transactions,
[.1-to-L1 transactions, and other suitable configurations, with
the benefit of the teachings herein. One skilled 1n the art wall
also appreciate the need for some mechanism to maintain
coherency among the various levels of the cache hierarchy.

While there are a number of modern protocols and tech-
niques for achieving cache coherence, most typical protocols
allow only one processor permission to write to a given
memory location, as a cache block, at any particular point in
time. As such, whenever a PU wishes to write to a memory
location, there must be some mechanism to verity with all of
the other PUs that the pending write operation 1s acceptable
under the coherency protocol. In one embodiment, the PUs
attempt this verification through a “snoop” protocol.

As described above, 1n one embodiment, the PUs 1n a
multi-core system couple together over a secondary bus (for
example, secondary bus 132 of FIG. 1). The PUs communi-
cate over the secondary bus for coherency and other purposes,
including, for example, indicating a desire to read from or
write to memory locations. When a PU indicates a pending
operation on the secondary bus, all the other PUs monitor (or
“snoop”’) the pending operation. The snooping PUs compare
the target memory location in the pending operation to the
stored memory locations in their respective caches, determin-
ing whether the cache states can allow the pending operation
and, 11 so, under what conditions.

In typical modern protocols, and 1n embodiments of the
present invention herein, there are several bus memory trans-
actions that require snooping and follow-up action, as one
skilled in the art will understand. A “read with intent to write”
for example, requires snooping and follow-up action. Addi-
tionally, 1n some embodiments, there are additional hardware
and signaling lines required to support the snoop operations,
which are omitted here for clanty.

Thus, generally, in order to maintain cache coherence,
whenever a PU wishes to read or write a memory block, 1t
must 1indicate that desire to the other PUs 1n the system. The
cache coherence protocol therefore includes a status indicator
indicating the current coherency “state” of the block, with
cach cache block in each level having its own state. For
example, if only one PU has an active copy of a cache block,
that PU marks the block as being in a coherency state of
“exclusive,” subject to additional protocol requirements
described in more detail below. Generally, PUs can write to an
exclusive cache block without first communicating with other
PUs 1n the system because no other processing unit has a copy
of that cache block.

Additionally, 1n some nstances, PUs can retrieve requested
cache blocks directly from neighboring PUs, instead of from
main memory, 1n an “intervention” operation. As such, the
source PU can transier the requested cache block to the
requesting PU without causing coherency problems, and
without first writing the cache block to memory.

To support intervention and other state-based operations,
there must be some mechanism to associate a coherency state

US 8,397,029 B2

7

with a particular cache block. More particularly, one skilled in
the art will understand that, generally, many modern com-
puter system caches are organized as idexed rows and/or
columns of data. Referring now to FIG. 2, an otherwise con-
ventional cache 200 includes a plurality of cache lines 210.
Each cache line 210 is an otherwise conventional cache line or
cache block. Each cache line 210 includes data 220, a tag 230,
and a status 240. As 1llustrated, cache 200 1s a direct mapped
cache. However, one skilled in the art will understand that
cache 200 can also be configured as an n-way set associative
cache, or a fully associative cache.

However configured, each cache line 210 of cache 200
includes a tag 230 that identifies the particular memory loca-
tion associated with the data 220. Additionally, each cache
line 210 includes a status 240. In one embodiment, status 240
comprises a plurality of bits configured to indicate one of a
plurality of valid coherency states for the cache line.

Generally, as used herein, a “coherency state” refers to one
ol a plurality of states representing the relationship between
data stored 1n a cache and data stored 1n memory and 1n other
caches. To reduce confusion, the discussion herein refers to
cache lines or cache blocks as being “in a coherency state of
X" or “in coherency state X,” where X 1ndicates a coherency
state associated with the cache line/block. This serves to
distinguish an invalid coherency state (a coherency state not
defined by the coherency protocol), from an 1invalid cache line
(a cache line with 1nvalid data). For example, a “coherency
state of Shared(moved)” 1s an 1nvalid coherency state 1n the
coherency protocol described herein, whereas a “coherency
state of invalid” 1s a valid coherency state.

FIG. 3 illustrates one embodiment of a plurality of valid
coherency states 1n an improved cache coherency protocol.
Specifically, FI1G. 3 illustrates a high-level state diagram 300
depicting logical states of an improved cache coherency pro-
tocol, which can be implemented 1n accordance with a pre-
terred embodiment. Generally, each cache line 210 of FIG. 2
includes a status 240, which indicates that the data 220 1s 1n
one of the coherency states described below, unless indicated
otherwise.

Diagram 300 illustrates eight valid coherency states: Modi-

fied(moved) (“Mm”), Modified(owned) (*Mo”), Invalid
(“I””), Shared (*S™), Exclusive(moved) (“Em”), Exclusive(o-
wned) (“Eo0”), Tagged(moved) (“Tm™), and Tagged(owned)
(‘““Io”). Generally, states Mm, Mo, I, S, Em, and Eo are
configured as the well-known MESI protocol states “Moved,”
“Exclusive,” “Shared,” and “Invalid,” except as modified
herein.

Generally, state Mo indicates that the cache line 1s valid and
contains modified data. Copies of this line do not and cannot
ex1st 1n any other cache. The local PU has accessed this cache
line. The local PU 1s the PU that includes the cache storing
this cache line.

Generally, state Mm 1ndicates that the cache line 1s valid
and contains modified data. Copies of this line do not and
cannot exist in any other cache. The local PU has notaccessed
this cache line. Further, this cache line was received by the
local PU as a cast-in cache line, from a neighboring PU that
cast out the cache line.

Generally, state Eo 1indicates that the cache line 1s valid and
contains unmodified data, that 1s, the data matches data stored
in memory. Copies of this line do not and cannot exist in any
other cache. The local PU has accessed this cache line.

Generally, state Em indicates that the cache line 1s valid and
contains unmodified data. Copies of this line do not and
cannot exist 1n any other cache. The local PU has not accessed

10

15

20

25

30

35

40

45

50

55

60

65

8

this cache line. Further, this cache line was received by the
local PU as a cast-in cache line, from a neighboring PU that
cast out the cache line.

Generally, state S indicates that the cache line 1s valid and
copies of this line may exist in other caches. In the 1llustrated
embodiment, state S indicates only that the cache line 1s valid
and that other copies may exist. In an alternate embodiment,
state S includes a sub-state, Shared(last) (“S(I)”) indicating
that the cache line 1s the most-recently accessed of the copies
of the cache line. The S(I) state facilitates data intervention of
lines 1n the “shared” state.

Generally, state I indicates that the cache line 1s not valid in
the current cache. Copies of the cache line may exist in other
caches, 1n various other states.

Generally, state To indicates that the cache line 1s valid and
contains modified data. A PU has sent at least one copy of this
cache line to another PU’s cache though an intervention
operation. The local PU has accessed this cache line. One
skilled 1n the art will recognize that state To 1s an extension to
the well-known MESI cache coherency protocol. Generally, a
“tagged” state indicates that the PU holding the tagged cache
line 1s responsible for writing the modified cache line back to
the memory hierarchy at some time 1n the future. The PU
holding the tagged cache line can satisty 1ts responsibility by
writing back to system memory or by passing the tag to
another PU.

Generally, state Tm indicates that the cache line 1s valid and
contains modified data. A PU has sent at least one copy of this
cache line to another PU’s cache though an intervention
operation. Further, this cache line was received by the local
PU as a cast-in cache line, from a neighboring PU that cast out
the cache line. The local PU has not accessed this cache line.

One skilled in the art will understand that the coherency
state of a cache block changes over time, as the cache block
experiences various operations and status changes resulting
from cache and memory operations. For example, the
“moved” sub-state, shown 1n states Mm, Em, and Tm, indi-
cates whether the local PU received the cache line from a
neighboring PU or from main memory. The “moved” sub-
state also 1implies that the local PU has not accessed the cache
line 1tself, as the PU would thereby transition the state to the
corresponding “owned” sub-state. When a PU accesses a
cache line 1n its L2 (or L1) cache, the PU changes the state to
an appropriate “owned” state, as described 1n more detail
below.

While the state diagram 300 indicates the complete proto-
col 1n one embodiment, certain state transitions can be con-
figured 1n a variety of alternative embodiments. The follow-
ing describes state diagram 300 in additional detail, with
certain alternative embodiments.

Generally, empty cache lines are in coherency state I. Addi-
tionally, cache lines that no longer contain valid data transi-
tion to coherency state I, in an “invalidation™ or “invalidate”™
operation. When a PU requests data from a memory location,
and the cache line for that memory location does not contain
the requested data, (a local load miss) the requesting PU
queries neighboring PUs (and the system bus) to determine
whether any other PU has the cache block containing the
requested data.

Ifno other PU’s cache has the requested data, and the cache
line for the requested memory location 1s in coherency state I,
the PU retrieves the data from memory (or the L3 cache), and
transitions the cache line coherency state from I to Eo. That 1s,
the PU 1s the only PU with the cache line, and that PU has
accessed the cache line. In the case of a store miss, where the
local PU wishes to write to a memory location not found 1in the
local cache, the PU retrieves the data from memory (or the L3

US 8,397,029 B2

9

cache), writes to the cache line, and transitions the cache line
coherency state from I to Mo. That 1s, the PU 1s the only PU
with the cache line, the cache line 1s modified from the
memory copy, and the local PU has accessed the cache line.

If another PU’s cache has the requested data, and the other
PU’s cache line 1s 1n state Mo or Mm, the local PU retrieves
the data from the other PU, the local PU transitions the cache
line coherency state of the local PU copy of the cache line
from I to S, and the other PU (which provided the cache line)
transitions the cache line coherency state of 1ts copy of the
cache line from Mo or Mm to To or Tm, respectively. In an
alternate embodiment, 1f another PU’s cache has the
requested data, and the other PU’s cache line 1s 1n state Eo,
Em, To, Tm, or S, the local PU retrieves the data from the
other PU, and transitions the cache line coherency state from
I to S. If another PU’s cache has the requested data, and the
other PU’s cache line 1s 1n state Mo or Mm, the PU retrieves
the data from the other PU, and transitions the cache line
coherency state from I to To, and the other PU (which pro-
vided the cache line) transitions the cache line coherency state
of 1ts copy of the cache line to S. As such, the local PU also
assumes responsibility to write back the modified data, as
described above.

Moreover, even aiter the local PU has the requested data,
the cache line state can change again based on subsequent
cache operations. For example, where the local PU has the
cache line 1n coherency state Eo and modifies the cache line 1n
a store operation, the local PU transitions the cache line state
from Eo to Mo. In the event another PU requests the cache
line, the local PU provides the requested cache line to the
requesting PU, through an intervention operation, and tran-
sitions the coherency state of the cache line 1n the local PU’s
cache from Mo to To.

Where the local PU has the cache line in coherency state
To, and another PU requests the cache line, the local PU
provides the cache line to the requesting PU (through an
intervention operation) and transitions the cache line state
from To to To.

As described above, state To indicates that the local PU 1s
responsible for writing back the modified (or “dirty™) cache
line to memory. If, however, the local PU wants to modify the
cache line, in one embodiment, the local PU makes a bus
request that causes all other PUs holding a copy of the cache
line to invalidate their copy of the cache line. The local PU
then transitions the coherency state of the local PU’s copy of
the cache line from To to Mo.

When the system writes the modifications back to memory,
or otherwise “cleans” the “dirty” cache line, the local PU
transitions the cache line state from Mo to Eo. When the local
PU subsequently reads or writes the cache line, the local PU
transitions the cache line state from FEo to Eo. Similarly, when
the local PU holds the cache line 1n a coherency state of Mo,
when the local PU subsequently reads the cache line, the local
PU transitions the cache line state from Mo to Mo. In an
alternate embodiment, the local PU does not modify cache
line states that do not change during a transition. In an alter-
nate embodiment, the local PU always transitions cache line
states, even when the result 1s a transition from one state to the
same state, as from To to To, Sto S, Eo to Eo, or Mo to Mo for
example.

Where the local PU has the cache line in coherency state
Eo, and another PU requests the cache line, the local PU
provides the cache line to the requesting PU and transitions
the cache line state from Eo to S. Where the local PU has the
cache line 1 coherency state S and modifies the cache line 1n
a store operation, the local PU transitions the cache line state
from S to Mo, and the local PU sends invalidation or owner-

10

15

20

25

30

35

40

45

50

55

60

65

10

ship claims to the other PUs. Thus, other PUs that held the
cache line would transition the coherency states of their cop-
ies of the cache line from, for example, S to I.

State diagram 300 1llustrates a number of transitions
unique to embodiments of the present invention. For example,
one such umque transition occurs where the local PU has the
cache line 1n coherency state S and another PU has the cache
line 1n coherency state To. In the event the other PU wants to
discard or otherwise invalidate its copy of the cache line, the
local PU can assume ownership of the cache line by transi-
tioning the coherency state of the cache line from S to To
without requiring the other PU to perform a traditional
castout. One skilled 1n the art will appreciate that the other PU
need not transfer any data to the local PU, as the local PU
already holds the cache line. Further, as the state S indicates
that the local PU has already accessed the cache line previ-
ously, the local PU transitions the coherency state from S to
To and not to Tm. One skilled 1n the art will understand that

this transition (S to To) 1s not available 1n prior art MESI or
MESI-T protocols.

Additionally, as described above, the coherency protocol
described herein operates in a unique environment wherein
the local PU canrecerve cast out cache lines from neighboring,
PUs. The neighboring PUs cast out such cache lines to make
room for mmcoming replacement lines, among other reasons,
and the local PU can receive such cache lines as “cast in”
cache lines. Companion disclosures, filed concurrently here-
with, describe this unique environment and the local PU’s
determination as to whether to accept cast 1n lines 1n addi-
tional detail.

The coherency protocol described herein includes several
novel states configured to address the coherency issues
involved 1n casting out cache lines to neighboring .2 caches.
As described above, 1n one embodiment, state diagram 300
also illustrates the unique states Mm, Em, and Tm, generally
describing cache lines that have been moved out of one PU’s
cache (cast out), and moved into the local PU’s cache (cast
in). For example, where the local PU accepts a cast in cache
line 1nto a cache location previously in a coherency state of 1,
the local PU stores the cast 1in cache line 1n the cache location,
and transitions the coherency state of the cache line to Mm,
EM, or Tm, depending on whether the cast in cache line came
from the casting out PU 1n a coherency state of M(m or o),
E(m or 0), or T(m or 0), respectively.

Where the local PU subsequently reads from or writes to a
cache line in a coherency state of Mm, the local PU transitions
the coherency state of the cache line from Mm to Mo. Simi-
larly, where the local PU subsequently reads a cache line 1n a
coherency state of Em, the local PU transitions the coherency
state of the cache line from Em to Eo. Similarly, where the
local PU subsequently reads a cache line 1n a coherency state
of Tm, the local PU transitions the coherency state of the
cache line from Tm to To. Thus, the sub-state of “owned”
generally indicates whether the local PU has accessed the
cache line.

Where the local PU has the cache line 1n coherency state
Em, and another PU requests the cache line, the local PU
provides the cache line to the requesting PU, through an
intervention operation, and the local PU transitions the cache
line state from Em to S. Sumilarly, where the local PU has the
cache line 1n coherency state Mm, and another PU requests
the cache line, the local PU provides the cache line to the
requesting PU, through an intervention operation, and the
local PU ftransitions the cache line state from Mm to Tm.
Similarly, where the local PU has the cache line 1n coherency
state Tm, and another PU requests the cache line, the local PU

US 8,397,029 B2

11

provides the cache line to the requesting PU, through an
intervention operation, and the local PU transitions the cache
line state from Tm to Tm.

Where the local PU has the cache line 1n coherency state
Em, and the local PU writes to the cache line, the local PU
transitions the cache line state from Em to Mo. Similarly,

where the local PU has the cache line 1n coherency state Tm,
and the local PU writes to the cache line, the local PU tran-

sitions the cache line state from Tm to Mo. The local PU also
claims ownership of the cache line through an invalidation
operation, which notifies the other PUs that the local PU has
modified the data 1n the cache line.

Certain transitions of state diagram 300 refer to transitions
from a first cache line 1n a first state to a second cache line 1n

a second state, where the second cache line replaces the first

cache line 1n that cache location. Such transitions are only
shown for lines sent from one cache to another cache and are
not shown for new line replacements within a single cache.
For example, in one embodiment, where the local PU has the
cache line 1n coherency state Mm, and another PU requests
the cache line, the local PU provides the cache line to the
requesting PU, through an intervention operation, and the
local PU transitions the cache line state from Mm to Tm. In an
alternate embodiment, where the local PU has the cache line
in coherency state Mm, the local PU canreplace the cache line
with a cast-in cache line. If the cast-in cache line 1s 1n a
coherency state of Tm, the local PU thereby transitions the
coherency state of the cache line 1n that cache location from
Mm (the replaced line’s state) to Tm (the cast-in line’s state).
Accordingly, the transition from Mm to Tm can indicate
either that the PU sourced the first cache line to another PU
through an intervention, or that the PU replaced the first cache
line with a second cache line, which happened to be 1n coher-
ency state Tm.

Similarly, where the PU has a first cache line 1n a coherency
state of S, and the PU has accepted a cast-in cache line that
will replace the first cache line, the resultant state of the cache
line 1n that cache location depends on the state of the cast-in
cache line. As such, the local PU stores the cast-in cache line
in the cache location vacated by the first cache line, and
transitions the coherency state of the cache line from S to
either Mm, Tm, or Em, accordingly. Similar replacement
transitions can occur when the local PU replaces a first cache
line 1n a coherency state of Mm, Tm, or Em, with a cast-in
cache line 1n a coherency state of Mm, Tm, or Em, as one
skilled 1n the art will understand.

Inthe illustrated embodiment, the local PU assigns a coher-
ency state of “moved” to cast-in cache lines, even if the local
PU recetved the cast-in cache line 1n a coherency state of
“owned.” That 1s, in one embodiment, the local PU assigns a
local coherency state of, for example, Em, to a cast-in cache
line received 1n a cast out coherency state of Fo. In an alter-
nate embodiment, a local PU accepts a cast-in cache line and
assigns a coherency state for the cache line based, 1n part, on
whether the local PU has 1tself accessed the cache line.

Thus, generally, state diagram 300 1llustrates a coherency
protocol that provides significant technical advantages over
prior art systems and method. For example, the disclosed
coherency protocol 1llustrates that a local PU can replace a
cache line held in the local PU’s cache with a cast-in line from
another PU. Generally, a local PU will accept lines from a
neighbor PU 1f the local PU has an available cache line in a
coherency state of I, S, or “moved.” Likewise, a local PU will
generally not replace 1ts own cache lines with a cast-1n cache
line, 1f the local cache lines are 1n a coherency state of
“owned.” A local PU will replace local cache lines 1n a coher-

10

15

20

25

30

35

40

45

50

55

60

65

12

ency state of Shared because there 1s a reasonable probability
that another neighboring PU also holds the replaced cache
line 1n coherency state S.

More generally, the novel coherency protocol described
herein introduces cache coherency states Mo, Mm, Fo, Em
To, and Tm. These novel coherency states are similar in some
respects to the standard M, E, S, 1, and T states, except that the
M, E and T states have an additional attribute that distin-
guishes a cache line 1n those states as being either an “owned
(0)” line or a “moved (m)” line. As described above, a local
PUmarks an M, E or T line as “owned” 1t the PU core attached
to the [.2 cache where the line resides has accessed the line,
either originally or since the line arrived from a neighboring
PU’s L2 cache. Similarly, the local PU marks an M, E or T line
as “moved” 1f the local PU received the cache line from a
neighbor L2 cache, and the PU core attached to the L2 cache
where the line resides has not accessed the line.

Accordingly, the disclosed embodiments provide numer-
ous advantages over prior art methods and systems. For
example, the disclosed coherency protocol expands the MESI
and MESI-T cache coherency protocols, adding three
“owned” states. Accordingly, the disclosed coherency proto-
col supports casting out lines from one PU cache into another
PU cache, thereby improving cache retention 1n such a sys-
tem. In particular, the disclosed embodiments can result in
cache lines being kept 1n higher levels of the cache hierarchy
longer, rather than being sent to higher latency memory.

In another technical advantage, the additional states also
help the PUs to optimize both their replacement algorithms
and the mechanism by which cache lines are accepted for
cast-in. By distinguishing between cache lines that are
“owned” and cache lines that have only been “moved” 1into a
local PU cache, the local PU can provide supplemental cache
space to a neighboring PU, without also sacrificing the local
PU’s performance.

In another technical advantage, distinguishing between
“moved” and “owned” cache lines assists in preventing a
cache line from passing from neighboring PU to neighboring
PU to neighboring PU and so on. That 1s, 1n one embodiment,
“moved” cache lines are not permitted to be cast out to a
neighboring PU’s cache. The PUs instead replace or mvali-
date lines that have not been “owned,” thereby preventing
unwanted cache lines from circulating indefinitely. This
mechanism relieves the system caches from filling up with
unwanted cache lines and helps prevent system performance
degradation.

In another technical advantage, the new states assist the
PUs 1n optimizing their cache line replacement algorithms.
For example, 1n one embodiment, when a local PU replaces a
cache line, whether to receive a cast-1n line or to receive a
locally requested line, the local PU will generally replace any
“moved’” lines before 1t replaces 1ts own “owned’ lines.

In still another technical advantage, the disclosed coher-
ency protocol supports tagged cache line ownership transier
without requiring a costly, and redundant, data transfer. In
particular, this aspect of the present invention advantageously
avolds a line store to memory (needed when a tagged line 1s
discarded under prior art protocols). Additionally, this aspect
of the present invention also allows the cache line to remain 1n
the tagged state 1n another cache. This aspect therefore pro-
vides even further advantage, 1in that a PU can provide a
tagged line to a neighboring PU through intervention in situ-
ations where a shared line 1s often ineligible for intervention.

The disclosed coherency protocol also offers particular
advantages over specific prior art systems and methods. For
example, 1n contrast to the Former approach, the disclosed
coherency protocol herein can move a tagged line to a neigh-

US 8,397,029 B2

13

boring PU cache in the shared state, with no data traffic
required. Additionally, because the Former approach lacks
the novel “moved” and “owned” states described herein,
Former systems cannot employ such states to prevent endless
circulation of old cache lines.

Additionally, Former PUs cannot refuse to accept cast out
cache lines as cast-in cache lines. In the disclosed coherency
protocol, a local PU can refuse to accept cast out cache lines
until the local PU has sufficient room 1n the form of a cache
line 1n a coherency state of invalid, shared, or one of the
moved states. Thus, unlike the Former approach, the present
invention does not improve one PU’s cache performance at
the cost of degrading another PU’s cache performance.

Similarly, the present invention offers numerous advan-
tages over the Garg approach. Because the present invention
supports improved cache line cast out and retrieval protocols,
such systems are improvements over the Garg approach, and
the Garg approach suifers from the disadvantages of a single
shared cache, including low scalability. Further, the disclosed
coherency protocol supports reduced cache miss searching,
as line replacement protocols 1 systems employing the
present invention can restrict cache searches to the local L2
cache, mstead of multiple L2 caches. As such, the present
invention improves cache performance generally, over the
Garg approach and other prior art systems and methods.

One skilled 1n the art will appreciate that vanations of the
above-disclosed and other features and functions, or alterna-
tives thereol, may be desirably combined into many other
different systems or applications. Additionally, various pres-
ently unforeseen or unanticipated alternatives, modifications,
variations or improvements therein may be subsequently
made by those skilled in the art, which are also intended to be
encompassed by the following claims.

[,

What is claimed 1s:

1. A method for maintaining cache coherency in a data
processing system with a system memory and a plurality of
processing units (PUs), each PU having a cache, and each PU
coupled to at least another one of the plurality of PUs, the
method comprising:

receiving, by a first PU, a first data block for storage in a

first cache of the first PU;

storing the first data block 1n the first cache;

assigning a first coherency state and a first tag to the first

data block:

wherein the first coherency state 1s one of a plurality of

coherency states that indicate whether the first PU has
accessed the first data block; and

wherein the plurality of coherency states further indicate

whether, 1n the event the first PU has not accessed the
first data block, the first PU recerved the first data block
from a neighboring PU.

2. The method of claim 1, wherein the plurality of coher-
ency states further indicate:

whether the first data block contains modified data;

whether the first data block 1s 1nvalid; and
whether any other PU of the plurality of PUs also has a

copy of the first data block.

3. The method of claim 1, wherein the plurality of coher-
ency states further indicate whether the first data block has
been sent to at least one of the plurality of PUs by an inter-
vention operation.

4. The method of claim 1, wherein the plurality of coher-
ency states further indicate the first PU received the first data
block from a second cache of a second PU.

5. The method of claim 1, further comprising assigning a
second coherency state to the first data block.

10

15

20

25

30

35

40

45

50

55

60

65

14

6. The method of claim 5, wherein the first PU assigns the
second coherency state based on snooping an interconnect
coupling the first PU to at least one other of the plurality of
PUs.

7. The method of claim 5, wherein the first PU assigns the
second coherency state based on the first PU accessing the
first data block.

8. The method of claim 1, wherein the plurality of PUs are
coupled together 1n a ring structure.

9. The method of claim 1, wherein the plurality of PUs are
coupled together 1n a star structure.

10. A processor comprising a computer program product
for maintaining cache coherency 1n a data processing system
with a system memory and a plurality of processing units
(PUs), each PU having a cache, and each PU coupled to at
least another one of the plurality of PUs, the computer pro-
gram product having a tangible non-transitory computer-
readable medium with a computer program embodied
thereon, the computer program comprising:

computer code forrecerving, by a first PU, a first data block

for storage 1n a first cache of the first PU;

computer code for storing the first data block 1n the first

cache;

computer code for assigning a {irst coherency state and a

first tag to the first data block;

wherein the first coherency state 1s one of a plurality of

coherency states that indicate whether the first PU has
accessed the first data block; and

wherein the plurality of coherency states further indicate

whether, 1n the event the first PU has not accessed the
first data block, the first PU received the first data block
from a neighboring PU.

11. The processor of claim 10, wherein plurality of coher-

ency states further indicate:

whether the first data block contains modified data:

whether the first data block 1s invalid; and
whether any other PU of the plurality of PUs also has a

copy of the first data block.

12. The processor of claim 10, wherein the plurality of
coherency states further indicate whether the first data block
has been sent to at least one of the plurality of PUs by an
intervention operation.

13. The processor of claim 10, wherein the plurality of
coherency states further indicate the first PU received the first
data block from a second cache of a second PU.

14. The processor of claim 10, further comprising com-
puter code for assigning a second coherency state to the first
data block based on snooping an interconnect coupling the
first PU to at least one other of the plurality of PUs.

15. The processor of claim 10, further comprising com-
puter code for assigning a second coherency state to the first
data block based on the first PU accessing the first data block.

16. A hardware system, comprising:

a system memory;

a plurality of processing units (PUs) coupled to the system

memory, each PU further coupled to at least one other of

the plurality of PUs;
wherein each PU comprises a cache;
wherein each PU 1s configured to:
receive a first data block for storage 1n a first cache of the
first PU;
store the first data block 1n the first cache; and
assign a first coherency state and a {first tag to the first
data block;
wherein the first coherency state i1s one of a plurality of
coherency states that indicate whether the first PU has

accessed the first data block:; and

US 8,397,029 B2

15

wherein the plurality of coherency states further indicate
whether, 1n the event the first PU has not accessed the
first data block, the first PU received the first data block

from a neighboring PU.

17. The system of claim 16, wherein each PU further com-
prises a state register configured to hold the first coherency
state.

18. The system of claim 16, wherein the plurality of coher-
ency states further indicate:

whether the first data block contains modified data;

whether the first data block 1s 1invalid; and

16

whether any other PU of the plurality of PUs also has a

copy of the first data block.

19. The system of claim 16, wherein at least the first PU 1s
turther configured to assign a second coherency state to the
first data block based on snooping an interconnect coupling
the first PU to at least one other of the plurality of PUs.

20. The system of claim 16, wherein at least the first PU 1s
turther configured to assign a second coherency state to the
first data block based on the first PU accessing the first data

10 block.

	Front Page
	Drawings
	Specification
	Claims

