12 United States Patent

Ostrovsky et al.

US008392920B2

(10) Patent No.: US 8.392.920 B2
45) Date of Patent: Mar. 5, 2013

(54) PARALLEL QUERY ENGINE WITH
DYNAMIC NUMBER OF WORKERS

(75) Inventors: Igor Ostrovsky, Bellevue, WA (US);
John J. Duffy, Seattle, WA (US);
Stephen Harris Toub, Seattle, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 501 days.
(21) Appl. No.: 12/695,049
(22) Filed: Jan. 27, 2010

(65) Prior Publication Data
US 2011/0185358 Al Jul. 28, 2011

(51) Int.Cl.

GO6IF 9/40 (2006.01)

GO6IF 9/44 (2006.01)

GO6F 9/46 (2006.01)
(52) US.CL ..., 718/100; 718/102
(58) Field of Classification Search None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

0,041,384 A 3/2000 Waddington

0,289,334 Bl 9/2001 Reiner

6,480,876 B2 11/2002 Rehg
2006/0218123 Al 9/2006 Chowdhun
2009/0031175 Al 1/2009 Aggarwal
2009/0144346 Al 6/2009 Dufly

302 —~

FOREIGN PATENT DOCUMENTS
WO WO 2008118613 * 10/2008

OTHER PUBLICATIONS

Author Unknown; Managing Parallel Query—Published Date: Mar.
2004 http://publib.boulder.ibm.com/infocenter/tbhelp/v6r3/index.
jsp?topic=/com.ibm.redbrick.doc6.3/perf/pert33.htm (Copy
Attached).

Author Unknown; Parallel Queries—Retrieved Date: Nov. 26, 2009
http://manuals.sybase.com/onlinebooks/group-as/asgl1250e/sag/
@Generic_ BookTextView/15909;pt=15956 (Copy Attached).

* cited by examiner

Primary Examiner — Qing Wu
(74) Attorney, Agent, or Firm — Workman Nydegger

(57) ABSTRACT

Partitioning query execution work of a sequence including a
plurality of elements. A method includes a worker core
requesting work from a work queue. In response, the worker
core receives a task from the work queue. The task 1s a
replicable sequence-processing task including two distinct
steps: scheduling a copy of the task on the scheduler queue
and processing a sequence. The worker core processes the
task by: creating a replica of the task and placing the replica
of the task on the work queue, and beginning processing the
sequence. The acts are repeated for one or more additional
worker cores, where receiving a task from the work queue 1s
performed by receiving one or more replicas of tasks placed
on the task queue by earlier performances of creating areplica
of the task and placing the replica of the task on the work
queue by a different worker core.

20 Claims, 5 Drawing Sheets

304 —

- Request Work From A Work Queue

Receive A Task From The Work Queue, The Task Being A Replicable

Sequence-Processing task Comprising two Distinct Steps, Including A
Step Of Scheduling A Copy Of The Task On The Scheduler Queue
And A Step Of Processing A Sequence

Process

he Task

U.S. Patent Mar. 5, 2013 Sheet 1 of 5

102

108

104
Application Scheduler 106
114

Lazy Sequence

Figure 1A

US 8,392,920 B2

Core 1

Processing
Lazy
Sequence

Core 2

Processing
Other
Work

Core 3

Processing
Other
Work

Core 4

Processing
Other
Work

112-1

112-2

112-3

112-4

U.S. Patent Mar. 5, 2013 Sheet 2 of 5

108

104

Application Scheduler 106
Code

114

Lazy Sequence

Figure 1B

US 8,392,920 B2

Core 1

Processing
Lazy
Sequence

Core 2

Processing
Lazy
Sequence

Core 3

Processing
Other
Work

Core 4

Processing
Other
Work

112-1

112-2

112-3

112-4

U.S. Patent Mar. 5, 2013 Sheet 3 of 5

108
104
Application Scheduler 106
Code

114

Lazy Sequence

Figure 1C

US 8,392,920 B2

Core 1

Processing
Lazy
Sequence

Core 2

Processing
Lazy
Sequence

Core 3

Processing
Lazy
Sequence

Core 4

Processing
Other
Work

112-1

112-2

112-3

112-4

U.S. Patent Mar. 5, 2013 Sheet 4 of 5 US 8,392,920 B2

Partition 202
Input

208-1 208-2 208-3

204

Merge

Qutputs 208

Figure 2

U.S. Patent Mar. 5, 2013 Sheet 5 of 5 US 8.392.920 B2

302

Request Work From A Work Queue

304

Receilve A Task From The Work Queue, The Task Being A Replicable
Sequence-Processing task Comprising two Distinct Steps, Including A

Step Of Scheduling A Copy Of The Task On The Scheduler Queue
And A Step Of Processing A Sequence

306

Process The Task

Figure 3

US 8,392,920 B2

1

PARALLEL QUERY ENGINE WITH
DYNAMIC NUMBER OF WORKERS

BACKGROUND
Background and Relevant Art

Computers and computing systems have affected nearly
every aspect of modern living. Computers are generally
involved 1 work, recreation, healthcare, transportation,
entertainment, household management, etc.

Recent advances 1n computing technology include the use
of multiple processors or cores 1n a single machine. Often, the
multiple cores may be implemented on the same semiconduc-
tor die or at least packaged in the same chip package. To
cifectively utilize the multi-core systems, programming tech-
niques have been developed to split computing work between
the cores. A data-parallel declarative programming model
makes 1t easy for developers to build programs that execute on
parallel systems such as multi-core machines or clusters. A
data-parallel operation will typically split up the input
sequence mto some number of partitions and then process
cach partition on a single worker (1.e. a thread executing on a
single core). Developers write programs in a data-parallel
declarative programming model by combining operators ({il-
ters, projections, aggregations, etc) mnto queries. It 1s often
difficult to determine how many workers should be created,
because other computations may be happening on the
machine at the same time.

In previous solutions, the intermediate data-parallel opera-
tion results are represented as a set of partitions. Each parti-
tion 1s a sequence that can be processed independently from
other partitions, and thus different partitions can be processed
on different computational cores. The mput of each query
operator 1s a fixed number of mnput partitions, and its output is
the same fixed number of output partitions. The operator will
typically wrap each iput partition with a particular operation
(c.g., a filtering operator will wrap each partition with a
filtering operation, a mapping operator with a mapping opera-
tion, etc.)

In this model, the number of parallel workers 1s fixed for
the duration of the data-parallel query evaluation, so compu-
tational resources on the machine may not be used optimally.

The number of workers 1s by default equal to the number of

processors on the machine. IT one of the processors 1s busy at
the ttime when the query 1s initiated, the processing of one
partition will stall until a processor becomes available.

The subject matter claimed herein 1s not limited to embodi-
ments that solve any disadvantages or that operate only in
environments such as those described above. Rather, this
background 1s only provided to 1llustrate one exemplary tech-
nology area where some embodiments described herein may
be practiced.

BRIEF SUMMARY

One embodiment 1s directed to a method that may be prac-
ticed 1n a computing environment including multiple proces-
sor cores. The method includes acts for partitioning query
execution work of a sequence comprising a plurality of ele-
ments. The method includes: (a) a worker core requesting,
work from a work queue; (b) 1n response, the worker core
receiving a task from the work queue (the task 1s a replicable
sequence-processing task including two distinct steps: sched-
uling a copy of the task on the scheduler queue and processing,
a sequence); (¢) the worker core processing the task by:
creating areplica of the task and placing the replica of the task

10

15

20

25

30

35

40

45

50

55

60

65

2

on the work queue, and beginning processing the sequence.
Acts (a)-(c) are repeated for one or more additional worker
cores. Act (b) for the one or more additional worker cores 1s
performed by recerving one or more replicas of tasks placed
on the task queue by an earlier performance of act (¢) by a
different worker core.

This Summary 1s provided to introduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This Summary 1s not intended to
identily key features or essential features of the claimed sub-
ject matter, nor 1s 1t intended to be used as an aid 1n determin-
ing the scope of the claimed subject matter.

Additional features and advantages will be set forth 1n the
description which follows, and in part will be obvious from
the description, or may be learned by the practice of the
teachings herein. Features and advantages of the imnvention
may berealized and obtained by means of the instruments and
combinations particularly pointed out in the appended
claims. Features of the present invention will become more
tully apparent from the following description and appended
claims, or may be learned by the practice of the invention as
set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

To describe the manner 1n which the above-recited and
other advantages and features can be obtained, a more par-
ticular description of the subject matter brietly described
above will be rendered by reference to specific embodiments
which are illustrated 1n the appended drawings. Understand-
ing that these drawings depict only typical embodiments and
are not therefore to be considered to be limiting 1n scope,
embodiments will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. Al 1llustrates processing a lazy sequence 1n a multi-
core system;

FIG. 1B 1llustrates processing a lazy sequence 1n a multi-
core system;

FIG. 1C 1llustrates processing a lazy sequence 1n a multi-
core system;

FIG. 2 1llustrates a process flow for processing an iput in
a multi-core system; and

FIG. 3 illustrates a method of processing a sequence of
work.

DETAILED DESCRIPTION

Embodiments may be implemented to execute a data-par-
allel query on a dynamic number of worker cores. A core 1s a
piece ol processor hardware that canrun a single thread at any
given instant. It may multitask by running several different
threads, but at any given time, only a single thread has 1nstruc-
tions being executed on the core. A worker thread 1s a sequen-
tial part of a program that executes on a single core. A pro-
gram can include multiple threads that run concurrently with
respect to each other. A task 1s a unit of work to be performed.
Tasks to be done are held on a work queue. In the following
examples, there are several threads whose role 1t 1s to pull
tasks from the work queue and execute them

The query evaluation begins with a single task that when
executed by a worker core, schedules another task for another
worker core, and the first worker core, as part of the task,
begins executing the query. If and when another core becomes
available, the second worker core executes the another task
and schedules a third task, and helps the first worker execute

US 8,392,920 B2

3

the query. This can continue until the query 1s completed or all
possible worker cores have been scheduled.

Some embodiments described herein include representa-
tion of intermediate query results that allows a dynamic num-
ber of workers (threads or cores). A scheme may be imple-
mented for partitioning a single iput stream 1nto a dynamic
number of streams. Data-parallel operations can be per-
formed on a dynamic number of streams. A scheme may be
implemented for merging a dynamic number of streams into
a single output stream.

Referring to FIG. 1A, and as used herein, a lazy sequence
114 1s a subroutine stored on a computer that represents a
sequence where calling the subroutine the first time computes
and returns the first element 116-1 of the sequence, calling the
subroutine the second time returns the second element 116-2
ol the sequence, calling the subroutine the 1-th time returns
the 1-th element 116-i of the sequence, etc. The subroutine
returns a special signal instead of a value 11 it was called and
there are no more elements 1n the sequence.

A lazy locked sequence 1s a lazy sequence protected by a
lock, so that multiple threads can pull elements from the
sequence. When a thread wants to remove an element from a
lazy locked sequence, 1t performs these steps: acquire the lock
on the lazy sequence (if the lock is held by another thread,
wait until the lock 1s released); call the lazy sequence subrou-
tine, and store the element returned; release the lock

Often, 1t 15 usetul to perform some expensive operation on
cach element 1n a (logical) sequence (that may be represented
as a lazy sequence). Performing an expensive operation on
cach element 1s referred to heremn as “processing” the
sequence. Embodiments are implemented to process the
sequence on multiple threads, so that the operation on differ-

ent elements 1s executed on different threads. Furthermore,
the embodiments may ensure that the number of threads used
to process the sequence 1s automatically adjusted based on
how busy the machine 1s.

Referring now to FIG. 1A, an example 1s 1llustrated. FIG.
1 A illustrates generally a multi core system 102. Generally an
application 104 will use a scheduler 106 to add tasks (referred
to herein generally as 110 and specifically by 110 plus a suffix
designator) to a work queue 108. A work queue 1s a data
structure that stores units of work that need to be completed
(1.e. ‘tasks’). As noted above, an application 104 may add
tasks, where each task can be obtained from the queue by a
processor core, such as one of the processor cores 112-1,
112-2, 112-3, or 112-4 (which may be referred to herein
generally as 112 and specifically by their suilix designator) of
the mult1 core system 102. Each of the cores 112-1, 112-2,
112-3, or 112-4 can poll the queue 108 to find work when the
cores 112 are 1dle or have completed other work. Embodi-
ments herein may refer to work threads, where each worker
thread runs on one computational hardware core 112 and
continuously removes tasks 110 from the work queue 108 and
executes them.

Embodiments may implement a replicable sequence-pro-
cessing task so that a dynamic number of cores 112 can be
assigned to process a sequence as the cores 112 become
available. A replicable sequence-processing task 1s an eifi-
cient way to process a sequence 114 on parallel hardware. The
hardware of the mult1 core system 102 may also be executing,
other operations. For example, some cores 112 may be pro-
cessing a sequence 114 while other cores a performing other
work. A replicable sequence-processing task 1s used to pro-
cesses a lazy locked sequence by the sequence-processing
task including two distinct steps: (1) scheduling a copy of
itself on the scheduler queue; and (2) begin removing ele-

10

15

20

25

30

35

40

45

50

55

60

65

4

ments from the lazy locked sequence and processing them as
explained previously 1n conjunction with the explanation of
the lazy sequence subroutine.

Illustrating now an example, assume that a first core 112-1
1s the only core available to process the sequence 114. A task
110-1 1s on the work queue and 1s a replicable sequence-
processing task for processing the lazy sequence 114, such
that i1t includes steps of (1) scheduling a copy of itself on the
scheduler queue; and (2) begin removing elements from the
lazy sequence 114 and processing them. When the first core
112-1 polls the work queue 108, the task 110-1 will be dis-
covered. The first core 112-1 processing the task 110-1 causes
the task 110-1 to be replicated as 1llustrated in FIG. 1B cre-
ating task 110-2. In particular, FIG. 1B 1llustrates a task 110-2
which 1s a replica of task 110-1 meaning that 1t includes steps
of (1) scheduling a copy of itself on the scheduler queue; and
(2) begin removing elements from the lazy sequence 114 and
processing them. The first core 112-1 processing the task
110-1 also results 1n the first core 112-1 beginming to process
clements of the sequence 114 using the subroutine as
described above. Thus, 1f this i1s the first use of the sub-
routine, the first core 112-1 will begin processing element
116-1.

As 1llustrated in FIG. 1A, the other cores 112-2, 112-3, and
112-4 are each performing other work and are thus not avail-
able to participate 1n processing the sequence 114. However,
FIG. 1B illustrates that the second core 112-2 may complete
processing other work, and as a result polls the work queue
108 to discover new work. The second core 112-2 discovers
the replicable sequence-processing task 110-2, which as
noted above 1ncludes steps of (1) scheduling a copy of 1tself
on the scheduler queue; and (2) begin removing elements
from the lazy sequence 114 and processing them. The second
core 112-2 processing the task 110-2 results in the creation of
a replica of the task 110-2, illustrated as the replicable
sequence-processing task 110-3 1 FIG. 1C, and the second
core 112-2 beginming to process the lazy sequence 114. In
particular, the second core 112-2 will start processing the next
clement of the sequence after the last element of the sequence
removed by the first core 112-1. Thus, if the first core 1s
currently processing element 116-1, then the second core
112-2 will use the subroutine described above resulting the
processing of the element 116-2.

As 1illustrated 1n FIG. 1C, this process can be repeated as
the third core 112-3 becomes 1dle and thus processes the task
110-3 resulting 1n a replica of the task 110-3 being added to
the work queue 108 and the third core 112-3 beginming pro-
cessing of elements on the lazy sequence 114. This can be
continued until all possible cores are processing the lazy
sequence and/or until the lazy sequence 114 has been fully
processed, such as by all elements 116 having been processed
and the special signal being returned. Any remaining repli-
cable sequence-processing task on the work queue 108 can
then be removed so that other tasks from the work queue 108
can be performed.

Theresults of performing the work by each of the cores 112
involved 1in processing the lazy sequence 114 are then merged
to form a final result.

This design facilitates using an appropriate number of
threads to process the sequence 114 (i.e., perform some com-
putation for every element 116 1n the sequence 114). If the
machine 1s busy and only a single core 112 1s available in the
scheduler, that core will process entire sequence 114. If—on
the other hand—more cores 112 become available while the
sequence 1s getting processed, those cores 112 will join the
sequence processing (by picking up one of the replica tasks
110 from the work queue 108).

US 8,392,920 B2

S

Intermediate query results are represented as a partitioned
set that can dynamically add more partitions at run time. In a
typical work scheduler, multiple worker cores pull task
descriptions from one or more work queues. Notably,
embodiments may be implemented where multiple work
queues 108 can be used the same set of cores to support tasks
with different priorities, to group tasks to maximize locality,
etc.

Further details and examples are now illustrated using C#
code examples. the following 1s a representation of imnterme-
diate query results:

public interface IDynamicPartitions<T> {
[Enumerator<I"> GetPartition();

h

An IDynamicPartitions<<T> result set can be consumed by
a dynamic number of worker cores. To add another worker
core to the execution, GetPartition() i1s called, and the
returned IEnumerator<<I'>1s assigned to be consumed by that
worker core. This constraint has impact on all parts of the
query execution, such as that illustrated 1n FIG. 2:

1. Partitioning (202):
[Enumerable<I>=>IDynamicPartitions<T>
2. Query operator implementation (204):

IDynamicPartitions<T>=>IDynamicPartitions<U>
3. Merging (206): different varnants, an example 1s
IDynamicPartitions<<IT>=>IEnumerable<T>

Additional details are now 1llustrated for each of partition-
Ing, query operator implementation and merging.

The partitioning act takes one sequence as an mput 200,
represented for example as an IEnumerable<I>or an array of
T. For example, the array T may be the lazy sequence 114. The
partitioning act will dynamically split up the sequence into
multiple sequences as illustrated at partition input 202.

In one simple partitioning implementation, whenever a
worker core (e.g. a core 112) 1s ready to process another
clement (e.g. an element 116), 1t takes a lock and removes one
clement from the mput sequence. Inasmuch as elements are
assigned to partitions on-demand rather than up-front, worker

cores can be easily added throughout the computation.

Alternatively, the worker could remove an entire chunk of
elements from the source each time i1t needs more work,
thereby reducing synchronization overhead. For example,
when locks are taken less frequently, synchronization over-
head 1s reduces.

Query operators are illustrated at 204 1n FIG. 2. Different
data-parallel operators also have to be implemented 1n a way
that supports dynamically added worker cores.

For example, a filtering operation 208 would implement
GetPartitions() as follows, in C#:

class FilteredPartitions<T> : IDynamicPartitions<T> {
private IDynamicPartitions<T> mputPartitions = ...
Func<T, bool> filterFunc = ...
public IDynamicPartitions<T> GetPartition() {
return new FilterPartition(inputPartitions.GetPartition());
h
private IEnumerator<T> FilterPartition(IEnumerator<T> inPartition) {
while(true) {
bool elementFound = false;
while(elementFound = inPartition.MoveNext() &&
HilterFunc(inPartition.Current)) { }
if (elementFound) { yield return inPartition.Current; }
else { yield break; }

10

15

20

25

30

35

40

45

50

55

60

65

6

-continued

Each time FilteredPartitions<I>.GetPartition() 1s called,
embodiments call GetPartitions() on the input partition, and
wrap the input partition with a filter that only keeps results
that match the filter.

Merging 1s illustrated at 206 1n F1G. 2. As the last step of the
data-parallel operation illustrated 1n FIG. 2, Embodiments
merge the (dynamic number of) partitions 1nto a single output
sequence. The merge will call GetPartitions() to get an
IDynamicPartitions<I> object that represents the results of
the query. Then, the merge will hand out different partitions to
different worker cores. Each worker core will enumerate 1ts
own partition, thereby executing 1ts own share of work.

Various merge algorithms are possible. Embodiments are
implemented where the merge supports dynamically added
worker cores. In one simple merge algorithm that supports
dynamically added workers, each worker core simply pulls
clements from 1ts partition, and 1nserts them into a single list
as Tollows:

public static void MergeResults(IDynamicPartitions<I'> partitions,
List<"T> results)
{
using(IEnumerator<T> myPartition = partitions.GetPartition()) {
while(myPartition.MoveNext()) {
T result = myPartition.Current;
lock(results) {
results. Add(result);

h
h
y
h

The query can be executed 1n parallel as follows:

public static void RunQuery(IDynamicPartitions<T> partitions) {
List<T> results = new List<T>();
Task task = TaskScheduler.ScheduleReplicating Task(

__=> MergeResults(partitions, results);

)

task.Wait(); // waits for all replicas to complete
return results;

This algorithm doesn’t guarantee the order of the output
clements. However, merge algorithms that do preserve order-
ing are also possible.

The following discussion now refers to a number of meth-
ods and method acts that may be performed. It should be
noted, that although the method acts may be discussed 1n a
certain order or illustrated in a flow chart as occurring 1n a
particular order, no particular ordering 1s necessarily required
unless specifically stated, or required because an act 1s depen-
dent on another act being completed prior to the act being
performed.

Referring now to FIG. 3, a method 300 i1s 1llustrated. The
method 300 may be practiced in a computing environment
including multiple processor cores, such as the system 102
illustrated in FIG. 1A. The method 300 includes acts for
partitioning query execution work of a sequence including a
plurality of elements. The method includes a worker core

US 8,392,920 B2

7

requesting work from a work queue (act 302). For example, a
core 112 may request a task 110 from a work queue 108.

In response to the request, the worker core recetves a task
from the work queue (act 304). The task i1s a replicable
sequence-processing task comprising two distinct steps,
including a subtask of scheduling a copy of the task on the
scheduler queue and a subtask of processing a sequence. The

worker core processes the task (act 306). Processing the task
may include creating a replica of the task and placing the
replica of the task on the work queue and beginning process-
ing the sequence. The replica of the task 1s a replicable
sequence-processing task comprising two distinct steps,
including a subtask of scheduling a copy of the replica of the
task on the scheduler queue and a subtask of processing a
sequence.

Asillustrated 1n FIG. 3, acts 302-306 arc repeated by one or
more additional worker cores. Act 304 for the one or more
additional worker cores 1s performed by receiving one or
more replicas of tasks placed on the task queue by an earlier
performance of act 306 by a different worker core. For
example, when the method 300 1s performed by processor
112-2, 1t will receive a task 110-2 placed onto the work queue
by the processor 112-1 as a result of processor 112-1 process-
ing the task 110-1.

The method 300 may be practiced where beginning pro-
cessing the sequence includes requesting and processing a
single element of the sequence not already processed or being
processed by another worker core. For example, only a single
clement 116 may be processed at a given time by a processor.
Alternatively, the method 300 may be practiced where begin-
ning processing the sequence includes requesting and pro-
cessing a predetermined number of element of the sequence
not already processed or being processed by another worker
core. For example, multiple elements 116 may be processed.
This may be done so as to reduce synchronization overhead.

The method 300 may be practiced where the sequence 1s a
lazy sequence, or where the sequence 1s a lazy locked
sequence.

Embodiments of the present invention may comprise or
utilize a special purpose or general-purpose computer includ-
ing computer hardware, as discussed 1n greater detail below.
Embodiments within the scope of the present invention also
include physical and other computer-readable media for car-
rying or storing computer-executable mstructions and/or data
structures. Such computer-readable media can be any avail-
able media that can be accessed by a general purpose or
special purpose computer system. Computer-readable media
that store computer-executable 1nstructions are physical stor-
age or non-transitory media. Computer-readable media that
carry computer-executable instructions are transmission
media. Thus, by way of example, and not limitation, embodi-
ments of the mvention can comprise at least two distinctly
different kinds of computer-readable media: physical storage
media and transmission media.

Physical storage media includes RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage
or other magnetic storage devices, or any other medium
which can be used to store desired program code means 1n the
form of computer-executable instructions or data structures
and which can be accessed by a general purpose or special
purpose computer.

A “network’™ 1s defined as one or more data links that
cnable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information 1s transierred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry or

10

15

20

25

30

35

40

45

50

55

60

65

8

desired program code means in the form of computer-execut-
able 1instructions or data structures and which can be accessed
by a general purpose or special purpose computer. Combina-
tions of the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able 1nstructions or data structures can be transierred auto-
matically from transmission media to physical storage media
(or vice versa). For example, computer-executable instruc-
tions or data structures received over a network or data link
can be buifered in RAM within a network interface module
(e.g., a “NIC”), and then eventually transterred to computer
system RAM and/or to less volatile physical storage media at
a computer system. Thus, it should be understood that physi-
cal storage media can be included 1n computer system com-
ponents that also (or even primarily) utilize transmission
media.

Computer-executable mstructions comprise, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of functions.
The computer executable instructions may be, for example,
binaries, intermediate format structions such as assembly
language, or even source code. Although the subject matter
has been described 1n language specific to structural features
and/or methodological acts, 1t 1s to be understood that the
subject matter defined 1n the appended claims 1s not neces-
sarily limited to the described features or acts described
above. Rather, the described features and acts are disclosed as
example forms of implementing the claims.

Those skilled 1n the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
clectronics, network PCs, minicomputers, mainirame com-
puters, mobile telephones, PDAs, pagers, routers, switches,
and the like. The mvention may also be practiced 1n distrib-
uted system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks. In
a distributed system environment, program modules may be
located 1n both local and remote memory storage devices.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential character-
istics. The described embodiments are to be considered 1n all
respects only as illustrative and not restrictive. The scope of
the invention 1s, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What 1s claimed 1s:

1. In a computing environment comprising multiple pro-
cessor cores a method of partitioning query, execution work
of a sequence comprising a plurality of elements, the method
comprising;

(a) a worker core requesting work from a work queue;

(b) 1n response, the worker core receiving a task from the
work queue, the task being a replicable sequence-pro-
cessing task comprising two distinct steps, including a
subtask of scheduling a copy of the task on the work
queue and a subtask of processing a sequence;

(¢) the worker core processing the task by:

creating a replica of the task and placing the replica of the
task on the work queue, wherein the replica of the task 1s
a replicable sequence-processing task comprising two

distinct steps, including a subtask of scheduling a copy

US 8,392,920 B2

9

of the replica of the task on the work queue and a subtask
of processing a sequence; and

beginning processing the sequence; and

(d) repeating acts (a)-(c) for one or more additional worker
cores, wherein act (b) for the one or more additional
worker cores 1s performed by recerving one or more
replicas of tasks placed on the task queue by earlier
performance of act (¢) by one or more different worker
cores.

2. The method of claim 1, wherein beginning processing,
the sequence comprises requesting and processing a single
clement of the sequence not already processed or being pro-
cessed by another worker core.

3. The method of claim 1, wherein beginning processing,
the sequence comprises requesting and processing a prede-
termined number of element of the sequence so as to reduce
synchronization overhead, the elements not already pro-
cessed or being processed by another worker core.

4. The method of claim 1, wherein the sequence 1s a lazy
sequence.

5. The method of claim 1, wherein the sequence 1s a lazy
locked sequence.

6. The method of claim 1, further comprising merging
results of processing the sequence by the worker cores.

7. The method of claim 6, wherein merging the results
comprises merging the results in a fashion that preserves
ordering of sequence elements.

8. In a computing environment a system for partitioning,
query execution work of a sequence comprising a plurality of
clements, the system comprising:

a plurality of processor cores;

computer memory coupled to the plurality of processor
cores, wherein the computer memory comprises com-
puter executable instructions that when executed by one
or more of the plurality of processor cores, causes the
following:

(a) a worker core requesting work from a work queue;

(b) 1n response, the worker core recerving a task from the
work queue, the task being a replicable sequence-pro-
cessing task comprising two distinct steps, including a
subtask of scheduling a copy of the task on the work
queue and a subtask of processing a sequence;

(c) the worker core processing the task by:

creating a replica of the task and placing the replica of the
task on the work queue, wherein the replica of the task 1s
a replicable sequence-processing task comprising two
distinct steps, including a subtask of scheduling a copy
of thereplica of the task on the work queue and a subtask
of processing a sequence; and

beginning processing the sequence; and

(d) repeating acts (a)-(c) for one or more additional worker
cores, wherein act (b) for the one or more additional
worker cores 1s performed by recerving one or more
replicas of tasks placed on the task queue by earlier
performance of act (¢) by one or more different worker
cores.

9. The system of claim 8, wherein beginning processing the
sequence comprises requesting and processing a single ele-
ment of the sequence not already processed or being pro-
cessed by another worker core.

10. The system of claim 8, wherein beginming processing
the sequence comprises requesting and processing a prede-
termined number of element of the sequence so as to reduce
synchronization overhead, the elements not already pro-
cessed or being processed by another worker core.

11. The system of claim 8, wherein the sequence 1s a lazy
sequence.

10

15

20

25

30

35

40

45

50

55

60

65

10

12. The system of claim 8, wherein the sequence 1s a lazy
locked sequence.

13. The system of claim 8, further comprising merging
results of processing the sequence by the worker cores.

14. The system of claim 13, wherein merging the results
comprises merging the results 1n a fashion that preserves
ordering of sequence elements.

15. In a computing environment comprising multiple pro-
cessor cores, a physical non-transitory computer readable
medium comprising computer executable mstructions stored
on the physical non-transitory computer readable medium
that when executed by one or more computer processor cores
cause the one or more processor cores to perform the follow-
ng:

(a) a worker core requesting work from a work queue;

(b) 1n response, the worker core receiving a task from the
work queue, the task being a replicable sequence-pro-
cessing task comprising two distinct steps, including a
subtask of scheduling a copy of the task on the work
queue and a subtask of processing a sequence;

(¢) the worker core processing the task by:

creating a replica of the task and placing the replica of the
task on the work queue, wherein the replica of the task 1s
a replicable sequence-processing task comprising two
distinct steps, including a subtask of scheduling a copy
of the replica of the task on the work queue and a subtask
of processing a sequence; and

beginning processing the sequence by processing one or
more elements of the sequence by calling a subroutine
that returns one or more of the elements of the sequence,
where subsequent calls of the subroutine return one or
more next logical elements of the sequence that have not
already been returned 1n response to calling the subrou-
tine;

(d) repeating acts (a)-(c) for one or more additional worker
cores, wherein act (b) for the one or more additional
worker cores 1s performed by recetving one or more
replicas of tasks placed on the task queue by an earlier
performance of act (¢) by one or more different worker
core and wherein act (¢) 1s performed by the one or more
additional cores by calling the subroutine so as to recerve
clements of the sequence that are to be the next logically
processed elements that have not already been pro-
cessed; and

merging results of processing the sequence by the worker
cores.

16. The computer readable medium of claim 15, wherein
beginning processing the sequence comprises requesting and
processing a single element of the sequence not already pro-
cessed or being processed by another worker core.

17. The computer readable medium of claim 15, wherein
beginning processing the sequence comprises requesting and
processing a predetermined number of element of the
sequence so as to reduce synchronization overhead, the ele-
ments not already processed or being processed by another
worker core.

18. The computer readable medium of claim 15, wherein
the sequence 1s a lazy sequence.

19. The computer readable medium of claim 15, wherein
the sequence 1s a lazy locked sequence.

20. The computer readable medium of claim 15, wherein
merging the results comprises merging the results 1n a fashion
that preserves ordering of sequence elements.

	Front Page
	Drawings
	Specification
	Claims

