12 United States Patent

US008386863B2

(10) Patent No.: US 8.386.868 B2

Lasser 45) Date of Patent: Feb. 26, 2013

(54) USING PROGRAMMING-TIME 2004/0117562 Al* 6/2004 Wuetal ............cco.eo 711/147
INFORMATION TO SUPPORT ERROR 2005/0172179 Al1* 8/2005 Brandenberger et al. ..... 714/718
2005/0185476 Al* 8/2005 Tachikawa ............... 365/189.05

CORRECTION 2007/0283227 Al* 12/2007 Sharonetal. ................. 714/776

_ 2008/0086677 Al 4/2008 Yangetal. ......ccoccvn..... 714/763

(75) Inventor: Menahem Lasser, Kochav Yair (IL) 2009/0265598 Al* 10/2009 LasSer ......c..ccccoovrrrenn.. 714/746
2009/0319843 Al* 12/2009 Meiretal. .................... 714/746

(73) Assignee; SanDisk IL., Ltd., Kfar Saba (IL) 2009/0319859 Al* 12/2009 Alrodetal. ................... 714/752
2010/0115376 Al* 5/2010 Shalvietal. .................. 714/763

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 1351 days.
(21) Appl. No.: 12/103,784
(22) Filed: Apr. 16, 2008

(65) Prior Publication Data
US 2009/0265598 Al Oct. 22, 2009

(51) Imt. Cl.
GO6F 11/30 (2006.01)
(52) US.CL ... 714/746; 714/718; 714/719; 714/758;
714/763;713/187
(58) Field of Classification Search ................. 714/°763,

714/752,718,719; 713/187
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,553,536 B1* 4/2003 Hassneretal. .............. 714/780

6,751,766 B2 6/2004 Guterman et al.

7,992,000 B2* 82011 S€0 .ovviiiiiiiiiiiin, 713/187
2003/0037299 Al 2/2003 Smiuth ...l 714/763
2003/0217323 Al* 11/2003 Guterman et al. ............ 714/763
2004/0015771 Al1* 1/2004 Lasseretal. .................. 714/763
2004/0030737 Al1* 2/2004 Hassneretal. ............... 708/530

FOREIGN PATENT DOCUMENTS
WO WO 2006/013529 Al 9/2006

WO W0O2007132457 11/2007
WO W0O2008055472 5/2008
WO W0O2008068747 6/2008

* cited by examiner

Primary Examiner — Scott Baderman

Assistant Examiner — Jeison C Arcos
(74) Attorney, Agent, or Firm — Martine Penilla Group, LLP

(57) ABSTRACT

Methods, apparatus and computer readable medium for han-
dling error correction in a memory are disclosed. In some
embodiments, first data 1s written to the memory, and a value
(s) of an operational parameter(s) that 1s a consequence of the
writing of the first data 1s determined. Second data 1s read
from the memory, and the value(s) of the operational param-
cter(s) may be used when correcting errors 1n the second data.
In some embodiments, the first data 1s the same as the second
data. The presently-disclosed teachings are applicable to any
kind of memory including (1) non-volatile memories such as
flash memory, magnetic memory and optical storage and (11)

volatile memory such as SRAM or DRAM.
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1

USING PROGRAMMING-TIME
INFORMATION TO SUPPORT ERROR
CORRECTION

FIELD OF THE INVENTION

The present invention relates to apparatus, methods, and
computer medium for correcting errors 1n data read from a
memory such as a flash memory.

BACKGROUND AND RELATED ART

Error Correction 1n Flash Memory Devices

Flash memory devices have been known for many years.
NAND-type flash memories differ from other types of tlash
memories (e.g. NOR-type), among other characteristics, by
the fact that a certain number of information bits, written to
the memory, may be read from the memory 1 a “thpped” state
(1.e. different from the state that the original bits were written
to the memory).

In order to overcome this phenomenon and to make
NAND-type memories usable by real applications, 1t 1s a
common technique to use Error Correction Codes (ECC) 1n
conjunction with these memories.

There 1s an ongoing need for improved techniques and
apparatus for handling error correction in flash memory
devices, and 1n storage devices that include memory other
than flash memory.

A Discussion of Device Architecture

FIG. 1A (prior art) 1s a block diagram of a flash memory
storage device 260 (prior art). The flash memory storage
device includes a flash memory 270 and a flash controller 280
operative to read data and to write data to the flash memory
2770. The terms “program”, “programming”’, “programmed”,
and “programmable” are used herein interchangeably with
the terms “‘write”, “wnting”, “written”, and “writable”,
respectively, to denote the storing of data in a tlash memory.

One example of a flash memory storage device1s a “periph-
eral tlash storage device.” Peripheral flash storage devices are
well-known 1n the art of computing, 1n form factors such as
USB flash drives (UFD); PC-cards; and small storage cards
used with digital cameras, music players, handheld and palm-
top computers, and cellular telephones.

FIG. 1B (prior art) 1s a block diagram of a peripheral tlash
memory storage device 260*(the asterisk indicates that the
flash memory storage device 1s a peripheral flash storage
device) that 1s “coupled with” or configured to exchange data
with a host device 310 (for example, a laptop or desktop or
handheld computers, digital camera, mobile telephone, music
player, and video game consoles) via device-side interface
250. Peripheral tlash memory storage device 260* and host
device 310 communicate with each other via communica-
tions link 300 using host-side interface 350 and device-side
interface 250 (for example, respective USB or SD interfaces).

In one example, flash memory storage device 260* pro-
vides data-reading and data-writing services to host device
310. Data recetved by flash memory storage device 260* from
host device 310 1s written to flash memory 270 by tlash
controller 280. Furthermore, in response to “data read”
requests received by tlash memory storage, flash controller
280 reads data from flash memory 270.

Errors may be corrected 1n the read data at “read time” or at
any later time. The error-correction may be carried out at least
in part by flash controller 280, at least 1n part by host device
310 (dor example, by execution of executable code 340 1n
RAM 330 by host-side processor 320 or 1n any other manner),
and any other location and 1n any other manner.
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The skilled artisan will appreciate that “peripheral flash
storage devices’ are not the only class of flash memory stor-
age devices. For example, certain mobile phones, desktop or
laptop computers, PDA devices or other electronic devices
may also include flash memory and a flash controller, and
may not necessarily be configured to couple with a host
device and/or provide data reading services and/or data writ-
ing service for a host device.

The skilled artisan will appreciate that the tflash memory
devices described in FIGS. 1A-1B are just one class of periph-
eral storage memory device, and other memory devices may
include other types of volatile memory, such as magnetic
memory (for example, magnetoresistive random-access
memory (MRAM) or hard disk platters). Furthermore, it 1s
appreciated that the some peripheral storage devices may use
volatile memory mstead of, or 1n addition to, flash memory

270.
Multi-Die Flash Devices

Although flash memory 270 1s illustrated as a single unit in
FIG. 1B, 1t 1s appreciated by the skilled artisan that flash
memory 270 may reside on a single die or may reside on
multiple dies. FIG. 2A (prior art) 1s a block diagram of a
multi-die flash memory 270 that includes N flash dies, where
N 1s a positive integer. On each tlash die resides a plurality of
flash memory cells (not shown i FIG. 2A).

It 1s appreciated that memory other than flash memory (for
example, random-access memory (RAM) such as dynamic
RAM (DRAM) or static RAM (SRAM)) may also be pro-
vided as multiple dies.

Flash Memory Cells and Flash Blocks

In flash memory devices, the indivisible unit of data storage
1s the flash memory “cell”. FIG. 2B (prior art) illustrates a
cross-section of a typical prior-art electrically-erasable non-
volatile memory cell 100 (NAND flash). A metal gate 181 1s
deposited over an mnsulating oxide layer 183 atop a semicon-
ductor channel 185, thereby forming a metal-oxide-semicon-
ductor field-effect transistor ((MOSFET). During fabrication,
a tloating gate 187 1s embedded entirely within oxide layer
183, such that floating gate 187 1s completely insulated elec-
trically from all conducting paths. Electrons deposited on
floating gate 187 cannot normally drain off and therefore tend
to remain 1n place. A suitable amount of electrical charge thus
present on floating gate 187 creates a static electrical field
which, because of the field effect, influences the charge car-
riers 1 semiconductor channel 185, thereby allowing the
conductivity of semiconductor channel 1835 to indicate the
relative amount of charge on floating gate 185. Hence a suit-
able charge on floating gate 187 can serve as non-volatile data
storage. For programming, charge 1s injected onto floating
gate 187, and for erasing, charge 1s removed therefrom. Both
of these operations are accomplished via quantum-mechani-
cal processes such as the tunneling effect and the hot electron
elfect. Oxide layer 183 1s extremely thin, so that 1n the pres-
ence of a suitably-high attractive electrical field the wave-
function of an electron residing i semiconductor channel
185 can extend across oxide layer 183 and overlap floating
gate 187. Under such conditions, there 1s a significant prob-
ability that an electron 1n semiconductor channel 185 will
cross through oxide layer 183 and appear on floating gate 187.
This phenomenon 1s exploited to program cell 100. In Single-
Level Cell (“SLC”) tlash memory, a cell stores only a single
bit (data values of ‘0" and °17). In Multi-Level Cell (“MLC”)
flash technology, a cell can store 2 bits by exhibiting 4 distinct
voltage levels on floating gate 187 (data values of ‘00°, <01,
‘10°,and “11”). More generally, a MLC cell can store n bits by
exhibiting 2" distinct voltage levels on floating gate 187.
Certain threshold values of the conductivity of semiconductor
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channel 185, corresponding to different amounts of charge on
floating gate 187, are predetermined to unambiguously dis-

criminate between different data values.

Reference 1s now made to FIG. 2C. Cells within a memory
device are arranged 1n an array, usually having subdivisions.
A number of cells are commonly configured into a “page”
110, which contains cell 100, along with similar cells 102 and
104, and so forth. Likewise, a number of pages are commonly
configured 1nto a “block” 120, which contains page 110,
along with similar pages 112 and 114, and so forth. Finally, a

number of blocks make up an entire device 130, which con-
tains block 120, along with similar blocks 122 and 124, and so

forth.

It 1s appreciated that memory other than flash memory (for
example, random-access memory (RAM) such as dynamic
RAM (DRAM) or static RAM (SRAM)) may also be orga-
nized into cells, pages and blocks.

Word Lines

Reference 1s now made to FIG. 2D (prior art) which illus-
trates an array 10 of cells 100. Cells 100 are accessed by word
lines 103 connected to control gates of cells 100 and by bat
lines 107 connected to array 10 at the drain side. Bit line 107
1s selected by a bit line select (drain side) 109 and a bit line
select (source side) 111. Typically, in some NAND flash
devices, not all cells 100 have the same reliability. For
example, cells that are closer to the bit line select (drain side)
109 are more sensitive to disturbance errors than other cells
105, while cells closer to the source side select 111 have better
reliability characteristics.

It 1s appreciated that memory other than flash memory (for
example, random-access memory (RAM) may also be acces-
sible using word lines and bit lines.

SUMMARY OF EMBODIMENTS OF THE
INVENTION

Various embodiments address these and related 1ssues,
examples of which embodiments, including methods and sys-
tems, are provided herein. One embodiment 1s a method for
handling error correction for a memory. This method com-
prises the steps ol: a) writing first data to the memory; b)
determining a value of an operational parameter, the deter-
mined value being a consequence of the wrniting of the first
data; c¢) subsequent to the writing and to the determining,
reading second data from the memory; and d) correcting
errors 1n the second data according to the determined opera-
tional parameter value that 1s a consequence of the writing of
the first data.

The aforementioned method may be implemented for any
volatile or non-volatile memory, including but not limited to
flash memory, optical storage, magnetic memory, static ran-
dom access memory (SRAM) and dynamic random access
memory (DRAM).

In some 1nstances, the first data 1s the same as the second
data.

Alternatively, the first data may be different from the sec-
ond data.

In some instances, the first data may be written to and the
second data may be read from the same set of one or more
memory cells.

Alternatively, 1) the first data may be written to a first set of
one or more memory cells; and 11) the second data may beread
from a second set of one or more memory cells, the second set
being ditlerent from the first set.

For the implementation where the second set of memory
cells 1s different from the first set of memory cells, there are a
number of specific cases that are disclosed herein.

10

15

20

25

30

35

40

45

50

55

60

65

4

In one example, the first and second memory cell sets may
be disjoint sets.

Alternatively, the first set of memory cells and the second
set of memory cells may include at least one common
memory cell. In one non-limiting example, the first set of
memory cells may be a subset of the second set of memory
cells. In another non-limiting example, the second set of
memory cells may be a subset of the first set of memory cells.

In some 1nstances, 1) the first data may be written to a first
set of one or more memory cells; 1) the second data may be
read from a second set of one or more memory cells; and 111)
the correcting of errors of the second data according to the
operational parameter value that 1s a consequence of the
writing of the first data may be effected only it a subset of the
first set of memory cells and a subset of the second set of
memory cells co-reside on a common die.

In some 1nstances, 1) the first data may be written to a first
set of one or more memory cells; 1) the second data may be
read from a second set of one or more memory cells; and 111)
the correcting of errors of the second data according to the
operational parameter value that 1s a consequence of the
writing of the first data may be effected only 1f a subset of the
first set of memory cells and a subset of the second set of
memory cells co-reside 1n a common memory cell block.

In some 1nstances, 1) the first data may be written to a first
set of one or more memory cells; 11) the second data may be
read from a second set of one or more memory cells; and 111)
the correcting of errors of the second data according to the
operational parameter value that 1s a consequence of the
writing of the first data may be effected only 1f a subset of the
first set of memory cells and a subset of the second set of
memory cells co-reside on a common wordline.

In various examples: 1) the determined operational param-
cter value may be related to a measure of a reliability of the
writing of the first data and/or (11) the determined operational
parameter value may describe a number of bits left 1n 1mcor-
rect state at the end of the writing of the first data and/or (111)
the determined operational parameter value may describe a
number of programming 1terations used in the writing of the
first data and/or (1v) the determined parameter value may
describe a time required for the writing of the first data.

A number of techniques for correcting errors according to
the determined operational parameter are described herein.

In one example, the correcting of errors according to the
determined operational parameter value may include select-
ing a decoding bus width size 1n accordance with the deter-
mined operational parameter value.

In another example, the correcting of errors according to
the determined operational parameter value may include: 1)
choosing one of a first decoder and a second decoder 1n
accordance with the determined operational parameter value;
and 11) correcting errors using only the chosen decoder of the
first and second decoders.

In yet another example, the correcting of errors according,
to the determined operational parameter value may include:
A) choosing one of a first mode of a decoder and a second
mode of the decoder 1n accordance with the determined
operational parameter value; and B) correcting errors using
only the chosen mode of the first and second modes.

In yet another example, the correcting of errors according
to the determined operational parameter value may include
deciding whether: 1) to attempt to correct errors using a
lighter-weight decoder or 11) to attempt to correct errors using
only a heavier-weight decoder that 1s heavier than the lighter
weilght decoder.

In yet another example, the correcting of errors according,
to the determined operational parameter value may include
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deciding whether: 1) to attempt to correct errors using a faster
decoder or 11) to attempt to correct errors using only a slower
decoder that 1s slower than the faster decoder.

In yet another example, the correcting of errors according,
to the determined operational parameter value may include
deciding whether: 1) to attempt to correct errors using a
lighter-weight mode of a particular decoder or 11) to attempt to
correct errors using only a heavier-weight mode of the par-
ticular decoder that 1s heavier than the lighter weight mode.

In yet another example, the correcting of errors according,
to the determined operational parameter value may include
deciding whether: 1) to attempt to correct errors using a faster
mode of a particular decoder or 11) to attempt to correct errors
using only a slower mode of the particular decoder that 1s
slower than the faster mode.

In yet another example, the correcting of errors in the
second data according to the determined operational param-
cter value may include determining, 1n accordance with the
determined operational parameter value, one or more bit-
probability values for the second data.

Another embodiment 1s a data storage device comprising:
a)amemory; and b) a controller operative to: 1) write first data
to the memory; 1) determine a value of an operational param-
eter, the determined value being a consequence of the writing
of the first data; 111) subsequent to the writing and to the
determining, read second data from the memory; and 1v)
correct errors 1n the second data according to the determined
operational parameter value that 1s a consequence of the
writing of the first data.

Exemplary memories include but are not limited to flash
memories, an optical storage, magnetic memories, static ran-
dom access memory (SRAM) and dynamic random access
memory (DRAM).

In some mstances, the controller may be operative such that
first data 1s the same as the second data. Alternatively or
additionally, the controller may be operative such that the first
data 1s different from the second data.

In some 1nstances, the memory may include a plurality of
memory cells and the controller may be operative to write the
first data and read the second data from the same set of one or
more of the memory cells.

Alternatively or additionally, the memory may include a
plurality of memory cells and the controller may be operative:
1) to write the first data to a first set of one or more of the
memory cells; and 11) to read the second data from a second
set of one or more of the memory cells, the second set being
different from the first set.

For the implementation where the second set of memory
cells 1s different from the first set, a number of 1implementa-
tions are described. In one example, the memory may include
a plurality of memory cells and the controller may be opera-
tive such that the first set of memory cells and second set of
memory cells include at least one common memory cell.

In yet another example, the controller may be operative
such that the first and second memory cell sets are disjoint
Sets.

In one example relating to the case where the first set and
the second set include at least one common memory cell, the
controller may be operative such that first set of memory cells
1s a subset of the second set of memory cells.

In another example relating to the case where the first set
and the second set include at least one common memory cell,
the controller may be operative such that the second set of
memory cells 1s a subset of the first set of memory cells.

In some 1nstances, the memory may include a plurality of
memory cells and the controller may be operative: 1) to write
the first data to a first set of one or more of the memory cells;
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11) to read the second data from a second set of one or more of
the memory cells; and 111) to effect the correcting of the
second data according to the operational parameter value that
1s a consequence of the writing of the first data only 11 a subset
of the first set of memory cells and a subset of the second set
of memory cells co-reside on a common die of the memory.
In some instances, the memory may include a plurality of
memory cells and the controller may be operative: 1) to write
the first data to a first set of one or more of the memory cells;
11) to read the second data from a second set of one or more of
the memory cells; and 111) to effect the correcting of the
second data according to the operational parameter value that
1s a consequence of the writing of the first data only 1f a subset
of the first set of memory cells and a subset of the second set
of memory cells co-reside 1n a common memory cell block of

the memory.

In some instances, the memory may include a plurality of
memory cells and the controller may be operative: 1) to write
the first data to a first set of one or more of the memory cells;
11) to read the second data from a second set of one or more of
the memory cells; and 111) to effect the correcting of the
second data according to the operational parameter value that
1s a consequence of the writing of the first data only 1f a subset
of the first set of memory cells and a subset of the second set
of memory cells co-reside on a common wordline.

As noted above, a number of techniques for correcting
errors according to the determine operational parameter are
described herein, and the controller of the data storage
devices may be operative to implement any of the presently-
disclosed techniques.

Thus, 1n one example, the controller may be operative such
that the correcting of errors according to the determined
operational parameter value includes selecting a decoding
bus width size 1n accordance with the determined operational
parameter value.

In another example, the controller may be operative such
that the correcting of errors according to the determined
operational parameter value includes: 1) choosing one of a
first decoder and a second decoder in accordance with the
determined operational parameter value; and 1) correcting
errors using only the chosen decoder of the first and second
decoders.

In yet another example, the controller may be operative
such that the correcting of errors according to the determined
operational parameter value 1ncludes: 1) choosing one of a
first mode of a decoder and a second mode of the decoder 1n
accordance with the determined operational parameter value;
and 11) correcting errors using only the chosen mode of the
first and second modes.

In yet another example, the controller may be operative
such that the correcting of errors according to the determined
operational parameter value includes deciding whether: 1) to
attempt to correct errors using a lighter-weight decoder or 11)
to attempt to correct errors using only a heavier-weight
decoder that 1s heavier than the lighter weight decoder.

In yet another example, the controller may be operative
such that the correcting of errors according to the determined
operational parameter value includes deciding whether: 1) to
attempt to correct errors using a faster decoder or 11) to
attempt to correct errors using only a slower decoder that 1s
slower than the faster decoder.

In yet another example, the controller may be operative
such that the correcting of errors according to the determined
operational parameter value includes deciding whether: 1) to
attempt to correct errors using a lighter-weight mode of a
particular decoder or 1) to attempt to correct errors using only
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a heavier-weight mode of the particular decoder that is
heavier than the lighter weight mode.

In yet another example, the controller may be operative
such that the correcting of errors according to the determined
operational parameter value includes deciding whether: 1) to
attempt to correct errors using a faster mode of a particular
decoder or 11) to attempt to correct errors using only a slower
mode of the particular decoder that 1s slower than the faster
mode.

In yet another example, the controller may be operative
such that the correcting of errors according to the determined
operational parameter value includes determining, 1n accor-
dance with the determined operational parameter value, one
or more bit-probability values for the second data.

Another embodiment 1s a host device comprising: a) a
host-side storage; b) a host-side processor; ¢) a host-side
interface for coupling with a memory device; and d) driver
code residing 1n the host-side storage, wherein execution of
the driver code by the host-side processor 1s operative to: 1)
write first data to the memory device; 1) determine a value of
an operational parameter, the determined value being a con-
sequence of the writing of the first data; 111) subsequent to the
writing and to the determiming, read second data from the
memory device; and 1v) handle error correction of the second
data according to the determined operational parameter value
that 1s a consequence of the writing of the first data.

In some instances, the driver code may be operative such
that first data 1s the same as the second data.

In some instances, the driver code may be operative such
that the handling of error correction includes issuing a com-
mand, via the host-side interface, to handle the error correc-
tion of the second data according to the determined opera-
tional parameter.

In some 1nstances, the driver code may be operative such
that the handling of error correction includes correcting
errors, on the host side, 1n the second data according to the
determined operational parameter value that1s a consequence
of the writing of the first data.

Another embodiment 1s a system for handling error correc-
tion, the system comprising: a) a flash data-writer operative to
write first data to a memory; b) an operational-parameter
determiner operative to determine a value of an operational
parameter, the determined value being a consequence of the
writing of the first data; ¢) a data-reader operative, subsequent
to the writing and to the determining, to read second data from
the memory; and d) an error correction element operative to
correct errors 1n the second data according to the determined
operational parameter value that 1s a consequence of the
writing of the first data.

In some 1nstances, the system may be operative such that
first data 1s the same as the second data. Alternatively or
additionally, the system may be operative such that first data
1s different from the second data.

In some implementations, the error correction element
may include a hardware decoder.

In some 1mplementations, the error correction element
may include an algebraic decoder.

In some 1mplementations, the error correction element
may include a soit decoder.

Another embodiment 1s a computer readable medium hav-
ing stored therein computer readable program code for han-
dling error correction, the program code being operable to: a)
write first data to a memory; b) determine a value of an
operational parameter, the determined value being a conse-
quence ol the writing of the first data; ¢) subsequent to the
writing and to the determiming, read second data from the
memory; and d) correct errors in the second data according to
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the determined operational parameter value that 1s a conse-
quence of the writing of the first data.

Another embodiment1s a controller for a memory, the flash
memory, the controller comprising: a) circuitry that 1s opera-
tive to: 1) write first data to the memory; 1) determine a value
of an operational parameter, the determined value being a
consequence of the writing of the first data; 111) subsequent to
the writing and to the determining, read second data from the
flash memory; and 1v) correct errors 1 the second data
according to the determined operational parameter value that
1s a consequence of the writing of the first data.

In some 1nstances, the circuitry may includes at least one of
soltware and firmware.

In some instances, the circuitry may be operative such that
the first data 1s the same as the second data. Alternatively or

additionally, the circuitry may be operative such that first data
1s different from the second data.

It 1s noted that features described above as pertaining to
certain embodiments may also be included 1n other embodi-
ments, unless indicated to the contrary herein below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram of a conventional tlash memory
storage device 260 (prior art).

FIG. 1B 1s a block diagram of a conventional peripheral
flash memory storage device that 1s coupled with a host
device.

FIG. 2A 1s a block diagram of a multi-die conventional
flash memory that includes N flash dies, where N 1s a positive
integer.

FIG. 2B 1llustrates a cross-section of a conventional elec-
trically erasable non-volatile memory cell (NAND flash).

FIG. 2C illustrates a conventional flash memory divided
into multiple blocks, pages and cells.

FIG. 2D illustrates a conventional array of cells accessed
by word lines and by bit lines.

FIG. 3A-3B are flow charts of routines for handling error
correction for a flash memory in accordance with some
embodiments.

FI1G. 4 1s a flow chart of a routine for writing data to flash 1n
accordance with some embodiments.

FIGS. SA-5B, 6 A-6D, 7 and 8 are flow charts of routines
for correcting errors in second data 1n accordance with a value
ol an operational parameter that 1s a consequence of writing

first data to flash.

FIGS. 9A-9B describe different possible relationship
between two sets of flash memory cells.

FIGS. 10A-10C are block diagrams of exemplary routines
for correcting errors in accordance with a relationship
between a first set of memory cells associated with the first
data and a second set of memory cells associated with the
second data.

FIG. 11-13 are block diagrams of systems for handling
error correction for a flash memory.

DETAILED DESCRIPTION OF EMBODIMENTS

The claims below will be better understood by referring to
the present detailed description of example embodiments
with reference to the figures. The description, embodiments
and figures are not to be taken as limiting the scope of the
claims. It should be understood that not every feature of the
presently disclosed methods and apparatuses 1s necessary in
every 1mplementation. It should also be understood that
throughout this disclosure, where a process or method 1s
shown or described, the steps of the method may be per-
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formed 1n any order or simultaneously, unless it 1s clear from
the context that one step depends on another being performed
first. As used throughout this application, the word “may” 1s
used 1n a permissive sense (1.e., meaning “having the potential
to”), rather than the mandatory sense (1.e. meaning “must”).

The present inventor 1s now disclosing methods and appa-
ratus for correcting errors in data read from a memory in
accordance with a value of a determined operational param-
cter that 1s a consequence of a previous data-writing to the
memory.

In some embodiments, the memory 1s a flash memory.

Nevertheless, 1t 1s appreciated that the presently-disclosed
techniques, apparatus and computer readable medium also
relate to memories other than flash memory. Exemplary
memories include but are not limited to non-volatile memo-
ries other than flash memory (for example, magnetic memo-
ries or optical storage) and volatile memories such as SRAM

or DRAM.

Exemplary magnetic memories include but are not limited
to magnetoresistive random-access memories (MRAM) and
hard disk platters.

Thus, when certain teachings are explained in terms of
“flash memory,” 1t 1s appreciated that these teachings may
also be applicable to other memories other than flash memory.

Betfore describing various embodiments in detail and with
reference to the drawings, a first discussion relating to error
correction 1n flash memory 1s presented, a second discussion
relating to strategies for using operating parameter value(s) 1s
presented, and then several use cases are briefly described.
Error Correction in Flash Memory Devices

A general overview of using ECC 1n flash memories 1s
presented below and includes the following steps:

(1) Betfore writing data to the memory, an ECC algorithm 1s
applied to the data in order to compute additional (i.e. redun-
dant) bits, which are later used for error detection and correc-
tion. These redundant bits are often called “parity bits” or
“parity”. A combination of the data input into an ECC module
and the parity output by that module 1s called a codeword.
Each ditferent value of input data to an ECC module results 1in
a different codeword.

(2) The entire codeword (1.e., the original data and the
parity) 1s recorded to the flash memory. It should be noted,
that the actual size of NAND-type flash memory 1s larger than
the size of the original data, and the memory 1s designed to
accommodate parity as well.

(3) When the data are retrieved from the memory, the entire
codeword 1s read again, and an ECC algorithm 1s applied to
the data and the parity 1 order to detect and correct possible
“bit thps™ (1.e., errors).

It should be noted that the implementation of ECC may be
done by hardware, software, or a combination of hardware
and software. Furthermore, ECC may be implemented within
a memory device, within a memory device controller, within
a host computer, or may be “distributed” among these com-
ponents of a system.

The algorithms 1n common use include Reed-Solomon,
BCH, Hamming, and many others. Each ECC algorithm 1s
composed of two parts—the part that receives the data bits
and generates the parity bits (or equivalently, generates the
codeword), and the part that recerves the codeword and gen-
crates the corrected data bits. The first part 1s called the
“encoder’” and 1s used during writing, and the second part 1s
called the “decoder” and 1s used, during reading. Each of the
two parts may be implemented 1n either hardware or software,
and 1t 1s also possible to have one part implemented 1n hard-
ware while the other part implemented in software. It also 1s
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possible for each of the parts to be implemented 1n a combi-
nation of hardware and software.

Receiving the data bits and generating the corresponding
codeword 1s termed “encoding.” Recerving the codeword and
generating the corrected data bits 1s termed “decoding.”

It should be noted that there actually are two kinds of ECC.
The kind of ECC described above, 1n which the identity of the
data bits 1s preserved 1n the codeword, 1s called “systematic™
ECC. In “nonsystematic” ECC, the data bits are converted to
a codeword 1n which the identity of the original data bits 1s not
preserved.

Selecting an algorithm, like BCH, as the ECC algorithm to
be used 1n a flash memory system, does not uniquely define
the selected solution. Any such ECC algorithm 1s actually not
a single algorithm but a family of algorithms. The algorithms
within the same family differ among themselves i the
amount of data bits they are able to protect. An algorithm that
needs to protect 100 data bits 1s not identical to an algorithm
that needs to protect 10,000 data bits, even though the two
algorithms are typically quite similar and operate on the same
principles.

But even two algorithms of the same family that both
protect the same number of data bits are not necessarily
identical. The algorithms may differ in the level of reliability
provided, or equivalently—in the number of bit errors 1n the
data that the algorithms are able to correct. For example, one
system may require the protection of chunks ot 1,000 data bits
against any combination of up to 3 bit errors (but not against
the occurrence of 4 or more bit errors), while in another
system a much higher reliability 1s desired and therefore it 1s
required to protect chunks of 1,000 data bits against any
combination of up to 10 bit errors. Typically, protecting
against more errors requires the use of more parity bits (or
longer codewords), making the ECC scheme less “efficient”,
where elliciency 1s measured by the ratio of the number of
data bits 1n a codeword to the total number of bits in the
codeword (including, in systematic ECC, both data bits and
parity bits). This measure is typically called the “rate” of the
ECC coding.

Different ECC algorithms and implementations also differ
in other aspects—speed of the encoding process, speed of the
decoding process, complexity of the encoding process, com-
plexity of the decoding process, acceptable error rate in the
input to the decoder (defined according to the quality of the
storage cells), and more. The complexity of encoding and
decoding 1s important not only because 1t affects the speed of
the operation, but also because it atfects the power consump-

tion and silicon area of hardware implementations of the ECC
scheme.

It 1s thus evident that the selection of an ECC solution for a
memory system involves a complex trade-off between mul-
tiple considerations. Some non-limiting rules-of-thumb typi-
cal 1n the art of ECC designs are:

a. For a given memory reliability, the better the output
reliability (or equivalently the higher the number of correct-
able errors ) the lower the rate of the code (or equuvalently, for
systematic ECC, the more parity bits are required)

b. For a given memory reliability, the better the output
reliability, the more complex 1s the decoder.

c. For a given level of output reliability, the higher the rate
of the code, the more complex 1s the decoder.

d. For a given level of output reliability, the higher the rate
of the code, the slower 1s the decoding.

When designing an ECC solution, one typically starts from
the error rate at the decoder’s input (dictated by the quality of
the storage cells) and the desired output reliability (dictated
by the application’s requirements). Based on these numbers
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one typically selects a specific ECC family, calculates the
required number of parity bits, and then estimates the speed
and complexity of the encoder and decoder.

In some cases the most important consideration for the
system’s designer 1s the speed of the decoding, as this may put
a limit on the speed of reading the data out from the memory.
In such cases the designer may encounter a dilemma—the
ECC scheme required for meeting the output reliability
requirements may turn out to result in a quite complex
decoder with slow operation, not satistying the speed target of
the system. But, on the other hand, selecting an ECC scheme
that 1s relatively simple, and that results 1n fast decoding, does
not provide the required output rehiability level.

A Brief Discussion about Strategies for Using Operating
Parameter Values and a Non-Limiting Example of an Oper-
ating Parameter

Not wishing to be bound by this example, 1t 1s noted that the
writing or programming of data to memory (e.g. flash
memory or any other memory) can generate, as a ‘by-prod-
uct,” ‘quality” or ‘reliability’ information about (1) the data
written to the memory and/or (1) the actual memory or a
sub-subsection thereof.

It 1s now disclosed that 1t 1s useful to (1) determine an
indication of the aforementioned quality and/or reliability
information by determining a value of one or more param-
eters that are a consequence or ‘by-product’ of the writing of
data to the memory and to (11) subsequently, when correcting
errors 1n data read back from the memory, use this captured
“quality” and/or “reliability” information.

For example, in the event that the value of the operating
parameter indicates that the memory data-writing was rela-
tively “successtul” and/or that the quality of the data written
to the memory 1s relatively “high™ and/or that the memory to
which the data was written 1s a relatively “good medium”™ for
storing data, then 1t may be useful to subsequently correct
errors 1n data read from the memory 1n a relatively “optimis-
t1c” manner. Otherwise, a more “pessimistic” technique of
correcting errors may be preferred.

Before describing the figures, five illustrative non-limiting
use cases are described. First, a discussion 1s provided for two
use cases relating to exemplary operating parameters.

Subsequently, three use cases that relate to the utilizing of
a determined “operating parameter value” when correcting
errors 1n data read from the memory are presented.

Two Use Cases Relating to Exemplary Operating Parameters

Many modern NAND flash devices are designed under the
assumption that error correction i1s always used when reading
data. Therefore, such devices allow page programming
operations to be declared successiul even when not all bits are
in their correct value.

In one non-limiting example, a multi-level cell (MLC)
NAND flash device may require its users to employ an ECC
decoder capable of correcting 4 bit errors per each sector of
512 bytes. In this non-limiting example, the designer of the
MLC NAND device would typically declare a flash data-
writing or “programming’’ operation to be ‘completed’ and
successiul once the number of bits not yet correctly set 1s one
or less. In other words, when only one 1ncorrect bit remains,
the device logic stops further efforts of programming that bat,
relying on the ECC decoding to overcome the error.

In this non-limiting example, upon detecting that the num-
ber of bits not yet correctly set 1s one or less, the device stops
programming iterations, and reports to the host that the data-
writing to tlash or programming has been successiully com-
pleted ({or example, using the RDY signal).

It 1s noted that in the above non-limiting case, a conse-
quence or by-product of the programming process 1s the
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uselul information of the number of errors existing in the page
as of the time that programming to the flash 1s completed. It 1s
noted that the “number of errors existing 1n the page of the
time ol programming” 1s one example ol an “operating
parameter that 1s a consequence of the writing of the data.”

A value of this operating parameter may be stored and used
to advantage when later correcting errors 1n data read data
from the tlash memory, for example, data read from that page
and/or a portion therefore and/or other pages in the flash
memory.

It 1s appreciated that the above use case of an ECC decoder
correcting 4 errors and the NAND device allowing one error
1s just one simplistic use case.

A second non-limiting use case relates to flash devices that
have a much lower reliability (for example devices storing 3
bits per cell or 4 bits per cell).

In many implementations, an ECC decoder capable of
correcting 100 bit errors 1s provided, and therefore the NAND
designer elects to allow up to 20 incorrect bits 1 order to
speed up the programming phase, relying on the ECC to
“cover up” for those 1nitial errors.

In this second use case, the information that can be pro-
vided to the ECC decoder when reading the data 1s not just a
simple YES/NO indication as 1n the simple example above
(1.e. the first use case), but 1s a number of initial errors in the
range of 0 to 20. Thus, 1n this second non-limiting use case,
the number of 1mitial errors in the range of 0 to 20 1s the value
of the operating parameter

This 1s valuable information that can be used to advantage
by the ECC decoder, as further explained below.

It should be emphasized that the number of 1nitial incorrect
bits 1s just one example of an operating parameter that (1) 1s a
consequence of writing data to tlash memory and (11) may be
used later to correct errors 1n data read back from the tlash.

Although these two use cases related specifically to sys-
tems where a flash programming operation 1s declared “suc-
cessful” even when not all bits are set to their correct values,
it 1s appreciated that this 1s not a limitation.

Three Use Cases that Relate to Exemplary Techniques for
Utilizing a Value of a Determined Operating Parameter when
Correcting Errors 1in Data Read from Flash

Three 1llustrative non-limiting use cases that relate to
exemplary techniques for utilizing a value of a determined
operating parameter when correcting errors in data read from
flash are now discussed. In particular, these three non-limait-
ing use cases provide examples of relatively “optimistic” and
“pessimistic” techmiques for correcting errors. When the
value of the operating parameter (1.e. that 1s a consequence of
the data writing to flash) indicates that the writing of the data
was relatively “successful” then a relatively “optimistic™
technique for later correcting errors may be selected. Other-
wise, a relatively “pessimistic” technique for later correcting,
errors may be selected.

According to a first non-limiting use case, the “optimistic”
technique 1ncludes attempting to decode data using a rela-
tively “lightweight” decoder (or a “lighter-weight” mode of a
particular decoder) which consumes fewer computational
resource but which 1s only effective at decoding data with
relatively few errors. The more “pessimistic” technique
includes using a “heavier” decoder (or a “heavier weight
mode™). Embodiments related to this first non-limiting use
case are discussed below with reterence to FIGS. 5A-6B and
6A-6D.

A second non-limiting use case relates to the specific case
of soft decoders. In the second non-limiting example, the
“optimistic” techmque includes selecting a relatively narrow
decoding bus rather than a relatively wide decoding bus.
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Using the narrow bus provides a lower power consumption,
but the decoder might fail to converge to the correct data in
cases with relatively large number of errors. The more “pes-
simistic”” technique includes selecting a wider decoding bus.
Soit decoders and algebraic decoders are discussed below.
Embodiments related to this second non-limiting use case are
discussed below with reference to FIG. 8.

A third non-limiting use case also relates to the specific
case of soft decoders. In the third use case, one or more
bit-probability values for the data in which errors are to be
corrected are determined, 1n accordance with the operational
parameter value. This may be useful for accelerating the
convergence ol the iterative probabilistic “soft” decoder.
Embodiments related to this third non-limiting use case are
discussed below with reference to FIG. 7.

Definitions

For convenience, 1n the context of the description herein,
various terms are presented here. To the extent that definitions
are provided, explicitly or implicitly, here or elsewhere 1n this
application, such definitions are understood to be consistent
with the usage of the defined terms by those of skill in the
pertinent art(s). Furthermore, such definitions are to be con-
strued 1n the broadest possible sense consistent with such
usage.

An “operating parameter” of writing data to memory (e.g.
flash memory or any other memory) refers to a parameter
describing how the writing operation occurs—ior example,
how much time the writing operation required, a number of
programming iterations used in writing the data, etc. It 1s
appreciated that the actual data written to memory during the
writing operation (1.e. the original data and/or corrupted data
and/or parity bits and/or the codeword representation) are not
examples of “operating parameters.”

The term “operating parameter that 1s a consequence of the
writing’ refers to an operating parameter whose value 1s a
result of the actual writing of data to memory. The term
“operating parameter that 1s a consequence of the writing”
does not, therefore, refer to a pre-determined programming
parameter used by a controller ({or example, a tlash memory
device controller) to write data to the memory.

Because certain types of memory (for example, tflash
memory, magnetic memory, optical storage, or volatile
memory) are “corrupting medium,” one or more errors are
sometimes introduced into “original” data that 1s written to
the memory, so that when the data (1.e. a representation of the
original data) 1s read back from the memory, one or more
information bits are “tlipped.”

The process of reconstructing the original, error-free data
from the data read back from the memory 1s “correcting
errors.” Although the term “correcting” errors 1s used in the
plural, 1t 1s appreciated that “correcting errors™ also refers to
correcting a single error. It 1s appreciated that in some
embodiments, the “correcting” of errors may also include one
or more failed attempts to correct errors.

In order to correct errors, a “decoder’” may be used, 1n order
to recover the original data from a representation of a code-
word. Some embodiments involve multiple decoders, includ-
ing “lighter weight” decoders and “heavier weight decoders.”

The terms “heavier weight” and “lighter weight”” are used
to compare two decoders and/or two modes of a single
decoder. The “heavier weight” decoder (or heavier weight
mode of a single decoder) either (1) consumes more current
than the “lighter weight” counterpart and/or (11) requires more
memory (either for computer-executable code of the decoder
itsell and/or more memory for storing “intermediate results™
of calculations when correcting errors) than the “lighter
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weight” counterpart and/or (111) requires more computational
operations than the “lighter weight” counterpart.
A Discussion of FIG. 3A

FIG. 3A 1s a flow chart of a routine for handling error
correction for a memory in accordance with some embodi-
ments.

In step S411, data 1s written to the memory. As noted
carlier, because the memory 1s a corrupting medium, 1t 1s
desired to store some combination of “original” data and one
or more parity bits (which may be dertved from the “original™
data using an ECC and also saved 1n step S411). The parity
bits will be used later, 1n step S423, to recover the “original”
data.

Furthermore, because the memory 1s a corrupting medium,
1n some situations, the actual codeword 1tself 1s not written to
the memory 1n step S411, but rather some partially-corrupted
representation of the codeword, with one or more errors intro-
duced. Of course, the representation of the codeword may be
identical to the codeword, and 1n fact usually 1s identical to the
codeword, but there 1s no a prior1 guarantee that the represen-
tation of the codeword 1s 1dentical to the codeword.

In step S4135, a value of an operational parameter that is a
consequence of the writing of the first data 1s determined, and
in step S417 the determined operational parameter 1s stored.
It 1s appreciated that the determined operational parameter
may be stored i any combination of volatile memory (for
example, RAM) and/or non-volatile memory (for example,
tflash or magnetic storage or optical storage), and 1n any physi-
cal location(s).

One example of an operational parameter 1s a number of
bits left 1n an incorrect state, as discussed above.

It 1s noted that the number of bits left 1n an incorrect state
1ust one specific example, and any operational parameter (for
example, an operational parameter indicative ol the reliability
of the programmed data and/or the memory to which the data
1s written) may determined (1n step S413), stored (in step
S417).

Exemplary operational parameters include but are not lim-
ited to a number of programming iterations used 1n writing the
data (1.e. to complete programming) and a time required for
writing the data. In some embodiments, the operational
parameter 1s indicative of the reliability of the programmed
data and/or the quality of the memory to which the data 1s
written.

Furthermore, 1t 1s appreciated that values of multiple
operational parameters may be determined, stored and used
when correcting errors in the second data this 1s an example of
“determining a value of an operational parameter that i1s a
consequence of the writing of the first data™ and “correcting
errors . . . according to the determined operational parameter
value.” Additionally, 1t 1s appreciated that any mathematical
function of one or more operational parameters 1s also con-
sidered an “operational parameter.”

In step S419, the data written to the memory 1n step S411 1s
read back from the memory. It 1s noted that this data that 1s
read back 1n step S419 1s also a representation of the code-
word—1.e. representing the “original” data and the parity bits.

In step S421, the value of the operational parameter previ-
ously stored 1n step S417 1s read back from volatile and/or
non-volatile memory.

In step S423, one or more errors in the read-back data are
corrected according to the value of the operational parameter
(1.e. which was determined in step S413 and stored 1n step
S417). FIGS. 5A-5B, 6A-6D, and 7 provide flow charts of
implementations of step S423, though 1t 1s appreciated that
this 1s certainly not an exhaustive list, and that other imple-
mentations are possible.
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In some embodiments, the error-correcting of step S423 1s
carried out immediately after the data-reading of step S419.
Alternatively, the error correcting of step S423 may be carried
out at any later time.

As with every routine disclosed herein, 1t 1s appreciated
that not every step in FIG. 3A needs to be carried out 1n every
embodiment, and that the order of steps 1s just one 1llustrative
example, and not to be construed as limiting. For example, 1n
some embodiments, step S421 1s carried out before step S419.
A Discussion of FIG. 3B

FIG. 3 A relates to the specific case where the data written
in step S411 and the data read 1n step S419 are the same data.
Thus, 1n the example of FIG. 3A, information obtained about
writing of particular data 1s used later when correcting errors
in the same data as read back from the memory.

It 1s noted, however, that this 1s not a limitation. Thus, the
concept of correcting errors 1n data read from the memory
according to a determined operational parameter that 1s a
consequence of a previous writing operation to the memory 1s
not limited to the particular case of FIG. 3A, where the data
written 1n step S411 and the data read in step S419 are the
same data.

In particular, embodiments where information obtained
about writing of particular data 1s used later when correcting
errors 1n other data (1.e. other than the particular data) are also
contemplated by the present inventor.

FIG. 3B 1s a flow chart of a routine for handling error
correction for a memory 1n accordance with some embodi-

ments. In the event that the “first data” i1s identical to the
“second data,” then FIG. 3B reduces to the flow chart of FIG.

3A.

Nevertheless, 1t 1s noted that FIG. 3B also relates to the case
where the “first data” and the “second data™ are different—i.e.
FIG. 3B relates both to the case where the first data and the
second data are the same (1.e. as 1n FIG. 3A) and to the case
where both the first data and the second are different.

In the example of FIG. 3B, the steps are marked with a
prime. Through the present disclosure, 1n the text and 1n the
figures (except for FIG. 3A and the text describing FIG. 3A),
it 1s understood that any step, even 1f not marked with a prime,
relates both to (1) the case where the first and second data are
the same (1.e. as in FIG. 3A) and (11) to the more general case
of FIG. 3B where the first and second data may or may not be
different.

In one non-limiting example of the case where the “first
data’” and “second data” are different, the “first data” and the
“second data” are stored 1n different sets of memory cells (for
example, tlash memory cells).

Various use cases describing different relations between a
first memory cell set of one or more memory cells 1n which
the first data reside and a second memory cell set of one or
more memory cells i which the second data reside are
described below with reference to FIGS. 9A-9B.

It 1s noted that unless otherwise specified, any presently
disclosed routine may be implemented using a soft decoder(s)
and/or an algebraic decoder(s). Soit decoders and algebraic
decoders are discussed below.

A Dascussion of FIG. 4

FI1G. 4 1s a tlow chart of a routine implementing step S411
in accordance with some embodiments.

In step S431, one or more pre-determined programming,
parameters are established, for example, by the device con-
troller 280. Exemplary programming parameters include a
programming iteration stepping voltage, a maximum pro-
gramming voltage, a maximum number of iterations per pro-
gramming operation, a programming base pulse duration and
a programming 1teration stepping duration.
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In step S435, the first data 1s written to memory 1n accor-
dance with one or more of the pre-determined programming

parameters.

A Discussion of Exemplary Implementations of Step S423
with Reference to FIGS. SA-5B, 6A-6D, and 7
Consider two decoders (or one decoder capable of operat-

ing in two different modes) with the following characteristics:
a. The first decoder 1s faster and/or 1s “lighter weight™, but
on the other hand 1s not guaranteed to succeed 1n producing

the result of the decoding process.

b. The second decoder 1s slower and/or 1s “heavier weight”,
but 1s guaranteed to always produce the correct result of the
decoding process (or at least 1s more likely to produce the
correct result of the decoding process).

Typically, the higher the number of errors in the data, the
more frequently the first decoder fails. Unfortunately, upon
reading back data from the memory (for example, by reading
back the representation of the codeword) in step S419, 1t1s not
always known a-prior1 how many errors are 1n the read-back
data. Thus, 1t 1s not always known whether or not a “heavier
welght” decoder (or heavier weight mode of a single decoder)
1s required, or a “lighter weight” decoder will suffice.

The present inventor 1s now disclosing that 1n the event that
the value of the operating parameter (1.e. that 1s determined in
step S415 and that 1s a consequence of the data writing to the
memory) indicates that the writing of the data was relatively
“successiul” then a relatively “optimistic” technique for later
correcting errors may be selected for correcting errors in the
data read in step S419. Thus, 1n this case, 1t may be advanta-
geous 1o “risk” correcting errors using the “lighter weight”
decoder (or lighter weight mode of a single decoder). Other-
wise, 1t may be preferable to correct errors using the “heavier
welght” decoder or heavier weight mode of a single decoder.

Reference 1s now made to FIG. SA. In step S6135, a decoder
1s selected from a plurality of candidate decoders 1n accor-
dance with the value of the operational parameter.

In step S619, errors are corrected only using the selected
decoder and without using the unselected “rejected” decoder.

Reference 1s now made to FIG. SB. In step S625, amode of
a given decoder 1s selected from a plurality of candidate
decoder modes 1n accordance with the value of the opera-
tional parameter.

In step S629, errors are corrected only using the selected
decoder mode and without using the unselected ““rejected”
decoder mode.

Reference 1s now made to FIG. 6A.

In step S651, a decision 1s made whether or not to attempt
to correct errors using a lighter-weight decoder (i.e. of a
plurality of candidate decoders) 1n accordance with the value
of the operational parameter.

In the event that the value of the operational parameter
indicates that a relatively “optimistic” error correction strat-
egy may be adopted, an attempt 1s made in step S655 to
correct errors using the lighter-weight decoder. It the lighter-
weight decoder succeeds (see step S659) there 1s no need to
attempt to correct errors using the heavier weight decoder
(see step S667). 11 the lighter-weight decoder fails to correct
errors, an attempt 1s then made S663 to correct errors using a
heavier-weight decoder.

Furthermore, 1t1s noted, with reference to step S651, that in
the event that the value of the operational parameter indicates
that a relatively “pessimistic’ error correction strategy 1s pret-
crable, that 1t 1s possible to skip step S665, and to attempt to
correct errors (1n step S663) using the heavier weight decoder
rather than the lighter weight decoder.

Reterence 1s now made to FIG. 6B.
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In step S851, a decision 1s made whether or not to attempt
to correct errors using a faster decoder (1.e. of a plurality of
candidate decoders) in accordance with the value of the
operational parameter.

In the event that the value of the operational parameter
indicates that a relatively “optimistic” error correction strat-
egy may be adopted, an attempt 1s made in step S8535 to
correct errors using the faster decoder. If the faster decoder
succeeds (see step S859) there 1s no need to attempt to correct
errors using the slower decoder (see step S867). If the faster
decoder fails to correct errors, an attempt 1s then made S863
to correct errors using a slower decoder.

Furthermore, 1t 1s noted, with reference to step S831, that in
the event that the value of the operational parameter indicates
that a relatively “pessimistic’ error correction strategy 1s pred-
erable, that 1t 1s possible to skip step S863, and to attempt to
correct errors (1n step S863) using the slower decoder rather
than the faster decoder.

Reference 1s now made to FIG. 6C.

In step S671, a decision 1s made whether or not to attempt
to correct errors using a lighter-weight mode (1.e. of a plural-
ity of candidate decoder modes for a given decoder) 1n accor-
dance with the value of the operational parameter.

In the event that the value of the operational parameter
indicates that a relatively “optimistic” error correction strat-
egy may be adopted, an attempt 1s made 1n step S675 to
correct errors using the lighter-weight mode. If the lighter-
welght mode succeeds (see step S679) there 1s no need to
attempt to correct errors using the heavier weight mode (see
step S687). I the lighter-weight mode fails to correct errors,
an attempt 1s then made S683 to correct errors using a heavier-
weight mode.

Furthermore, 1t 1s noted, with reference to step S671, that in
the event that the value of the operational parameter indicates
that arelatively “pessimistic” error correction strategy 1s pred-
erable, that 1t 1s possible to skip step S675, and to attempt to
correct errors (in step S683) using the heavier weight mode
rather than the lighter weight mode.

Reference 1s now made to FIG. 6D.

In step S871, a decision 1s made whether or not to attempt
to correct errors using a faster decoder mode (1.e. of a plurality

of candidate decoder modes) 1n accordance with the value of

the operational parameter.

In the event that the value of the operational parameter
indicates that a relatively “optimistic” error correction strat-
cegy may be adopted, an attempt 1s made in step S875 to
correct errors using the faster decoder mode. If the faster
decoder succeeds mode (see step S879) there 1s no need to
attempt to correct errors using the slower decoder mode (see
step S887). If the faster decoder mode fails to correct errors,
an attempt 1s then made S883 to correct errors using a slower
decoder mode.

Furthermore, 1t 1s noted, with reference to step S871, thatin
the event that the value of the operational parameter indicates
that arelatively “pessimistic’ error correction strategy 1s pred-
crable, that 1t 1s possible to skip step S863, and to attempt to
correct errors (1n step S863) using the slower decoder rather
than the faster decoder.

A Discussion of FIGS. 7-8

FIGS. 7-8 are flow charts of techniques for correcting
errors 1n accordance with a value of the operational parameter
using a soit decoder.

Soit decoders operate by assigning a probability to each bit
of the codeword (e.g. the probability that the value of the bit
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Any decoder that 1s not a soit decoder 1s herein called I“an
algebraic decoder™.

In step S711, one or more bit-probability values are
assigned 1n accordance with the operational parameter deter-
mined 1n step S415.

For the present disclosure, a “bit-probability value” 1s
defined as a probability that a specified bit has a specified
value—ifor example, O or 1.

In one non-limiting example relating to systematic decod-
ers, bits corresponding to the original data are read from the
memory in step S419. In this example, one or more of the
read-back bits may be flipped—_tor each bit, a respective
probability that the bit 1s “tlipped™ 1s initially assigned. In the
event that the probability that a given bit 1s “flipped” 1s 1n1-
tially assigned “higher” than necessary, the iterative probabi-
listic error correction routine may converge “unnecessarily
slow” (1.€. 1n terms of computation steps or resources required
and/or amount of time needed to converge). Conversely, inthe
event that the probability that a given bit 1s “tlipped™ 1s 1ni1-
tially assigned “lower” than necessary, there 1s a risk that the
error correction routine may not converge, or may converge to
an icorrect result

Thus, 1n one non-limiting use case, 1n the event that the
“value of the operational parameter” indicates an “optimistic
situation,” i1t 1s possible to assign appropriate 1nitial probabil-
ity indicative of a lower probability of bit flipping—this could
“help” the iterative probabilistic error correction routine con-
verge faster. In the event that the value of the operational
parameter” indicates an “pessimistic situation,” 1t 1s possible
to assign appropriate initial probability indicative of a higher
probability of bit flipping.

In steps S715 and S719 the 1terative routine 1s carried out,
where the probabilities are updated (see step S7135) until a
“stop condition” 1s satisfied 1n step S719 (for example, until a
determination 1s made that the “original” data was “correctly”
recovered). In step S723, the routine stops.

Reference 1s now made to FIG. 8.

As noted above, soit decoders operate by assigning a prob-
ability to each bit of the codeword (e.g. the probability that the
value of the bit 1s 1 and not 0), and running multiple iterations
in each of which the probability of each bit1s changed accord-
ing to the current probabilities of other bits.

This type of calculation 1s said to employ “message pass-
ing’” techniques, as each bit “passes messages™ to 1ts peers. A
major design decision 1n implementing such decoders is the
bus width of the message passing. Using a wide bus (for
example 10 bits) assures that 11 the algorithm can cope with
the errors, the algorithm will indeed converge to the correct
data. But on the other hand, the power consumption of the
decoder 1s high 1n such design. Using a narrow bus (for
example 3 bits) provides much lower power consumption, but
the decoder might fail to converge to the correct data in cases
with relatively large number of errors (even if the same pat-
tern of data and errors 1s correctly decoded 1n a corresponding
wide bus decoder). The number of bits used for message
passing has a major influence on the power consumption of
the decoding process—the higher the number of bits, the
higher the power consumption.

One of the reasons for this phenomenon 1s that the soft
decoder’s messages and channel mputs (soit values) are
stored in a large-power-consuming RAM during the decoding
operation. When for example we use 3 bits mnstead of 10 bits
per message, 70% of the RAM can be shut down. Another
source of power consumption saving 1s the processing units
that process these passing messages. It 1s evident that per-
forming computations on 3 bits 1mstead of 10 bits requires
smaller and less-power-consuming units.
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It 1s possible to implement a soft decoder 1n which the
number of bits in the “message passing” can be set at the
beginning of the decoding. Thus, 1n some embodiments, a
decoding bus width size 1s selected in accordance with the
determined operational parameter value. In the event that the
“value of the operational parameter” indicates an “optimistic
situation,” 1t 1s possible to select a smaller decoding bus width
s1ze and to correct errors accordingly. Otherwise, 1t may be
preferable to select a larger decoding bus width size.

This 1s shown graphically in FIG. 8. In step S7351, a decoder
bus width 1s selected 1n accordance with the value of the
operational parameter. In step S755, errors are corrected
according to the selected value of the decoder bus width.

A Discussion of FIGS. 9A-9B

As noted earlier with reference to FIG. 3B, the situation
where the “first data” and the “second data™ are the same data
1s just one special case, and 1s described 1n FIG. 3A.

Nevertheless, FIG. 3B relates to the more general case
where the first data and the second data either (1) are the same
or (11) are different.

Some embodiments relate to memories that include a plu-
rality of memory cells—tor example, flash memory cells,
RAM cells or any other memory cells. It 1s noted that when
data 1s stored on the memory, the data may reside 1n one or
more memory cells. In some embodiments, the first data and
the second data reside 1n the same set of memory cells (for
example, because the first data and the second data are the
same) where a “set of memory cells” refers to one or more
memory cells. Alternatively, the first data resides 1n a first set
of one or more memory cells, the second data resides 1n a
second set of one or more memory cells, where the first set
and the second of memory cells are distinct sets.

The different possibilities are 1llustrated 1n FIGS. 9A-9B
where the “first memory cell set M,” refers to the first set of
one or more memory cells on which the first data resides, and
the “second memory cell set M, refers to the second set of
one or more memory cells on which the second data resides.”

Referring to FIGS. 9A-9B, case 1 refers to the case where
M, and M, are 1dentical sets. Case 2 refers to the case where
M, 1s a proper sub-set of M,,. Case 3 refers to the case where
M., 1s a proper sub-set of M, . Case 4 refers to the case where
(1) M, and M, overlap (1.e. include at least one common
memory cell) (11) M, 1includes at least one memory cell that 1s
nota member of M, and (111) M, includes at least one memory
cell thatisnotamember of M, . Case 5 refers to the case where
M, and M, are disjoint.

A Discussion of FIGS. 10A-10C

FIGS. 10A-10C provide flow charts for exemplary tech-
niques for correcting errors in the second data according to
some embodiments.

Reference 1s now made to FIG. 10A.

In steps S515 and S515, M, and M, are determined. In step
S519, 1t 1s determined 11 there 15 a sub-set of M, and M, that
co-resides on a common die (for example, a common flash
die). In the event that there 1s no such sub-set (1.e. M; and M,
are disjoint as 1n case 5 of FIG. 9B and reside on different
dies), then 1t 1s possible to 1gnore S427 the operational param-
cter determined 1n step S415 (or to weigh the “influence”
alforded to the operational parameter value to a lesser extent).

However, 1n the event that such a subset does, 1n fact exist,
then the value of the operational parameter 1s used 1n step

S423 (or used to a greater extent) when correcting errors in
the second data.

Reference 1s now made to FIG. 10B.

In steps S515 and S515, M, and M, are determined. In step
5523, 1t 15 determined 11 there 1s a sub-set of M, and M, that
co-resides 1n a common memory block. In the event that there
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1s no such sub-set (1.e. M, and M, are disjoint as 1n case 5 of
FIG. 9B and reside on different memory blocks—ior
example, different tlash blocks), then 1t 1s possible to 1gnore
S427 the operational parameter determined 1n step S415 (or
to weigh the “intfluence” afforded to the operational param-
cter value to a lesser extent).

However, 1n the event that such a subset does, 1n fact exist,
then the value of the operational parameter 1s used 1n step
S423 (or used to a greater extent) when correcting errors in
the second data.

Reference 1s now made to FIG. 10C.

In steps S515 and S515, M, and M, are determined. In step
5523, 1t 15 determined 1f there 1s a sub-set of M, and M, that
co-resides on a common wordline. In the event that there 1s no
such sub-set (1.e. M, and M, are disjoint as 1n case 5 of FIG.
9B and reside on different wordlines—{tor example, different
tflash wordlines), then 1t 1s possible to 1gnore S427 the opera-
tional parameter determined in step S415 (or to weigh the
“influence” afforded to the operational parameter value to a
lesser extent).

However, 1n the event that such a subset does, 1n fact exist,
then the value of the operational parameter 1s used 1n step
S423 (or used to a greater extent) when correcting errors in
the second data.

Discussion of FIG. 11

There 1s no limitation on the system architecture in which
any presently-disclosed technique may be carried out. In
some embodiments, any presently-disclosed technique may
be carried out at least in part on a “single device” residing in
a single device housing. Alternatively or additionally, any
presently-disclosed technique may be carried out at least in
part on an “external device” other than a device 1n which the
memory resides. In one non-limiting example, any presently-
disclosed technique may be carried out in a host device inter-
faced with a memory device (for example, a non-volatile
memory device such as a flash memory device) via any device
port or mterface—ior example, a USB interface, SD inter-
tace, MMC interface, NAND interface or any other interface.

Reterence 1s now made to FI1G. 11 which 1s a block diagram
of a flash memory storage device 260B. Although FIG. 11
relates to the specific case of a flash memory device 260B, 1t
1s appreciated that this 1s not a limitation, and the presently-
disclosed techniques are also applicable to memory devices
that include memory other than flash memory 270—for
cxample, volatile memory and/or magnetic memory.
Although no device port is depicted in storage device 2608, 1t
1s appreciated that in some embodiments the storage device
260B 1ncludes a device port (for example, i1 storage device
260 1s a peripheral storage device 260%*), and 1n some embodi-
ments the storage device 260B lacks a device port.

In the non-limiting example of FIG. 11, (1) step S411 1s
carried out by tlash controller 280B which writes the first data
to flash memory 270; (11) steps S415 and S417 are carried out
by the tlash controller 280B; (i111) step S419 1s carried out by
tflash controller 2808 which reads the second data from flash
memory 270; and (1v) step S423 1s carried out by flash con-
troller 2808 which corrects errors 1n the second data read
back from flash memory 270 1n accordance with the deter-
mined value of the operational parameter.

There 1s no limitation on where the value of the operational
parameter 1s saved 1n step S417, and the value of the opera-
tional parameter may be saved 1n any combination of volatile
and/or non-volatile memory.

A brief discussion 1s now presented relating to non-limiting
implementations where the flash controller 280 resides on a
die that 1s different from the one or more dies of the flash
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memory 270. It 1s appreciated that this 1s non-limiting and

that other implementations are contemplated.

Case A: One or more operational parameter values associated
with one or more locations 1n flash memory (1.e. physical or
logical location) are stored in the NAND flash die. After
cach flash programming operation, one or more opera-
tional parameter values are stored “internally” 1n a dedi-
cated location 1n flash. To save space, the storage location
may be shared by all pages 1n a block—each programming
operation overwriting the previous result (i.e. operational
parameter value) from writing a previous page in that
block. This may assume that pages of the same block are
correlated in their quality. In this implementation the con-
troller reads S421 the value(s) of the operational parameter
(s) when needed. The flash die provides a command that
allows the controller to read the operational parameter(s)
value(s) associated with a specific page (or block). The
controller may do this reading S421 of the operational
parameter(s) value(s) either before reading the second data
S419 or after reading the data S419. The read operational
parameter(s) value(s) 1s then used 1n the error correction
process.

Case B: The information (i.e. the value(s) of one or more
operational parameter) 1s stored in the controller rather
than 1n the flash. In this implementation, the controller
reads the value(s) of the one or more operational param-
cters using a command similar to the one mentioned above.
In this case, the tlash die does not have to provide extra
storage area, except for a single register holding the infor-
mation of the last programming operation. The controller
280 has the freedom to decide whether to store the quality
information per each page or only per each block, trading-
oil storage space with better reliability of the information.
It 1s noted that any controller 280 (or 280B) disclosed

herein (either a tlash controller as illustrated in the figures or
a controller for a memory device other than a flash memory
device) may be implemented using any combination of hard-
ware (for example, including a microprocessor and optionally
volatile memory such as RAM or registers), firmware and/or
software (for example, computer code which 1s stored 1in
volatile and/or non-volatile memory and 1s executable by a
microprocessor). Controller 280 (or 280B) may include any
soltware and/or firmware and/or hardware element(s) includ-
ing but not limited to field programmable logic array (FPLA)
clement(s), hard-wired logic element(s), field programmable
gate array (FPGA) element(s), and application-specific inte-
grated circuit (ASIC) element(s). Any instruction set archi-
tecture may be used 1n controller 280 or 280B 1ncluding but
not limited to reduced instruction set computer (RISC) archi-
tecture and/or complex nstruction set computer (CISC)
architecture.

Discussion of FIG. 12
FIG. 12 1s a block diagram of an exemplary system where

the technique of FIG. 3B 1s carried out at least 1n part on the

“host side.” In the example of FIG. 12, the system includes

host device 310 and flash memory storage device 260%*.
Although a flash memory storage device 260%* 1s depicted

in FIG. 12, 1t 1s appreciated that the teachings may be applied

to other memory devices other than flash memory devices.
In the non-limiting example of FIG. 12, (1) step S411 1s

carried out by the host 310 which writes the first data to flash

memory 270 of tlash memory device 260*(for example, by

sending a request from host 310 to flash memory device 260

to write the first data); (11) step S4135 1s carried out by host

device 310 (which may, for example, send a “query” to flash
device 260* requesting information related to the writing of
the first data of step S411 after the first data writing); (111) step
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S415 1s carried out by host device 310 which may save the
operational parameter(s) value(s) 1n any location on the host
side and/or device side; (1v) step S419 1s carried out by host
device 310 which retrieves the operating parameter(s) value
(s) from the flash device 260* or from any other volatile
and/or non-volatile memory; (v) step S421 1s carried out by
host device 310 ({or example, by sending a request from host
310 to flash memory device 260 to read the second data); and
(v1) step S423 1s carried out by host device 310.

In one non-limiting embodiment, one or more steps carried
out by the host side are carried out by processor 320 executing
executable code 340 (for example, “device driver code”)
residing in RAM 330.

A Discussion of FIG. 13

As noted earlier, any step of FIG. 3B may be carried out at
least 1n part on the host device and/or at least 1n part on the
flash storage device 260.

FIG. 13 15 a block diagram of a system for handling error
correction for a memory (for example, tlash memory 270).
The system includes: a) a data-writer 910 ({or example, a flash
data-writer) operative to write first data to a memory (includ-
ing but not limited to flash memory 270); b) an operational-
parameter determiner 922 operative to determine a value of an
operational parameter, the determined value being a conse-
quence of the writing of the first data; ¢) a data-reader opera-
tive 918 (for example, a flash data-reader), subsequent to the
writing and to the determining, to read second data from the
memory (for example, including but not limited to flash
memory 270); and d) an error correction element 926 opera-
tive to correct errors in the second data according to the
determined operational parameter value that1s a consequence
of the writing of the first data.

It 1s noted that data-writer 910 and/or data-reader 918
and/or operational parameter determiner 922, and/or error
correction element 926 may be implemented in any combi-
nation ol hardware and/or software and/or firmware appro-
priately configured to perform the functionality described
above. Furthermore, any element 1n FIG. 13 may reside at
least 1n part on any device including but not limited to host
device 310 and flash memory device 260.

In one non-limiting example, data-writer 910 may be either
a controller 280 (which writes data to flash memory 270)
and/or a host device 310 (for example, operative to send an
appropriate ‘write data’ command to peripheral storage
device 260* via communications link 300).

The operational parameter(s) may be determined at least in
part on the device side and/or on the host side. Thus, 1n one
non-limiting example, the operational-parameter determiner
922 may be any combination of controller 280 and/or host
device 310 (for example, executing the appropriate device
drivers).

In one non-limiting example, data-reader 910 may be
either a controller 280 (which writes data to flash memory
270) and/or a host device 310 (for example, operative to send
an appropriate ‘read data’ command to a peripheral storage
device 260* via communications link 300).

In different embodiments, any system of FIGS. 11-13 1s
operative to carry out one or more routines described herein.

It 1s further noted that any of the embodiments described
above may further include receiving, sending or storing
instructions and/or data that implement the operations
described above in conjunction with the figures upon a com-
puter readable medium. Generally speaking, a computer
readable medium may include storage media or memory
media such as magnetic or tlash or optical media, e.g. disk or
CD-ROM, volatile or non-volatile media such as RAM,

ROM, etc. as well as transmission media or signals such as
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clectrical, electromagnetic or digital signals conveyed via a
communication medium such as network and/or wireless
links.

Having thus described the foregoing exemplary embodi-
ments 1t will be apparent to those skilled in the art that various
equivalents, alterations, modifications, and improvements
thereol are possible without departing from the scope and
spirit of the claims as hereafter recited. In particular, different
embodiments may include combinations of features other
than those described herein. Accordingly, the claims are not
limited to the foregoing discussion.

What 1s claimed 1s:

1. A method for handling error correction, the method
comprising

writing first data to a memory;

measuring reliability of the writing of the first data;

determining a value for an operational parameter based on

the measured reliability of the writing;

subsequent to the writing and to the determining, reading

second data from the memory;

selecting a decoder based on the value for the operational

parameter associated with the measured reliability of the
writing; and

correcting errors in the second data utilizing the selected

decoder.

2. The method of claim 1 wherein the memory 1s a tlash
memory.

3. The method of claim 1 wherein the first data are written
to and the second data are read from a same set of one or more
memory cells.

4. The method of claim 1 wherein:

the first data are written to a first set of one or more memory

cells;

the second data are read from a second set of one or more

memory cells the second set being different from the first
set; and
the correcting of errors of the second data being effected 11
at least one of a first set condition, a second set condition
and a third set condition is true, and wherein the set
conditions are defined as follows:
according to the first set condition, a subset of the first set
of memory cells and a subset of the second set of
memory cells co-reside on a common die;
according to the second set condition, a subset of the first
set of memory cells and a subset of the second set of
memory cells co-reside 1n a common memory cell
block; and
according to the third set condition, a subset of the first
set of memory cells and a subset of the second set of
memory cells co-reside on a common wordline.
5. The method of claim 1 wherein the value for the opera-
tional parameter 1s based on a number of bits left in 1ncorrect
state at an end of the writing of the first data.
6. The method of claim 1 wherein the correcting of errors 1n
the second data includes selecting a decoding bus width size
in accordance with the value for the operational parameter.
7. The method of claim 1 wherein the selecting the decoder
includes at least one of:
choosing one of a first decoder or a second decoder in
accordance with the value for the operational parameter
and correcting errors using the chosen decoder; and

choosing one of a first mode of a decoder or a second mode
of the decoder in accordance with the value for the
operational parameter and correcting errors using the
chosen mode of the decoder.

8. The method of claim 1 wherein the correcting of errors
includes at least one of:
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deciding whether to attempt to correct errors using a
lighter-weight decoder or to attempt to correct errors
using a heavier-weight decoder that 1s heavier than the

lighter-weight decoder;

deciding whether to attempt to correct errors using a faster
decoder or to attempt to correct errors using a slower
decoder that 1s slower than the faster decoder;

deciding whether to attempt to correct errors using a

lighter-weight mode of a particular decoder or to attempt
to correct errors using a heavier-weight mode of the
particular decoder that i1s heavier than the lighter weight
mode; and

deciding whether to attempt to correct errors using a faster

mode of a particular decoder or to attempt to correct
errors using a slower mode of the particular decoder that
1s slower than the faster mode.

9. The method of claim 1 wherein the correcting of errors in
the second data includes determining, 1n accordance with the
value for the operational parameter, one or more bit-probabil-
ity values for the second data.

10. The method of claim 1 wherein the value of the deter-
mined operational parameter 1s based on a number of pro-
gramming iterations used in the writing of the first data.

11. The method of claim 1 wherein the value of the deter-
mined operational parameter 1s based on a time required for
the writing of the first data.

12. The method of claim 1 wherein:

the first data are written to a first set of one or more memory

cells; and

the second data are read from a second set of one or more

memory cells, the second set being different from the
first set.
13. The method of claim 12 wherein the method 1s carried
out such that at least one of a first set condition, a second set
condition, a third set condition, and a fourth set condition 1s
true, and wherein the set conditions are defined as follows:
according to the first set condition, the first set of one or
more memory cells and the second set of one or more
memory cells include atleast one common memory cell;

according to the second set condition, the first set of
memory cells and the second set of memory cell sets are
disjoint sets;

according to the third set condition, the first set of memory

cells 1s a subset of the second set of memory cells; and
according to the fourth set condition, the second set of
memory cells 1s a subset of the first set of memory cells.

14. A data storage device comprising:

a memory; and

a controller operative to:

write first data to the memory;

measure reliability of the write of the first data;

determine a value for an operational parameter based on
the measured reliability of the write;

subsequent to the writing and to the determining, read
second data from the memory;

select a decoder based on the value for the operational
parameter associated with the measured reliability of
the write; and

correct errors 1n the second data utilizing the selected
decoder.

15. The device of claim 14 wherein the memory 1s a flash
memory.

16. The device of claim 14 wherein the memory includes a
plurality of memory cells and the controller 1s operative to
write the first data and read the second data from the same set
of one or more of the memory cells.
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17. The device of claim 14 wherein the memory includes a
plurality of memory cells and the controller 1s operative:

to write the first data to a {first set of one or more of the
memory cells;

to read the second data from a second set of one or more of
the memory cells the second set being different from the
first set; and

to effect the correcting of the second data 11 at least one of
a first set condition, a second set condition and a third set

condition 1s true, and wherein the set conditions are

defined as follows:

according to the first set condition, a subset of the first set
of memory cells and a subset of the second set of
memory cells co-reside on a common die;

according to the second set condition, a subset of the first
set of memory cells and a subset of the second set of
memory cells co-reside 1n a common memory cell

block; and

according to the third set condition, a subset of the first
set of memory cells and a subset of the second set of
memory cells co-reside on a common wordline.
18. The device of claim 14 wherein the determined opera-
tional parameter value describes at least one of a number of
bits left in incorrect state at the end of the writing of the first
data; a number of programming iterations used in the writing
of the first data; or a time required for the writing of the first
data.
19. The device of claim 14 wherein the controller 1s opera-
tive such that the correcting of errors in the second data
includes selecting a decoding bus width size 1n accordance
with the value for the operational parameter.
20. The device of claim 14 wherein the controller 1s opera-
tive such that the selecting the decoder includes effecting at
least one of:
choosing one of a first decoder or a second decoder in
accordance with the value for the operational parameter
and correcting errors using the chosen decoder; and

choosing one of a first mode of a decoder or a second mode
of the decoder 1n accordance with the value for the
operational parameter and correcting errors using the
chosen mode of the decoder.

21. The device of claim 14 wherein the controller 1s opera-
tive such that the correcting of errors according to the deter-
mined operational parameter value includes at least one of:

deciding whether to attempt to correct errors using a

lighter-weight decoder or to attempt to correct errors
using a heavier-weight decoder that 1s heavier than the
lighter-weight decoder;

deciding whether to attempt to correct errors using a faster

decoder or to attempt to correct errors using a slower
decoder that 1s slower than the faster decoder:;

deciding whether to attempt to correct errors using a

lighter-weight mode of a particular decoder or to attempt
to correct errors using a heavier-weight mode of the
particular decoder that 1s heavier than the lighter weight
mode; and

deciding whether to attempt to correct errors using a faster

mode of a particular decoder or to attempt to correct
errors using a slower mode of the particular decoder that
1s slower than the faster mode.

22. The device of claim 14 wherein the controller 1s opera-
tive such that the correcting of errors includes determining, in
accordance with the value for the operational parameter, one
or more bit-probability values for the second data.

23. The device of claim 14 wherein the memory includes a
plurality of memory cells and the controller 1s operative:
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to write the first data to a first set of one or more of the

memory cells; and

to read the second data from a second set of one or more of

the memory cells, the second set being different from the
first set.
24. The device of claim 23 wherein the controller 1s opera-
tive such that at least one of a first set condition, a second set
condition, a third set condition, and a fourth set condition 1s
true, and wherein the set conditions are defined as follows.
according to the first set condition, the first set of one or
more memory cells and the second set of one or more
memory cells include at least one common memory cell;

according to the second set condition, the first set of
memory cells and the second set of memory cell sets are
disjoint sets;

according to the third set condition, the first set of memory

cells 1s a subset of the second set of memory cells; and
according to the fourth set condition, the second set of
memory cells 1s a subset of the first set of memory cells.

25. A host device comprising:

a host-side storage;
a host-side processor;

a host-side interface for inter-device coupling with a

memory device; and

driver code residing in the host-side storage, wherein

execution of the driver code by the host-side processor 1s

operative to:

write first data to the memory;

measure reliability of the write of the first data;

determine a value for an operational parameter based on
the measured reliability of the write;

subsequent to the writing and to the determiming, read
second data from the memory;

select a decoder based on the value for the operational
parameter associated with the measured reliability of
the write; and

handle error correction of the second data utilizing the
selected decoder.

26. The host device of claim 25 wherein the driver code 1s
operative such that handling of error correction includes 1ssu-
ing a command, via the host-side mtertace, to handle the error
correction of the second data according to the value for the
operational parameter.

277. The host device of claim 25 wherein the driver code 1s
operative such that the handling of error correction includes
correcting errors, on the host side, 1n the second data accord-
ing to the value for the operational parameter.

28. A computer program embedded 1 a non-transitory
computer-readable storage medium, when executed by one or
more processors for handling error correction for a memory,
the computer program code being operable to:

write first data to the memory;

measure reliability of the write of the first data;

determine a value for an operational parameter based on

the measured reliability of the write;

subsequent to the writing and to the determining, read

second data from the memory;

select a decoder based on the value for the operational

parameter associated with the measured reliability of the
write; and

correct errors in the second data utilizing the selected

decoder.

29. A controller for a memory, the memory including a
plurality of memory cells, the controller comprising:

circuitry that 1s operative to:

write first data to the memory;
measure reliability of the write of the first data
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determine a value for an operational parameter based on correct errors 1 the second data utilizing the selected
the measured reliability of the write; decoder.

subsequent to the writing and to the determiming, read
second data from the memory;

select a decoder based on the value for the operational 5
parameter associated with the measured reliability of

the write; and
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