12 United States Patent

Lennon et al.

US008381198B2

US 8,381,198 B2
Feb. 19, 2013

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS, METHODS AND COMPUTER
PROGRAM PRODUCTS FOR SAFETY
CHECKING EXECUTABLE APPLICATION
PROGRAMS IN A MODULLE

(75) Inventors: William Lennon, Cary, NC (US);
Oystein Dahlsveen, Raleigh, NC (US)

(73) Assignee: Sony Ericsson Mobile
Communications AB, Lund (SE)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 2408 days.

(21) Appl. No.: 11/203,689

(22) Filed: Aug. 15, 2005

(65) Prior Publication Data
US 2007/0038975 Al Feb. 15, 2007

(51) Int.Cl.
GOGF 9/44 (2006.01)

(52) US.CL e, 717/136

(58) Field of Classification Search 717/130,
717/131, 140; 718/1

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,014,513 A * 1/2000 Voelkeretal. 717/131

6,149,318 A 11/2000 Chase et al.

6,151,618 A * 11/2000 Wahbeetal. 718/1
2003/0014737 Al1* 1/2003 Smuthetal. 717/130
2005/0183072 Al1* 8/2005 Horningetal. 717/140

FOREIGN PATENT DOCUMENTS
EP 1369 787 A2 12/2003
WO WO 99/10795 Al 3/1999

OTHER PUBLICATIONS

“Safety Checking of Machine Code” by Xu et al, Nov. 11, 1999,

Computer Science Department of University of Wisconsin at Madi-
son, 15 pages.™

“Compilers Principles, Techniques, and Tools” by Aho et al, Mar.
1988, Addison Wesley Longman, p. 4-5.*

“The Authoritative Dictionary of IEEE Standards Terms” by Stan-
dards Information Network, Dec. 2000, Institue of Flectrical and
Electronics Engineers, Inc., p. 701.%*

Notification of Transmittal of the International Search Report and the
Written Opinion of the International Searching Authority, or the
Declaration, International Search Report, and Written Opinion of the
International Searching Authority, PCT/US2006/011440, Mar. 19,
2007.

Sony Ericsson Mobile Communications AB, “Sony Ericsson GR47/
GR48 Increased flexibility Simplified application development™,
2003, 2 pp.

Sony Ericsson Mobile Communications AB, Sony Ericsson
M2mpower package A total solution for rapid, cost-effective appli-

cation development, 2003, 2 pp.

* cited by examiner

Primary Examiner — H. Sough

Assistant Examiner — Carina Yun

(74) Attorney, Agent, or Firm — Myers Bigel Sibley &
Sajovec, P.A.

(57) ABSTRACT

An application program for a central processing unit of a
computer module 1s developed. Source code for the applica-
tion 1s written and debugged. The source code for the appli-
cation program 1s then compiled and assembled, to provide an
executable application program. The executable application
program 1s loaded into the computer module. Safety check
executable code 1s inserted 1nto the executable application
program that 1s loaded into the computer module, to prevent
the executable application program from reading, writing and
Tumping outside a designated memory area of the computer
module. The executable application program with the safety
check code mserted therein 1s stored 1n the computer module.

17 Claims, 3 Drawing Sheets

APPLICATION PROGRAM DEVELOPMENT

410

WRITE/DEBUG SOURCE CODE

420

COMPILE/ASSEMBLE SCURCE CODE

310

LOAD THE APPLICATION PROGRAM I—/

320

INSERT SAFETY CHECK EXECUTABLE CODE

430

STORE APPLICATION PROGRAM INCLUDING

THE SAFETY CHECK EXECUTABLE CODE

EXECUTE

340

END

U.S. Patent Feb. 19, 2013 Sheet 1 of 3 US 8,381,198 B2

100
COMPUTER MODULE
MEMORY 110 130
MACHINE
CODE CPU OTHER
MAKE-SAFE HARDWARE

TOOL

APPLICATION
PROGRAM(S) 126

SAFETY 120
CHECK
EXECUTABLE
CODE

EXECUTE APPLICATION PROGRAM(S)
READ, WRITE AND JUMP
CHECK THE APPLICATION
PROGRAM AS IT EXECUTES
(eno) FIG. 2 200
- - READ WRITE AND JUMP CHECK
310
LOAD THE APPLICATION PROGRAM
320
INSERT SAFETY CHECK EXECUTABLE CODE
330
RELINK THE APPLICATION PROGRAM
340
EXECUTE

“T1
—
G)
I

: END

U.S. Patent Feb. 19, 2013 Sheet 2 of 3 US 8,381,198 B2

APPLICATION PROGRAM DEVELOPMENT
410
WRITE/DEBUG SOURCE CODE
420
COMPILE/ASSEMBLE SOURCE CODE
310
[OAD THE APPLICATION PROGRAM
320
INSERT SAFETY CHECK EXECUTABLE CODE
430
STORE APPLICATION PROGRAM INCLUDING
THE SAFETY CHECK EXECUTABLE CODE
340
EXECUTE
END FIG., 4
320

INSERT SAFETY CHECK EXECUTABLE CODE

d
LOAD MACHINE CODE MAKE-SAFE TOOL
520

END FIG. 5

10

U.S. Patent Feb. 19, 2013 Sheet 3 of 3 US 8,381,198 B2

620
630

MAP OF
INTRINSIC

LIBRARY
JUMP
TABLE

GNU COMPILER
GNU ASSEMBLER

C SOURCE

FILES

GNU LINKER

610 100°
640

UQSAFE MAKE-SAFE TOOL
EXECUTABLE
INSERT SAFETY-CHECK

CODE AND RE-LINK
030 124

SAFE
LOADER TOOL EXECUTABLE

660

WRITE TO FLASH

FIG. 6

US 8,381,198 B2

1

SYSTEMS, METHODS AND COMPUTER
PROGRAM PRODUCTS FOR SAFETY

CHECKING EXECUTABLE APPLICATION
PROGRAMS IN A MODULE

FIELD OF THE INVENTION

This invention relates to data processing systems, methods
and computer program products, and more particularly to
systems, methods and computer program products for devel-
oping and executing an application program for a central
processing unit of a computer module.

BACKGROUND OF THE

INVENTION

Computer modules are widely used 1n many consumer and
industrial applications. As used herein, a computer module
includes a Central Processing Unit (CPU) that 1s configured
to execute computer programs, a memory that may include
one or more classes of memory devices and that 1s configured
to store computer programs and/or data, and one or more
peripheral devices, such as input/output (1/0) devices and/or
radio frequency devices, that may be used to perform desired
functions of the computer module. Computer modules may
exhibit a large range of physical size and/or complexity.

One example of a relatively compact computer module 1s
the GR47/GR48 module that 1s marketed by Sony Ericsson
Mobile Communications AB, the assignee of the present
application. As described 1in a Preliminary Data Sheet entitled
“Sony Ericsson GR4'1/GRA8 Increased Flexibility Simplified
Application Development”, the Sony Ericsson G47/GR481s a
highly advanced radio device that comes fully-loaded with a
range of GSM/GPRS voice and data features, 1n a compact
unit (Just 50x33x7.2 mm). Optimized for machine-to-ma-
chine (M2M) communications, the GR47/GR48 features an
intrinsic TCP/IP protocol stack that enables a developer to
make eflective use of GPRS. The GR47/GR48 1s config-
urable, to enable optimum usage of the extensive range of
input/output pins provided, making it easy to adapt to a devel-
oper’s M2M solution. The embedded controller 1s accessible
for hosting applications 1n areas such as alarm, meter reading
and vending applications.

As also noted 1n this Preliminary Data Sheet, the GR47//
(GR48 can be used as a stand-alone product or in conjunction
with M2Zmpower Business Solution, using the M2mpower
package. The M2mpower package provides a support envi-
ronment that enables a developer to develop and embed an
application directly onto the GR47/GR48. Embedding an
application onto the GR47/GR48 allows a developer to
streamline development, shorten time to market and reduce
total solution costs. The M2mpower package includes devel-
oper tools, documentation, training and support. The
M2mpower package 1s described in a brochure entitled “Sony
Ericsson M2mpower Package A Total Solution For Rapid,
Cost-Effective Application Development”.

The M2mpower package described above 1s an example of
a customized Integrated Development Environment (IDE) for
a computer module that allows third party developers to
develop applications that may be run on the computer mod-
ule. Customized integrated development environments, such
as the M2mpower package, may be provided for a given
computer module. Unfortunately, 1t may be costly to develop
and maintain a customized integrated development environ-
ment. Moreover, storage space for programs may be limited
in a computer module. It therefore it may be desirable to
provide an integrated development environment that can

10

15

20

25

30

35

40

45

50

55

60

65

2

reduce or mimimize storage on the module that 1s used by an
integrated development environment.

SUMMARY OF THE INVENTION

Exemplary embodiments of the present invention provide
methods for developing an application program for a central
processing unit of a computer module. Source code for the
application 1s written and debugged. The source code for the
application program 1s then compiled and assembled, to pro-
vide an executable application program. The executable
application program 1s loaded into the computer module.
Safety check executable code 1s mserted into the executable
application program that 1s loaded mto the computer module,
to control reading, writing and/or jumping outside a desig-
nated memory area of the computer module by the executable
application program. In some embodiments, the safety check
executable code prevents the executable application program
from reading, writing and/or jumping outside the designated
memory area of the computer module. The executable appli-
cation program with the safety check code inserted therein 1s
stored 1n the computer module.

In some embodiments, when compiling and assembling,
the source code 1s linked to a map of intrinsic functions of the
computer module that are available to the application pro-
gram. Moreover, 1n some embodiments, when inserting the
safety check executable code, the executable application pro-
gram, with the safety check code inserted therein, may be
relinked. Also, mn some embodiments, after storing the
executable application program with the safety check execut-
able code inserted therein, the executable application pro-
gram with the safety check code inserted therein may be
executed on a central processing unit of the computer module.

In some embodiments, mserting the safety check execut-
able code may be performed by providing a machine code
make-saie tool 1n the computer module, wherein the machine
code make-safe tool 1s configured to insert the safety check
executable code 1nto a program that 1s loaded into the com-
puter module. The machine code make-safe tool processes
the executable application program that 1s loaded mto the
computer module, to sert the safety check executable code
into the executable application program that 1s loaded into the
computer module.

In some embodiments, the computer module may include
volatile memory and nonvolatile memory. The safety check
executable code can control and/or prevent the executable
application from reading and/or writing outside a designated
memory area of the volatile memory, and/or jumping outside
a designated area of the nonvolatile memory. Moreover, 1n
some embodiments, the computer module can include a radio
frequency section that i1s controlled by the central processing
unit, and the application program may be configured to pro-
vide functionality for the radio frequency section.

Other embodiments of the present mnvention allow a
machine code application program to be executed directly on
a central processing unit of a computer module by read, write
and/or jump checking the machine code application program
as 1t executes directly on the central processing unit, to control
reading, writing and/or jumping outside a designated
memory area of the computer module by the machine code
application program. Prior to performing the read, write and/
or jump checking during execution, the safety check execut-
able code may be inserted into the executable application
program according to any of the embodiments that were
described above.

It will be understood by those having skill 1n the art that
embodiments of the present mvention have been described

US 8,381,198 B2

3

above 1n connection with methods of developing an applica-
tion program and/or executing an application program. How-
ever, analogous systems, such as integrated development
environments, and analogous computer program products

also may be provided according to various embodiments of >

the present invention.

Computer modules according to some embodiments of the
present invention include a central processing unit, a memory
that 1s configured to store programs that execute on the central
processing unit, and a machine code application program in
the memory that 1s configured to execute directly on the
central processing unit. These embodiments may also include
a machine code make-safe tool 1n the memory that is config-
ured to execute directly on the central processing unit, and to
control and/or prevent the machine code application program
from reading, writing and/or jumping outside a designated
area of the memory.

Computer modules according to other embodiments of the
present invention may include a machine code make-safe tool
in the memory that 1s configured to execute directly on the
central processing unit and to msert safety check executable
code 1nto an application program, to control and/or prevent
the application program from reading, writing and/or jump-
ing outside a designated memory area of the computer mod-
ule. At least one application program in the memory 1s con-
figured to execute directly on the central processing umt, and
contains therein the safety check executable code. Analogous
methods and computer program products also may be pro-

vided.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a block diagram of a computer module according,
to exemplary embodiments of the present invention.

FI1G. 2 1s a tflowchart of operations that may be performed
to execute application program(s) according to exemplary
embodiments of the present invention.

FIG. 3 1s a flowchart of operations that may be performed
to read, write and jump check an application program as 1t
executes, according to exemplary embodiments of the present
invention.

FI1G. 4 15 a flowchart of operations that may be performed
tor application development according to exemplary embodi-
ments ol the present mvention.

FI1G. 5 1s a tlowchart of operations that may be performed
to isert satety check executable code according to exemplary
embodiments of the present invention.

FIG. 6 1s a functional block diagram of an application
program development environment according to exemplary
embodiments of the present invention.

DETAILED DESCRIPTION

The present invention now will be described more fully
hereinafter with reference to the accompanying drawings, in
which 1llustrative embodiments of the invention are shown.
However, this invention may be embodied 1n many different
forms and should not be construed as limited to the embodi-
ments set forth herein. Rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the mvention to those
skilled 1n the art.

It will be understood that when an element 1s referred to as
being “coupled”, “connected” or “responsive’” to another ele-
ment, it can be directly coupled, connected or responsive to
the other element or intervening elements may also be
present. In contrast, when an element 1s referred to as being,

10

15

20

25

30

35

40

45

50

55

60

65

4

“directly coupled”, “directly connected” or “directly respon-
stve” to another element, there are no 1ntervening elements
present. Like numbers refer to like elements throughout. As
used herein the term “and/or” includes any and all combina-
tions of one or more of the associated listed items and may be
abbreviated by /7.

It will also be understood that, although the terms first,
second, etc. may be used herein to describe various elements,
these elements should not be limited by these terms. These
terms are only used to distinguish one element from another
clement.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises,” “comprising,”
“includes™ and/or “including” when used herein, specily the
presence of stated features, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, steps, operations, elements,
components, and/or groups thereof.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which this invention belongs. It will be further understood
that terms, such as those defined 1n commonly used dictio-
naries, should be imterpreted as having a meaming that 1s
consistent with their meaning 1n the context of the relevant art
and will not be 1nterpreted 1n an 1dealized or overly formal
sense unless expressly so defined herein.

The present invention 1s described 1n part below with ret-
erence to block diagrams and tlowcharts of methods, systems
and computer program products according to embodiments
of the invention. It will be understood that a block of the block
diagrams or flowcharts, and combinations of blocks in the
block diagrams or flowcharts, may be implemented at least in
part by computer program instructions. These computer pro-
gram 1nstructions may be provided to one or more enterprise,
application, personal, pervasive and/or embedded computer
systems, such that the instructions, which execute via the
computer system(s) create means, modules, devices or meth-
ods for implementing the functions/acts specified in the block
diagram block or blocks. Combinations of general purpose
computer systems and/or special purpose hardware also may
be used 1n other embodiments.

These computer program mstructions may also be stored 1n
memory ol the computer system(s) that can direct the com-
puter system(s) to function 1n a particular manner, such that
the instructions stored in the memory produce an article of
manufacture including computer-readable program code
which implements the functions/acts specified 1n block or
blocks. The computer program instructions may also be
loaded 1nto the computer system(s) to cause a series of opera-
tional steps to be performed by the computer system(s) to
produce a computer implemented process such that the
instructions which execute on the processor provide steps for
implementing the functions/acts specified in the block or
blocks. Accordingly, a given block or blocks of the block
diagrams and/or flowcharts provides support for methods,
computer program products and/or systems (structural and/or
means-plus-function).

It should also be noted that 1n some alternate implementa-
tions, the functions/acts noted in the flowcharts may occur out
of the order noted 1n the flowcharts. For example, two blocks
shown 1n succession may in fact be executed substantially
concurrently or the blocks may sometimes be executed in the

US 8,381,198 B2

S

reverse order, depending upon the functionality/acts
involved. Finally, the functionality of one or more blocks may
be separated and/or combined with that of other blocks.

FIG. 1 1s a block diagram of a computer module according,
to exemplary embodiments of the present invention. As
shown 1n FIG. 1, a computer module 100 includes a central
processing unit (CPU) 110 and a memory 120 that 1s config-
ured to store programs that execute on the CPU 110. The
memory 120 may be a single type of memory device, or may
be representative of a hierarchy of memory devices including,
volatile, nonvolatile, solid state, magnetic and/or optical
memory devices.

One or more machine code application program(s) 124
reside 1n the memory 120. The machine code application
program(s) 124 are configured to execute directly on the CPU
110. A machine code make-saie tool 122 also resides 1n the
memory 120, and 1s configured to execute directly on the CPU
110 and to control reading, writing and/or jumping outside a
designated area of the memory 120 by the machine code
application program(s) 124. It will be understood that the
designated area may be a contiguous area of memory and/or
multiple noncontiguous areas. In some embodiments, the
machine code make-sate tool 122 1s configured to insert
safety check executable code 1nto the application program(s)
124, to prevent the executable application program(s) 124
from reading, writing and/or jumping outside the designated
memory area of the computer module. In these embodiments,

the application program(s) 124 may contain the safety check
executable code 126 therein.

Still referring to FIG. 1, other hardware 130 also may be
included 1n the module 100 to provide, for example, a man-
machine interface, a machine-to-machine (M2M) interface, a
radio frequency (RF) section and/or other conventional hard-
ware components. In some embodiments, the application pro-
gram(s) 124 are configured to provide and/or supplement the
tunctionality of the other hardware 130.

Some embodiments of the invention may allow conven-
tional compilers and assemblers to be used to generate an
application program, but can reduce or prevent the applica-
tion program from interfering with operations of the com-
puter module by inserting the safety check executable code
into the executable application program. Moreover, by allow-
ing an executable application program to be loaded into the
computer module, the space that 1s taken up by an integrated
development environment on the computer module can be
reduced or minimized.

Moreover, some embodiments of the invention may allow
third parties to provide application programs for embedded
computer modules. In particular, some embodiments of the
invention allow third party users to generate an application
program, which runs on an embedded computer module with-
out creating undue security concerns. On a conventional per-
sonal computer with an open operating system, 1t may be up
to the user to ensure that the application program does not
create a security concern or cause the personal computer to
crash. In contrast, in an embedded module, the module pro-
vider may need to ensure that the module continues to func-
tion properly regardless of the application program(s) that a
third party developer loads on the module.

FIG. 2 15 a flowchart of operations that may be performed
to execute one or more application programs in a computer
module according to exemplary embodiments of the present
invention. These operations may be performed by the
machine code make-safe tool 122 and/or the safety check
executable code 126 with respect to the application programs

124 of FIG. 1.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In particular, as shown in FIG. 2 at Block 200, a machine
code application program 124 may be executed directly on a
CPU 110 of a computer module 100 by read, write and/or
mump checking the machine code application program 124 as
it executes directly on the CPU 110, to control reading, writ-
ing and/or jumping outside a designated memory area of the
computer module 110 by the machine code application pro-
gram 124. In some embodiments, the reading, writing and/or
jumping outside the designated area may be prevented.

FIG. 3 1s a flowchart of operations that may be performed
to read, write and/or jump check according to various
embodiments of the present invention, which may correspond
to Block 200 of FIG. 2. In particular, as shown in FIG. 3, one
or more machine code application programs 124 are loaded
into the computer module 100, at Block 310. It will be under-
stood that the loading of the machine code application pro-
gram(s) 124 may take place 1n 1ts entirety before subsequent
operations begin, may take place 1n sections before subse-
quent operations begin and/or may be performed line by line
in conjunction with subsequent operations.

Referring to Block 320, safety check executable code, such
as safety check executable code 126 of FI1G. 1, 1s inserted into
the application program 124 that 1s at least partially loaded
into the computer module 100 at Block 310, to control and/or
prevent the application program from reading, writing and/or
jumping outside a designated memory area of the computer
module 100. In some embodiments of the invention, the com-
puter module 100 may 1nclude volatile memory such as ran-
dom access memory (RAM) and nonvolatile memory such as
flash memory. The safety check executable code 126 may
control and/or prevent the executable application program
124 from reading and/or writing outside a designated area(s)
of the RAM, and/or from jumping outside a designated
area(s) of the flash memory.

Still referring to FIG. 3, at Block 330, 1t may be desirable to
relink the application program 124 due to the added safety
check executable code 126 that was 1nserted therein at Block
320. Finally, at Block 340, the application program 124 with
the safety check executable code 126 inserted therein 1s
executed on the CPU. Execution may be performed during
development and/or during actual field use.

FIG. 4 1s a flowchart of operations that may be performed
to develop an application program for a central processing
umt of a computer module, such as the application program
124 for the central processing unit 110 of the computer mod-
ule 100 of FIG. 1, according to some embodiments of the
invention. These operations may provide an integrated devel-
opment environment according to some embodiments of the
present invention. As shown 1n FIG. 4 at Block 410, source
code for the application program is written and debugged. In
some embodiments, a conventional source code language,
such as C, may be used along with conventional source code
authoring and debugging tools. Proprietary and/or custom-
1zed source code languages and/or tools need not be used. It
will also be understood by those having skill in the art that
source code languages other than C may be used. These
source code languages should include a compiler that can
convert the source code 1nto native machine instructions that
can execute on the central processing unit 110. Thus, for
example, Basic, Java, ADA, Pascal, assembly language, etc.,
may be used, in some embodiments.

Then, at Block 420, the source code 1s compiled and
assembled, to provide an executable application program. In
some embodiments, a conventional compiler/assembler, such
as the freeware GNU Compiler Collection (GCC), may be
used. Customized compilers and/or assemblers need not be
provided or maintained. At Block 310, the executable appli-

US 8,381,198 B2

7

cation program 1s then loaded into the computer module, as
was already described in connection with FIG. 3, and the

safety check executable code 1s mserted into the executable

application program at Block 320, as was already described 1n
connection with FIG. 3. Then at Block 430, the executable
application program with the safety check code inserted
therein 1s stored in the module. Finally, at Block 340, the
application program including the safety check code 1s then
executed 1n a development environment and/or 1n an opera-
tional environment, as was described above 1n connection
with FIG. 3.

FIG. 5 15 a flowchart of operations that may be performed
to 1nsert safety check executable code, which may correspond
to Block 320 of FIGS. 3 and/or 4. As shown in FIG. 5, a
machine code make-sate tool, such as the machine code
make-safe tool 122 of FIG. 1, 1s loaded into the computer
module 100 at Block 510. The machine code make-satfe tool
1s configured to 1nsert the satety check executable code into a
program that i1s loaded into the computer module. Then, at
Block 520, the executable application program that 1s loaded
into the computer module 1s processed by the machine code
make-saie tool, to thereby insert the safety check executable
code, such as the safety check executable code 126, into the
machine code application program 124 that 1s loaded into the
computer module 100.

Additional discussion of the operations of FIGS. 3-5 now
will be provided. In particular, referring again to Block 420,
during compiling and assembly, the source code may be
linked to a map of intrinsic functions of the computer module
100 that are available to the application program. An example
ol a map {ile that contains intrinsic functions that would be
available to a developer 1s illustrated 1n Table 1. The map file
allows the developer’s application program to link success-
tully, by telling the linker where to jump when the application
calls a given function. As shown by Table 1, functions for
printing, sending, dialing, answering, hang-up, short message
services (SMS) and/or pin activation can be provided, in some
embodiments.

TABL

(L.

1

intrinsic__function _map

*(.text)
text

0x02000000 _m2m_ printf
0x02000004 _m2m_ sendAT
0x02000008% _m2m__dial
0x0200000c¢ _ ImZ2m__answer
0x02000010 _m2m__hangup
0x02000014 _m2m_ sms__send
0x02000018% ~m2m_ sms_ read
0x0200001c _m2m_ sms__delete
0x02000020 _m2m_ pinl
0x02000024 _m2m_ pin2
0x02000028 _m2m_ pin3
0x0200002C _m2m_ pin4

Moreover, at Block 320, when the safety check executable
code 1s inserted, the executable program with the safety check
code 1nserted may be relinked to compensate for the added
safety check code that was 1nserted.

Additional discussion of various embodiments of the
present invention now will be provided. In particular, many
users of a computer module, such as the Sony Ericsson GR47/
(GR48 described above, may not have the resources to design
and build theirr own module/controller hardware. Accord-
ingly, a module, such as the GR47/GR48, may allow devel-
opers to write one or more embedded applications that run

10

15

20

25

30

35

40

45

50

55

60

65

8

directly on the module, so that a separate hardware controller
may not need to be used. Unfortunately, the embedded appli-
cation may run as an interpreted language, which may pro-
duce relatively slow execution. The embedded application
also may be uploaded 1nto the module as text source code,
which may consume excessive memory or may place an
added burden on the developer to right terse source code that
does not include, for example, comments. The source code
may also be written 1n a custom language, which may be, for
example, “C-like”, but which may lack the richness of true C
and which may need to be maintained. Finally, a customized
integrated development environment may need to be

designed and maintained.

Commercial alternatives, such as Java, may not be practi-
cal, because even i1 a Java virtual machine 1s reduced to a
small size, 1t still may consume excessive resources 1n the
memory of the module. Moreover, conversion to a commer-
cial alternative like Java may be undesirable for existing
developers who are already coding in a proprietary “C-like”
language.

Some embodiments of the present mmvention can allow
conventional editors, assemblers and compilers to be used
with conventional languages, to compile a machine code
application that can be loaded directly on the module. A
make-sate tool according to some embodiments of the inven-
tion can provide security for the loaded application programs.

FIG. 6 functionally illustrates an application program
development environment according to various embodiments
of the present invention. A developer writes a C code source
file 610 using a conventional C editor. A map of an 1ntrinsic
library jump table 630 may be provided, as was described
above 1n connection with Table 1. The intrinsic library jump
table 630 can allow the developer to compile code using a
conventional integrated development environment, such as
the GNU compiler, GNU assembler and GNU linker 620, and
step through the code on a local host to debug the code. The
tull power of the commercial integrated development envi-
ronment may be available to the developer. The characteris-
tics of the computer module need not dictate to the developer
which integrated development environment to use, and cus-
tomized integrated development environments need not be
maintained or supported.

To compile, the developer may run the GNU compiler 620
to produce a compiled executable. The compiler 620 may
contain the GNU freeware compiler, assembler and linker, a
linker map {file that links to the itrinsic function jump table
630 and configuration information that 1s used by the com-
piler to generate the compiled executable code. The map file
630 may contain the memory address of the static flash jump-
table that represents the intrinsic library functions. The user
may not have knowledge of other function calls not provided
in the map 630, so that the user may not have the ability to link
to other function calls.

As aresult of the operations of the compiler 620, an execut-
able 1s produced. However, this executable 1s potentially an
unsafe executable 640, because 1t may read, write and/or
jump outside a designated memory area and may thereby
corrupt other operations of the module.

A loader tool 650 1s then used to upload an 1mage of the
unsalfe executable 640 onto the module 100'. As was
described above 1n connection with Block 310, the image
may be loaded 1n 1ts entirety, by section and/or by line. The
module 100" then runs the make-safe tool 122' to make the
executable safe to run as native code, and thereby produce a
safe executable 124', which may correspond to the applica-
tion programs 124 with the safety check executable code 126

US 8,381,198 B2

9

of FIG. 1 therein. The safe executable 124" may be stored in a
flash memory as shown at Block 660.

Additional discussion of machine code make-safe tools
122, 122' according to some embodiments ol the present
invention, will now be provided. In particular, it may be
desirable to ensure that any embedded application is secure,
meaning 1t cannot escape its resource “sandbox”. The embed-
ded application may be provided a dedicated section of flash
memory, where the embedded application will reside. The
embedded application will execute from this flash memory
location. The embedded application may also be provided a
dedicated section of RAM, which may be used for program
variables. The embedded application also may be provided a
dedicated task, and the register stack for that task may also
reside 1n this RAM space.

In some embodiments of the invention, the make-sate tool
122, 122' takes the developer’s unsate machine code execut-
able 640 and inserts calls to read-check, write-check and
branch-check routines. All read, store and branch instructions
may thereby be modified to ensure that they run 1n the allotted
space. For example, 1t may be ensured that all store (write)
istructions point to memory 1n the allocated RAM space.
Moreover, 1t can be verified that all branch and jump nstruc-
tions point to memory in the tlash space.

An example of potentially unsate executable code 640 and
how the machine code make-safe tool 122/122' can prevent
the unsate code from operating, according to various embodi-
ments of the present invention, now will be provided. An
example of the unsafe store or write instructions will be
described. However, similar examples may apply to read and
jump 1nstructions. The following example shall be regarded
as merely 1llustrative and shall not be construed as limiting

the 1nvention.
In particular, the following C code may be considered

unsafe, because 1t can potentially corrupt outside memory:

char® ptr = 0x00080000;
* (ptr + 0x10000) = OxBB;

// Point to the edge of EA space
/f Corrupt outside memory.

This C code may be contained in the C source files 610 of FI1G.
6. The compiler/assembler/linker 620 may compile the
source code 1nto the following assembly code:

/{ load rO with the value to write

// R2 points to the edge of memory space
// store to the address of r2 + 10000.

LDR 10, OxBB
LDR r2, 0x00080000
STR 10, [r2 + #10000]

In some embodiments, the make-safe tool 122/122' would
replace the above STR (store) instruction with:

/{ load rO with the value to write
// Put the address [r2 + #10000] into r12

// call the write-check function
// 1T function returns, write to address,

LDR 10, OxBB

LDR r12, [r2 + #10000]
BR write_ check
STR 10, r12

where the write_check function may be as follows:

CMP r12, write_ ea_ start
BLE write_ exception
CMPrl2 , write _ea_end
BGE write__exception

/1 r12 1s below valid range, abort

/f 11 r12 1s above valid range, abort.

10

15

20

25

30

35

40

45

50

55

60

65

10

As can be seen, the write_check function compares the write
address to a valid start write address and a valid end write
address, and creates an exception if the write address 1s out of
range. Thus, 1f the write_check subroutine detects an out of
range pointer, the application task may be suspended, and/or
an error message may be reported. Similar functions may be
provided for read and jump nstructions. It will be understood
that the embedded application may operate slightly slower
due to the satety checks, but the speed may still be much faster
than if an interpreter 1s used.

As was described generally 1n connection with Block 330,
the make-safe tool 122, 122' can operate on a binary execut-
able, so that, as it inserts safety check code, 1t may also need
to modify branch and jump instructions to retlect the target’s
new memory address. This relinking may be achieved by
creating a table that contains the original code addresses and
the new olifsets. Relinking can then perform the offset arith-
metic to each branch instruction as 1t reaches them. For
example, the branch offset table of Table 2 may be provided:

TABLE 2
Original Address Offset
0x00080000 0x00
0x00080010 0x08
0x00080024 0x10
Ox00080030 0x18

When the make-safe tool 122, 122' encounters this line:
BR 0x00080018.

the tool would look up 1n Table 2 and determine that all code
from address 0x00080010 to 0x00080024 has been moved 8
bytes. Thus, the branch mstruction may be replaced with:

BR 0x00080020.

At run time, the module 100, 100" may perform C language
start up processes, which may include zeroing out all RAM,
copying all static and constant variables to their correct RAM
address, and 1mitializing stack and heap pointers. The module
100, 100' may then start the dedicated, low priority, embed-
ded application task, point it at the embedded application
main function and allow the embedded application to execute.
A second task can monitor the embedded application task,
checking for suflicient stack space and other potential prob-
lems. Problems may be reported to the user.

Some embodiments of the present mvention can allow
applications to be larger, because applications can be stored
on the module as machine code, which generally 1s more
compact than interpreted source code. Thus, the application
may be larger and still {it 1n the allotted memory space.
Moreover, the application may run as native code and, there-
fore, may run faster than scripts that use interpreting. The
developer also may produce more powerful applications,
because the developer may have access to the complete C
and/or other language, and/or may have access to commercial
integrated development environments. Code writing also may
be made easier because the code writing features of commer-
cial integrated device environments may be used. Moreover,
customized languages and integrated development activities
may need not be supported by the marketer of the module.

In the drawings and specification, there have been dis-
closed embodiments of the invention and, although specific
terms are employed, they are used 1n a generic and descriptive

US 8,381,198 B2

11

sense only and not for purposes of limitation, the scope of the
invention being set forth 1n the following claims.

What 1s claimed 1s:

1. A computer-implemented method of developing an
application program for a central processing unit ol a com-
puter module comprising:

loading a compiled and assembled executable application

program 1nto the computer module;

inserting safety check executable code into the executable

application program that i1s loaded into the computer
module to control reading, writing and/or jumping by
the executable application program outside a designated
memory area of the computer module; and

storing the executable application program with the satety

check code inserted therein in the computer module.

2. A method according to claim 1 wherein loading a com-
piled and assembled executed application program into the
computer module 1s preceded by:

writing and debugging source code for the application

program; and

compiling and assembling the source code for the applica-

tion program to provide the compiled and assembled
executable application program.

3. A method according to claim 2 wherein compiling and
assembling further comprises linking the source code to a
map of intrinsic functions of the computer module that are
available to the application program.

4. A method according to claim 3 wherein 1nserting safety
check executable code further comprises relinking the
executable application program with the safety check code
inserted therein.

5. A method according to claim 1 wherein the following 1s
performed after storing the executable application program
with the safety check executable code inserted therein:

executing the executable application program with the

safety check code inserted therein on the central pro-
cessing unit.
6. A method according to claim 1 wherein inserting satety
check executable code comprises inserting safety check
executable code 1nto the executable application program that
1s loaded 1nto the computer module to prevent the executable
application program from reading, writing and/or jumping
outside the designated memory area of the computer module.
7. A method according to claim 1 wherein 1nserting safety
check executable code comprises:
providing a machine code make-safe tool in the computer
module, the machine code make-safe tool being config-
ured to insert the safety check executable code into a
program that 1s loaded into the computer module; and

processing the executable application program that 1s
loaded nto the computer module using the machine
code make-safe tool to insert the safety check executable
code into the executable application program that 1s
loaded 1nto the computer module.

8. A method according to claim 1 wherein the computer
module includes volatile memory and nonvolatile memory
and wherein inserting safety check executable code com-
prises iserting safety check executable code 1nto the execut-
able application program that 1s loaded into the computer
module to control reading and/or writing outside a designated
memory area of the volatile memory and/or jumping outside
a designated memory area of the nonvolatile memory by the
executable application program.

9. A method according to claim 1 wherein the computer
module includes a radio frequency section that 1s controlled

10

15

20

25

30

35

40

45

50

55

60

65

12

by the central processing unit and wherein the executable
application program 1s configured to provide functionality for
the radio frequency section.

10. A computer-implemented method of executing a
machine code application program directly on a central pro-
cessing unit ol a computer module comprising:

read, write and/or jump checking the machine code appli-
cation program as it executes directly on the central
processing unit to control reading, writing and/or jump-
ing by the machine code application program outside a
designated memory area of the computer module,

wherein the computer module includes a radio frequency
section that 1s controlled by the central processing unit
and wherein the machine code program is configured to
provide functionality for the radio frequency section.

11. A method according to claim 10 wherein read, write
and/or jump checking 1s preceded by loading the machine
code application program on the computer module and
wherein read, write and/or jump checking comprises insert-
ing safety check executable code into the machine code appli-
cation program that i1s loaded 1nto the computer module to
control reading, writing and/or jumping by the machine code
application program outside a designated memory area of the
computer module.

12. A method according to claim 11 wherein inserting
safety check executable code further comprises relinking the
machine code application program with the safety check code
inserted therein.

13. A method according to claim 10 wherein the computer
module includes volatile memory and nonvolatile memory
and wherein read, write and/or jump checking comprises
read, write and/or jump checking the machine code applica-
tion program as 1t executes directly on the central processing,
unit to control reading and/or writing outside a designated
memory area of the volatile memory and/or jumping outside
a designated memory area of the nonvolatile memory by the
executable application program.

14. A computer module comprising:

a central processing unit;

a memory that 1s configured to store programs that execute

on the central processing unit;

a machine code application program in the memory that 1s
configured to execute directly on the central processing
unit;

a machine code make-safe tool 1n the memory that 1s con-
figured to execute directly on the central processing unit
and to control reading, writing and/or jumping outside a
designated area of the memory by the machine code
application program; and

a radio frequency section that 1s controlled by the central
processing unit and wherein the application program 1s
configured to provide functionality for the radio fre-
quency section.

15. A computer module according to claim 14 wherein the
memory includes volatile memory and nonvolatile memory
and wherein the machine code make-sate tool 1s configured to
insert satety check executable code 1nto the machine code
application program to control reading and/or writing outside
a designated memory area of the volatile memory and/or
jumping outside a designated memory area of the nonvolatile
memory by the executable application program.

16. A computer module comprising:

a central processing unit;

a memory that 1s configured to store programs that execute

on the central processing unit;

a machine code make-safe tool 1n the memory that 1s con-
figured to execute directly on the central processing unit

US 8,381,198 B2

13

and to msert safety check executable code mnto an appli-
cation program to control reading, writing and/or jump-
ing outside a designated memory area of the computer
module by the application program;

at least one application program in the memory that 1s
configured to execute directly on the central processing
unmit and that contains the safety check executable code
therein; and

a radio frequency section that 1s controlled by the central
processing unit and wherein the application program 1s
configured to provide functionality for the radio fre-
quency section.

10

14

17. A computer module according to claim 16 wherein the
memory includes volatile memory and nonvolatile memory
and wherein the machine code make-safe tool 1s configured to
insert safety check executable code into the application pro-
gram to control reading and/or writing outside a designated
memory area of the volatile memory and/or jumping outside
a designated memory area of the nonvolatile memory by the
executable application program.

	Front Page
	Drawings
	Specification
	Claims

