US008370567B1

12 United States Patent

Bonwick et al.

US 8,370,567 B1
Feb. 5, 2013

(10) Patent No.:
45) Date of Patent:

(54) STORAGE SYSTEM WITH SFELF 7,978,516 B2: 7;2011 Ollbrich etlal. 365/18/5.11
8,074,011 B2* 12/2011 Flynnetal. 711/103
DESCRIBING DATA 2007/0073989 Al* 3/2007 Sharmaetal. 711/165
_ 2007/0168633 Al* 7/2007 Englshetal. 711/165
(75) Inventors: Jeffrey S. Bonwick, Los Altos, CA 2009/0019245 Al* 1/2009 Bondurant et al. 711/161
(US); Michael W. Shapiro, San 2009/0198902 A1* 82009 Khmelnitsky et al. 711/135
Francisco. CA (US 2009/0198947 Al* /2009 Khmelnitsky et al. 711/202
’ (U) 2009/0198952 Al* 8/2009 Khmelnitsky et al. 711/206
: 2010/0030827 Al1* 2/2010 Sarakasc.coovvvinnnnn, 707/204
(73) Assignee: DSSD, Inc., Menlo Park, CA (US) 2010/0042790 Al1* 2/2010 Mondal etal. .oooovviviii. 711/161
2010/0070735 Al* 3/2010 Chenetal. 711/206
(*) Notice: Subject to any disclaimer, the term of this 2010/0106895 Al* 4/2010 Conditetal. 711/103
patent 1s extended or adjusted under 35 2010/0228800 Al1* 9/2010 AS’[C_!Q etal. ... 707/822
USC 154(h) by 0 davs. 2010/0281230 Al* 11/2010 Rabiietal. ...cccoooeeerurrr 711/165
(b) by O day 2011/0022780 ALl* 12011 Wakrat et al. .o..o........... 711/103
(21) Appl. No.: 13/428,771 2011/0238886 Al* 9/2011 Postetal.ccooeveenn. 711/103
. No.: .
OTHER PUBLICATIONS
(22) Filed: Mar. 23, 2012 Kazmi, A., “PCI Express™ Basics & Applications in Communica-
(51) Int.Cl tion Systems,” PCI-SIG Developers Conference, 2004 (50 pages).
GOoF 12/00 (2006.01) (Continued)
(52) US.CL ., 711/103; 711/E12.008 | |
(58) Field of Classification Search None 1 rimary Examiner — Edward Dudek, Jr.

See application file for complete search history.

Assistant Examiner — Christopher Birkhimer
(74) Attorney, Agent, or Firm — Osha Liang LLP

(56) References Cited
(37) ABSTRACT
U.S. PAIENT DOCUMENTS A method for storing data, including receiving a request to
6,850,969 B2* 2/2005 ILadan-Mozes et al. 709/213 write a first datum defined using a first object ID and a first
6,996,682 Bl * 2/2006 Milliganetal. 711/141 offset ID to persistent storage. The method further including
7,366,825 B2* 4/2008 Willlams etal. ... 7117103 determining a first physical address in the persistent storage,
;,g?g, igg g% . 18//3883 Emghtal alet al. 11103 where the first physical address comprises a first block ID and
P y CECLA e 10 first sub block ID. The method further includes writing the
7,634,627 B1* 12/2009 Ohretal. 711/162) :
7.650.458 B2* 1/2010 Rogers et al. 711/103 ﬁI;S’[datum to the ﬁrs_E physma! qddress,, generating a first table
7.685,126 B2* 3/2010 Pateletal.cocoovvernn., 707/770 of contents entry (TE) comprising the first O].‘;)J'BC’[ID, the first
7,694,091 B2* 4/2010 Andrewartha etal. 711/162 offset ID, and the first sub block ID, and writing the first TE
7,702,849 B2* 4/2010 Saarinenetal. ... 711/112 to a second physical address in the persistent storage, where
7,139,312 B2 : 6/2010 Gordon etal. 707/802 the second physical address comprises the first block 1D and
7,773,420 B2 /2010 Kim oo, 365/185.08 a second sub block ID corresponding to the second sub block
7,836,018 B2* 11/2010 Oliverraetal. 707/634 : i
N . - ID, and where the second sub block 1s located within a first
7,870,327 Bl 1/2011 Cornwell etal. 711/103 :
7.904,640 B2* 3/2011 Yano etal. wooovoviiii.. 711/103 block corresponding to the first block ID.
7,913,032 B1* 3/2011 Cornwelletal. 711/103
7.917,803 B2* 3/2011 Stefanusetal. ... 711/149 22 Claims, 21 Drawing Sheets
I — — |
| Client A Client M |
| 100A 6o 100M |
L
it e et
([Client A ClientM | |
| 100A iooM | |

Storage
Appliance A
104A

Storage
Appliance B
104B

Storage Appliance 102

Storage
Appliance C
104C

Storage
Appliance D
104D

US 8,370,567 B1
Page 2

OTHER PUBLICATIONS Huffman, A., NVM Express Revision 1.0b, Jul. 12, 2011 (126 pages).
Regula, J., Using Non-transparent Bridging in PCI Express Systems,
Jun. 1, 2004 (31 pages).
Percival, D., “Multicast Over PCI Express®,” PCI-SIG Developer’s
Conference Europe, 2009 (33 pages). * cited by examiner

U.S. Patent Feb. 5, 2013

Sheet 1 of 21

US 8,370,567 B1

FIG. 1A

L O
O O
S 3
>
@
@
@
O
O O
S 2
<

Storage
Appliance A
104A

Storage
Appliance C
104C

Storage Appliance Mesh 104

Storage
Appliance B
104B

Storage
Appliance D
104D

US 8,370,567 B1

Sheet 2 of 21

Feb. 5, 2013

dvOol
aouelddy
oberlo)1g

U.S. Patent

dl 9Ol

L L USID

L L UINIMS JUSID

il 41
AJows 1UBID 10SS820.4 1UsI[D)

Dl Dl

o0l dav0l
N 9oue||ddy g 2oue||ddy
obelo1g abelo)ls

INOO | VOO0l
AN JUSI[T) Vv U3l

V10l
Y 8ouelddy
abeloi1g

US 8,370,567 B1

Sheet 3 of 21

Feb. 5, 2013

U.S. Patent

(] @ouel|ddy
obe.01s

dav01
q aouelddy
obe.o)s

INOOL

AN JUSID

801
UIUMS
JUal|D

N aouel|ddy
obe.o1s

V10l
v 9oue||ddy
obe.o)s

A 010}

Vv U9l

US 8,370,567 B1

Sheet 4 of 21

Feb. 5, 2013

U.S. Patent

70 dnouo) sinpopy abrio1s

N S[NPOIA X X Vv 9INPOIA
abrli0)1S

oberli0)S

| |
| |
| N¥Ie vwic ||
| |
| |

|

1II|IIIIIII|IIII| A T TS T T T T T T T T

00¢ SINPOI |ou0D

_ "
|
| 0¢ 907 17 |
|| (WOI) 8INPOIy OLGB YOIMS VOd- |
| IndinO/anduy _
| |
| |
| |
| |
| 80¢ ol¢c |
| 10SS820.d AJOWBN _
| |
|

US 8,370,567 B1

Sheet 5 of 21

Feb. 5, 2013

U.S. Patent

NB8EC

N 9|NPOIA]
abelolg

g J0SS920.d

V8EC
Vv 9|INPOA
abelo)g

NOEC
N 2|NPOIA
abelolg

91 ¢ SINPON |0JUOYH

vE¢ oluqe

0¢¢ 9 (NOoI)
9|NPOIA]
1ndinO/induy

UIMS

CIAANe]),
S|NPOIA]
INdinO/induy

W/ JOSS920.d

A A1 977
Vv ©|NPON
abelo)g

US 8,370,567 B1

Sheet 6 of 21

Feb. 5, 2013

U.S. Patent

|

29¢ A |
dnoio ajnpo | |
|

|

|

obelo)s

7CZ g AJOW9N

0S¢

q J0SS920.d

Y¥e
q (NOI)

9INPO
JndinO/Andu

¢ Dl

09¢ O 8G¢ d
dnoJo) s|NPOIN dnolo) s|NPON

obelo)g obelo)s

¢ dUdged YOJIMG

Ot SINPO
0JJUOND

72C7 \/ AJOWN

8¥¢

Vv J0SS820.4d

v
v (INOI)

9|NPOIA
1ndinO/Anduy

9GC V
dnolo) s|NPON
obel01s

US 8,370,567 B1

Sheet 7 of 21

Feb. 5, 2013

U.S. Patent

dc¢ ©l4

20% a (o) 00€ D (o)

¢6¢

Y6 9|NPO
¥6¢ d VOd4 INPON 3 YO d]

1ndinoANduj

O|NPOW
Nnd1nO/indu|

8¢ d dlded UolIms

-
|
|
|

vZ¢ ¢l
(] 10SS320.4 N J0SS320.d

80€ 4
dnoic) s|NPOW
abel01g

0l€ d
dnoJo) anpo

abel01g

99¢

298¢ (] AJoWwBN g 9|NPOIN 08¢ O AOWBN
|0J]UOD)
IIIIIIIIIIIIIIIIIIII _
IIIIIIIIIIIIIIIIIIII |
QJz g AJowap Y S|NPON 0/2 ¥ Alowsp

10JJU0N

Y0E V
dnoJlo sINPOW 072 Q07 dnolio) S|INPOW
q J0SS920.d v/ JOSSa20.d obe.0IS

8¢ V JHUJE] YOlIMS

86¢ 4 (INOI) 96¢ V (INOI)
06¢ 9 VOd4 S|NPOIA] S|NPOIA] 282 V ¥odA
1NdinOAndul 1NdinO/andul
L o o o o o e o _

& Ol

7C 9|Npo\ abelolg

US 8,370,567 B1

-

= NOEE

m 9]e]S PI0S

m IIIIIIIIIIIIIII
s[puuBy")

‘ 443

M 97¢ 18]|0J1U0D

AIOWSN pPalNeA 9|npo|\ 8belo1g

U.S. Patent

US 8,370,567 B1

Sheet 9 of 21

2013

b/

Feb. S

00 a|NPO AJoWws|A

9]E1S PIOS

abed be.i4

U.S. Patent

U.S. Patent Feb. 5, 2013 Sheet 10 of 21 US 8.370.567 B1

< L]

N\
Q <|-| N
< < \
Y. O @,
O '®)) SR
O o LL
0 al

)

©

| -

LL

U.S. Patent Feb. 5, 2013 Sheet 11 of 21 US 8,370,567 B1

ﬁ_

00

. ;] : m

Q <t

¥ m' D — < L

3 < N 5 S .
L),

: : 0 g ¢ ™

O = = S %

O k= S, =1 K

O o S s

= n g

U.S. Patent Feb. 5, 2013 Sheet 12 of 21 US 8,370,567 B1

Hash <object ID,
offset |1D>

Physical Address
502

200

Block TOC Entry(ies)
204 — — — 2006

U.S. Patent

Step 000

Step 602

Step 604

Step 6006

Step 008

Step 610

Feb. 5, 2013

START

Client writes Write

Command to Submission

Queue (SQ)

Client writes new SQ
Tail to SQ Tail Doorbell

Register

Determine physical

Processor obtains Write
Command from SQ

address(es) at which to
write data

Processor programs
DMA engine

Copy of user data Is
written to each of (i)
memory in Control
Module, (i) vaulted

memory in first storage
module, and (i) vaulted
memory in second
storage module

FIG. 6A

Sheet 13 of 21

Generate TOC entry for
each copy of data in
vaulted memory

Store TOC entries in
corresponding vaulted
memory

Update in-memory data
structure in Control
Module

Processor writes SQ
ldentifier and Write
Command ldentifier to
Completion Queue (CQ)

Processor generates
iInterrupt

Client processes
completion of Write
Command

Client writes new CQ
Head to CQ Head
Doorbell

END

US 8,370,567 B1

Step 612

Step 614

Step 616

Step 618

Step 620

Step 622

Step 624

U.S. Patent Feb. 5, 2013 Sheet 14 of 21 US 8,370,567 B1

START

Processor initiates the
writing of data in vaulted
memory to Solid State
Memory Module

Step 626

Processor requests
Step 628 Storage Module to

remove copy(ies) of
data from vaulted
memaory

Step 630 Processor receives
confirmation of removal
from Storage Module

END

FIG. 6B

U.S. Patent Feb. 5, 2013 Sheet 15 of 21 US 8.370.567 B1

START

Empty pages Step 632
IN block > 17
YES
Step 034

Size of
TOC Entries for a
block = page
Size?

NO NO END

Step 646

Processor recelves

confirmation of removal
YES from Storage Module(s)

Step 6356 Step 644

Combine TOC entries to Processor requests
create a TOC page Storage Module(s) to

remove TOC entries
from vaulted memory

Step 642
Step 638 °P

Processor initiates
writing of TOC page In
NO memory of Control
Module to Solid State
Memory Module

More than one
TOC page in block?

YES Step 640

Link TOC page to prior
TOC page
) FIG. 6C

U.S. Patent Feb. 5, 2013 Sheet 16 of 21 US 8.370.567 B1

Client Memory ~liont

Processor
/10

|
Client Switch
102

Processor
/14

Switch
Fabric
/16

‘ Vaulted @ <« - vauiteo
Memory A 722 Memory B 724
Solid State Solid State

Memory Module A 726 Memory Module B 728

Storage Module A Storage Module B
718 120

Storage Module Group 706

FIG. 7A

U.S. Patent Feb. 5, 2013 Sheet 17 of 21 US 8.370.567 B1

Client 700

Client Memory _
m Client

Processor
710

Client Switch
102

Processor
714

Memory 712 | switch

| Fabric 716
Control Module 704

I
- ——— — —" Command(s)
!

| Vaulted
| Memory
B 724

Solid State Solid State
Memory Module A 726 Memory Module B 728

Storage Module A 718 Storage Module B 720

Storage Module Group 706

FIG. 7B

U.S. Patent Feb. 5, 2013 Sheet 18 of 21 US 8.370.567 B1

Client 700

Client Memor
708 Y Client

Processor
710

Client Switch
702

., L _ _ Processor

Memory 712 14

Control Module 704

. TE 2

Vaulted Vaulted
Memory A 722 Memory B 724

Solid State Solid State

Memory Memory
Module A Module B
726 128

Storage Module A 718 Storage Module B 720

Storage Module Group 706
FIG. 7C

U.S. Patent Feb. 5, 2013 Sheet 19 of 21 US 8.370.567 B1

Client 700

Client Memory _
@ Client

Processor
710

Client Switch
702

Processor
/14

Memory 712
Switch

Fabric
/16

Control Module 704

. TE 2

Vaulted Vaulted
Memory A 722 Memory A 724

Solid
State

Memory
Module A 726 Module B 728

Storage Module A 718 Storage Module B 720

Storage Module Group 706
FIG. 7D

U.S. Patent Feb. 5, 2013 Sheet 20 of 21 US 8.370.567 B1

Client 700

Client Memor
708 4 Client

Processor
710

Client Switch
702

. Processor

14

Memory 712

Control Module 704

Vaulted Vaulted
Memory A Memory B
22 124

Solid
10C State
Page Memory

Module A

o Memory Module B 728

Storage Module A 718 Storage Module B 720

Storage Module Group 706
FIG. 7E

8 DI

abed HO | wol
SolIJUd DO | 10BIX3

US 8,370,567 B1

218 dols
92UaJ8a. Buisn 320|0

v abed e

Y

~ S3A

>

=

7.

. NS ON ¢)201q ul 8bed D01
- 1011d O] 80uUs.I9]oYy
gl

Yol

.m 308 d91S

e
- obed DO] Ul saujus
m DO buisn sinpo
M (0JJUOD) Ul 8JNJONJIS BIRD
A AJOWBW-Ul 8]BIBUDL)
S“ 908 d81S
-

abed 1se| wol)

SalUs N | 108X

708 do1g

1I0[(

Ul 8bed ise| uielqo

208 d91S

190[(193198

008 d9)S

14dV1S

US 8,370,567 Bl

1

STORAGE SYSTEM WITH SELF
DESCRIBING DATA

BACKGROUND

The speed at which a system can write data to persistent
storage and read data from persistent storage 1s often a critical
factor 1n the overall performance of the system. The tradi-
tional approach to reading data from and writing data to
persistent storage requires processing by multiple layers in
the system kernel and by multiple entities 1n the hardware. As
a result, reading data from and writing data to persistent
storage 1ntroduces significant latency in the system and, con-
sequently, reduces the overall performance of the system.

SUMMARY

In general, in one aspect, a method for storing data. The
method including receiving a request to write a first datum to
persistent storage, wherein the first datum 1s defined using a
first logical address, determining a first physical address 1n
the persistent storage, wherein the first physical address com-
prises a first block 1D and first sub block ID, writing the first
datum to the first physical address, generating a first table of
contents entry (TE) comprising the first logical address, and
the first sub block ID, and writing the first TE to a second
physical address 1n the persistent storage, wherein the second
physical address comprises the first block ID and a second sub
block ID, wherein a second sub block corresponds to the
second sub block ID, and wherein the second sub block 1s
located within a first block corresponding to the first block ID.

In general, 1n one aspect, the invention relates to a method
for storing data, comprising receiving a request to write a first
datum to persistent storage, wherein the first datum 1s defined
using a first logical address, determining a first physical
address 1n persistent storage, wherein the first physical
address comprises a first block ID and a first page 1D, writing
a first frag comprising a copy of the first datum to the first
physical address, generating a first table of contents entry
(TE) comprising the first logical address, and the first page
ID, recetving a request to write a second datum to the persis-
tent storage, wherein the second datum 1s defined using a
second logical address, determining a second physical
address 1n the persistent storage, wherein the second physical
address comprises the first block ID and a second page 1D,
writing a second frag comprising a copy of the second datum
to the second physical address, generating a second TE com-
prising the first logical address, and the second page 1D,
generating a table of contents (TOC) page, wherein the TOC
page comprises the first TE and the second TE, and writing,
the TOC page to a third physical address in the persistent
storage, wherein the third physical address comprises the first
block ID and a third page ID.

In general, 1n one aspect, the invention relates to a method
for populating an in-memory datum structure. The method
includes (a) selecting a first block 1n a persistent storage, (b)
extracting a last page in the first block, wherein the first block
1s associated with a first block ID, (¢) extracting a first table of
contents entry (TE) from the last page in the first block,
wherein the first TE comprises a first logical address for a first
datum, and a first page 1D corresponding to a page in the first
block 1n which the first datum 1s located, (d) generating a first
physical address for the first datum using the first block 1D,
and the first page 1D, (e) hashing the first logical address to
obtain a first hash value, and (1) populating the imn-memory
data structure with a first mapping between the first hash
value and the first physical address.

10

15

20

25

30

35

40

45

50

55

60

65

2

Other aspects of the invention will be apparent from the
tollowing description and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

FIGS. 1A-1E show systems in accordance with one or
more embodiments of the invention.

FIGS. 2A-2D show storage appliances in accordance with
one or more embodiments of the invention.

FIG. 3 shows a storage module 1n accordance with one or
more embodiments of the invention.

FIG. 4A shows a storage module 1n accordance with one or
more embodiments of the invention.

FIG. 4B shows a block in accordance with one or more
embodiments of the invention.

FIG. 4C shows a frag page 1n accordance with one or more
embodiments of the invention.

FIG. 4D shows a TOC page in accordance with one or more
embodiments of the invention.

FIG. 4E shows a block 1n accordance with one or more
embodiments of the invention.

FIG. 4F shows a table of contents (TOC) entry 1n accor-
dance with one or more embodiments of the invention.

FIG. 5 shows data structures 1n accordance with one or
more embodiments of the invention.

FIGS. 6 A-6C show flowcharts in accordance with one or
more embodiments of the invention.

FIGS. 7TA-7E show examples 1n accordance with one or
more embodiments of the invention.

FIG. 8 shows a flowchart 1n accordance with one or more
embodiments of the invention.

DETAILED DESCRIPTION

Specific embodiments of the invention will now be
described 1n detail with reference to the accompanying fig-
ures. In the following detailed description of embodiments of
the 1nvention, numerous specific details are set forth in order
to provide a more thorough understanding of the invention.
However, 1t will be apparent to one of ordinary skill 1n the art
that the invention may be practiced without these specific
details. In other instances, well-known features have not been
described 1n detail to avoid unnecessarily complicating the
description.

In the following description of FIGS. 1A-8, any component
described with regard to a figure, 1n various embodiments of
the invention, may be equivalent to one or more like-named
components described with regard to any other figure. For
brevity, descriptions of these components will not be repeated
with regard to each figure. Thus, each and every embodiment
of the components of each figure 1s incorporated by reference
and assumed to be optionally present within every other fig-
ure having one or more like-named components. Addition-
ally, 1n accordance with various embodiments of the mven-
tion, any description of the components of a figure 1s to be
interpreted as an optional embodiment which may be imple-
mented 1n addition to, 1n conjunction with, or 1n place of the
embodiments described with regard to a corresponding like-
named component 1n any other figure.

In general, embodiments of the invention relate to a storage
system. More specifically, embodiments of the mmvention
relate to a storage system that includes self describing data.
Further, embodiments of the invention relate to a storage
system 1n which all metadata required to access the user data
stored 1n the storage system 1s located with the user data it 1s
describing. Additionally, the metadata 1s used to populate an

US 8,370,567 Bl

3

in-memory data structure that allows the storage system to
directly access the user data using only the in-memory data
structure.

FIGS. 1A-1E show systems 1n accordance with one or
more embodiments of the invention. Referring to FIG. 1A, the
system 1ncludes one or more clients (client A (100A), client
M (100M)) operatively connected to a storage appliance
(102).

In one embodiment of the invention, clients (100A, 100M)
correspond to any system that includes functionality to 1ssue
a read request to the storage appliance (102) and/or 1ssue a
write request to the storage appliance (102). Though not
shown 1n FIG. 1A, each of the clients (100A, 100M) may
include a client processor and client memory. Additional
details about components 1n a client are described 1 FIG. 1D
below. In one embodiment of the invention, the clients (100A,
100M) are configured to communicate with the storage appli-
ance (102) using one or more of the following protocols:
Peripheral Component Interconnect (PCI), PCI-Express
(PCle), PCl-eXtended (PCI-X), Non-Volatile Memory
Express (NVMe), Non-Volatile Memory Express (NVMe)
over a PCI-Express fabric, Non-Volatile Memory Express
(NVMe) over an Ethernet fabric, and Non-Volatile Memory
Express (NVMe) over an Infiniband fabric. Those skilled 1n
the art will appreciate that the invention 1s not limited to the
alforementioned protocols.

In one or more embodiments of the invention, it the client
implements PCI, PCl-express, or NVMe, then the client
includes a root complex (not shown). In one embodiment of
the invention, the root complex 1s a device that connects the
client processor and client memory to the PCle Fabric. In one
embodiment of the invention, the root complex 1s integrated
into the client processor.

In one embodiment of the invention, the PCle Fabric
includes root complexes and endpoints which are connected
via switches (e.g., client switch (116) in FIG. 1D and switches
within the switch fabric, e.g., switch fabric (206) in F1G. 2A).
In one embodiment of the invention, an endpoint i1s a device
other than a root complex or a switch that can originate PCI
transactions (e.g., read request, write request) or that 1s a
target of PCI transactions.

In one embodiment of the invention, a single client and a
single storage appliance may be considered part of a single
PCle Fabric. In another embodiment of the invention, any
combination of one or more clients and one or more storage
appliances may be considered part of a single PCle Fabric.
Further, 1f the individual components within the storage
appliance communicate using PCle, and individual compo-
nents 1n the client (see FIG. 1D) communicate using PCle,
then all the components in the storage appliance and the client
may be considered part of a single PCle Fabric. Those skilled
in the art will appreciate that various embodiments of the
invention may be implemented using another type of fabric
without departing from the invention.

Continuing with FIG. 1A, 1n one embodiment of the inven-
tion, the storage appliance (102) 1s a system that icludes
volatile and persistent storage and 1s configured to service
read requests and/or write requests from one or more clients
(100A,100M). Various embodiments of the storage appliance
(102) are described below 1n FIGS. 2A-2D.

Referring to FIG. 1B, FIG. 1B shows a system 1n which

clients (100A, 100M) are connected to multiple storage appli-
ances (104A, 104B, 104C, 104D) arranged 1n a mesh con-

figuration (denoted as storage appliance mesh (104) 1n FIG.
1B). As shown 1n FIG. 1B, the storage appliance mesh (104)
1s shown 1n a fully-connected mesh configuration—that 1is,

every storage appliance (104A, 1048, 104C, 104D) 1n the

10

15

20

25

30

35

40

45

50

55

60

65

4

storage appliance mesh (104) 1s directly connected to every
other storage appliance (104A, 1048, 104C, 104D) 1n the
storage appliance mesh (104). In one embodiment of the
invention, each of the clients (100A, 100M) may be directly
connected to one or more storage appliances (104A, 1048,
104C, 104D) in the storage appliance mesh (104). Those
skilled 1n the art will appreciate that the storage appliance
mesh may be implemented using other mesh configurations
(e.g., partially connected mesh) without departing from the
invention.

Referring to FIG. 1C, FIG. 1C shows a system in which
clients (100A, 100M) are connected to multiple storage appli-
ances (104A, 104B, 104C, 104D) arranged 1n a fan-out con-
figuration. In this configuration, each client (100A, 100M) 1s
connected to one or more of the storage appliances (104 A,
1048, 104C, 104D); however, there 1s no communication
between the individual storage appliances (104A, 104B,
104C, 104D).

Referring to FIG. 1D, FIG. 1D shows a client in accordance
with one or more embodiments of the invention. As shown in
FIG. 1D, the client (110) includes a client processor (112),
client memory (114), and a client switch (116). Each of these
components 1s described below.

In one embodiment of the invention, the client processor
(112) 1s a group of electronic circuits with a single core or
multiple cores that are configured to execute instructions. In
one embodiment of the invention, the client processor (112)
may be implemented using a Complex Instruction Set (CISC)
Architecture or a Reduced Instruction Set (RISC) Architec-
ture. In one or more embodiments of the invention, the client
processor (112) includes a root complex (as defined by the
PCle protocol) (not shown). In one embodiment of the inven-
tion, 11 the client (110) includes a root complex (which may be
integrated into the client processor (112)) then the client
memory (114) 1s connected to the client processor (112) via
the root complex. Alternatively, the client memory (114) 1s
directly connected to the client processor (112) using another
point-to-point connection mechanism. In one embodiment of
the mvention, the client memory (114) corresponds to any
volatile memory including, but not limited to, Dynamic Ran-
dom-Access Memory (DRAM), Synchronous DRAM, SDR
SDRAM, and DDR SDRAM.

In one embodiment of the mvention, the client memory
(114) includes one or more of the following: a submission
queue for the client processor and a completion queue for the
client processor. In one embodiment of the ivention, the
storage appliance memory includes one or more submission
queues for client processors visible to a client through the
tabric, and the client memory includes one or more comple-
tion queues for the client processor visible to the storage
appliance through the fabric. In one embodiment of the inven-
tion, the submission queue for the client processor 1s used to
send commands (e.g., read request, write request) to the client
processor. In one embodiment of the invention, the comple-
tion queue for the client processor 1s used to signal the client
processor that a command 1t 1ssued to another entity has been
completed. Embodiments of the invention may be imple-
mented using other notification mechanisms without depart-
ing from the mvention.

In one embodiment of the invention, the client switch (116)
includes only a single switch. In another embodiment of the
invention, the client switch (116) includes multiple intercon-
nected switches. I the client switch (116) includes multiple
switches, each switch may be connected to every other
switch, may be connected to a subset of the switches 1n the
switch fabric, or may only be connected to one other switch.
In one embodiment of the invention, each of the switches 1n

US 8,370,567 Bl

S

the client switch (116) 1s a combination of hardware and logic
(implemented, for example, using integrated circuits) (as
defined by the protocol(s) the switch fabric implements) that
1s configured to permit data and messages to be transferred
between the client (110) and the storage appliances (not
shown).

In one embodiment of the invention, when the clients
(100A, 100M) implement one or more of the following pro-
tocols PCI, PCle, or PCI-X, the client switch (116) 1s a PCI
switch.

In such embodiments, the client switch (116) includes a
number of ports, where each port may be configured as a
transparent bridge or a non-transparent bridge. Ports imple-
mented as transparent bridges allow the root complex to con-
tinue discovery of devices (which may be other root com-
plexes, switches, PCI bridges, or endpoints) connected
(directly or indirectly) to the port. In contrast, when a root
complex encounters a port implemented as a non-transparent
bridge, the root complex 1s not able to continue discovery of
devices connected to the port—rather, the root complex treats
such a port as an endpoint.

When a port 1s implemented as a non-transparent bridge,
devices on either side of the non-transparent bridge may only
communicate using a mailbox system and doorbell interrupts
(implemented by the client switch). The doorbell interrupts
allow a processor on one side of the non-transparent bridge to
1ssue an interrupt to a processor on the other side of the
non-transparent bridge. Further, the mailbox system includes
one or more registers that are readable and writeable by
processors on either side of the switch fabric. The aforemen-
tioned registers enable processors on either side of the client
switch to pass control and status information across the non-
transparent bridge.

In one embodiment of the invention, 1n order to send a PCI
transaction from a device on one side of the non-transparent
bridge to a device on the other side of the non-transparent
bridge, the PCI transaction must be addressed to the port
implementing the non-transparent bridge. Upon receipt of the
PCI transaction, the client switch performs an address trans-
lation (either using a direct address translation mechanism or
a look-up table based translation mechanism). The resulting
address 1s then used to route the packet towards the appropri-
ate device on the other side of the non-transparent bridge.

In one embodiment of the invention, the client switch (116)
1s configured such that at least a portion of the client memory
(114) 1s directly accessible to the storage appliance. Said
another way, a storage appliance on one side of the client
switch may directly access, via the client switch, client
memory on the other side of the client switch.

In one embodiment of the invention, the client switch (116)
includes a DMA engine (118). In one embodiment of the
invention, the DMA engine (118) may be programmed by
either the client processor or a storage appliance connected to
the client switch. As discussed above, the client switch (116)
1s configured such that at least a portion of the client memory
(114) 1s accessible to the storage appliance or storage mod-
ules. Accordingly, the DMA engine (118) may be pro-
grammed to read data from an address 1n the portion of the
client memory that 1s accessible to the storage appliance and
directly write a copy of such data to memory in the storage
appliance or storage modules. Further, the DMA engine (118)
may be programmed to read data from the storage appliance
and directly write a copy of such data to an address 1n the
portion of the client memory that is accessible to the storage
appliance.

In one embodiment of the mvention, the DMA engine
(118) supports multicasting. In such embodiments, a proces-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

sor 1n the storage appliance (see FIG. 2A) may create a
multicast group, where each member of the multicast group
corresponds to a unique destination address in memory on the
storage appliance. Each member of the multicast group 1s
associated with a descriptor that specifies: (1) the destination
address; (11) the source address; (111) the transfer size field; and
(1v) a control field. The source address for each of the descrip-
tors remains constant while the destination address changes
for each descriptor. Once the multicast group is created, any
data transfer through the switch targeting the multicast group
address, mcluding a transfer initiated by a DMA engine,
places an 1dentical copy of the data 1n all of the destination
ports associated with the multicast group. In one embodiment
of the mvention, the switch processes all of the multicast
group descriptors 1n parallel.

Continuing with the discussion of FIG. 1D, those skilled in
the art will appreciate that while FIG. 1D shows a client
switch (116) located in the client (110), the client switch
(116) may be located external to the client without departing
from the invention. Further, those skilled 1n the art will appre-
ciate that the DMA engine (118) may be located external to
the client switch (116) without departing from the mvention.

Referring FIG. 1E, FIG. 1E shows a system 1n which cli-
ents (100A, 100M) are connected, via a client switch (108), to
multiple storage appliances (104A, 1048, 104C, 104D)
arranged 1n a mesh configuration (denoted as storage appli-
ance mesh (104) 1in FIG. 1E). In the embodiment shown 1n
FIG. 1E, each client (100A, 100M) does not include its own
client switch—rather, all of the clients share a client switch
(108). As shown 1n FIG. 1E, the storage appliance mesh (104)
1s shown 1n a fully-connected mesh configuration—that 1is,
every storage appliance (104A, 1048, 104C, 104D) in the
storage appliance mesh (104) 1s directly connected to every
other storage appliance (104A, 1048, 104C, 104D) 1n the
storage appliance mesh (104). In one embodiment of the
invention, the client switch (108) may be directly connected
to one or more storage appliances (104A,104B,104C, 104D)
in the storage appliance mesh (104). Those skilled 1n the art
will appreciate that storage appliance mesh may be 1imple-
mented using other mesh configurations (e.g., partially con-
nected mesh) without departing from the invention.

Though not shown 1n FIG. 1E, each client may include 1ts
own client switch (as shown in FIG. 1D) but may be con-
nected to the storage appliance mesh (104) using a switch
fabric (defined below).

Those skilled 1n the art will appreciate that while FIGS.
1A-1E show storage appliances connected to a limited num-
ber of clients, the storage appliances may be connected to any
number of clients without departing from the invention.
Those skilled in the art will appreciate that while FIGS.
1A-1E show various system configurations, the invention 1s
not limited to the aforementioned system configurations. Fur-
ther, those skilled 1n the art will appreciate that the clients
(regardless of the configuration of the system) may be con-
nected to the storage appliance(s) using a switch fabric (not
shown) (described below) without departing from the inven-
tion.

FIGS. 2A-2D show embodiments of storage appliances 1n
accordance with one or more embodiments of the invention.
Referring to FI1G. 2 A, the storage appliance includes a control
module (200) and a storage module group (202). Each of
these components 1s described below. In general, the control
module (200) 1s configured to manage the servicing of read
and write requests from one or more clients. In particular, the
control module 1s configured to recerve requests from one or
more clients via the IOM (discussed below), to process the
request (which may include sending the request to the storage

US 8,370,567 Bl

7

module), and to provide a response to the client after the
request has been serviced. Additional details about the com-
ponents in the control module are included below. Further, the
operation of the control module with respect to servicing read
and write requests 1s described below with reference to FIGS.
4A-7C.

Continuing with the discussion of FIG. 2A, in one embodi-
ment of the mvention, the control module (200) includes an
Input/Output Module (I0OM) (204), a switch fabric (206), a
processor (208), a memory (210), and, optionally, a Field
Programmable Gate Array (FPGA) (212). In one embodi-
ment of the mvention, the IOM (204) 1s the physical interface
between the clients (100A, 100M 1n FIGS. 1A-1E) and the
other components in the storage appliance. The IOM supports
one or more of the following protocols: PCI, PCle, PCI-X,
Ethernet (1including, but not limited to, the various standards
defined under the IEEE 802.3a-802.3bj), Infimband, and
Remote Direct Memory Access (RDMA) over Converged
Ethernet (RoCE). Those skilled 1n the art will appreciate that
the IOM may be implemented using protocols other than
those listed above without departing from the invention.

Continuing with the discussion of FIG. 2A, the switch
tabric (206) includes only a single switch. In another embodi-
ment of the invention, the switch fabric (206) includes mul-
tiple interconnected switches. If the switch fabric (206)
includes multiple switches, each switch may be connected to
every other switch, may be connected to a subset of switches
in the switch fabric, or may only be connected to one other
switch 1n the switch fabric. In one embodiment of the inven-
tion, each of the switches 1n the switch fabric (206) 1s a
combination of hardware and logic (1mplemented, for
example, using integrated circuits) (as defined by the
protocol(s) the switch fabric implements) that 1s configured to
connect various components together 1n the storage appliance
and to route packets (using the logic) between the various
connected components. In one embodiment of the invention,
the switch fabric (206) 1s physically connected to the IOM
(204), processor (208), storage module group (202), and, 11
present, the FPGA (212). In one embodiment of the invention,
all 1inter-component communication in the control module
(200) (except between the processor (208) and memory
(210)) passes through the switch fabric (206). Further, all
communication between the control module (200) and the
storage module group (202) passes through the switch fabric
(206). In one embodiment of the imnvention, the switch fabric
(206) 1s implemented using a PCI protocol (e.g., PCI, PCle,
PCI-X, or another PCI protocol). In such embodiments, all
communication that passes through the switch fabric (206)
uses the corresponding PCI protocol.

In one embodiment of the invention, 1f the switch fabric
implements a PCI protocol, the switch fabric (206) includes a
port for the processor (or, more specifically, a port for the root
complex integrated in the processor (208) or for the root
complex connected to the processor), one or more ports for
storage modules (214A, 214N) (see FIG. 3) 1n the storage
module group (202), a port for the FPGA (212) (1 present),
and a port for the IOM (204). In one or more embodiments of
the invention, each of the aforementioned ports may be con-
figured as a transparent bridge or a non-transparent bridge (as
discussed above). Those skilled 1n the art will appreciate that
while the switch fabric (206) has been described with respect
to a PCI implementation, the switch fabric (206) may be
implemented using other protocols without departing from
the invention.

In one embodiment of the invention, at least one switch 1n
the switch fabric (206) 1s configured to implement multicast-
ing. More specifically, in one embodiment of the ivention,

10

15

20

25

30

35

40

45

50

55

60

65

8

the processor (208) 1s configured to generate a multicast
group where the multicast group includes two or more mem-
ber with each member specitying an address 1n the memory
(210) and/or 1n the storage modules (214A, 214N). When the
multicast group 1s created, the multicast group 1s associated
with a multicast address. In order to implement the multicast-
ing, at least one switch 1n the switch fabric 1s configured that
when a write specifying the multicast address as the destina-
tion address 1s recerved, the switch 1s configured to generate
a new write for each member 1n the multicast group and 1ssue
the writes to the appropriate address 1n the storage appliance.
In one embodiment of the invention, the address for each
write generated by the switch 1s determined by adding a
particular offset to the multicast address.

Continuing with FIG. 2A, the processor (208) 1s a group of
clectronic circuits with a single core or multi-cores that are
configured to execute nstructions. In one embodiment of the
invention, the processor (208) may be implemented using a
Complex Instruction Set (CISC) Architecture or a Reduced
Instruction Set (RISC) Architecture. In one or more embodi-
ments of the invention, the processor (208) includes a root
complex (as defined by the PCle protocol). In one embodi-
ment of the invention, 1 the control module (200) includes a
root complex (which may be integrated into the processor
(208)) then the memory (210) 1s connected to the processor
(208) via the root complex. Alternatively, the memory (210)1s
directly connected to the processor (208) using another point-
to-point connection mechanism. In one embodiment of the
invention, the memory (210) corresponds to any volatile
memory including, but not limited to, Dynamic Random-
Access Memory (DRAM), Synchronous DRAM, SDR
SDRAM, and DDR SDRAM.

In one embodiment of the invention, the processor (208) 1s
configured to create and update an in-memory data structure
(not shown), where the in-memory data structure is stored 1n
the memory (210). In one embodiment of the invention, the
in-memory data structure includes mappings (direct or 1ndi-
rect) between logical addresses and physical storage
addresses 1n the set of storage modules. In one embodiment of
the invention, the logical address 1s an address at which the
data appears to reside from the perspective of the client. In
one embodiment of the imnvention, the logical address 1s (or
includes) a hash value generated by applying a hash function
(e.g. SHA-1, MD-53, etc.) to an n-tuple. In one embodiment of
the imvention, the n-tuple 1s <object ID, offset ID>, where the
object ID defines a file and the offset ID defines a location
relative to the starting address of the file. In another embodi-
ment of the invention, the n-tuple 1s <object 1D, offset 1D,
birth time>, where the birth time corresponds to the time
when the file (1dentified using the object 1D) was created.
Alternatively, the logical address may include a logical object
ID and a logical byte address, or a logical object ID and a
logical address offset. In another embodiment of the mven-
tion, the logical address includes an object ID and an offset
ID. Those skilled 1n the art will appreciate that multiple logi-
cal addresses may be mapped to a single physical address and
that the logical address 1s not limited to the above embodi-
ments.

In one embodiment of the mvention, the physical address
may correspond to (1) a location in the memory (210), (11) a
location 1n the vaulted memory (e.g., 324 1n FI1G. 3), or (111) a
location 1n a solid state memory module (e.g., 330A 1n FIG.
3). In one embodiment of the invention, the in-memory data
structure may map a single hash value to multiple physical
addresses 1f there are multiple copies of the data 1n the storage
appliance.

US 8,370,567 Bl

9

In one embodiment of the invention, the memory (210)
includes one or more of the following: a submission queue for
the processor, a completion queue for the processor, a sub-
mission queue for each of the storage modules 1n the storage
appliance and a completion queue for each of the storage
modules 1n the storage appliance. In one embodiment of the
invention, the submission queue for the processor 1s used to
send commands (e.g., read request, write request) to the pro-
cessor. In one embodiment of the invention, the completion
queue for the processor 1s used to signal the processor that a
command 1t 1ssued to another entity has been completed. The
submission and completion queues for the storage modules
function 1n a similar manner.

In one embodiment of the mvention, the processor (via the
switch fabric) 1s configured to offload various types of pro-
cessing to the FPGA (212). In one embodiment of the imnven-
tion, the FPGA (212) includes functionality to calculate
checksums for data that 1s being written to the storage
module(s) and/or data that 1s being read from the storage
module(s). Further, the FPGA (212) may include functional-
ity to calculate P and/or QQ parity information for purposes of
storing data in the storage module(s) using a RAID scheme
(e.g., RAID 2-RAID 6) and/or functionality to perform vari-
ous calculations necessary to recover corrupted data stored
using a RAID scheme (e.g., RAID 2-RAID 6). In one embodi-
ment of the invention, the storage module group (202)
includes one or more storage modules (214A, 214N) each
configured to store data. Storage modules are described
below 1n FIG. 3.

In one embodiment of the invention, the processor (208) 1s
configured to program one or more DMA engines in the
system. For example, the processor (208) 1s configured to
program the DMA engine 1n the client switch (see FIG. 1D).
The processor (208) may also be configured to program the
DMA engine in the storage module (see FIG. 3). In one
embodiment of the invention, programming the DMA engine
in the client switch may include creating a multicast group
and generating descriptors for each of the members in the
multicast group.

Turning to FIG. 2B, FIG. 2B shows a storage appliance in
accordance with one or more embodiments of the invention.
The storage appliance includes a control module (216) and at
least two storage module groups (236, 238). The control
module (216) includes a switch fabric (234), which 1s directly
connected to IOM A (218), IOM B (220), processor A (222),
processor B (224), (if present) FPGA A (230), (if present)
FPGA B (232), storage modules (236A, 236N) in storage
module group A (236) and storage modules (238A, 238N) in
storage module group B (238). All communication between
the atorementioned components (except between processor A
(222) and processor B (224)) passes through the switch fabric
(234). In one embodiment of the invention, processors (222,
224) within the control module (216) are able to directly
communicate using, for example, point-to-point interconnect
such as Intel® QuickPath Interconnect. Those skilled 1n the
art will appreciate that other point-to-point communication
mechanisms may be used to permit direct communication
between the processor (222, 224) without departing from the
invention.

Continuing with FIG. 2B, 1n one embodiment of the mnven-
tion, the control module (216) 1s substantially similar to the
control module (200) 1n FIG. 2A. In one embodiment of the
invention, the switch fabric (234) 1s substantially similar to
the switch fabric (206) in FIG. 2A. In one embodiment of the
invention, each processor (222, 224) 1s substantially similar
to the processor (208) 1n FIG. 2A. In one embodiment of the
invention, the memory (226, 228) 1s substantially similar to

10

15

20

25

30

35

40

45

50

55

60

65

10

the memory (210) in FIG. 2A. In one embodiment of the
invention, the IOMs (218, 220) are substantially similar to the
IOM (204) 1n FIG. 2A. In one embodiment of the invention,
the FPGAs (230, 232) are substantially similar to the FPGA
(212) 1n FIG. 2A. Finally, the storage module groups (236,
238) are substantially similar to the storage module group
(202) 1n FIG. 2A.

In one embodiment of the mnvention, the two I0Ms (218,
220)1n the control module (216) double the I/O bandwidth for
the control module (216) (over the I/O bandwidth of a control
module with a single IOM). Moreover, the addition of a
second IOM (or additional IOMs) increases the number of
clients that may be connected to a given control module and,
by extension, the number of clients that can be connected to a
storage appliance. In one embodiment of the invention, the
use of the switch fabric (234) to handle communication
between the wvarious connected components (described

above) allows each of the processors (222, 224) to directly
access (via the switch fabric (234)) all FPGAs (230, 232) and

all storage modules (236A, 236N, 238A, 238N) connected to
the switch fabric (234).

Referring to FIG. 2C, FIG. 2C shows a storage appliance
that includes a control module (240) connected (via a switch
tabric (246)) to multiple storage modules (not shown) 1n the
storage module groups (256, 258, 260, 262). As shown 1n
FIG. 2C, the control module (240) includes two 10Ms (242,
244), two processors (248, 250), and memory (252, 254). In
one embodiment of the invention, all components 1n the con-
trol module (240) communicate via the switch fabric (246). In
addition, the processors (248, 250) may communicate with
cach other using the switch fabric (246) or a direct connection
(as shown 1n FIG. 2C). In one embodiment of the invention,
the processors (248, 250) within the control module (240) are
able to directly communicate using, for example, a point-to-
point 1nterconnect such as Intel® QuickPath Interconnect.
Those skilled 1n the art will appreciate that other point-to-
point communication mechanisms may be used to permit
direct communication between the processors (248, 250)
without departing from the invention.

In one embodiment of the ivention, processor A (248) 1s
configured to primarily handle requests related to the storage
and retrieval of data from storage module groups A and B
(256, 258) while processor B (250) 1s configured to primarily
handle requests related to the storage and retrieval of data
from storage module groups C and D (260, 262). However,
the processors (248, 250) are configured to communicate (via
the switch fabric (246)) with all of the storage module groups
(256, 258, 260, 262). This conﬁguratlon enables the control
module (240) to spread the processing ol I/O requests
between the processors and/or provides built-in redundancy
to handle the scenario 1n which one of the processors fails.

Continuing with FIG. 2C, 1n one embodiment of the inven-
tion, the control module (240) 1s substantially similar to the
control module (200) in FIG. 2A. In one embodiment of the
invention, the switch fabric (246) 1s substantially similar to
the switch fabric (206) in FIG. 2A. In one embodiment of the
invention, each processor (248, 250) 1s substantially similar
to the processor (208) 1n FIG. 2A. In one embodiment of the
invention, the memory (252, 254) 1s substantially similar to
the memory (210) 1n FIG. 2A. In one embodiment of the
invention, the IOMs (242, 244) are substantially similar to the
IOM (204) 1n FIG. 2A. Finally, the storage module groups
(256, 258, 260, 262) are substantially similar to the storage
module group (202) 1n FIG. 2A.

Referring to FIG. 2D, FIG. 2D shows a storage appliance
that includes two control modules (264, 266). Each control
module includes IOMs (296, 298, 300, 302), processors (268,

US 8,370,567 Bl

11

270,272,274), memory (276, 278, 280, 282), and FPGAs (1f
present) (288, 290, 292, 294). Each of the control modules
(264, 266) includes a switch fabric (284, 286) through which
components within the control modules communicate.

In one embodiment of the invention, processors (268, 270,
2772, 274) within a control module may directly communicate
with each other using, for example, a point-to-point intercon-
nect such as Intel® QuickPath Interconnect. Those skilled in
the art will appreciate that other point-to-point communica-
tion mechanisms may be used to permit direct communica-
tion between the processors (268, 270, 272, 274) without
departing from the invention. In addition, processors (268,
270) 1n control module A may communicate with compo-
nents 1n control module B via a direct connection to the switch
tabric (286) in control module B. Similarly, processors (272,
274) 1n control module B may communicate with compo-
nents in control module A via a direct connection to the switch
fabric (284) 1n control module A.

In one embodiment of the invention, each of the control
modules 1s connected to various storage modules (denoted by
storage module groups (304, 306, 308, 310)). As shown 1n
FIG. 2D, each control module may communicate with storage
modules connected to the switch fabric 1n the control module.
Further, processors 1n control module A (264) may commu-
nicate with storage modules connected to control module B
(266) using switch fabric B (286). Similarly, processors 1n
control module B (266) may communicate with storage mod-
ules connected to control module A (264) using switch fabric
A (284).

The interconnection between the control modules allows
the storage control to distribute 1/0 load across the storage
appliance regardless of which control module receives the I/O
request. Further, the interconnection of control modules
enables the storage appliance to process a larger number of
I/0 requests. Moreover, the imterconnection of control mod-
ules provides built-in redundancy 1n the event that a control
module (or one or more components therein) fails.

With respect to FIGS. 2B-2D, 1n one or more embodiments
of the invention, the in-memory data structure 1s mirrored
across the memories in the control modules. In such cases, the
processors 1n the control modules 1ssue the necessary com-
mands to update all memornies within the storage appliance
such that the mm-memory data structure 1s mirrored across all
the memories. In this manner, any processor may use 1ts own
memory to determine the location of a data (as defined by an
n-tuple, discussed above) 1n the storage appliance. This func-
tionality allows any processor to service any I/O request in
regards to the location of the data within the storage module.
Further, by mirroring the in-memory data structures, the stor-
age appliance may continue to operate when one of the
memories fails.

Those skilled 1n the art will appreciate that while FIGS.
2A-2D show control modules connected to a limited number
of storage modules, the control module may be connected to
any number of storage modules without departing from the
invention. Those skilled in the art will appreciate that while
FIGS. 2A-2D show various configurations of the storage
appliance, the storage appliance may be implemented using
other configurations without departing from the 1nvention.

FIG. 3 shows a storage module in accordance with one or
more embodiments of the ivention. The storage module
(320) includes a storage module controller (322), memory
(324), and one or more solid state memory modules (330A,
330N). Each of these components 1s described below.

In one embodiment of the invention, the storage module
controller (322) 1s configured to receive requests to read from
and/or write data to one or more control modules. Further, the

10

15

20

25

30

35

40

45

50

55

60

65

12

storage module controller (322) 1s configured to service the
read and write requests using the memory (324) and/or the
solid state memory modules (330A, 330N). Though not
shown 1n FIG. 3, the storage module controller (322) may
include a DMA engine, where the DMA engine 1s configured
to read data from the memory (324) or from one of the solid
state memory modules (330A, 330N) and write a copy of the
data to a physical address 1n client memory (114 in FIG. 1D).
Further, the DMA engine may be configured to write data
from the memory (324) to one or more of the solid state
memory modules. In one embodiment of the invention, the
DMA engine 1s configured to be programmed by the proces-
sor (e.g., 208 1n FIG. 2A). Those skilled 1n the art will appre-
ciate that the storage module may include a DMA engine that
1s external to the storage module controller without departing
from the 1vention.

In one embodiment of the mvention, the memory (324)
corresponds to any volatile memory including, but not limited
to, Dynamic Random-Access Memory (DRAM), Synchro-
nous DRAM, SDR SDRAM, and DDR SDRAM.

In one embodiment of the mvention, the memory (324)
may be logically or physically partitioned into vaulted
memory (326) and cache (328). In one embodiment of the
invention, the storage module controller (322) 1s configured
to write out the entire contents of the vaulted memory (326) to
one or more of the solid state memory modules (330A, 330N)
in the event of notification of a power failure (or another event
in which the storage module may lose power) 1in the storage
module. In one embodiment of the invention, the storage
module controller (322) 1s configured to write the entire con-
tents of the vaulted memory (326) to one or more of the solid
state memory modules (330A, 330N) between the time of the
notification of the power failure and the actual loss of power
to the storage module. In contrast, the content of the cache
(328) 1s lost 1n the event of a power failure (or another event
in which the storage module may lose power).

In one embodiment of the invention, the solid state memory
modules correspond to any data storage device that uses
solid-state memory to store persistent data. In one embodi-
ment of the mnvention, solid-state memory may include, but 1s
not limited to, NAND Flash memory, NOR Flash memory,
Magnetic RAM Memory (M-RAM), Spin Torque Magnetic
RAM Memory (ST-MRAM), Phase Change Memory (PCM),
or any other memory defined as a non-volatile Storage Class
Memory (SCM).

In one embodiment of the invention, the following storage
locations are part of a unified address space: (1) the portion of
the client memory accessible via the client switch, (11) the
memory in the control module, (111) the memory 1n the storage
modules, and (1v) the solid state memory modules. Accord-
ingly, from the perspective of the processor in the storage
appliance, the aforementioned storage locations (while
physically separate) appear as a single pool of physical
addresses. Said another way, the processor may 1ssue read
and/or write requests for data stored at any of the physical
addresses 1n the unified address space. The aforementioned
storage locations may be referred to as storage fabric that 1s
accessible using the unified address space.

In one embodiment of the invention, a unified address
space 1s created, 1n part, by the non-transparent bridge 1n the
client switch which allows the processor in the control mod-
ule to “see” a portion of the client memory. Accordingly, the
processor 1n the control module may perform read and/or
write requests 1n the portion of the client memory that 1t can
“see”.

FIG. 4A shows a storage module 1n accordance with one or
more embodiments of the invention. The solid state memory

US 8,370,567 Bl

13

module (400) includes one or more blocks. In one embodi-
ment of the invention, a block 1s the smallest erasable unit of
storage within the solid state memory module (400).

FIG. 4B shows a block 1n accordance with one or more
embodiments of the mnvention. More specifically, each block
(402) includes one or more pages. In one embodiment of the
invention, a page 1s the smallest addressable unit for read and
program operations (including the initial writing to a page) in
the solid state memory module. In one embodiment of the
invention, rewriting a page within a block requires the entire
block to be rewritten. In one embodiment of the invention,

cach page within a block 1s either a Frag Page (see FIG. 4C)
or a TOC Page (see FIG. 4D).

FI1G. 4C shows a frag page 1n accordance with one or more
embodiments of the invention. In one embodiment of the
invention, the frag page includes one or more frags. In one
embodiment of the invention, a frag corresponds to a finite
amount of user data. Further, the frags within a given page
may be of a uniform size or of a non-uniform size. Further,
frags within a given block may be of a uniform size or of a
non-uniform size. In one embodiment of the invention, a
given frag may be less than the size of a page, may be exactly
the size of a page, or may extend over one or more pages. In
one embodiment of the invention, a frag page only includes
frags. In one embodiment of the invention, each frag includes
user data (1.e., data provided by the client for storage in the
storage appliance). For purposes of this description, the term
“frag” and ““user data” are used interchangeably.

FI1G. 4D shows a TOC page 1n accordance with one or more
embodiments of the invention. In one embodiment of the
invention, the TOC page (406) includes one or more TOC
entries, where each of the TOC entries includes metadata for
a given frag. In addition, the TOC page (406) may include a
reference to another TOC page in the block (402). In one
embodiment of the invention, a TOC page only includes TOC
entries (and, optionally, a reference to another TOC page 1n
the block), but does not include any frags. In one embodiment
of the mvention, each TOC entry corresponds to a frag (see
FIG. 4C) 1n the block (402). The TOC entries only correspond
to frags within the block. Said another way, the TOC page 1s
associated with a block and only includes TOC entries for
frags 1n that block. In one embodiment of the invention, the
last page that 1s not defective in each block within each of the
solid state memory modules 1s a TOC page.

FIG. 4E shows a block in accordance with one or more

[1

embodiments of the mvention. More specifically, FIG. 4E
shows a block (408) that includes TOC pages (410, 412, 414)
and frag pages (416,418, 420,422,424, 426). In one embodl-
ment of the invention, the block (408) 1s conceptually filled
from “top” to “bottom.” Further, TOC pages are generated
and stored once the accumulated size of the TOC entries for
the frags 1n the frag pages equal the size of a page. Turning to
FIG. 4E, for example, frag page 0 (416) and frag page 1 (418)
are stored in the block (408). The corresponding TOC entries
(not shown) for the frags (not shown) 1n frag page 0 (416) and
frag page 1 (418) have a total cumulative size equal to the size
of a page 1n the block. Accordingly, a TOC page (414) 1s
generated (using the TOC entries corresponding to frags 1n
the block) and stored in the block (408). Frag page 2 (420) 1s
subsequently written to the block (408). Because the TOC
entries corresponding to the frags (not shown) 1n frag page 2
(420) have a total cumulative size equal to the size of a page
in the block, TOC page (412) 1s created and stored in the block
(408). Further, because there 1s already a TOC page in the
block (408), TOC page (412) also includes areterence to TOC
page (414).

10

15

20

25

30

35

40

45

50

55

60

65

14

This process 1s repeated until there 1s only one page
remaining 1n the block (408) to fill. At this point, a TOC page
(410) 1s created and stored in the last page of the block (408).
Those skilled 1n the art will appreciate that the total cumula-
tive size of the TOC entries in the TOC page (410) may be less
than the size of the page. In such cases, the TOC page may
include padding to address the difference between the cumu-
lative size of the TOC entries and the page size. Finally,
because there are other TOC pages 1n the block (408), TOC
page (410) includes a reference to one other TOC page (412).

As shown 1n FIG. 4E, the TOC pages are linked from the
“bottom”™ of the block to “top” of the page, such that the TOC
page may be obtained by following a reference from a TOC
page that 1s below the TOC page. For example, TOC page
(412) may be accessed using the reference in TOC page (410).

Those skilled in the art will appreciate that while block
(408) only 1ncludes frag pages and TOC pages, block (408)
may include pages (e.g., a page that includes parity data)
other than frag pages and TOC pages without departing from
the mvention. Such other pages may be located within the
block and, depending on the implementation, interleaved
between the TOC pages and the frag pages.

FIG. 4F shows a TOC entry in accordance with one or more
embodiments of the invention. In one embodiment of the
invention, each TOC entry (430) includes metadata for a frag
(and 1n particular the user data 1n the frag) and may include
one or more of the following fields: (1) object ID (432), which
identifies the object (e.g., file) being stored; (11) the birth time
(434), which specifies the time (e.g., the processor clock
value of the processor 1n the control module) at which the frag
corresponding to the TOC entry was written to the vaulted
memory; (111) offset ID (436), which 1dentifies the starting
point of the user data 1in the frag relative to the beginning of the
object (1dentified by the object ID); (1v) fragment si1ze (438),
which specifies the size of the frag; (v) page 1D (440), which
identifies the page in the block 1n which the frag 1s stored; (v1)
byte (442), which identifies the starting location of the frag in
the page (1dentified by the page ID); (vi1) logical length (444),
which specifies the non-compressed length of the user data in
the frag; (vin1) type (446), which specifies the type of user data
in the frag (e.g., badpage, data, snapshot, pool); (1x) kind
(448), which specifies whether the frag 1s valid user data or
trim (which indicates that the frag may be erased when the
solid state memory module performs garbage collection); and
(1x) reserved (450), which corresponds to space 1n the TOC
entry that may be used to store other user data.

In one embodiment of the invention, the <object ID, offset
ID> or <object 1D, offset ID, birth time> 1dentily user data
that 1s provided by the client. Further, the <object 1D, offset
ID> or <object ID, offset ID, birth time> are used by the client
to 1dentily particular user data, while the storage appliance
uses a physical address(es) to 1dentity user data within the
storage appliance. Those skilled 1n the art will appreciate that
the client may provide a logical address instead of the object
ID and offset ID.

Those skilled 1n the art will appreciate that the TOC entry
may include additional or fewer fields than shown in FIG. 4F
without departing from the invention. Further, the fields 1n the
TOC entry may be arranged 1n a different order and/or com-
bined without departing from the invention. In addition, while
the fields 1 the TOC entry shown 1n FIG. 4F appear to all be
of the same size, the size of various fields 1n the TOC entry
may be non-uniform, with the size of any given field varying
based on the implementation of the TOC entry.

FIG. 5 shows data structures in accordance with one or
more embodiments of the invention. As discussed above, the
memory 1n the control module 1includes an in-memory data

US 8,370,567 Bl

15

structure. In one embodiment of the invention, the in-memory
data structure includes a mapping between an n-tuple (e.g.,
<object ID, offset ID> (500), <object ID, offset 1D, birth
time> (not shown)) and a physical address (502) of the frag in
a solid state memory module. In one embodiment of the
invention, the mapping 1s between a hash of the n-tuple and
the physical address. In one embodiment of the invention, the
physical address for a frag 1s defined as the following n-tuple:
<storage module, channel, chip enable, LUN, plane, block,
page, byte>.

In one embodiment of the invention, the control module
also tracks the number of TOC entries (506) per block (504).
More specifically, each time a frag 1s written to vaulted
memory, a TOC entry for the frag 1s created. The control
module tracks with which block the newly created TOC entry
1s associated and uses this information to generate TOC
pages. For example, the control module uses the aforemen-
tioned information to determine whether the cumulative size
of all TOC entries associated with a given block, which have
not been written to a TOC page, equal a page size 1in the block.
If the cumulative size of all TOC entries associated with a
given block, which have not been written to a TOC page,
equal a page size 1n the block, then the control module may
generate a TOC page using the aforementioned entries and
initiate the writing of the TOC page to a storage module.

FIGS. 6 A-6C show flowcharts in accordance with one or
more embodiments of the invention. More specifically, FIGS.
6A-6C show a method for storing user data 1n a storage
appliance in accordance with one or more embodiments of
the invention. While the various steps in the flowchart are
presented and described sequentially, one of ordinary skall
will appreciate that some or all of the steps may be executed
in different orders, may be combined or omitted, and some or
all of the steps may be executed in parallel. In one embodi-
ment of the mvention, the steps shown 1 FIG. 6 A may be
performed 1n parallel with the steps shown 1n FIG. 6B and the
steps shown 1n FI1G. 6C. Further, the steps shown 1n FIG. 6B
may be performed 1n parallel with the steps shown 1n FIG. 6C.

Referring to FIG. 6 A, 1n step 600, the client writes a write
command (write request) to the submission queue (SQ) of the
processor 1 a control module (208 1n FIG. 2A). In one
embodiment of the invention, the write command specifies
the logical address (which may also be referred to as a “source
address”) of the user data in the client memory. In one
embodiment of the mnvention, the write command may
specily the user data using <object ID, offset ID>. In one
embodiment of the invention, the write command passes
through at least the client switch and the switch fabric prior to
reaching the SQ of the processor.

In step 602, client writes a new SQ tail to the SQ Tail
doorbell register. In one embodiment of the invention, by
writing to the SQ Tail doorbell register, the client notifies the
processor that there 1s a new command to process 1n 1ts SQ).

In step 604, the processor obtains the write command from
the SQ. In step 606, the processor determines the physical
address(es) at which to write the user data (as part of a frag).
In one embodiment of the invention, the physical address(es)
corresponds to a location in the solid state memory module. In
one embodiment of the invention, the processor selects two
physical addresses in which to write copies of the user data,
where each of the physical addresses 1s 1n a separate solid
state memory module.

In step 608, the processor programs the DMA engine to
1ssue a write to a multicast address. In one embodiment of the
invention, the multicast address 1s associated with a multicast
group, where the multicast group specifies a first memory
location 1 the memory 1n the control module, a second

5

10

15

20

25

30

35

40

45

50

55

60

65

16

memory location 1n a first vault memory, and a third memory
location 1n a second vaulted memory. In one embodiment of
the mvention, the first vaulted memory 1s located 1n the same
storage module as the solid state memory module that
includes the physical address specified by the processor. In
one embodiment of the imnvention, the second vaulted memory
1s determined 1n a similar manner. In one embodiment of the
invention, there i1s one vaulted memory location selected for
cach physical address 1dentified by the processor 1n step 606.

In step 610, the DMA engine reads the user data from the
source address 1 client memory, and writes the data to the
multicast address as directed by the control module. In one
embodiment of the invention, a switch in the switch fabric 1s
associated with the multicast address. Upon receipt of the
address, the switch performs the necessary translation on the
multicast address to obtain three addresses—one to each of
the aforementioned memory locations. The switch subse-
quently sends copies of the user data to the three memory
locations. Those skilled 1n the art will appreciate that the
particular switch which implements multicast may vary
based on the implementation of the switch fabric. In this
embodiment, there 1s only one write 1ssued between the client
and the storage appliance.

In another embodiment of the invention, 1 Step 608, the
processor programs the DMA engine to 1ssue three write
requests 1n parallel—one to each of the aforementioned
memory locations. In this embodiment, in Step 610, DMA
engine 1ssues the three write requests in parallel. In this
embodiment, there are three writes 1ssues between the client
and the storage appliance.

Continuing with FIG. 6A, 1n step 612, a TOC entry 1s
created for each copy of user data stored 1n vaulted memory.
Further, the page and byte specified in each TOC entry cor-
responds to the page and byte portions of the corresponding
physical address 1dentified 1n step 606. Accordingly, while
the frag 1s not written to the physical address 1n the solid state
memory module at the time the corresponding TOC entry 1s
created, the frag (as part of a frag page) 1s itended to be
written to the physical address at a later point 1n time. As
discussed above, each of the TOC entries 1s stored 1n a TOC
page and the TOC page 1s eventually written to a solid state
memory module. However, prior to the creation of the TOC
page, the TOC entries are created and temporarily stored in
the memory 1n the control module and 1n vaulted memory on
one of the solid state storage modules.

Continuing with FIG. 6A, in step 614, the TOC entries
created 1n step 612 are stored in vaulted memory. More spe-
cifically, each TOC entry 1s stored in the vaulted memory of
the storage module and includes the physical address at which
the corresponding frag will be written at a later point in time.

In step 616, the processor updates the mm-memory data
structure to reflect that three copies of the user data are stored
in the storage appliance. The processor may also update the
data structure that tracks the TOC entries per block (see FIG.
5). In step 618, the processor writes the SQ Identifier (which
identifies the SQ of the processor) and a Wrnite Command
Identifier (which 1dentifies the particular write command the
client 1ssued to the processor) to the completion queue (CQ)
of the client.

In step 620, the processor generates an interrupt for the
client processor. In one embodiment of the mvention, the
processor uses the doorbell 1interrupts provided by the non-
transparent bridge to 1ssue an interrupt to the client processor.
In step 622, the client processes the data 1n 1ts CQ. At this
stage, the client has been notified that the write request has
been serviced. In step 624, once the client has processed the
data at the head of the completion queue, the client writes a

US 8,370,567 Bl

17

new CQ head to the CQ head doorbell. This signifies to the
processor the next location in the CQ to use 1n future notifi-
cations to the client.

Referring to FIG. 6B, 1n step 626, the processor in the
control module mitiates the writing of the copies of the user
data from the vaulted memory to the physical address 1denti-
fied 1n step 608. In one embodiment of the invention, the
processor 1n the control module programs a DMA engine in
the storage module controller to read user data from the
vaulted memory and to write a copy of this user data to a
physical address 1n the solid state memory module. As
described above, the physical address to which the copy of
user data 1s written 1s the physical address previously deter-
mined by the processor 1n Step 606.

In step 628, following step 626, the processor in the control
module requests that all copies of the user data in vaulted
memory that correspond to the user data written to the solid
state memory module 1n step 626 are removed. In step 630, a
confirmation of the removal 1s sent to the processor in the
control module by each of the storage modules that included
a copy ol the user data (written 1n step 626) 1n their respective
vaulted memory.

Referring to FIG. 6C, FIG. 6C shows a method that 1s
performed each time a TOC entry 1s created. In step 632, a
determination 1s made about whether there 1s more than one
empty page remaining in the block. Said another way, a
determination 1s made about whether user data has been writ-
ten to all other pages except the last page 1n the block. If there
1s more than one empty page remaining in the block, the
process proceeds to Step 636; otherwise the process proceeds
to step 634. As discussed above, 11 there 1s only one empty
page in the block 1n which to write user data, then a TOC page
must be written to the last page 1n the block.

In step 634, a determination 1s made about whether the
cumulative size of TOC entries associated with the block
(which have not been written to a TOC page 1n the block) are
greater than or equal to a page size. If the cumulative size of
TOC entries associated with the block (which have not been
written to a TOC page 1n the block) are greater than or equal
to a page size, then the process proceeds to Step 636; other-
wise the process ends.

In step 636, the TOC entries for the block (which have not
been written to a TOC page 1n the block) are combined to
create a TOC page. In one embodiment of the mvention, 1f
there 1s only one empty page in the block 1n which to write
user data, then the TOC page created in this scenario may
including padding (as discussed above). In step 638, a deter-
mination 1s made about whether the block includes another
TOC page. 11 the block includes another TOC page, the pro-
cess proceeds to step 640; otherwise the process proceeds to
step 642. In step 640, a reference to the most recently stored
TOC page 1n the block 1s included 1n the TOC page created 1in
step 636 (e.g., TOC page (410) reterences TOC page (412) 1n
FIG. 4E).

In step 642, the processor 1nitiates the writing of the TOC
page to a solid state memory module. More specifically, a
DMA engine programmed by the processor writes a copy of
the TOC page to the block 1n the solid state memory module
that includes the frags corresponding to the TOC entries 1in the
10OC page.

In step 644, the processor requests all storage modules that
include TOC entries that were included in the TOC page
written to the solid state memory module 1 Step 642 to
remove such TOC entries from their respective vaulted
memories. In step 646, the processor recerves confirmation,
from the storage modules, that the aforementioned TOC
entries have been removed.

10

15

20

25

30

35

40

45

50

55

60

65

18

FIGS. 7A-7E show an example of storing user data in a
storage appliance in accordance with one or more embodi-
ments of the invention. The example 1s not intended to limit
the scope of the invention.

Turming to FIG. 7A, consider the scenario 1n which the
client (700) 1ssues a request to write user data (denoted by the
black circle) to the storage appliance. In response to the
request, the processor (714) i the control module (704)
determines that a first copy of the user data should be written
to a first physical location in solid state memory module A
(726) 1n storage module A (718) and that a second copy of the
user data should be written to a second physical location 1n
solid state memory module B (728) in storage module B
(720).

The processor (714) prior to receiving the write request
creates a multicast group with three members. A first member
has a destination address in vaulted memory A (722), the
second member has a destination address 1n vaulted memory
B (724), and the third member has a destination address 1n
memory (712). The processor (714) subsequently programs a
switch (not shown) in the switch fabric (716) to implement
the multicast group.

The DMA engine proceeds 1ssue a write to a multicast
address associated with the multicast group. The write 1s
transmitted to the switch fabric and ultimately reaches the
switch (not shown) that implements the multicast group. The
switch subsequently creates three writes (each to one desti-
nations specified by the multicast group) and 1ssues the writes
to the target memory locations. In one embodiment of the
invention, the three writes occur 1n parallel

The frags to be written at the various destination addresses
pass through the switch fabric (716). Once the writes are
complete, there are three copies of the user data 1n the storage
appliance. Once the writes are complete, the in-memory data
structure (not shown) in the memory (712) 1s updated to
reflect that the user data 1s stored in three locations within the
storage appliance. Further, the client (700) 1s notified that the
write 1s complete.

Referring to FIG. 7B, once the frags are written to the
vaulted memories, the processor generates a TOC entry (TE
1, TE 2) 1n memory (712) for each of the frags stored in
vaulted memory. TE 1 1s the TOC entry from the frag stored
in vaulted memory A (722) and TE 2 1s the TOC entry for the
frag stored in vaulted memory B (724). The processor (via a
DMA engine, not shown) subsequently writes a copy of TE 1
to vaulted memory A (722) and a copy of TE 2 to vaulted
memory B (724). As discussed above, at this stage, the TOC
entries (TE 1, and TE 2) are temporarily stored in the afore-
mentioned vaulted memories until they are added to a TOC
page and written to the appropriate solid state memory mod-
ule.

Further, independent of the operation of the storage appli-
ance, the client (700) may remove the user data (which has
already been written to the storage appliance) from the client
memory (708).

Retferring to FIG. 7C, at some later point in time, the
processor (714)1ssues a request to the storage module A (718)
to write a copy of the user data currently 1n vaulted memory A
(722) to the physical address 1n solid state memory module A
(726). In response to the request, the storage module control-
ler (not shown) writes a copy of the user data in vaulted
memory A (722) to solid state memory module A (726). The
processor (714) 1s notified once the write 1s complete. The
processor (714) may update the mm-memory data structure
upon receipt of the notification from storage module A (718).

Referring to FIG. 7D, at some later point in time, the
processor (714) determines that the cumulative total size of

US 8,370,567 Bl

19

TE 1 and other TOC entries (not shown) for frags in the same
block (1.e., the block 1n which the frag corresponding to TE 1
1s stored) equals a page size. Based on this determination, the
processor creates a TOC page and subsequently (via a DMA
engine (not shown)) writes the TOC page to the block (not
shown) in the solid state memory module that includes the
frag to which TE 1 corresponds.

Referring to FIG. 7E, at some later point in time, once the
frag has been written to solid state memory module A, the
processor (714) 1ssues a request to all storage modules that
includes a copy of the user data 1n vaulted memory to remove
the copy of the user data from their respective vaulted memo-
ries. In addition, once the TOC page has been written to solid
state memory module A, the processor (714) 1ssues a request
to all storage modules that include a copy of any TOC entry
written 1n the aforementioned TOC page to remove such TOC
entries from their respective vaulted memories. The storage
modules each notity the control module upon completion of
these requests. FIG. 7E shows the state of the system after all
storage modules have completed the above requests. The
processor (714) may update the mn-memory data structure
upon receipt of the notification from storage modules that all
copies of the user data in vaulted memory have been removed.

In one or more embodiments of the invention, a TOC entry
1s created for each copy of user data and stored in vaulted
memory such that each copy of user data can be accessed in
the event that one of the TOC entries 1s corrupted, lost, or
otherwise unavailable. Further, 1n the event of a power failure,
all TOC entries within the vaulted memory are written to the
corresponding solid state memory module. Further, the frags
corresponding to the atorementioned TOC entries are written
to the physical addresses that the processor originally deter-
mined at the time the write request for the client was pro-
cessed.

FIG. 8 shows a flowchart 1n accordance with one or more
embodiments of the mmvention. More specifically, FIG. 8
shows a method for generating an in-memory data structure in
accordance with one or more embodiments of the invention.
While the various steps 1n the tlowchart are presented and
described sequentially, one of ordinary skill will appreciate
that some or all of the steps may be executed 1n different
orders, may be combined or omitted, and some or all of the
steps may be executed in parallel.

In step 800, a block 1s selected. In step 802, the last page in
the block 1s obtained. For example, the processor reads the
contents of the last page. As discussed above, the last page of
every block in the solid state memory modules within the
storage appliance 1s a TOC page. In step 804, the TOC entries
are extracted from the TOC page.

In step 806, cach of the TOC entries obtained 1n Step 804
are processed to populate the in-memory data structure. More
specifically, processing each TOC entry may include one or
more following: (1) extracting the page ID and byte informa-
tion from the TOC entry; (11) combining the information in (1)
with <storage module, channel, chip enable, LUN, plane,
block> to obtain a physical address; (111) extracting the object
ID and offset ID (and optionally the birth time) from the TOC
entry; (1v) applying a hash function to <object ID, offset ID>
(or, optionally, <object ID, offset ID, birthtime>) to generate
a hash value; and (v) populating the in-memory data structure
with a mapping of the hash value and the physical address.

In one embodiment of the invention, the processor already
includes information about the <storage module, channel,
chip enable, LUN, plane, block> because the processor
needed this information to obtain the last page of the block. In
one embodiment of the invention, the processor may (1) use
the Type field 1n the TOC entry to determine whether the frag

10

15

20

25

30

35

40

45

50

55

60

65

20

1s 1 a bad page. If the frag i1s stored 1n a bad page, the
processor may not generate a mapping in the in-memory data
structure for the TOC entry.

In step 808, once all TOC entries 1n the TOC page have
been processed, a determination 1s made about whether the
TOC page mcludes a reference to another TOC page 1n the
block (1.e., the block selected 1 Step 800). If the TOC page
includes a reference to another TOC page 1n the block, the
process proceeds to Step 810; otherwise the process ends. In
step 810, the referenced TOC page 1s obtained. In step 812,
the TOC entries are extracted from the TOC page. The pro-
cess then proceeds to Step 806.

In one embodiment of the invention, the method 1n FIG. 8
may be performed in parallel for all blocks (or a subset of
blocks) within the storage appliance when the system 1s pow-
ered on. Following this process, the resulting in-memory data
structure may be updated by the processor as new user data 1s
written to the storage appliance.

Those skilled 1n the art will appreciate that while the inven-
tion has been described with respect to the last page in each
block being reserved as a TOC page, embodiments of the
invention may be implemented by setting another page 1n the
block as a reserved TOC page without departing from the
invention.

In one embodiment of the invention, the in-memory data
structure 1s generated prior to any operations (e.g., read
operation, a write operation, and/or an erase operation) being
performed on any datum stored in the solid state memory
modules.

One or more embodiments of the invention provide a sys-
tem and method 1n which all user data stored 1n the storage
appliance 1s co-located with 1ts metadata. In this manner, all

user data stored 1n the storage appliance 1s self describing. By
arranging the user data and corresponding metadata accord-
ing to the various embodiments of the mvention, the storage
appliance 1s better protected against failure of a given solid
state memory module (or a subset thereotf). Said another way,
if a given solid state memory module (or subset thereol) fails,
the user data 1n other solid state memory modules 1n the
system 1s still accessible because the metadata required to
access the user data 1n the other solid state memory module 1s
itsell located 1n the other solid state memory modules.

Further, embodiments of the invention enable the creation
of an in-memory data structure, which allows the control
module to access user data 1n a single look-up step. Said
another way, the control module may use the in-memory data
structure to directly ascertain the physical address(es) of the
user data 1n the storage appliance. Using this information, the
control module 1s able to directly access the user data and
does not need to traverse any intermediate metadata hierarchy
in order to obtain the user data.

One or more embodiments of the invention may be imple-
mented using instructions executed by one or more proces-
sors 1n the system. Further, such instructions may corre-
sponds to computer readable nstructions that are stored on
one or more non-transitory computer readable mediums.

While the invention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benelit of this disclosure, will appreciate that other
embodiments can be devised which do not depart from the
scope of the invention as disclosed herein. Accordingly, the
scope of the invention should be limited only by the attached
claims.

US 8,370,567 Bl

21

What 1s claimed 1s:

1. A method for storing data, comprising:

receiving a request to write a first datum to persistent
storage, wherein the first datum 1s defined using a first
logical address;

determining a first physical address in the persistent stor-
age, wherein the first physical address comprises a first
block ID and first sub block ID:;

writing the first datum to a first location in the persistent
storage 1dentified by the first physical address;

generating a {irst table of contents entry (TE) comprising,
the first logical address, and the first sub block ID,
wherein the first TE 1s not stored 1n a sub block identified
by the first sub block ID and wherein the first logical
address and the first sub block ID are not stored in the
sub block identified by the first sub block ID; and

writing the first TE to a second physical address 1in the
persistent storage, wherein the second physical address
comprises the first block ID and a second sub block 1D,
wherein a second sub block corresponds to the second
sub block ID, and wherein the second sub block i1s
located within a first block corresponding to the first
block ID and wherein a sub block identified by the
second sub block ID does not include the first datum.

2. The method of claim 1, further comprising;

receiving arequest to write a second datum to the persistent
storage, wherein the second datum 1s defined using a
second logical address;

determining a third physical address 1n the persistent stor-
age, wherein the third physical address comprises the
first block ID and third sub block ID:;

writing the second datum to the third physical address;

generating a second TE comprising the second logical
address and the third sub block ID, wherein the second

TE 1s not stored 1n a sub block identified by the third sub
block ID;

writing the second TE to a fourth physical address 1n the
persistent storage, wherein the fourth physical address
comprises the first block ID and a fourth sub block ID,
wherein a fourth sub block corresponds to the fourth sub
block ID, and wherein the fourth sub block is located
within the first block, and wherein a sub block 1dentified
by the fourth sub block ID does not include the first
datum.

3. The method of claim 1, wherein the persistent storage 1s
solid state memory, and wherein the first block 1s a NAND
block, and the first sub block 1s a NAND page.

4. The method of claim 1, wherein the fourth sub block
comprises a reference to the second sub block.

5. A method for storing data, comprising:

receiving a request to write a first datum to persistent

storage, wherein the first datum 1s defined using a first
logical address;
determining a first physical address in persistent storage,
wherein the first physical address comprises a first block
ID and a first page 1D;

writing a {irst frag comprising a copy of the first datum to
a first location 1n the persistent storage identified by the
first physical address;

generating a {irst table of contents entry (TE) comprising,

the first logical address and the first page 1D, wherein the
first TE 1s not stored in a page 1dentified by the first page
ID and wherein the first logical address and the first page
ID are not stored in the page 1dentified by the first page

— -
)‘
. j

10

15

20

25

30

35

40

45

50

55

60

65

22

recerving arequest to write a second datum to the persistent
storage, wherein the second datum 1s defined using a
second logical address;

determiming a second physical address 1n the persistent
storage, wherein the second physical address comprises
the first block ID and a second page 1D;

writing a second Ifrag comprising a copy of the second
datum to a second location 1n the persistent storage by
identified by the second physical address;

generating a second TE comprising the second logical
address and the second page ID, wherein the second TE
1s not stored 1n a page identified by the second page 1D
and wherein the second logical address and the second
page ID are not stored in the page identified by the
second page 1D;

generating a table of contents (TOC) page, wherein the
TOC page comprises the first TE and the second TE, and
wherein the TOC page does not include the first datum
and the second datum; and

writing the TOC page to a third physical address 1n the
persistent storage, wherein the third physical address
comprises the first block ID and a third page 1D.

6. The method of claim S, further comprising:

receving a request to write a third datum to the persistent
storage, wherein the third datum 1s defined using a third
logical address;

determiming a fourth physical address in the persistent
storage, wherein the fourth physical address comprises

the first block ID and a fourth page ID;

writing a third frag comprising a copy of the third datum to
the fourth physical address;

generating a third TE comprising the third logical address,
and the fourth page ID, wherein the third TE 1s not stored
in a page 1dentified by the third page 1D;

generating a second TOC page comprising the third TE;

writing the second TOC page to a fifth physical address 1n
the persistent storage, wherein the fifth physical address
comprises the first block ID and a fifth page ID and.,
wherein the second TOC page does not include the third
datum.

7. The method of claim 6, wherein a fifth page correspond-
ing to the fifth page ID 1s the last page in the first block.

8. The method of claim 7, wherein the second TOC page
comprises a reference to the first TOC page.

9. The method of claim 8, wherein the reference 1s located
at the end of the second TOC page.

10. The method of claim 3, wherein prior to writing the first
frag to the first physical address 1n the persistent storage, a
first copy of the first frag 1s stored 1n a first memory and a
second copy of the first frag 1s stored 1n a second memory,
wherein athird TE 1s generated for the second copy of the first
frag, wherein the third TE 1s erased once the TOC page 1s
written to the third physical memory address.

11. The method of claim 10, wherein the first memory 1s
located 1n a first storage module and the second memory 1s
located 1n a second storage module, and wherein the persis-
tent storage 1s located in the first memory module.

12. The method of claim 5, wherein the first TE further
comprises at least one selected from a group consisting of a
birth time field, a type field, a logical length field, and a kind
field.

13. The method of claim 5, wherein the first logical address
comprises an object ID and an offset 1D.

14. A method for populating an in-memory datum struc-
ture, comprising;

US 8,370,567 Bl

23

(a) selecting a first block 1n a persistent storage;

(b) extracting a last page 1n the first block, wherein the first
block 1s associated with a first block ID;

(c) extracting a first table of contents entry (TE) from the
last page 1n the first block, wherein the first TE com-
prises a first logical address for a first datum, and a first
page ID 1dentifying a page in the first block 1n which the
first datum 1s located, wherein the page 1s not the last
page and wherein the first logical address does not
include the page 1D and wherein the first logical address
and the first page ID are not stored in the page;

(d) generating a first physical address for the first datum
using the first block ID and the first page 1D extracted
from the first TE, wherem the first physical address
comprises the first page 1D;

(¢) hashing the first logical address to obtain a first hash
value; and

(1) populating the in-memory data structure with a first
mapping between the first hash value and the first physi-
cal address.

15. The method of claim 14, turther comprising;:

(g) selecting a second block in the persistent storage;

(h) extracting a last page 1n the second block, wherein the
second block 1s associated with a second block ID:

(1) extracting second TE from the last page 1n the second
block, wherein the second TE comprises a second logi-
cal address for a second datum, and a second page 1D
corresponding to a page 1n the second block in which the
second datum 1s located;

(1) generating a second physical address for the second
datum using the second block ID and the second page 1D
extracted from the second TE;

(k) hashing the second logical address to obtain a second
hash value; and

(1) populating the in-memory data structure with a second
mapping between the second hash value and the second

physical address.
16. The method of claim 15, wherein (a)-(c) and (g)-(1)

occur 1n parallel.

17. The method of claim 15, wherein the first block 1s
located 1n a first storage module, the second block 1s located
in the second storage module, and wherein the in-memory
data structure 1s located in memory external to the first storage
module and the second storage module.

18. The method of claim 14, turther comprising;:

making a determination that the last page 1n the first block

comprises a relerence to the second page in the first
block, wherein the second page comprises a second TE,
wherein the second TE comprises a second logical
address for a second datum, and a second page ID cor-
responding to a page in the first block 1 which the
second datum 1s located:

10

15

20

25

30

35

40

45

50

24

generating a second physical address for the second datum
using the first block 1D, and the second page 1D;

hashing the second logical address to obtain a second hash
value; and

populating the in-memory data structure with a second

mapping between the second hash value and the second
physical address.

19. The method of claim 14, wherein the persistent storage
1s solid state memory.

20. The method of claim 14, wherein the in-memory data
structure 1s populated with all TEs 1n the persistent storage
prior to any operations 1n a group consisting of a read opera-
tion, a write operation, and an erase operation being per-
formed on any datum stored in the persistent storage.

21. The method of claim 14, wherein the first logical
address comprises an object ID and an offset ID.

22. A method for storing data, comprising;:

receving a request to write a first datum to persistent

storage, wherein the first datum 1s defined using a first
logical address;

determining a first physical address in persistent storage,

wherein the first physical address comprises a first block
ID and a first page 1ID;
prior to writing a {irst frag to a first physical address 1n the
persistent storage:
storing a first copy of the first frag 1s 1n a first memory
and a second copy of the first frag 1n a second
memory;

writing the first frag comprising a copy of the first datum to

the first physical address;

generating a first table of contents entry (TE) comprising

the first logical address and the first page 1D;

recerving a request to write a second datum to the persistent

storage, wherein the second datum 1s defined using a
second logical address;

determining a second physical address 1n the persistent

storage, wherein the second physical address comprises
the first block ID and a second page 1D;

writing a second frag comprising a copy of the second
datum to the second physical address;

generating a second TE comprising the second logical
address and the second page 1D;

generating a table of contents (TOC) page, wherein the
TOC page comprises the first TE and the second TE; and

writing the TOC page to a third physical address in the
persistent storage, wherein the third physical address
comprises the first block ID and a third page 1D, wherein
a third TE 1s generated for the second copy of the first
frag, wherein the third TE 1s erased once the TOC page
1s written to the third physical memory address.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

