US008365186B2
a2y United States Patent (10) Patent No.: US 8.365.,186 B2
Faraj et al. 45) Date of Patent: Jan. 29, 2013
(54) RUNTIME OPTIMIZATION OF AN 6,118,777 A 9/2000 Sylvain
APPLICATION EXECUTING ON A 6,126,331 A 10/2000 Komatsu et al.
6,167,490 A 12/2000 Levy et al.
PARALLEL COMPUTER 6,253,372 Bl 6/2001 Komatsu et al.
6,336,143 Bl 1/2002 Diedrich et al.
(75) Inventors: Daniel A. Faraj, Rochester, MN (US); 6,438,702 Bl {12002 ngdg: o
Brian E. Smith, Rochester, MN (US) 6,490,566 Bl 12/2002 Schmidt
6,600,721 B2 7/2003 Edholm
(73) Assignee: International Business Machines 6,633,937 B2 10/2003 Thomson
Corporation, Armonk, NY (US) 6,775,703 Bl 8/2004 Burns et al.
P " ” 6,839.829 Bl 1/2005 Daruwalla et al.
7,032,224 B2 4/2006 Kadakia et al.
(*) Notice: Subject to any disclaimer, the term of this Continued
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 461 days. OTHER PURI ICATIONS
(21) Appl. No.: 12/760,111 Faraj, Ahmad et al. “MPI Collective Communications on the Blue
_ Gene/P Supercomputer: Algorithms and Optimizations”. 17th IEEE
(22) Filed: Apr. 14, 2010 Symposium on High Performance Interconnects. Published In
k
(65) Prior Publication Data 2009,
US 2011/0258627 A1 Oct. 20, 2011 (Continued)
(51) Int.Cl Primary Lkxaminer — Emerson Puente
Go;ﬂy 5-3/46 (2006.01) Assistant Examiner — Adam Lee
GO6F 15/16 (2006.01) (74) Attorney, Agent, or Firm — Biggers & Ohanian, LLP
(52) US.CL ..., 718/106; '709/201; 709/252
(58) Field of Classification Search None (57) ABSTRACT

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
5,063,562 A 11/1991 Barzilal et al.
5,095,444 A 3/1992 Motles
5,491,691 A 2/1996 Shtayer et al.
5,815,793 A 9/1998 Ferguson
5,859,981 A 1/1999 Levin et al.
5,862,381 A 1/1999 Advani et al.
5,912,893 A 6/1999 Rolfe et al.
5,918,020 A 6/1999 Blackard et al.
5,937,201 A 8/1999 Matsushita et al.
5,953,336 A 9/1999 Moore et al.
5,982,771 A 11/1999 C(aldara et al.
5,999,734 A 12/1999 Willis et al.
6,057,839 A 5/2000 Advani et al.
6,115,357 A 9/2000 Packer et al.

Within The Application 602

dentify, By Each Compute Node During
Application Runtime, A Collective Operation

Y
/ Coll. Op. 210 /

:

Identify, By Each Compute Node, A Call Site Of
The Collective Operafion In The Application 604

All Nodes
Identifiad Same All
Site? 514

No

'

Identifying a collective operation within an application
executing on a parallel computer; identifying a call site of the
collective operation; determiming whether the collective
operation 1s root-based; 11 the collective operation 1s not root-
based: establishing a tuning session and executing the collec-
tive operation in the tuning session; i1 the collective operation
1s root-based, determining whether all compute nodes execut-
ing the application identified the collective operation at the
same call site; if all compute nodes 1dentified the collective
operation at the same call site, establishing a tuning session
and executing the collective operation in the tuning session;
and 11 all compute nodes executing the application did not
identify the collective operation at the same call site, execut-
ing the collective operation without establishing a tuning
SESS101.

24 Claims, 10 Drawing Sheets

Establish A Tuning Session Administered By
A Self Tuning Module For The Callective
Operation In Dapendence Upon An (dentifier
Of The Call Site Of The Collective Operation

€08

!

Executs The Callective Operation In The
Tuning Session 610

Execute The Collective Cperation Without
Establishing A Tuning Session §16

'

Tuning Session 216
Performance Metrics 12

US 8,365,186 B2
Page 2

U.S. PATENT DOCUMENTS

7.458,077 B2 11/2008 Duke
7,509,244 Bl 3/2009 Shakeri et al.
7,527,558 B2 5/2009 Lavoie et al.
2002/0065930 Al 5/2002 Rhodes
2003/0021287 Al 1/2003 Lee et al.
2004/0111398 Al 6/2004 England et al.
2006/0107262 Al 5/2006 Bodas et al.
2006/0203739 Al 9/2006 Padmanabhan et al.
2007/0179760 Al 8/2007 Smith
2008/0109569 Al 5/2008 Leonard et al.
2008/0240115 A1 10/2008 Briscoe et al.
2009/0003344 Al1* 1/2009 Kumarccooovvvviinnnn, 370/392
2009/0129277 Al* 5/2009 Supalovetal. ... 370/241
OTHER PUBLICATIONS

Faraj, Ahmad et al. “A Study of Process Arrival Patterns for MPI
Collective Operations”. International Journal of Parallel Program-

ming. Published in 2008.*

Faraj, Ahmad et al. “Automatic Generation and Tuning of MPI Col-
lective Communication Routines”. ACM. Published in 2005.*
Willis, “MinSim: Optimized, Compiled VHDL Simulation Using
Networked & Parallel Computers™, 1993, Proceedings of Fall 1993
VHDL International User’s Forumn, pp. 197-144.

Final Office Action, U.S. Appl. No. 11/924,934, Jan. 6, 2012,
Advisory Action, U.S. Appl. No. 11/865,981, Oct. 14, 2011.
Advisory Action, U.S. Appl. No. 11/764,333, Nov. 28, 2011.
Notice of Allowance, U.S. Appl. No. 11/832,192, Aug. 11, 2011.
Oflice Action, U.S. Appl. No. 12/189,336, Dec. 9, 2011.

Moreira, et al.; The Blue Gene/LL Supercomputer: A Hardware and
Software Story; International Journal of Parallel Programming; Jun.
2007; pp. 181-206; vol. 35, No. 3, Springer Science+Business Media
LLC.; USA.

Notice of Allowance Dated Apr. 6, 2010 in U.S. Appl. No.
11/531,846.

Final Office Action Dated Apr. 29, 2010 mn U.S. Appl. No.
11/553,040.

Office Action Dated Jul. 12, 2010 in U.S. Appl. No. 11/764,282.
Oflice Action Dated May 3, 2010 in U.S. Appl. No. 12/180,963.
Nenad Stankovic Kang Zhang, Visual Programming for Message-
Passing Systems (1999), International Journal of Software Engineer-

ing and Knowledge Engineering.

Matthew J. Sottile, Vaddadi P. Chandu, David A. Bader, Performance
analysis of parallel programs via message-passing graph traversal,
College of Computing, Georgia Institute of Technology, Feb. 25,
2006.

Office Action, U.S. Appl. No. 11/946,934, Nov. 24, 2010.

Office Action, U.S. Appl. No. 11/924,934, Aug. 19, 2010.

Notice of Allowance, U.S. Appl. No. 11/764,282, Dec. 10, 2010.
Office Action, U.S. Appl. No. 11/832,192, Oct. 29, 2010.

Office Action, U.S. Appl. No. 12/166,748, May 27, 2010.

Office Action, U.S. Appl. No. 12/166,748, Aug. 25, 2010.

Notice of Allowance, U.S. Appl. No. 12/180,963, Oct. 20, 2010.
University of Minnesota Super Computing Institute. 2009. Derived
Data Types with MPL.

William Saphir, Message Buffering and It’s Effect on the Commu-
nications Performance on Parallel Computers. Apr. 1994,
University of Minnesota Super Computing Institute. 2009 MPI Per-
formance Topics.

Final Office Action, U.S. Appl. No. 11/865,981, Jul. 22, 2011.
Huang et al., “DZM: MPI One-Sided Exploitation of LAIP API’s
Component Design, Communication Protocols & Application Tools
Development”, Jun. 6, 2006, pp. 1-70, IBM Corporation,
Poughkeepsie, NY.

Tanenbaum, Andrew S., “Structured Computer Organization”, 1984,
Prentice-Hall, 2*? Edition, pp. 10-12.

Final Office Action, U.S. Appl. No. 11/764,333, Sep. 2, 2011.
Office Action, U.S. Appl. No. 12/135,604, Nov. 4, 2011.

Notice of Allowance, U.S. Appl. No. 12/166,748, Nov. 9, 2011.

“MPI-2: Extensions to the Message-Passing Interface,” Forum, Nov.
15, 2003.

Final Office Action, U.S. Appl. No. 12,166,748, Mar. 7, 2011,
Final Office Action, U.S. Appl. No. 11,832,192, Apr. 13, 2011.
Office Action, U.S. Appl. No. 11,764,333, Apr. 13, 2011.

Final Office Action, U.S. Appl. No. 11/924,934, Feb. 24, 2011.
Notice of Allowance, U.S. Appl. No. 11/946,136, Mar. 4, 2011.
Office Action, U.S. Appl. No. 11/865,921, Feb. 2, 2011.

Faraj, et al.; STAR-MPI: Self Tuned Adaptive Routines for MPI

Collective Operations; Jun. 6, 2006; Queensland Australia.

* cited by examiner

U.S. Patent Jan. 29, 2013 Sheet 1 of 10 US 8,365,186 B2

| Appn (T . _ |
| Code < [Collective Op 270] [S€!T Tuning - 570] | Self Tuning
209 \J- Module 209 Module |
212
| Application 208 |
: |
|
| Compute |
| Nodes
T
|
| Operational :
Group
| 132
| Global Combining Point To Poin |
Network 106 108 |
' |
| Service
| 4 Application |
124
|
I/O Node I/O N d S ice Nod
: 110 112 e em%eﬁ . Co?pii!gll
100
— = — — e — —
Application
Interface
LAN 130 m

ey "'q"q"‘n.]

Terminal

SRR Rt 1 2 2 | '_ %

Printer
Data Storage 120 E——huw

eesssssss——— 090 | et RN N T Y,

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

|

aaaaaaaaaaaaaaaaaaaaaaaaaaaa

fﬂﬂfﬂ/

iiiiiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiii

nnnnnnnnnnnnnnnnnnnnnnnnnnnn
iiiiiiiiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiii
1111111111111111111111111111

U.S. Patent Jan. 29, 2013 Sheet 2 of 10 US 8,365,186 B2

Compute Node 152

RAM 15

Processing Cores Application 208 |Collective Operation 210
164

Self Tuning Module 212
214 216
o
Memory Bus 218
DMA Engine 154
Messaging Module 160

Bus Adapter Operating System 162
194

"l Extension Bus 16

DMA Controller

195

AJ
—
>
(.

Point To Point

Adapter

180
Ethernet Global Combining

Adapter Network Adapter
172 188

t -Y
181 184
L - X +/ ,
Gigabit JTAG 189 185 Children Parent
Ethernet Master ey 7 190 192
12 178 183 8 e

H—/ Collective

Point To Point Operations
Network Network
106 FIG. 2

108

US 8,365,186 B2

Sheet 3 of 10

Jan. 29, 2013

U.S. Patent

Compute Node 152

L L I B D B L D O O

L
T L
L LI
L £ ra
L N O O
 r £ r -
LI C Y Y
L
- = -
' L
T T T
L L] L
- -
T T T T
- -
T * ,
T T
 r L
-
TrT T
-
L L
T
 r L
-
T 1
,
- r L
T
L
-
T
-
,
T
L
,

=
O
al
-
_I
=
O
a

| -
QD
e
O
4
L™
<C

-
QO
~—

FIG. 3A

Parent

192

Compute Node 152

1
*
LI
T T
L
- =
T L
LK
, L
T T
L L
L LK
L R
LIE D E B B Y
LIE JE N N K N I
L R O R O
LI NI B T N
LI NC DT D N N
L O R N
LI BC AT D N
LI] LI N
+ ¥+t LU S
LI L I N
LI 3 I L LI
f ¥+ +¥f Tt
LI N DT BE N I N
LK S N AR DR
f¥f+ ¥+ T
LI N I L L
LI NC DY DE T LK
L O R N
LI BC I IE DN I
LI NI AN DE T N
fr¥++1T¥7T T+T¥TTTr
LI NE A DT N
LI NC DT D N N
L L L N
LR I IR B I
LI NC I AN DT N
L O
LI L I N
EIE E DL D NE N
f ¥+ +¥f Tt
LI N DT BE N I N
LK S N AR DR
f ¥+ +¥+ T
f ¥+ ¥+ +¥f++Trr
LI NC AN D I N
LI NI AN DE T N
fr¥++1T¥7T T+T¥TTTr
LI NE A DT N
LI NC DT D N N
L L L N
LR I IR B I
LI NC I AN DT N

+ ¥+ ¥+ LT
+ ¥ ¥ +F FF ¥ + +F ¥
4 4 F F B FFPFEP

+ ¥ F 8B F FFF PP
* 4 F F FEFFFES

Network Adapter
188

Global Combining

FIG. 3B

Children
190

U.S. Patent Jan. 29, 2013 Sheet 4 of 10 US 8,365,186 B2

Dots Rpresent
Compute Nodes

Y
102
" 102
-7
186
A Parallel Operations Network, Organized FIG. 4

As A ‘Torus Or ‘Mesh’
108

U.S. Patent Jan. 29, 2013 Sheet 5 of 10 US 8,365,186 B2

Physical Root

202
Links
18 N\— T T
2 ®
\ / .r" “'.
Ranks
5@ 5@ Branch
Nodes
4 4 ® 4
A O T L O - T Leaf
: v v 2 Vg v v ! v ! v g Nodes
@ 06 006 o0 o0 o o0 08

Dots Represent
Compute Nodes
102

A Collective Operations Organized As A
Binary Tree
106

FIG. 5

U.S. Patent Jan. 29, 2013 Sheet 6 of 10 US 8,365,186 B2

Identify, By Each Compute Node During
Application Runtime, A Collective Operation

Within The Application 602

Coll. Op. 210

ldentify, By Each Compute Node, A Call Site Of

The Collective Operation In The Application 604

Call Site ID 21

Establish A Tuning Session Administered By
A Self Tuning Module For The Collective
NoO Operation In Dependence Upon An Identifier
Of The Call Site Of The Collective Operation
608

Yes Yes Execute The Collective Operation In The
Tuning Session 610

All Nodes
|dentified Same All
Site? 614

s Coll. Op.
Root-Based ?
606

Call Site ID 21

Tuning Session 216
Performance Metrics 612

No

Execute The Collective Operation Without

Establishing A Tuning Session 616

FIG. 6

U.S. Patent Jan. 29, 2013 Sheet 7 of 10 US 8,365,186 B2

[dentify, By Each Compute Node During Application Runtime, A
Collective Operation Within The Application 602

[dentify A Collective Operation To Tune In Dependence
Upon A Hint Comprising An Attribute Of A Function Call

That Passes Through The Communicator To The Self
Tuning Module To Indicate Whether To Tune The
Collective Operation 706

Coll. Op. 210

[dentify, By Each Compute Node, A Call Site Of The Collective
Operation In The Application 604

Call A Traceback Function 702

Receive As A Retum From The Traceback Function
Retums A Unique Memory Address For The Collective
Operation 704

Call Site ID 21

s Coll. Op.
Root-Based ?
606

Yes Execute The Collective Operation In The
Yes Tuning Session 610

All Nodes
Identified Same All

Site? 614

No Establish A Tuning Session 608

Tuning Session 216
Performance Metrics 612

NO

FIG. 7

Execute The Collective Operation
Without Establishing A Tuning

Session 616

U.S. Patent Jan. 29, 2013 Sheet 8 of 10 US 8,365,186 B2

ldentify, By Each Compute Node During
Application Runtime, A Collective Operation

Within The Application 602
Coll. Op. 210

ldentify, By Each Compute Node, A Call Site Of The

Collective Operation In The Application 604

Call Site ID 21

s Coll. Op.

Root-Based 7 No
606
Establish A Tuning Session
Administered By A Self Tuning
Module For The Collective Operation
v n Dependence Upon An Identifier Of
o3 The Call Site Of The Collective

Operation 608

Determine Whether All Compute Nodes

Executing The Application Identified The Yes

Collective Operation At The Same Call Site 614 Execute The Collective Operation In
The Tuning Session 610
Perform On All The Compute Nodes An

Allreduce Collective Operation To Identify
The Minimum And Maximum Values Of Al
Of The Identified Call Sites 802

Tuning Session 216
Performance Metrics 612

NO

Execute The Collective Operation
Without Establishing A Tuning

Session 616 F|G. 8

U.S. Patent Jan. 29,2013

[dentity, By Each Compute Node During
Application Runtime, A Collective
Operation Within The Application 602

Coll. Op. 210

[dentify, By Each Compute Node, A Call
Site Of The Collective Operation In The
Application 604

Call Site ID 214
s Coll. Op.

Root-Based ?
606

NO

Yes

All Nodes
|dentified Same All
Site? 614

NO

Execute The Collective Operation

Without Establishing A Tuning Session
616

Yes Execute The Collective Operation In The Tuning
Session 610

Sheet 9 of 10 US 8.365,186 B2

Establish A Tuning Session Administered By A Self
Tuning Module For The Collective Operation In
Dependence Upon An Identifier Of The Call Site Of

The Collective Operation 608

Tuning Session 216
Performance Metrics 612

Record The One Or More Selected Algorithms From
The Tuning Session 904

Select One Or More Algorithms To Carry Out A
Particular Collective Operation 902

During A Subsequent Execution Of The Application
And Without Performing Another Tuning Session,

Carry Out The Particular Collective Operation With
The Recorded Selected Algonthms 902

FIG. 9

U.S. Patent Jan. 29,2013

[dentify, By Each Compute Node During

Application Runtime, A Collective
Operation Within The Application 602

Coll. Op. 210

[dentify, By Each Compute Node, A Call
Site Of The Collective Operation In The
Application 604

Call Site ID 21

s Coll. Op.

Root-Based ? No
606
Yes
All Nodes
Identiflied Same All Yes

Site? 614

Execute The Collective Operation
Without Establishing A Tuning Session
016

Sheet 10 of 10 US 8.365,186 B2

Establish A Tuning Session Administered By A Self

Tuning Module For The Collective Operation In
Dependence Upon An Identifier Of The Call Site Of

The Collective Operation 608

Execute The Collective Operation In The Tuning
Session 610

Tuning Session 216
Performance Metrics 612

Select One Or More Algorithms To Carry Qut A
Particular Collective Operation 902

Record The One Or More Selected Algorithms From
The Tuning Session 904

Record, In Association With The Selected
Algorithms, A Call Site ID For The Particular

Collective Op., A Message Size, And A Comm. ID
1002

Identity Any Of The Tuned Collective Operations
That Are Non-critical Collective Operations 1002

Carry Out The Non-critical Collective Operations
With Standard Messaging Module Algorithms
1004

During A Subsequent Execution Of The Application

And Without Performing Another Tuning Session,

Carry Out The Particular Collective Operation With
The Recorded Selected Algorithms 902

FIG. 10

US 8,365,186 B2

1

RUNTIME OPTIMIZATION OF AN
APPLICATION EXECUTING ON A
PARALLEL COMPUTER

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under
Contract No. B554331 awarded by the Department of Energy.
The Government has certain rights in this imnvention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the mvention 1s data processing, or, more
specifically, methods, apparatus, and products for runtime
optimization of an application executing on a parallel com-
puter.

2. Description of Related Art

The development of the EDVAC computer system of 1948
1s often cited as the beginning of the computer era. Since that
time, computer systems have evolved 1nto extremely compli-
cated devices. Today’s computers are much more sophisti-
cated than early systems such as the EDVAC. Computer sys-
tems typically include a combination of hardware and
soltware components, application programs, operating sys-
tems, processors, buses, memory, input/output devices, and
so on. As advances 1n semiconductor processing and com-
puter architecture push the performance of the computer
higher and higher, more sophisticated computer soitware has
evolved to take advantage of the higher performance of the
hardware, resulting 1n computer systems today that are much
more powertul than just a few years ago.

Parallel computing 1s an area of computer technology that
has experienced advances. Parallel computing 1s the simulta-
neous execution of the same task (split up and specially
adapted) on multiple processors 1 order to obtain results
taster. Parallel computing 1s based on the fact that the process
of solving a problem usually can be divided into smaller tasks,
which may be carried out simultaneously with some coordi-
nation.

Parallel computers execute parallel algorithms. A parallel
algorithm can be split up to be executed a piece at a time on
many different processing devices, and then put back together
again at the end to get a data processing result. Some algo-
rithms are easy to divide up into pieces. Splitting up the job of
checking all of the numbers from one to a hundred thousand
to see which are primes could be done, for example, by
assigning a subset of the numbers to each available processor,
and then putting the list of positive results back together. In
this specification, the multiple processing devices that
execute the individual pieces of a parallel program are
referred to as ‘compute nodes.” A parallel computer 1s com-
posed of compute nodes and other processing nodes as well,
including, for example, input/output (‘I/0”) nodes, and ser-
vice nodes.

Parallel algorithms are valuable because 1t 1s faster to per-
form some kinds of large computing tasks via a parallel
algorithm than 1t 1s via a serial (non-parallel) algorithm,
because of the way modern processors work. It 1s far more
difficult to construct a computer with a single fast processor
than one with many slow processors with the same through-
put. There are also certain theoretical limits to the potential
speed of serial processors. On the other hand, every parallel
algorithm has a serial part and so parallel algorithms have a

5

10

15

20

25

30

35

40

45

50

55

60

65

2

saturation point. After that point adding more processors does
not yield any more throughput but only increases the over-

head and cost.

Parallel algorithms are designed also to optimize one more
resource the data communications requirements among the
nodes of a parallel computer. There are two ways parallel
processors communicate, shared memory or message pass-
ing. Shared memory processing needs additional locking for
the data and imposes the overhead of additional processor and
bus cycles and also senalizes some portion of the algorithm.

Message passing processing uses high-speed data commu-
nications networks and message buflers, but this communi-
cation adds transfer overhead on the data communications
networks as well as additional memory need for message
buifers and latency in the data communications among nodes.
Designs of parallel computers use specially designed data
communications links so that the communication overhead
will be small but it 1s the parallel algorithm that decides the
volume of the traific.

Many data communications network architectures are used
for message passing among nodes 1n parallel computers.
Compute nodes may be organized 1n a network as a ‘torus’ or
‘mesh,” for example. Also, compute nodes may be organized
in a network as a tree. A torus network connects the nodes 1n
a three-dimensional mesh with wrap around links. Every
node 1s connected to its six neighbors through this torus
network, and each node 1s addressed by 1ts X,y,z coordinate in
the mesh. In such a manner, a torus network lends 1tself to
point to point operations. In a tree network, the nodes typi-
cally are connected into a binary tree: each node has a parent,
and two children (although some nodes may only have zero
children or one child, depending on the hardware configura-
tion). Although a tree network typically 1s inetficient 1n point
to point communication, a tree network does provide high
bandwidth and low latency for certain collective operations,
message passing operations where all compute nodes partici-
pate simultaneously, such as, for example, an allgather opera-
tion. In computers that use a torus and a tree network, the two
networks typically are implemented independently of one
another, with separate routing circuits, separate physical
links, and separate message bullers.

Collective operations that involve data communications
amongst many compute nodes may be carried out with a
variety of algorithms. That 1s, the end result of a collective
operation may be achieved 1n various ways. Some algorithms
may provide better performance than other algorithms when
operating in particular configurations. What 1s needed there-
fore 1s a way to optimize the selection of the best performing
algorithm or set of algorithms to carry out collective opera-
tions 1n particular operating configurations.

SUMMARY OF THE INVENTION

Methods, apparatus, and products for runtime optimization
ol an application executing on a parallel computer are dis-
closed. In embodiments of the present invention, the parallel
computer 1s configured with a number of compute nodes
organized mmto a communicator and runtime optimization
includes: identifying, by each compute node during applica-
tion runtime, a collective operation within the application;
identifying, by each compute node, a call site of the collective
operation 1n the application; and determining, by each com-
pute node, whether the collective operation 1s root-based. IT
the collective operation 1s not root-based the runtime optimi-
zation according to embodiments of the present invention
includes establishing a tuning session administered by a self
tuning module for the collective operation in dependence

US 8,365,186 B2

3

upon an 1dentifier of the call site of the collective operation
and executing the collective operation in the tuning session. If
the collective operation 1s root-based, the runtime optimiza-
tion according to embodiments of the present invention
includes determining whether all compute nodes executing
the application 1dentified the collective operation at the same
call site.

If all compute nodes executing the application i1dentified
the collective operation at the same call site, the runtime
optimization according to embodiments of the present mnven-
tion includes establishing a tuning session administered by
the self tuning module for the collective operation 1n depen-
dence upon the identifier of the call site of the collective
operation and executing the collective operation 1n the tuning
session. If all compute nodes executing the application did
not 1dentily the collective operation at the same call site, the
runtime optimization according to embodiments of the
present mnvention includes executing the collective operation
without establishing a tuning session.

The foregoing and other objects, features and advantages
of the mmvention will be apparent from the following more
particular descriptions of exemplary embodiments of the
invention as 1llustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary system for runtime optimi-
zation of an application executing on a parallel computer
according to embodiments of the present invention.

FI1G. 2 sets forth a block diagram of an exemplary compute
node usetul 1n a parallel computer capable of runtime opti-
mization of an application executing on the parallel computer
according to embodiments of the present invention.

FIG. 3A illustrates an exemplary Point To Point Adapter
usetul in systems capable of runtime optimization of an appli-
cation executing on a parallel computer according to embodi-
ments of the present mvention.

FIG. 3B 1llustrates an exemplary Global Combining Net-
work Adapter useful 1in systems capable of runtime optimiza-
tion of an application executing on a parallel computer
according to embodiments of the present invention.

FIG. 4 sets forth a line drawing 1llustrating an exemplary
data commumnications network optimized for point to point
operations usetul 1n systems capable of runtime optimization
of an application executing on a parallel computer 1n accor-
dance with embodiments of the present invention.

FIG. 5 sets forth a line drawing 1llustrating an exemplary
data communications network optimized for collective
operations useful 1n systems capable of runtime optimization
of an application executing on a parallel computer in accor-
dance with embodiments of the present invention.

FIG. 6 sets forth a flow chart illustrating an exemplary
method of runtime optimization of an application executing,
on a parallel computer according to embodiments of the
present invention.

FI1G. 7 sets forth a flow chart illustrating a further exem-
plary method of runtime optimization of an application
executing on a parallel computer according to embodiments
of the present invention.

FIG. 8 sets forth a flow chart illustrating a further exem-
plary method of runtime optimization of an application
executing on a parallel computer according to embodiments
of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 9 sets forth a flow chart 1llustrating a further exem-
plary method of runtime optimization of an application
executing on a parallel computer according to embodiments
ol the present invention.

FIG. 10 sets forth a flow chart illustrating a further exem-
plary method of runtime optimization of an application
executing on a parallel computer according to embodiments
of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary methods, apparatus, and products for runtime
optimization of an application executing on a parallel com-
puter 1n accordance with embodiments of the present inven-
tion are described with reference to the accompanying draw-
ings, beginning with FIG. 1. FIG. 1 1llustrates an exemplary
system for runtime optimization of an application executing
on a parallel computer according to embodiments of the
present invention. The system of FIG. 1 includes a parallel
computer (100), non-volatile memory for the computer in the
form of data storage device (118), an output device for the
computer 1n the form of printer (120), and an input/output
device for the computer 1n the form of computer terminal
(122). Parallel computer (100) in the example of FIG. 1
includes a plurality of compute nodes (102).

The compute nodes (102) are coupled for data communi-
cations by several independent data communications net-
works including a Joint Test Action Group (‘JTAG”) network
(104), a global combining network (106) which 1s optimized
for collective operations, and a torus network (108) which 1s
optimized point to point operations. The global combining
network (106) 1s a data communications network that
includes data communications links connected to the com-
pute nodes so as to organize the compute nodes as a tree. Each
data communications network 1s implemented with data com-
munications links among the compute nodes (102). The data
communications links provide data communications for par-
allel operations among the compute nodes of the parallel
computer. The links between compute nodes are bi-direc-
tional links that are typically implemented using two separate
directional data communications paths.

In addition, the compute nodes (102) of parallel computer
are organized into at least one operational group (132) of
compute nodes for collective parallel operations on parallel
computer (100). An operational group of compute nodes 1s
the set of compute nodes upon which a collective parallel
operation executes. Collective operations are implemented
with data communications among the compute nodes of an
operational group. Collective operations are those functions
that involve all the compute nodes of an operational group. A
collective operation 1s an operation, a message-passing com-
puter program instruction that 1s executed simultaneously,
that 1s, at approximately the same time, by all the compute
nodes 1n an operational group of compute nodes. Such an
operational group may include all the compute nodes 1n a
parallel computer (100) or a subset all the compute nodes.
Collective operations are often built around point to point
operations. A collective operation requires that all processes
on all compute nodes within an operational group call the
same collective operation with matching arguments. A
‘broadcast’ 1s an example of a collective operation for moving
data among compute nodes of an operational group. A
‘reduce’ operation 1s an example of a collective operation that
executes arithmetic or logical functions on data distributed

US 8,365,186 B2

S

among the compute nodes of an operational group. An opera-
tional group may be implemented as, for example, an MPI
‘communicator.’

‘MPI’ refers to ‘Message Passing Interface,” a prior art
parallel communications library, a module of computer pro-
gram 1nstructions for data communications on parallel com-
puters. Examples of prior-art parallel communications librar-
ies that may be improved for use with systems according to
embodiments of the present invention imnclude MPI and the
‘Parallel Virtual Machine’ (‘PVM’) library. PVM was devel-
oped by the University of Tennessee, The Oak Ridge National
Laboratory, and Emory University. MPI 1s promulgated by
the MPI Forum, an open group with representatives from
many organizations that define and maintain the MPI stan-
dard. MPI at the time of this writing 1s a de facto standard for
communication among compute nodes running a parallel pro-
gram on a distributed memory parallel computer. This speci-
fication sometimes uses MPI terminology for ease of expla-
nation, although the use of MPI as such 1s not a requirement
or limitation of the present mnvention.

Some collective operations have a single originating or
receiving process runmng on a particular compute node 1n an
operational group. For example, in a ‘broadcast’ collective
operation, the process on the compute node that distributes
the data to all the other compute nodes 1s an originating,
process. In a ‘gather’ operation, for example, the process on
the compute node that recerved all the data from the other
compute nodes 1s a recerving process. The compute node on
which such an originating or recerving process runs 1s
referred to as a logical root.

Most collective operations are variations or combinations
of four basic operations: broadcast, gather, scatter, and
reduce. The interfaces for these collective operations are
defined in the MPI standards promulgated by the MPI Forum.
Algorithms for executing collective operations, however, are
not defined 1n the MPI standards. In a broadcast operation, all
processes specily the same root process, whose bufler con-
tents will be sent. Processes other than the root specity receive
butfers. After the operation, all butfers contain the message
from the root process.

In a scatter operation, the logical root divides data on the
root into segments and distributes a different segment to each
compute node in the operational group. In scatter operation,
all processes typically specily the same receive count. The
send arguments are only significant to the root process, whose
buffer actually contains sendcount*N elements of a given
data type, where N 1s the number of processes 1n the given
group ol compute nodes. The send buifer 1s divided and
dispersed to all processes (including the process on the logi-
cal root). Each compute node 1s assigned a sequential 1dent-
fier termed a ‘rank.” After the operation, the root has sent
sendcount data elements to each process 1n increasing rank
order. Rank O receives the first sendcount data elements from
the send buffer. Rank 1 receives the second sendcount data
elements from the send butfer, and so on.

A gather operation 1s a many-to-one collective operation
that 1s a complete reverse of the description of the scatter
operation. That 1s, a gather 1s a many-to-one collective opera-
tion 1 which elements of a datatype are gathered from the
ranked compute nodes 1nto a recerve buller 1n a root node.

A reduce operation 1s also a many-to-one collective opera-
tion that includes an arithmetic or logical function performed
on two data elements. All processes specily the same ‘count’
and the same arithmetic or logical function. After the reduc-
tion, all processes have sent count data elements from com-
puter node send buffers to the root process. In a reduction
operation, data elements from corresponding send buifer

10

15

20

25

30

35

40

45

50

55

60

65

6

locations are combined pair-wise by arithmetic or logical
operations to yield a single corresponding element 1n the root
process’s receive buller. Application specific reduction
operations can be defined at runtime. Parallel communica-
tions libraries may support predefined operations. MPI, for
example, provides the following pre-defined reduction opera-
tions:

MPI MAX MAaxmuIm

MPI MIN MINIMUIM

MPI SUM SuIm

MPI_PROD product
MPI_LAND logical and

MPI BAND bitwise and
MPI_LOR logical or

MPI BOR bitwise or
MPI_LXOR logical exclusive or
MPI BXOR bitwise exclusive or

In addition to compute nodes, the parallel computer (100)
includes 1nput/output (‘1/O’) nodes (110, 114) coupled to
compute nodes (102) through the global combining network
(106). The compute nodes 1n the parallel computer (100) are
partitioned into processing sets such that each compute node
in a processing set 1s connected for data communications to
the same 1/O node. Each processing set, therefore, 1s com-
posed of one I/O node and a subset of compute nodes (102).
The ratio between the number of compute nodes to the num-
ber of I/O nodes 1n the entire system typically depends on the
hardware configuration for the parallel computer. For
example, 1n some configurations, each processing set may be
composed of eight compute nodes and one I/O node. In some
other configurations, each processing set may be composed of
sixty-four compute nodes and one 1/0O node. Such example
are for explanation only, however, and not for limitation. Each
I/0 nodes provide 1/0 services between compute nodes (102)
of1ts processing set and a set ol I/O devices. In the example of
FIG. 1, the I/O nodes (110, 114) are connected for data
communications I/O devices (118, 120, 122) through local
area network (‘LAN’) (130) implemented using high-speed
Ethernet.

The parallel computer (100) of FIG. 1 also includes a
service node (116) coupled to the compute nodes through one
of the networks (104). Service node (116) provides services
common to pluralities of compute nodes, administering the
configuration of compute nodes, loading programs 1nto the
compute nodes, starting program execution on the compute
nodes, retrieving results of program operations on the com-
puter nodes, and so on. Service node (116) runs a service
application (124) and commumnicates with users (128) through
a service application interface (126) that runs on computer
terminal (122).

As described 1n more detail below 1n this specification, the
system of FIG. 1 operates generally for runtime optimization
of an application executing on a parallel computer according
to embodiments of the present invention. In the example
system of FIG. 1, a number of the compute nodes (102) are
organized into a communicator. A communicator 1s a collec-
tion of one or more processes executing on compute nodes of
a parallel computer. In some embodiments of the present
invention each compute node executes a single process and as
such a communicator 1s oftentimes referred to as a collection
of one or more compute nodes. Readers of skill in the art will
recognize, however, that a compute node may execute more
than one process concurrently and each process may be orga-
nized into a separate communicator. In such embodiments, a

US 8,365,186 B2

7

compute node may be considered a part of multiple commu-
nicators rather than just one. Communicators connect groups
of processes 1n a communications session, such as an MPI
session. Within a communicator each contained process has
an independent 1dentifier and the contained processes may be
arranged 1n an ordered topology. Communicators enable pro-
cesses within a group to communicate amongst one another,
via intracommunicator operations, and groups of processes to
communicate amongst one another via, itercommunicator
communications.

The system of FIG. 1 operates for runtime optimization of
the application (208) executing on the parallel computer
(100) by 1dentifying, by each compute node (102) during
application runtime, a collective operation (210) within the
application. Application runtime as the term 1s used here
refers to a time after the source code of the application 1s
compiled, linked, and loaded. That 1s, when the application 1s
‘running’ or executing.

The system of FIG. 1 continues runtime optimization
according to embodiments of the present invention by 1den-
tifying, by each compute node (102), a call site of the collec-
tive operation 1n the application. A call site of a collective
operation 1s a location of the function call of the collective
operation 1n the application.

The system of FIG. 1 continues runtime optimization
according to embodiments of the present invention by deter-
mimng, by each compute node, whether the collective opera-
tion 1s root-based. A root-based collective operation 1s a col-
lective operation having as a parameter of collective
operation function the rank of the root node. Examples of
root-based collective operations include a broadcast opera-
tion, a scatter operation, a gather operation, or a reduce opera-
tion. The root compute node of a root-based collective opera-
tion may have a different call site than all other compute
nodes for the same operation. If the collective operation 1s not
root-based, the system of FIG. 1 continues runtime optimiza-
tion 1n accordance with embodiments of the present invention
by establishing a tuning session administered by a self tuning,
module (212) for the collective operation 1n dependence upon
an 1dentifier of the call site of the collective operation and
executing the collective operation in the tuning session. If the
collective operation 1s root-based, the system of FIG. 1 con-
tinues runtime optimization according to embodiments of the
present ivention by determining, through use of a single
other collective operation, whether all compute nodes execut-
ing the application identified the collective operation at the
same call site. If all compute nodes executing the application
identified the collective operation at the same call site, the
system of FIG. 1 establishes a tuning session administered by
the self tuning module (212) for the collective operation in
dependence upon the identifier of the call site of the collective
operation and executes the collective operation 1n the tuning
session. If all compute nodes executing the application did
not 1identity the collective operation at the same call site, the
system of FIG. 1 executes the collective operation without
establishing a tuning session.

In a tuning session a self tuming module iteratively, for a
number of different algorithm, selects one or more algorithms
to carry out a collective operation and records performance
metrics of the operation of the executed collective operation.
One example of a prior art self tuning module that may
modified for runtime optimization in accordance with
embodiments of present invention 1s the Self Tuned Adaptive
Routines (‘'STAR’) for MPI. STAR 1s a library of routines
that, when linked with an MPI application, 1s capable of
identifying an optimized communication algorithm for col-
lective operation running within an application on a particular

10

15

20

25

30

35

40

45

50

55

60

65

8

operating platform. The STAR library typically includes two
components: a repository of algorithms and an automatic
algorithm selection mechanism that is configured to select an
algorithm for a collective operation of an application and/or
platiorm that meets predefined criteria. When an MPI appli-
cation mvokes, at runtime, a collective operation iteratively
many times, the STAR routine that realizes that operation
utilizes a different algorithm or set of algorithms from the
repository component of the STAR library to complete each
iterative invocation of the collective operation. Each subse-
quent mnvocation of the collective operation causes the STAR
routine to examine a different algorithm to carry out the
collective operations, dynamically at runtime. Once all algo-
rithms have been examined, the STAR automatic selection
mechanism selects an algorithm or set of algorithms for
which the performance of the execution of the collective
operation met predefined performance criteria. One primary
advantage to STAR 1s that STAR collects performance mea-
surements of an execution of a collective operation 1mple-
mented with a particular algorithm or set of algorithms, 1n the
context of an application platform, enabling an increased
accuracy and precision of measured performance.

Prior art implementations of STAR, however, provide sev-
eral drawbacks. The output of STAR after collecting perfor-
mance measurements and selecting algorithms, 1s a log file
that a user must manually process to make use of. In addition,
root-based MPI operations, such as a ‘broadcast’ or ‘allre-
duce’ operation, may hinder STAR because the root of the
collective may have a call site different from other nodes for
the same root-based collective. That 1s, call sites among the
compute nodes may be different for the same root-based
collective operation.

STAR also requires users or application developers to
modily the application source code, including adding an extra
parameter, a call site identifier, to an MPI collective operation
being mvoked. Because MPI collective routines may be
invoked 1n several call sites within an application because
STAR differentiates amongst call sites, the caller of a collec-
tive operation for which STAR 1s to tune must inform STAR
of the current call site. Prior art implementations of STAR
achieve this by modifying the application source code to
include a unique 1dentifier for each call site. Such modifica-
tion may be inefficient and require a greater amount of com-
puting overhead than necessary. Further, prior art implemen-
tation of STAR tune all collective operations at all message
s1zes and for all communicators, rather than providing tuning
for a subset of collective operations.

The arrangement of nodes, networks, and I/0 devices mak-
ing up the exemplary system 1illustrated 1in FIG. 1 are for
explanation only, not for limitation of the present invention.
Data processing systems capable of runtime optimization of
an application executing on a parallel computer according to
embodiments of the present invention may include additional
nodes, networks, devices, and architectures, not shown 1n
FIG. 1, as will occur to those of skill in the art. Although the
parallel computer (100) 1n the example of FIG. 1 includes
sixteen compute nodes (102), readers will note that parallel
computers configured according to embodiments of the
present invention may include any number of compute nodes.
In addition to Ethernet and JTAG, networks 1in such data
processing systems may support many data communications
protocols including for example TCP (Transmission Control
Protocol), IP (Internet Protocol), and others as will occur to
those of skill 1n the art. Various embodiments of the present
invention may be implemented on a variety of hardware plat-
forms 1n addition to those illustrated 1n FIG. 1.

US 8,365,186 B2

9

Runtime optimization of an application executing on a
parallel computer according to embodiments of the present
invention may be generally implemented on a parallel com-
puter that includes a plurality of compute nodes. In fact, such
computers may include thousands of such compute nodes.
Each compute node 1s 1n turn 1tself a kind of computer com-
posed of one or more computer processors (Or processing,
cores), 1ts own computer memory, and 1ts own input/output
adapters. For further explanation, therefore, FIG. 2 sets forth
a block diagram of an exemplary compute node useful 1n a
parallel computer capable of runtime optimization of an
application executing on the parallel computer according to
embodiments of the present mvention. The compute node
(152) of FIG. 2 includes one or more processing cores (164)
as well as random access memory (‘RAM’) (156). The pro-
cessing cores (164) are connected to RAM (156) through a
high-speed memory bus (154) and through a bus adapter
(194) and an extension bus (168) to other components of the
compute node (152). Stored 1n RAM (156) 1s an application
program (208), a module of computer program instructions
that carries out parallel, user-level data processing using par-
allel algorithms.

Also stored in RAM (156) 1s a messaging module (160), a
library of computer program instructions that carry out par-
allel communications among compute nodes, including point
to point operations as well as collective operations. Applica-
tion program (158) executes collective operations by calling
soltware routines 1n the messaging module (160). A library of
parallel communications routines may be developed from
scratch for use 1n systems according to embodiments of the
present mnvention, using a traditional programming language
such as the C programming language, and using traditional
programming methods to write parallel communications rou-
tines that send and receive data among nodes on two inde-
pendent data communications networks. Alternatively, exist-
ing prior art libraries may be improved to operate according to
embodiments of the present invention. Examples of prior-art

parallel communications libraries include the ‘Message Pass-
ing Interface” (*MPI’) library and the ‘Parallel Virtual

Machine’ (‘PVM”) library.

Also stored in RAM (156) 1s a self tuning module (212), a
module of computer program instructions that carries out
runtime optimization of the application (208) on the parallel
computer of which the compute node (152) 1s a part. The self
tuning module (212) prior to runtime 1s linked with the appli-
cation (208) in such a way that the application, when execut-
ing, calls collective operations through a call to a library
tfunction provided by the self tuning module (212) rather than
a typical call to the messaging module (160). At runtime of
the application (208), theretfore, when the application (208)
identifies a collective operation (210), that ‘encounters’ a
collective operation, within the application, the compute node
(152), through the self tuning module (212), 1dentifies a call
site (214) of the collective operation (210) in the application
(208).

The example compute node (152) of FIG. 2, through the
self tuning module (212) also determines whether the collec-
tive operation (210) 1s root-based. It the collective operation
1s not root-based, the self tuning module (212) establishes a
tuning session (216) administered by the self tuning module
(212) for the collective operation (210) in dependence upon
an 1dentifier of the call site, a call site ID (214), of the collec-
tive operation and executes the collective operation (210) in
the tuning session (216). Executing a collective operation
(210) 1n a tuning session 1s carried out by executing the
collective operation 1teratively with a number of different

5

10

15

20

25

30

35

40

45

50

55

60

65

10

algorithms or sets of algorithms and collective performance
metrics of each iterative execution.

I1 the collective operation 1s root-based, the example com-
pute node (152) of FIG. 2 determines, through use of a single
other collective operation—a collective operation other than
the collective operation (210) identified 1n the application
(208)—whether all compute nodes executing the application
identified the collective operation at the same call site. It all
compute nodes executing the application identified the col-
lective operation at the same call site, the self tuning module
may establish a tuning session administered by the self tuning
module for the collective operation 1n dependence upon the
identifier of the call site of the collective operation and
execute the collective operation 1n the tuning session. It all
compute nodes executing the application did not 1dentity the
collective operation at the same call site, the compute node
(152) may execute the collective operation without establish-
ing a tuning session.

During finalization of the application (208), the self tuning,
module (212) may select, for a particular collective operation
of the application, such as collective operation (210), 1n
dependence upon one or more tuning sessions (216) for the
particular collective operation, one or more algorithms to
carry out the particular collective operation upon subsequent
executions of the application (208). The one or more algo-
rithms selected to carry out the particular collective operation
represent an optimized set of algorithms (including one or
more algorithms) to carry out the particular collective opera-
tion. The self tuning module (212) may record the one or more
selected algorithms. In the example compute node (152) of
FIG. 2, the self tuning module (212) records selected algo-
rithms 1n a data structure globally available to all compute
nodes (152) 1n the communicator, 1n an optimized collective
operation library (218). The library is linked with the appli-
cation (208) upon executions subsequent to 1nitial self tuning
and provides the application with functions that return the
selected algorithms for a particular collective operation (210)
in the application (208) when 1nvoked or called by the appli-
cation. That 1s, during a subsequent execution of the applica-
tion (208) and without performing another tuning session, the
application (208), through utilization of the optimized collec-
tive operation library, may carry out the particular collective
operation (210) of the application (208) with the recorded
selected algorithms that represent optimized algorithms.

Also stored in RAM (156) 1s an operating system (162), a
module of computer program instructions and routines for an
application program’s access to other resources of the com-
pute node. It1s typical for an application program and parallel
communications library 1n a compute node of a parallel com-
puter to run a single thread of execution with no user login and
no security 1ssues because the thread 1s entitled to complete
access to all resources of the node. The quantity and com-
plexity of tasks to be performed by an operating system on a
compute node 1n a parallel computer therefore are smaller and
less complex than those of an operating system on a serial
computer with many threads running simultaneously. In addi-
tion, there 1s no video I/O on the compute node (152) of FIG.
2, another factor that decreases the demands on the operating
system. The operating system may therefore be quite light-
weight by comparison with operating systems of general
purpose computers, a pared down version as it were, or an
operating system developed specifically for operations on a
particular parallel computer. Operating systems that may use-

tully be improved, simplified, for use 1n a compute node
include UNIX™ [1nux™, Microsoft XP™, AIX™ [BM’s

15/0OS™ and others as will occur to those of skill in the art.

US 8,365,186 B2

11
The exemplary compute node (152) of FIG. 2 includes

several communications adapters (172, 176, 180, 188) for

[

implementing data communications with other nodes of a
parallel computer. Such data communications may be carried
out serially through RS-232 connections, through external
buses such as Umversal Serial Bus (‘USB’), through data

communications networks such as IP networks, and 1n other
ways as will occur to those of skill in the art. Communications
adapters implement the hardware level of data communica-
tions through which one computer sends data communica-
tions to another computer, directly or through a network.
Examples of communications adapters usetul in systems that
provide runtime optimization of an application executing on
a parallel computer according to embodiments of the present
invention include modems for wired communications, Ether-
net (IEEE 802.3) adapters for wired network communica-
tions, and 802.11b adapters for wireless network communi-
cations.

The data communications adapters in the example of FIG.
2 include a Gigabit Ethernet adapter (172) that couples
example compute node (152) for data communications to a
(Gigabit Ethernet (174). Gigabit Ethernet 1s a network trans-
mission standard, defined in the IEEE 802.3 standard, that
provides a data rate of 1 billion bits per second (one gigabit).
(Gigabit Ethernet 1s a variant of Ethernet that operates over
multimode fiber optic cable, single mode fiber optic cable, or
unshielded twisted pair.

The data communications adapters in the example of FIG.
2 include a JTAG Slave circuit (176) that couples example
compute node (152) for data communications to a JTAG
Master circuit (178). JTAG 1s the usual name used for the
IEEE 1149.1 standard entitled Standard Test Access Port and
Boundary-Scan Architecture for test access ports used for
testing printed circuit boards using boundary scan. JTAG 1s so
widely adapted that, at this time, boundary scan 1s more or
less synonymous with JTAG. JTAG i1s used not only for
printed circuit boards, but also for conducting boundary scans
of mtegrated circuits, and 1s also useful as a mechanism for
debugging embedded systems, providing a convenient “back
door” 1nto the system. The example compute node of FIG. 2
may be all three of these: It typically includes one or more
integrated circuits installed on a printed circuit board and may
be implemented as an embedded system having 1ts own pro-
cessor, 1ts own memory, and 1ts own 1/O capability. JTAG
boundary scans through JTAG Slave (176) may efliciently
configure processor registers and memory in compute node
(152) for use in runtime optimization ol an application
executing on a parallel computer according to embodiments
of the present invention.

The data communications adapters in the example of FIG.
2 includes a Pomnt To Point Adapter (180) that couples
example compute node (152) for data communications to a
network (108) that 1s optimal for point to point message
passing operations such as, for example, a network config-
ured as a three-dimensional torus or mesh. Point To Point
Adapter (180) provides data communications 1n six direc-
tions on three communications axes, X, vy, and z, through six
bidirectional links: +x (181), —x (182), +y (183), -y (184), +z
(185), and -z (186).

The data communications adapters in the example of FIG.
2 1includes a Global Combining Network Adapter (188) that
couples example compute node (152) for data communica-
tions to a network (106) that 1s optimal for collective message
passing operations on a global combiming network config-
ured, for example, as a binary tree. The Global Combiming,
Network Adapter (188) provides data communications

10

15

20

25

30

35

40

45

50

55

60

65

12

through three bidirectional links: two to children nodes (190)
and one to a parent node (192).

Example compute node (152) includes two arithmetic
logic units (‘ALUs’). ALU (166) 1s a component of each
processing core (164), and a separate ALU (170) 1s dedicated
to the exclusive use of Global Combiming Network Adapter
(188) for use 1n performing the arithmetic and logical func-
tions of reduction operations. Computer program instructions
of a reduction routine in parallel communications library
(160) may latch an instruction for an arithmetic or logical
function 1nto instruction register (169). When the arithmetic
or logical function of a reduction operation 1s a ‘sum’ or a
‘logical or,” for example, Global Combining Network Adapter
(188) may execute the arithmetic or logical operation by use
of ALU (166) 1n processor (164) or, typically much faster, by
use dedicated ALU (170).

The example compute node (152) of FIG. 2 includes a
direct memory access (‘DMA’) controller (195), which 1s
computer hardware for direct memory access and a DMA
engine (197), which 1s computer soitware for direct memory
access. The DMA engine (197) of FIG. 2 1s typically stored 1n
computer memory of the DMA controller (195). Direct
memory access includes reading and writing to memory of
compute nodes with reduced operational burden on the cen-
tral processing units (164). A DMA transier essentially copies
a block of memory from one location to another, typically
from one compute node to another. While the CPU may
initiate the DMA transier, the CPU does not execute it.

For turther explanation, FIG. 3A 1illustrates an exemplary
Point To Point Adapter (180) useful 1n systems capable of
runtime optimization of an application executing on a parallel
computer according to embodiments of the present invention.
Point To Point Adapter (180) 1s designed for use 1n a data
communications network optimized for point to point opera-
tions, a network that organizes compute nodes 1n a three-
dimensional torus or mesh. Point To Point Adapter (180) 1n
the example of FIG. 3A provides data communication along
an x-axis through four unidirectional data communications
links, to and from the next node 1n the —x direction (182) and
to and from the next node 1n the +x direction (181). Point To
Point Adapter (180) also provides data communication along
a y-axis through four unidirectional data communications
links, to and from the next node 1n the —y direction (184) and
to and from the next node 1n the +y direction (183). Point To
Point Adapter (180) 1n FIG. 3A also provides data communi-
cation along a z-axis through four unidirectional data com-
munications links, to and from the next node 1n the —z direc-
tion (186) and to and from the next node 1n the +z direction
(185).

For further explanation, FIG. 3B 1llustrates an exemplary
(Global Combining Network Adapter (188) useful 1n systems
capable of runtime optimization of an application executing
on a parallel computer according to embodiments of the
present invention. Global Combining Network Adapter (188)
1s designed for use 1n a network optimized for collective
operations, a network that organizes compute nodes of a
parallel computer in a binary tree. Global Combining Net-
work Adapter (188) 1n the example of FIG. 3B provides data
communication to and from two children nodes through four
unmdirectional data communications links (190). Global
Combining Network Adapter (188) also provides data com-
munication to and from a parent node through two unidirec-
tional data communications links (192).

For further explanation, FIG. 4 sets forth a line drawing,
illustrating an exemplary data communications network
(108) optimized for point to point operations useful 1n sys-
tems capable of runtime optimization of an application

US 8,365,186 B2

13

executing on a parallel computer accordance with embodi-
ments of the present invention. In the example of FIG. 4, dots
represent compute nodes (102) of a parallel computer, and the
dotted lines between the dots represent data communications
links (103) between compute nodes. The data communica-
tions links are implemented with point to point data commu-
nications adapters similar to the one illustrated for example in
FIG. 3A, with data communications links on three axes, X, v,
and z, and to and fro 1n si1x directions +x (181), —x (182), +y
(183), —y (184), +z (185), and —z (186). The links and com-
pute nodes are organized by this data communications net-
work optimized for point to point operations into a three
dimensional mesh (105). The mesh (105) has wrap-around
links on each axis that connect the outermost compute nodes
in the mesh (1035) on opposite sides of the mesh (105). These
wrap-around links form part of a torus (107). Each compute
node 1n the torus has a location 1n the torus that 1s uniquely
specified by a set ol X, y, z coordinates. Readers will note that
the wrap-around links 1n the y and z directions have been
omitted for clarity, but are configured 1n a similar manner to
the wrap-around link 1llustrated in the x direction. For clarity
of explanation, the data communications network ol FI1G. 4 1s
illustrated with only 27 compute nodes, but readers will rec-
ognize that a data communications network optimized for
point to point operations for use 1n runtime optimization of an
application executing on a parallel computer in accordance
with embodiments of the present invention may contain only
a few compute nodes or may contain thousands of compute
nodes.

For fturther explanation, FIG. 5 sets forth a line drawing
illustrating an exemplary data communications network
(106) optimized for collective operations usetful in systems
capable of runtime optimization of an application executing
on a parallel computer 1n accordance with embodiments of
the present invention. The example data communications net-
work of FIG. 5 includes data communications links con-
nected to the compute nodes so as to organize the compute
nodes as a tree. In the example of FIG. 5, dots represent
compute nodes (102) of a parallel computer, and the dotted
lines (103) between the dots represent data communications
links between compute nodes. The data communications
links are implemented with global combining network adapt-
ers similar to the one 1llustrated for example 1n FIG. 3B, with
cach node typically providing data communications to and
from two children nodes and data communications to and
from a parent node, with some exceptions. Nodes 1n a binary
tree (106) may be characterized as a physical root node (202),
branch nodes (204), and leat nodes (206). The root node (202)
has two children but no parent. The leat nodes (206) each has
a parent, but leal nodes have no children. The branch nodes
(204) each has both a parent and two children. The links and
compute nodes are thereby organized by this data communi-
cations network optimized for collective operations nto a
binary tree (106). For clanty of explanation, the data commu-
nications network of FIG. 5 1s illustrated with only 31 com-
pute nodes, but readers will recognize that a data communi-
cations network optimized for collective operations for use 1in
systems that provide runtime optimization of an application
executing on a parallel computer 1n accordance with embodi-
ments of the present invention may contain only a few com-
pute nodes or may contain thousands of compute nodes.

In the example of FIG. 5, each node 1n the tree 1s assigned
a umt 1dentifier referred to as a ‘rank’ (250). A node’s rank
uniquely 1dentifies the node’s location in the tree network for
use 1n both point to point and collective operations in the tree
network. The ranks 1n this example are assigned as integers
beginning with O assigned to the root node (202), 1 assigned

10

15

20

25

30

35

40

45

50

55

60

65

14

to the first node 1n the second layer of the tree, 2 assigned to
the second node 1n the second layer of the tree, 3 assigned to
the first node 1n the third layer of the tree, 4 assigned to the
second node 1n the third layer of the tree, and so on. For ease
ol illustration, only the ranks of the first three layers of the tree
are shown here, but all compute nodes 1n the tree network are
assigned a unique rank.

For further explanation, FIG. 6 sets forth a flow chart
illustrating an exemplary method of runtime optimization of
an application executing on a parallel computer according to
embodiments of the present invention. In the method of FIG.
6, the parallel computer includes a plurality of compute nodes
organized into a communicator. The method of FIG. 6
includes identitying (602), by each compute node during
application runtime, a collective operation (210) within the
application. The method of FIG. 6, also includes 1dentifying
(604), by each compute node, a call site (214) of the collective
operation 1n the application.

The method of FIG. 6 also includes determiming (606), by
cach compute node, whether the collective operation 1s root-
based. If the collective operation 1s not root-based, the
method of FIG. 6 continues by establishing (608) a tuning
session (216) administered by a self tuning module for the
collective operation 1n dependence upon an 1dentifier of the
call site of the collective operation and executing (610) the
collective operation 1n the tuning session. Executing (610) the
collective operation 1n the tuning session (216) may include
storing performance metrics (612) in the tuning session (216).

I1 the collective operation 1s root-based, the method of FIG.
6 continues by determining (614), through use of a single
other collective operation, whether all compute nodes execut-
ing the application identified the collective operation at the
same call site (214). If all compute nodes executing the appli-
cation identified the collective operation at the same call site,
the method of FIG. 6 continues by establishing (608) a tuning
session (216) administered by the self tuning module for the
collective operation 1n dependence upon the 1dentifier of the
call site of the collective operation and executing (610) the
collective operation in the tuning session. If all compute
nodes executing the application did not identify the collective
operation at the same call site, the method of FIG. 6 continues
by executing (616) the collective operation without establish-
ing a tuning session (216).

For turther explanation, FIG. 7 sets forth a flow chart
illustrating a further exemplary method of runtime optimiza-
tion of an application executing on a parallel computer
according to embodiments of the present imvention. The
method of FIG. 7 1s similar to the method of FIG. 6 1n that the
method of FIG. 7 1s carried out by compute nodes of a parallel
computer and the compute nodes are organized nto a com-
municator. The method of FIG. 7 1s also similar to the method
of FIG. 6 1n that the method of FIG. 7 includes 1dentifying
(602) a collective operation (210); identitying (604) a call site
of the collective operation 1n the application; determining
(606) whether the collective operation 1s root-based; 1if the
collective operation 1s not root-based: establishing (608) a
tuning session (216) and executing (610) the collective opera-
tion (210) in the tuning session; 1f the collective operation 1s
root-based, determining (614) whether all compute nodes
identified the same call site; 11 all compute nodes 1dentified
the same call site, establishing (608) a tuning session and
executing (610) the collective operation 1n the tuning session;
and 11 all compute nodes did not identify the same call site,
executing (616) the collective operation without establishing
a tuning session.

The method of FIG. 7 differs from the method of FIG. 6,
however, in that 1n the method of FIG. 7, identitying (602) a

US 8,365,186 B2

15

collective operation within the application includes 1dentity-
ing (706) a collective operation to tune in dependence upon a
hint comprising an attribute of a function call that passes
through the communicator to the self tuning module to indi-
cate whether to tune the collective operation. In MPI, each
collective operation includes a communicator parameter. In
accordance with some embodiments of the present invention,
this commumcator parameter may be modified to include a
hint attribute, one or more bits for example, that indicate
whether to tune a particular collective operation. Such hints
enable an application developer to selectively indicate those
collective operation the developer intends to tune and those
the developer intends to not tune.

In the method of FIG. 7, identitying (604) a call site of the
collective operation in the application 1s carried out by calling
(702) a traceback function and receiwving (704) as a return
from the traceback function a unique memory address for the
collective operation. The application executing on each com-
pute node, being linked with self tuning module prior to
execution, may encounter a collective operation and execute
the collective operation with a call to the self tuning module
rather than a standard messaging module. The self tuning
module, upon receipt of such a call, imtially determines the
call site by calling the traceback function. The traceback
function returns an array of pointer addresses that represents
a sequence of calls or mvocations of functions. Each pointer
address 1s unique to a particular call site and may be com-
posed 1n various ways, including for example, as a composi-
tion of a caller’s name or 1dentification and an offset from a
point “0” to the point in the code at which the function 1s
called. The self tuning module may 1dentily by the call site of
the collective operation by determining the address in the
pointer array returned from the traceback function corre-

sponding to the call executed previous to the traceback func-
tion.

For further explanation, FIG. 8 sets forth a flow chart
illustrating a further exemplary method of runtime optimiza-
tion of an application executing on a parallel computer
according to embodiments of the present mmvention. The
method of FIG. 8 1s similar to the method of FIG. 6 1n that the
method of FIG. 8 1s carried out by compute nodes of a parallel
computer and the compute nodes are organized into a com-
municator. The method of FIG. 8 1s also similar to the method
of FIG. 6 1n that the method of FIG. 8 includes 1dentifying
(602) a collective operation (210); identitying (604) a call site
of the collective operation 1n the application; determining
(606) whether the collective operation is root-based; if the
collective operation 1s not root-based: establishing (608) a
tuning session (216) and executing (610) the collective opera-
tion (210) in the tuming session; 1f the collective operation 1s
root-based, determiming (614) whether all compute nodes
identified the same call site; 11 all compute nodes 1dentified
the same call site, establishing (608) a tuning session and
executing (610) the collective operation in the tuning session;
and 11 all compute nodes did not identily the same call site,
executing (616) the collective operation without establishing
a tuning session.

The method of FIG. 8 differs from the method of FIG. 6,
however, 1n that determining (614) whether all compute
nodes executing the application identified the collective
operation at the same call site 1s carried out by performing
(802) on all the compute nodes of the communicator an ‘all-
reduce’ collective operation to identily the minimum and
maximum values of all of the identified call sites. If the
mimmum and maximum values are the same, all compute
nodes 1dentified the same call site. To reduce the overhead of
determining whether all nodes 1dentified the same call site, a

10

15

20

25

30

35

40

45

50

55

60

65

16

single allreduce operation 1s carried out, rather than two. The
following pseudocode 1s an example of determining, by a
compute node, whether all nodes 1dentified the same call site:

int Beast()

1

int tmp[2], result[2];

tmp[0] = call site id;

tmp[1] = call site id;

MPI Allreduce(tmp, result, 2, MPI UNSIGNED LONG, MPI MAX,
COIMIM);

if (result[0] != (result[1]))
same call site = 0;
h

In the psuedocode example above, the compute node
declares two arrays each having two elements: ‘tmp’ and

‘result.” In the first element of ‘tmp,” the compute node stores
the present value of the call site 1dentifier of the collective
operation. In the second element ‘tmp,” the compute node
stores the negative of the call site 1dentifier. The allreduce
function includes as parameters, the source or send builer,
‘tmp,” the number of elements of the send buitler, two, the data
type of elements, and the communicator 1dentifier. The allre-
duce operation when executed finds the maximum value of
the positive call site identifier among all compute nodes in the
communicator and the maximum value of the negative call
site 1dentifier among all compute nodes 1n the communicator.
The maximum of the negative call site identifiers among all
compute nodes 1s the negative of the minimum call side
identifier among all compute nodes. The results of the allre-
duce, the maximum of the positive call site IDs and the
maximum of the negative call site IDs, 1s stored 1n the com-
pute node’s recerve buller—the ‘result’ array. The compute
node then determines 1 the maximum call site i1dentifier
among all compute nodes (the first element of the ‘result’
array) 1s not equal to the negative maximum of the negative
call site identifiers (the second element in the ‘result” array
and the mimimum call site identifier). If the two are not equal,
then at least one compute node 1dentified the collective opera-
tion at a different call site. Readers of skill in the art waill
recognize, that although the above pseudocode example uti-
lizes the MPI_Max operation, the MPI_Min operation, find-
ing the minimum rather than the maximum, may be utilized to
achieve the same results.

For further explanation, FIG. 9 sets forth a flow chart
illustrating a further exemplary method of runtime optimiza-
tion of an application executing on a parallel computer
according to embodiments of the present imvention. The
method of FIG. 9 1s similar to the method of FIG. 6 1n that the
method of FIG. 9 1s carried out by compute nodes of a parallel
computer and the compute nodes are organized nto a com-
municator. The method of FIG. 9 1s also similar to the method
of FIG. 6 1n that the method of FIG. 9 includes 1dentifying
(602) a collective operation (210); identitying (604) a call site
of the collective operation 1in the application; determining
(606) whether the collective operation 1s root-based; 1if the
collective operation 1s not root-based: establishing (608) a
tuning session (216) and executing (610) the collective opera-
tion (210) 1n the tuming session; 1 the collective operation 1s
root-based, determining (614) whether all compute nodes
identified the same call site; 11 all compute nodes 1dentified
the same call site, establishing (608) a tuning session and
executing (610) the collective operation 1n the tuning session;
and 11 all compute nodes did not identify the same call site,
executing (616) the collective operation without establishing
a tuning session.

US 8,365,186 B2

17

The method of FIG. 9 differs from the method of FIG. 10 1n
that the method of FIG. 9 includes selecting (902), for a
particular collective operation of the application 1n depen-
dence upon one or more tuning sessions for the particular
collective operation, one or more algorithms to carry out the
particular collective operation upon subsequent executions of
the application. In the method of FIG. 9, the one or more
algorithms represent an optimized set of algorithms to carry
out the particular collective operation. The method of FI1G. 10
also 1ncludes recording (904) the one or more selected algo-
rithms. During a subsequent execution of the application and
without performing another tuning session, the method of
FIG. 10 includes carrying (902) out the particular collective
operation of the application with the recorded selected algo-
rithms. In this way, the application may be optimized after
only a single execution.

Further explanation of the recording (904) and carrying out
(902) of the application of FIG. 9, FIG. 10 sets forth a flow
chart illustrating a further exemplary method of runtime opti-
mization of an application executing on a parallel computer
according to embodiments of the present invention. Record-
ing (904) the one or more selected algorithms for the tuning
session may be carried out when the finalization of applica-
tion runtime, such as, for example, 1n response to an MPI_fi-
nalize function call.

In the method of FIG. 10, recording (904) the one or more
selected algorithms from the tuning session 1s carried out by
recording (1002), in association with the one or more selected
algorithms, an 1dentifier of the call site (214) for the particular
collective operation, a message size, and a communicator
identifier. The associated data may be stored as a global data
structure 1n a custom library that may be queried upon sub-
sequent executions of the application. On a subsequent execu-
tion of the application, the custom library may be compiled
and linked with the application, such that when a collective
operation 1s 1nvoked, a signature for the collective operation
(the associated data mentioned above) 1s created dynamically
during runtime and passed as an attribute to a ‘find_best_al-
gorithm()’ function. The “find_best_function’ algorithm may
search the global data structure for a matching signature and
returns the previously selected, optimized algorithms which
are then invoked to carry out the collective operation.

Also 1n the method of FIG. 10, recording (1002) the one or
more selected algorithms from the tuning session includes
identifying (1002) any of the tuned collective operations that
are non-critical collective operations and carrying (1004) out
the particular collective operation includes carrying out the
non-critical collective operations with standard messaging,
module algorithms. Non-critical collective operations may be
of two types: operations with alow number of invocations and
low weight (total execution time), or operations for which the
selected algorithms match standard messaging module algo-
rithms.

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may

10

15

20

25

30

35

40

45

50

55

60

65

18

be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, intfrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or 1n connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with an 1nstruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soitware package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the tlowchart 1llustrations and/
or block diagrams, and combinations of blocks 1n the flow-
chart illustrations and/or block diagrams, can be i1mple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program mstructions may also be stored 1n
a computer readable medium that can direct a computer, other

US 8,365,186 B2

19

programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified 1n the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the mstructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
tfunctions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

It will be understood from the foregoing description that
modifications and changes may be made 1n various embodi-
ments of the present invention without departing from 1ts true
spirit. The descriptions 1n this specification are for purposes
of illustration only and are not to be construed 1n a limiting
sense. The scope of the present invention 1s limited only by
the language of the following claims.

What 1s claimed 1s:

1. A method of runtime optimization of an application
executing on a parallel computer, the parallel computer hav-
ing a plurality of compute nodes organized into a communi-
cator, the method comprising:

identifying, by each compute node during application runt-

ime, a collective operation within the application;
identifying, by each compute node, a call site of the col-
lective operation in the application;

determining, by each compute node, whether the collective

operation 1s root-based;

if the collective operation 1s not root-based: establishing a

tuning session administered by a self tuning module for
the collective operation 1n dependence upon an identifier
of the call site of the collective operation and executing
the collective operation in the tuning session;

if the collective operation 1s root-based, determining,

through use of a single other collective operation,
whether all compute nodes executing the application
identified the collective operation at the same call site;
if all compute nodes executing the application 1dentified
the collective operation at the same call site, establishing
a tuning session administered by the self tuning module
for the collective operation 1n dependence upon the 1den-

5

10

15

20

25

30

35

40

45

50

55

60

65

20

tifier of the call site of the collective operation and
executing the collective operation in the tuning session;
and

if all compute nodes executing the application did not

identily the collective operation at the same call site,
executing the collective operation without establishing a
tuning session.

2. The method of claim 1 wherein a root-based collective
operation comprises one of: a broadcast operation, a scatter
operation, a gather operation, or a reduce operation.

3. The method of claim 1 wherein 1dentifying a collective
operation within the application further comprises 1dentify-
ing a collective operation to tune 1n dependence upon a hint
comprising an attribute of a function call that passes through
the communicator to the self tuning module to indicate
whether to tune the collective operation.

4. The method of claim 1 wherein 1dentifying the call site
of the collective operation in the application further com-
prises calling a traceback function and receiving as a return
from the traceback function a unique memory address for the
collective operation.

5. The method of claim 1 wherein determining whether all
compute nodes executing the application identified the col-
lective operation at the same call site further comprising
performing on all the compute nodes of the communicator a
single ‘allreduce’ collective operation to 1dentify the mini-
mum and maximum values of all of the 1dentified call sites.

6. The method of claim 1 further comprising;:

selecting, for a particular collective operation of the appli-

cation 1n dependence upon one or more tuning sess1o0ns
for the particular collective operation, one or more algo-
rithms to carry out the particular collective operation
upon subsequent executions of the application, the one
or more algorithms representing an optimized set of
algorithms to carry out the particular collective opera-
tion;

recording the one or more selected algorithms; and

during a subsequent execution of the application and with-

out performing another tuning session, carrying out the
particular collective operation of the application with the
recorded selected algorithms.

7. The method of claim 6 wherein recording the one or
more selected algorithms from the tuning session further
comprises recording, 1n association with the one or more
selected algorithms, an 1dentifier of the call site for the par-
ticular collective operation, a message size, and a communi-
cator 1dentifier.

8. The method of claim 6 wherein:

recording the one or more selected algorithms from the

tuning session further comprises 1dentifying any of the
tuned collective operations that are non-critical collec-
tive operations; and

carrying out the particular collective operation of the appli-

cation with the recorded selected algorithms turther
comprises carrying out the non-critical collective opera-
tions with standard messaging module algorithms.

9. An apparatus for runtime optimization of an application
executing on a parallel computer, the parallel computer hav-
ing a plurality of compute nodes organized into a communi-
cator, the apparatus comprising a computer processor and a
computer memory operatively coupled to the computer pro-
cessor, the computer memory having disposed within 1t com-
puter program instructions capable of:

identitying, by each compute node during application runt-

ime, a collective operation within the application;
identifying, by each compute node, a call site of the col-
lective operation 1n the application;

US 8,365,186 B2

21

determining, by each compute node, whether the collective
operation 1s root-based;

if the collective operation 1s not root-based: establishing a
tuning session administered by a self tuning module for
the collective operation 1n dependence upon an identifier
of the call site of the collective operation and executing
the collective operation in the tuning session;

i the collective operation 1s root-based, determining
whether all compute nodes executing the application
identified the collective operation at the same call site;

if all compute nodes executing the application 1dentified
the collective operation at the same call site, establishing
a tuning session administered by the self tuning module
for the collective operation 1n dependence upon the 1den-
tifier of the call site of the collective operation and

executing the collective operation 1n the tuning session;
and

if all compute nodes executing the application did not

identify the collective operation at the same call site,
executing the collective operation without establishing a
tuning session.

10. The apparatus of claim 9 wherein a root-based collec-
tive operation comprises one of: a broadcast operation, a
scatter operation, a gather operation, or a reduce operation.

11. The apparatus of claim 9 wherein identifying a collec-
tive operation within the application further comprises 1den-
tifying a collective operation to tune 1n dependence upon a
hint comprising an attribute of a function call that passes
through the communicator to the self tuning module to 1ndi-
cate whether to tune the collective operation.

12. The apparatus of claim 9 wherein 1dentiiying the call
site of the collective operation 1n the application further com-
prises calling a traceback function and recerving as a return
from the traceback function a unique memory address for the
collective operation.

13. The apparatus of claim 9 wherein determining whether
all compute nodes executing the application i1dentified the
collective operation at the same call site further comprising
performing on all the compute nodes of the communicator an
‘allreduce’ collective operation to identity the minimum and
maximum values of all of the 1dentified call sites.

14. The apparatus of claim 9 further comprising computer
program 1nstructions capable of:

selecting, for a particular collective operation of the appli-

cation 1n dependence upon one or more tuning sess10ns
for the particular collective operation, one or more algo-
rithms to carry out the particular collective operation,
the one or more algorithms representing an optimized
set of algorithms to carry out the particular collective
operation;

recording the one or more selected algorithms; and

during a subsequent execution of the application and with-

out performing another tuning session, carrying out the
particular collective operation of the application with the
recorded selected algorithms.

15. The apparatus of claim 14 wherein recording the one or
more selected algorithms from the tuning session further
comprises recording, in association with the one or more
selected algorithms, an 1dentifier of the call site for the par-
ticular collective operation, a message size, and a communi-
cator 1dentifier.

16. The apparatus of claim 14 wherein:

recording the one or more selected algorithms from the

tuning session further comprises identifying any of the
tuned collective operations that are non-critical collec-
tive operations; and

5

10

15

20

25

30

35

40

45

50

55

60

65

22

carrying out the particular collective operation of the appli-
cation with the recorded selected algorithms turther
comprises carrying out the non-critical collective opera-
tions with standard messaging module algorithms.

17. A computer program product for runtime optimization
of an application executing on a parallel computer, the paral-
lel computer having a plurality of compute nodes organized
into a communicator, the computer program product disposed
in a computer readable storage medium, the computer pro-
gram product comprising computer program instructions
capable of:

identitying, by each compute node during application runt-
ime, a collective operation within the application;

identitying, by each compute node, a call site of the col-
lective operation 1n the application;

determiming, by each compute node, whether the collective
operation 1s root-based;

11 the collective operation 1s not root-based: establishing a
tuning session administered by a self tuning module for
the collective operation 1n dependence upon an identifier
of the call site of the collective operation and executing
the collective operation in the tuning session;

i the collective operation i1s root-based, determining
whether all compute nodes executing the application
identified the collective operation at the same call site;

11 all compute nodes executing the application 1dentified
the collective operation at the same call site, establishing
a tuning session administered by the self tuning module
for the collective operation in dependence upon the 1den-
tifier of the call site of the collective operation and
executing the collective operation 1n the tuning session;
and

i1 all compute nodes executing the application did not
identily the collective operation at the same call site,
executing the collective operation without establishing a
tuning session.

18. The computer program product of claim 17 wherein a
root-based collective operation comprises one of: a broadcast
operation, a scatter operation, a gather operation, or a reduce
operation.

19. The computer program product of claim 17 wherein
identifving a collective operation within the application fur-
ther comprises i1dentifying a collective operation to tune in
dependence upon a hint comprising an attribute of a function
call that passes through the communicator to the self tuning
module to indicate whether to tune the collective operation.

20. The computer program product of claim 17 wherein
identifying the call site of the collective operation in the
application further comprises calling a traceback function
and receiving as a return from the traceback function a unique
memory address for the collective operation.

21. The computer program product of claim 17 wherein
determining whether all compute nodes executing the appli-
cation 1dentified the collective operation at the same call site
further comprising performing on all the compute nodes of
the communicator an ‘allreduce’ collective operation to 1den-
t1ly the minimum and maximum values of all of the identified
call sites.

22. The computer program product of claim 17 further
comprising computer program instructions capable of:

selecting, for a particular collective operation of the appli-
cation 1n dependence upon one or more tuning sess10ns
for the particular collective operation, one or more algo-
rithms to carry out the particular collective operation,
the one or more algorithms representing an optimized
set of algorithms to carry out the particular collective
operation;

US 8,365,186 B2

23 24
recording the one or more selected algorithms; and 24. The computer program product of claim 22 wherein:
during a subsequent execution of the application and with- recording the one or more selected algorithms from the
out performing another tuning session, carrying out the tuning session further comprises identifying any of the
particular collective operation of the application with the tuned collective operations that are non-critical collec-
recorded selected algorithms. 5 tive operations; and
23. The computer program product of claim 22 wherein carrying out the particular collective operation of the appli-
recording the one or more selected algorithms from the tuning, cation with the recorded selected algorithms further
session further comprises recording, 1in association with the comprises carrying out the non-critical collective opera-
one or more selected algorithms, an 1dentifier of the call site tions with standard messaging module algorithms.

tor the particular collective operation, a message size, and a 10
communicator 1dentifier. £ % % k%

	Front Page
	Drawings
	Specification
	Claims

