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MAGNETIC MEMORY SENSING CIRCUIT

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of U.S. applica-
tion Ser. No. 12/040,801 filed on Feb. 29, 2008, entitled “An
Improved Low Resistance High-TMR Magnetic Tunnel
Junction and Process for Fabrication Thereotf,” which 1s a
continuation-n-part of U.S. application Ser. No. 11/674,124
filed on Feb. 12, 2007, entitled “Non-Uniform Switching
Based Non-Volatile Magnetic Based Memory,” which claims
priority to U.S. Provisional Application No. 60/853,115 filed
on Oct. 20, 2006 entitled “Non-Uniform Switching Based
Non-Volatile Magnetic Based Memory™; and 1s a further con-
tinuation-in-part of U.S. application Ser. No. 11/678,515 filed
Feb. 23, 2007, entitled “A High Capacity Low Cost Multi-

State Magnetic Memory,” which claims prionty to U.S. Pro-

visional Application No. 60/777,012 filed Feb. 25, 2006
entitled “A High Capacity Low Cost Multi-State Magnetic
Memory™’; and 1s a further continuation-in-part of U.S. appli-

cation Ser. No. 11/739,648, filed Apr. 24, 2007/ entitled “Non-
Volatile Magnetic Memory with Low Switching Current and
High Thermal Stability”; and 1s a further continuation-in-part
of U.S. application Ser. No. 11/740,861, filed Apr. 26, 2007,
titled “High Capacity Low Cost Multi-Stacked Cross-Line
Magnetic Memory”; and 1s a further continuation-in-part of
U.S. application Ser. No. 11/776,692, filed Jul. 12, 2007,
titled “Non-Volatile Magnetic Memory Element with Graded
Layer”; and 1s a further continuation-in-part of U.S. applica-
tion Ser. No. 11/860,467 filed Sep. 24, 2007/, taitled “Low cost
multi-state magnetic memory™’; and 1s a further continuation-
in-part of U.S. application Ser. No. 11/866,830 filed Oct. 3,
2007 entitled “Improved High Capacity Low Cost Multi-
State Magnetic Memory”; and 1s a further continuation-in-
part of U.S. application Ser. No. 11/932,940 filed Oct. 31,
2007 entitled “Current-Confined Effect of Magnetic Nano-
Current-Channel (NCC) for Magnetic Random Access
Memory (MRAM),” which claims priority to U.S. Provi-
sional Application No. 60/863,812 filed Nov. 1, 2006 entitled

“Novel Spintronic Device.”

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to magnetic
memory element and particularly to sensing (or reading) of
and writing to the magnetic memory element and an array
made of the same.

2. Description of the Prior Art

Computers conventionally use rotating magnetic media,
such as hard disk drives (HDDs), for data storage. Though
widely used and commonly accepted, such media suffer from
a variety of deficiencies, such as access latency, the data not
being randomly accessible, higher power dissipation, large
physical size and 1nability to withstand any physical shock.
Thus, there 1s a need for a new type of storage device devoid
of such drawbacks.

Other dominant storage devices are dynamic random
access memory (DRAM) and static RAM (SRAM) which are
volatile and very costly but have fast random read/write
access time. Solid state storage, such as solid-state-nonvola-
tile-memory (SSNVM) devices having memory structures
made of NOR/NAND-based Flash memory, providing fast
access time, increased mput/output (I0P) speed, decreased
power dissipation and physical size and increased reliability
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but at a higher cost which tends to be generally multiple times
higher than hard disk drives (HDDs).

Although NAND-based flash memory 1s more costly than
HDD’s, 1t has replaced magnetic hard drives in many appli-
cations such as digital cameras, MP3-players, cell phones,
and hand held multimedia devices due, at least in part, to 1ts
characteristic of being able to retain data even when power 1s
disconnected. However, as memory dimension requirements
are dictating decreased sizes, scalability 1s becoming an 1ssue
because the designs of NAND-based Flash memory and
DRAM memory are becoming difficult to scale with smaller
dimensions. For example, NAND-based flash memory has
1ssues related to capacitive coupling, few electrons/bit, poor
error-rate  performance and reduced reliability due to
decreased read-write endurance. Read-write endurance refers
to the number of reading, writing and erase cycles before the
memory starts to degrade 1 performance due primarily to the
high voltages required in the program, erase cycles. The
flash-type non-volatile memories are typically capable of
writing one type of data randomly (e.g. 0’s), to write other
types of data a larger section of the memory needs to be
erased.

It 1s believed that NAND flash, especially multi-bit designs
thereof, would be extremely difficult to scale below 45
nanometers. Likewise, DRAM has 1ssues related to scaling of
the trench capacitors leading to very complex designs which
are becoming increasingly difficult to manufacture, leading to
higher cost.

Currently, applications commonly employ combinations
of EEPROM/NOR, NAND, HDD, and RAM as a part of the
memory 1n a system design. Design of different memory
technology 1n a product adds to design complexity, time to
market and increased costs. For example, 1n hand-held multi-
media applications incorporating various memory technolo-
gies, such as NAND Flash, DRAM and EEPROM/NOR flash
memory, complexity of design 1s increased as are manufac-
turing costs and time to market. Another disadvantage is the
increase 1n size of a device that incorporates all of these types
of memories therein.

There has been an extensive effort in development of alter-
native technologies such as Ovanic Ram (or phase-change
memory), Ferromagnetic Ram (FeRAM), current Magnetic
Ram (MRAM), Nanochip, and others to replace memories
used 1n current designs such as DRAM, SRAM, EEPROM/
NOR flash, NAND flash and HDD 1n one form or another.
Although these various memory/storage technologies have
created many challenges, such as requiring too much current
or having a large cell size or not readily scalable, there have
been advances made 1n this field 1n recent years. Current
MRAM designs seem to lead the way in terms of 1ts progress
in the past few years to replace all types of memories in the
system as a universal memory solution.

An MRAM element generally consists of a magnetic tun-
nel junction (MTJ) and an access transistor. A magnetic tun-
nel junction (MT1J) generally consists of a tunneling layer,
such as one made of magnesium oxide (MgQO) formed
between two magnetic layers.

Electron current tunneling through the tunneling layer
depends on the orientation of the two magnetic layers. If the
magnetic orientations of the two magnetic layers are parallel,
clectrons have a relatively easy time tunneling through the
tunneling layer, otherwise, tunneling 1s difficult and some of
the electrons are reflected at the interface. Therefore, the total
resistance of the MT1 1s less when the directions of the mag-
netic orientation of the magnetic layers are parallel relative to
cach other. If the resistance of the MTJ1s Rl (or R, ) when
the magnetic directions are parallel, and Rh (or R, ;) when
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they are anti-parallel, the relative change of resistance 1s
defined as (R,-R,)/R1, which 1s a measurement of tunneling

magnetic resistance (IMR). That 1s, the following equation
defines TMR as:

TMR—=(Rh-RD)/RI Eq. (1)

The first time a product 1s manufactured, the magnetic
orientations in all the MTlIs are typically 1n the same direc-
tion, such as 1n a parallel state. Therefore, the resistances of all
the memory elements are at R,. After writing a “1” (or an
active logic state, which may be considered “0” in certain
cases), the resistance changes to R,. Due to noise and other
natural variances i1n the manufacturing process and write
operations, the value of the resistances (R, or R,) form a
Gaussian distribution around certain R, .. and R, ., ...
In reading a memory cell, which includes a memory element,
its resistance 1s determined and based on 1ts detected resis-
tance, 1ts logical state 1s determined as being a “0” or “1”. To
do so, the memory cell resistance 1s compared to a resistor
with the average value of Ravg=(R,,, ,..+*R,..; ...)/2.
When the R, ,-R,, . 1s larger than a certain value VO for a
particular memory cell, the cell 1s read as “1”, and when
R,,.—R;,,, 18 larger than VO for a particular memory cell, the
cell 1s read as “0”. If the values are less than VO, the memory
cell state 1s undetermined and can not be read. The VO value
1s related to the sensitivity of the sense amplifier. For instance,
the value of VO 1s smaller for more sensitive sense amplifier.

However, one of the problems associated with the forego-
ing 1s that the value of the VO can not be lowered indefinitely
because of the presence of thermal noise as well as noise
generated by the switching of signals from one state to
another. This requires the value o1 VO to be larger than Vnoise
by several orders of magnitude.

What 1s needed 1s a circuit for reliably sensing and writing,

to MRAM memory cells.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present speci-
fication, the present invention discloses a design method and
a corresponding structure for a magnetic storage memory
device that 1s based on spin current-induced-magnetization-
switching having reduced switching current 1n the magnetic
memory.

Brietly, an embodiment of the present invention includes a
sensing circuit having a sense amplifier circuit having a first
and second nodes through which a magnetic memory element
1s sensed. A first current source 1s coupled to the first node a
second current source 1s coupled to the second node. A rel-
erence magnetic memory element has a resistance associated
therewith and 1s coupled to the first node, the reference mag-
netic memory element recerves current from the first current
source. At least one memory element, having a resistance
associated therewith, 1s coupled to the second node and
receives current from the second current source. Current from
the first current source and current from the second current
source are substantially the same. The logic state of at least
one memory element 1s sensed by a comparison of the resis-
tance of the at least one memory element to the resistance of
the reference magnetic memory element.

In another embodiment, a magnetic memory write circuit 1s
disclosed to include a magnetic memory element coupled to a
bit line on one end and an access transistor coupled to an
opposite end of the magnetic memory element and operative
to select the magnetic memory element to be read or written
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thereto. The access transistor 1s further coupled to a word line,
the magnetic memory element are selected to be read from or
written to when the bit line and word line are activated. A first
inverter has an output coupled to the bit line and an 1nput
coupled to an input of the magnetic memory write circuit and
a second inverter has an iput coupled to the mput of the
magnetic memory write circuit and further having an output
and a third inverter has an input coupled to the output of the
second mverter and an output coupled to the source of the
access transistor and to ground.

These and other objects and advantages of the present
invention will no doubt become apparent to those skilled 1n
the art aiter having read the following detailed description of
the preferred embodiments illustrated in the several figures of
the drawing.

IN THE DRAWINGS

FIG. 1 shows the structure of a reference magnetic memory
clement, in accordance with an embodiment of the present
invention.

FIG. 2 shows a sensing circuit, in accordance with an
embodiment of the present invention.

FIG. 3 shows relevant details of the sense amplifier circuit
230, 1n accordance with an embodiment of the present inven-
tion.

FIG. 4 shows a timing diagram of the nodes 54 and 56. The
node 54 generates the signal 99 and the node 56 generates the

signal 91.

FIG. 5 shows a flow chart of the steps performed by the
sense amplifier 230 when sensing a memory element such as
the memory element 100.

FIG. 6 shows a write circuit 102, in accordance with an
embodiment of the present invention.

FIG. 7 shows a memory array 320 made of magnetic
memory elements and including circuits for reading and writ-
ing to the same, 1n accordance with an embodiment of the
present invention.

PR.

(L]
By

ERRED

DETAILED DESCRIPTION OF THE
EMBODIMENT

In the following description of the embodiments, reference
1s made to the accompanying drawings that form a part
hereotf, and in which 1s shown by way of illustration of the
specific embodiments 1n which the mvention may be prac-
ticed. It 1s to be understood that other embodiments may be
utilized because structural changes may be made without
departing from the scope of the present invention.

It 1s understood that as used herein “magnetic memory
clement”, “memory element”, “reference magnetic memory
clement” or “reference memory element”, or “magnetic ran-
dom access memory (MRAM)™ all refer to magnetic memory
that 1s made of MTJ. Various embodiments of the structure
used for a memory element are shown and discussed 1n the
following documents:

U.S. application Ser. No. 11/674,124, filed Feb. 12, 2007,
titled “Non-Uniform Switching Based Non-Volatile
Magnetic Based Memory” by Ranjan et alia,

U.S. application Ser. No. 11/678,513, Filed Feb. 23, 2007,
titled “A High Capacity Low Cost Multi-State Magnetic
Memory” by Ranjan et alia,

U.S. application Ser. No. 11/739,648 Filed Apr. 24, 2007,
titled “Non-volatile Magnetic Memory With Low
Switching Current and High Thermal Stability” by Ran-

jan et alia,
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U.S. application Ser. No. 11/776,692, filed Jul. 12, 2007,
titled “Non-Volatile Magnetic Memory Element with
Graded Layer” by Ranjan et alia,

U.S. application Ser. No. 11/740,861, filed Apr. 26, 2007,
titled “High Capacity Low Cost Multi-Stacked Cross-
Line Magnetic Memory” by Ranjan et alia,

U.S. application Ser. No. 60/863,812, filed Nov. 1, 2006,
titled “Novel Spintronic Device” by Wang,

U.S. application Ser. No. 11/932,940 filed Oct. 31, 2007
titled “Current-Confined Effect Of Magnetic Nano-Cur-
rent-Channel (NCC) For Magnetic Random Access
Memory (MRAM)” by Wang;

U.S. application Ser. No. 11/866,830 filed Oct. 3, 2007,
titled “Improved High Capacity Low Cost Multi-State
Magnetic Memory” by Ranjan et alia;

U.S. application Ser. No. 11/860,467 filed Sep. 24, 2007,
titled “Low cost multi-state magnetic memory” by Ran-

jan et alia; and
U.S. application Ser. No. 12/040,801, filed on Feb. 29,

2008, titled “An Improved Low Resistance High-TMR
Magnetic Tunnel Junction and Process For Fabrication
Thereof” by Ranjan, the disclosures of which are incor-
porated herein by reference as though set forth 1n full.
In various embodiments of the present invention, a refer-
ence magnetic memory element 1s used to read magnetic
memory elements. The reference magnetic memory element
1s similar to any one of the magnetic memory elements being
read or written and 1s therefore an MRAM element and 1de-
ally has associated therewith a resistance value of R _=

avg
(R +R )/2, which 1s then used to as a reference

low__av high__av

resista_nci n regac_linz the MRAM memory elements. As noted
carlier, the MRAM memory elements each include an MTI.
However, since the exact shape of the MT1J resistance distri-
bution when the memory elements are first manufactured
remains unknown, making a memory element that has a resis-

tance value represented by:

R.__=(R

CEVET

+R /2 Eqg. (2)

low_avg " rhigh av g)

1s difficult. R ,, . 1s the average resistance of the low resistance
values R, ,, .. and the average of the high resistance values
Rien ave Thus,mplaceof R, ., which represents more of an
exact average resistance value, a resistance value of R 1s used

in accordance with the following relationship:

Rv:(R +Rhigh)/2 Eq (3)

R, 1s obviously different from R, in that 1t 1s the average
of low and high resistance values rather than an average of the
same, therefore, causing more difficulty in sensing (or read-
ing of the memory elements).

Referring now to FIG. 1, the structure of a reference mag-
netic memory element 10, 1n accordance with an embodiment
of the present invention. The reference element 10 1s shown to
include MTJs 20, 22, 24 and 26 and has a resistance value
represented by R of Eq. (3), in accordance with an embodi-
ment of the present ivention. The MTJs 20, 22, 24 and 26,
initially each have a resistance value of R, . This 1s because
the first time MRAM elements are manufactured, their resis-
tances are setto R,_ .

MTIJs 20 and 22 are coupled together 1n parallel and the
MTIJs 24 and 26 are coupled together 1n parallel. The MTJ 20
1s coupled, 1n series, with the MTJ 24, at a node 16, and the
MTJ 22 1s coupled, 1n series, with the MTJ 26 at a node 14.

A Tormatting circuit 12 1s shown coupled, at its output, to
the MTJs 22 and 26 at the node 14. The MTJs 20 and 22 are
coupled to the formatting circuit at 1ts control gate. The for-
matting circuit 12 functions as an amplifier which pumps

programming current through the MTJs 20 and 22, changing,

fon

10

15

20

25

30

35

40

45

50

55

60

65

6

their resistance values to R, ;. The MTIs 24 and 26 are
connected at ends (or nodes) opposite to the nodes 16 and 14,
respectively, to a source of an access transistor 18. The gate of
the access transistor 18 1s coupled to the word line 32 and the
drain of the access transistor 18 1s coupled to virtual ground.
Virtual ground, as used herein, refers to a node that 1s main-
tained at a steady reference potential (or voltage level) (during,
read operations) while tluctuating between at least two states
(or voltage levels) during write operations. The MTIs 20 and
22 are coupled at nodes opposite to the nodes 16 and 14,
respectively, to a bit line 30.

In operation and before the memory elements are tested, a
formatting operation 1s performed by activating the format-
ting circuit 12, at its input thereby causing programming of
the MTJ 20 and 22 under average conditions, which results in
increasing the resistance values of the MTIs 20 and 22 to
R;;.- The collective resistance value of the M TJs 20 and 22
is represented by the average of R,,,, and R, or the follow-
ing equation:

R _(Rfc:-w-l-Rkigk)/z

avg

Eq. (4)

Tunneling magnetic resistance (1MR) 1s defined as:

TMR=(Ry,; 1R ;0 )Ry, Eq. (5)
Relative to TMR, the R, ;, 1s defined as:

Rpyion =R 0, * (1+TMR) Eq. (6)
and R, . 1s defined as:

Rg=R1p, *(1+TMR/2) Eq. (7)

During a read operation, the resistance values of the selected
MTJ within a memory array (or the MTJ that is selected to be
read) 1s compared to the average resistance formed by the
MTJs 20,22, 24 and 26. If the resistance value of the selected
MTJ1s higher than R , ., the result 1s a logical state °17, and 1t
it 1s less than R, the result 1s logical state *0”, or vice versa.

The average resistance, while perhaps not representing the
exact average, as the average changes due to manufacturing
and other factors, represents a resistance value that 1s close to
an average of the high and low resistances. As the high and
low resistances may not be absolute 1 and of themselves,
with a variance associated with each, the average resistance,
using the method and apparatus of the embodiments of the
present invention, 1s close enough to a middle range so as to
avold mis-write or mis-read.

As previously noted, a magnetic memory element includes
an MTJ made of a tunneling (or barrier) layer sandwiched
between two magnetic layers. One of the magnetic layers 1s
typically a free layer whose magnetic orientation transitions
from one that 1s parallel to that of the other magnetic layer
(known as the fixed layer) to one that 1s anti-parallel to that of
the fixed layer. The thickness of the tunneling layer and the
physical size of the memory element, upon which TMR 1s
based, generally determine the resistance values to which the
resistors 20-26 should be set. This 1s evidenced by the equa-
tions above. As an example, where the thickness of the tun-
neling layer1s 10 to 15 A and the physical size of the memory
element1s 0.1 t0 0.2 u2, aR,, , resistance value 1s 1400 ohms
and a R,  resistance value 1s 600 ohms with an average
resistance ol 1000 ohms. Therefore, the resistance of a mag-
netic memory element that 1s to be read 1s compared to 1000
ohms and 11 it 1s higher, for example, the memory element
may be declared as being at a high logic state and 1f 1t 1s lower
than 1000 ohms, the memory element may be declared as
being at a low logic state. Thus, rather than simply using a
reference voltage to compare to 1n determiming the logical

state of a memory element, as done by prior art techniques, 1n
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one embodiment of the present invention, the average value of
the resistance of two MTJs are used to compare to the resis-
tance of the MTJ (or memory element) being read.

FIG. 2 shows a magnetic memory sensing circuit 40 for
sensing (or reading) the state of a magnetic memory element
100, which 1s made of a MT1J or the state of the magnetic
memory element 240, which 1s also made of a M1, using the
reference memory element 10, in accordance with an embodi-
ment of the present mvention. As used herein, a memory
clement includes a MTJ and a memory cell includes a
memory element and a corresponding access (or select) tran-
s1stor.

Memory element 100 and memory element 240 may be
cach made of any of the memory elements shown and
discussed 1n the following patent document:

memory element are shown and discussed 1n the following
documents:

U.S. application Ser. No. 11/674,124, filed Feb. 12, 2007,
titled “Non-Uniform Switching Based Non-Volatile
Magnetic Based Memory” by Ranjan et alia,

U.S. application Ser. No. 11/678,515, Filed Feb. 23, 2007,
titled “A High Capacity Low Cost Multi-State Magnetic
Memory™ by Ranjan et alia,

U.S. application Ser. No. 11/739,648 Filed Apr. 24, 2007,
titled “Non-volatile Magnetic Memory With Low
Switching Current and High Thermal Stability” by Ran-
jan et alia,

U.S. application Ser. No. 11/776,692, filed Jul. 12, 2007,
titled “Non-Volatile Magnetic Memory Element with
Graded Layer” by Ranjan et alia,

U.S. application Ser. No. 11/740,861, filed Apr. 26, 2007,
titled “High Capacity Low Cost Multi-Stacked Cross-
Line Magnetic Memory” by Ranjan et alia,

U.S. Application No. 60/863,812, filed Nov. 1, 2006, titled
“Novel Spintronic Device” by Wang,

U.S. application Ser. No. 11/932,940 filed Oct. 31, 2007
titled “Current-Confined Effect Of Magnetic Nano-Cur-
rent-Channel (NCC) For Magnetic Random Access
Memory (MRAM)” by Wang;

U.S. application Ser. No. 11/866,830 filed Oct. 3, 2007,
titled “Improved High Capacity Low Cost Multi-State
Magnetic Memory” by Ranjan et alia;

U.S. application Ser. No. 11/860,467 filed Sep. 24, 2007,
titled “Low cost multi-state magnetic memory” by Ran-
jan et alia; and

U.S. application Ser. No. 12/040,801, filed on Feb. 29,
2008, titled “An Improved Low Resistance High-TMR
Magnetic Tunnel Junction and Process For Fabrication
Thereof” by Ranjan.

In FIG. 2, the sensing circuit 40 1s shown to include a sense
amplifier circuit 230 coupled to a decoding transistor 214 and
turther coupled to a decoding transistor 216, at their source.
The drain of the transistor 214 1s shown coupled to the refer-
ence memory element (MTJ) 10 and serves as a reference bit
line. The reference memory element 218 1s further shown
coupled to a transistor 242 at the drain of the transistor 242.
The gate of the transistor 242 forms a reference word line 220
and the source of the transistor 242 forms the virtual ground
(Ver) 238, which 1s shown coupled to the source of the tran-
sistor 222.

The drain of the transistor 222 1s shown coupled to the
memory element 100 and an opposite end of the memory
clement 100 1s shown coupled to the drain of the transistor
216 forming the bitline 1 244. The source of the transistor 222
1s shown coupled to the source of the transistor 224 and to the
source of the transistor 242 forming Ver 238. The gate of the
transistor 224 1s shown to form the word line 2 228. The drain
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ol the transistor 224 1s shown coupled to the memory element
240, which on an opposite end thereto, forms the bit line 2
246.

Ver 238 1s shown coupled to the drain of the transistor 51,
which has 1ts gate coupled to the same, 1.e. Ver 238. The
source of the transistor 51 1s shown coupled to the drain of the
transistor 53, which has 1ts source coupled to (actual ) ground.
The gate of the transistor 53 1s coupled to the read enable
signal 324, which serves to initiate a read operation. The gate
of the transistor 33, 60 goes high during read operation and 1s
grounded during write operation of the selected MT1.

The gate of transistor 216 1s coupled to an address decoder
(not shown). In some embodiments, the transistor 216 1s part
of an address decoder, which selects which memory element
1S to be read or written thereto. In the embodiment of FIG. 2,
the transistor 216 might select the memory element 100 while
another transistor of the address might select the memory

clement 240. The gate of the transistor 214 1s shown coupled
to Vcce (or a high state). The transistors 52, 54, 216, 214, 222,

221 and 242 are each of the NMOS type of transistors

Transistors 42, 44 and 46 are shown coupled 1n parallel
relative to each other with the drains thereof being coupled to
high voltage defining a power supply (or Vcc). The drains of
transistors 42 and 44 are each shown coupled to either sides of
the sense amplifier 230. That 1s, the drain of the transistor 42
1s shown coupled between the sense amplifier 230 and the
drain of the transistor 214 at reference magnetic memory
clement sensing node 50 and the drain of the transistor 44 1s
shown coupled between the sense amplifier and the source of
the transistor 216 at magnetic memory element sensing node
52. The drain of the transistor 46 1s shown coupled to the
resistor 55, which on an apposite end thereof, 1s shown
coupled to (actual) ground.

The sense amplifier 230 senses potential or voltage levels
atthe nodes 50 and 52 and compares them to determine which
has a higher potential which is related to the higher resistance
of the MTlIs. This 1s done because of the well-known rela-
tionship between voltage (V) being resistance (R) multiplied
by current (I). If the voltage at 52 1s determined to be higher
than that of the voltage at 50, the resistance of the memory
clement 100 1s then known to be higher than that of the
memory element 10, thus, declaring the memory element 100
to be at high state. Otherwise, i the voltage at node 52 1s
determined to be lower than that at node 50, the memory
clement 100 1s determined to be at low state. It 1s understood
that the opposite may be implemented 1n that the voltage at
node 52 being higher than that of node 50 yielding a low state
and the voltage at node 52 being lower than that of the mode
50 yielding a high state.

The transistors 42 and 44 and 46 function as current
sources, providing substantially the same amount of current
through the reference memory element 10 and each of the
memory elements 100 and 240. That 1s, the current generated
by the current source (or transistor 42) to the memory element
100 or the memory element 240 1s substantially 1dentical, 1n
amount, to the current generated by the current source (or
transistor) 42 to the memory element 10. The current source
43 1s shown made of the transistors 42, 44 and 46 and their
connections to each other.

In one embodiment of the present mnvention, the logical
state of each of the memory elements 100 and 240 1s easily
measured by comparing the resistance of each to that of the
reference memory element 10. This 1s done because the resis-
tance of the reference memory element 10 1s known, as pre-
viously discussed, and being that the current supplied to the
reference memory element 10 and each of the memory ele-
ments 1s the same, the resistance of the latter 1s determined
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relative to the former. For example, if the resistance of the
memory element 100 1s determined to be higher than that of
the reference memory eclement 10, the logic state of the
memory element 100 may be determined as being ‘high’ or
‘1°, whereas, 11 the resistance of the memory element 100 1s
determined to be lower than that of the reference memory
clement 10, the logic state of the memory element 100 may be
determined as being ‘low’ or 0’, alternatively, the reverse of
these states may be determined. It 1s understood that while
two memory elements 100 and 240 are shown in FIG. 2, any
number of memory elements may be employed and their
states read 1in accordance with the foregoing.

The transistors 51 and 53 are formed between the memory
clements and actual ground because the amount of voltage
generated due to the current tflowing through the MT1J 1s very
low. This 1s because the currents generated by the current
sources are substantially approximately 1n the micro amperes
range. Since the resistance of the MT s 1s approximately in
the kilo ohms range, the voltage generated across the MTIs 1s
in the milli-volts range. The threshold of the sensing elements
in the sense amplifier 1s larger than this. The transistor 31 1s
employed to bias the voltage to a larger value 1 order to
activate the transistor 1n the sense amp. The threshold of the
transistor 51 1s Vt, so that the voltage at the gate of the sensing,
clement being read 1s Vt+VO0, with VO being the voltage
generated by the M1 resistor.

The function of the transistor 46 and the resistor 55 1s to set
the current value for the current sources 42 and 44. That 1s, the
resistance value of the resistor 55 determines the amount of
current to be supplied by each the current sources 42 and 44.
Ideally, an 1dentical amount of current 1s supplied by each of
the current sources 42 and 44 to the memory element 10 and
the memory elements to be read (or sensed).

During a read (or sensing) operation, the sense amplifier
circuit 230 compares the resistance of the memory element
100 (of the selected cell) to the resistance of the reference
memory element 10. The resistance of the cell 10 1s designed
to be (R1+R2)/2, where R1 1s the resistance of the memory
clement 100 1n a low state and R2 1s the resistance of the
memory element 100 1n high state. The high and low states are
based on the description provided above where the low state
has a characteristic of being at least half of the resistance of
that of the high state. The magnetic orientation of the fixed
and the free layers, 1.e. the two magnetic layers of the MTJ of
the memory cell being read, are parallel relative to each other
at a low state and at a high state, the magnetic orientation of
the fixed and free layers are anti-parallel relative to each other.

In one embodiment of the present invention, the sense
amplifier 230 1s a bi-stable latch or any such device, which
tlips between logic states based on the state of the resistance.
For example, 1l resistance 1s low, the state will be that of a low
state and 11 resistance 1s high, the state will be that of a high
state.

It should be noted that the magnetic memory elements 100
and 240 are two of many magnetic memory elements coupled
to bit line 244. The transistors 222 and 224 are used to select
one of these magnetic memory elements based on the selec-
tion of one of the word lines 226 or 228. When a word line 1s
selected, 1t 1s biased with the appropriate potential requuired to
turn on the selected transistors. When one of the transistors
222 or 224 1s selected, the memory element 100 1s caused to
be coupled to the circuit 230, at 231, through the transistor
216, which as a decoder circuit. At the same time the refer-
ence memory element 10 1s selected by the transistor 242 and
the word line 220. Thereafter, current tflows through the
selected transistors, 1.e. transistor 222 or 224. The current
flowing through the reference memory element 10 1s always
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the same, while current flowing through the selected memory
clements, such as the memory element 100 depends on the
state of that memory eclement. That 1s, 1 the memory
clement’s state 1s high, its associated resistance (R) 1s high
with respect to the reference memory elements. Thereafter,
less current flows through the selected memory elements than
the reference memory element 218, causing the sense ampli-
fier circuit 230, at 233, to enter a high state with respect to that
of 233. On the other hand, 11 the selected memory element 1s
at a low state and has low resistance, 1ts current 1s high with
respect to that of the reference memory element 218 and the
voltage at 231 drops. In this manner, the voltage at 231 deter-
mines the state of the selected memory element.

The current provided by the current source 43 1s at least, 1n
part, controlled by the resistance value of the resistor 50.
Programming or writing of the memory cells 240 or 100 1s
also done by forcing high current through the magnetic
memory cells being read, however, the read current can not be
too high. High read currents can cause undesirable program-
ming of the memory cells (or memory elements), which 1s
commonly referred to as “read disturbance”. Therefore, the
read current needs to be below a certain critical current. This
critical current depends on the MTJ size. In an exemplary
embodiment, the read current 1s less than 40 uA (micro amps).

As currents flows through the memory cell and the refer-
ence memory cell, certain amount of voltage appears at the
two ends of the sense amplifier circuit 230. If the MT1J 1s
programmed to a high resistance value (R, ), the voltage on
the MT1 side of the sense amplifier 230, such as the voltage of
the memory cell 100, 1s higher than the voltage of the other
side of the sense amplifier, such as the side with the reference

memory eclement 10, by the following difference voltage
(DV):

DV=Iread* Ry, ;R ., .)=Iread *R,,, ,* IMR/2 Eq. (8)

If the memory element being read 1s programmed to a low
logical state, such as ‘0’ the voltage on of the sense amplifier
circuit 230 side that has the memory element being read, such
as the side having the memory element 100 1s lower by:

avg)

DV=Iread*(Ry,,,~R,,;)=Iread*R,,,,* TMR/2 Eq. (9)

The typical values for TMR, Iread and R, are 1, 40 uA
and 1 Kilo Ohms, respectively. Therefore a typical DV 1s
approximately 20 milli Volts (mV). As earlier indicated, the
resistance values of the MTJ in a memory product are not the
same all the time, partly due to varying conditions under
which such products are manufactured. For example, the
thickness of the tunneling layer as well as the size of the
memory element would vary the characteristics of the
memory elements.

Thus, the resistance values of the MTJ1n a memory product
generally follow a Gaussian distribution with highs and lows.
This effectively reduces the DV 1n reading of different cells
under different conditions. Theretfore, the product requires a
sensitive sense amplifier circuit, such as the sense amplifier
230. A sensitive amplifier circuit however, can undesirably
amplily noise and disturbances of the circuit. To overcome
this problem, sensing 1s slightly delayed, allowing undesir-
able disturbances caused by switching of signals to subside.

FIG. 3 shows relevant details of the sense amplifier circuit
230, 1n accordance with an embodiment of the present inven-
tion. The sense amplifier 230 1s shown coupled to the current
sources 42 and 44 and to the reference memory element 10
and the memory element 100. It 1s understood that more
memory elements may be coupled to the sense amplifier 230

than that shown 1n FIG. 3.
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The sense amplifier 230 1s shown to include transistors 88,
60, 82, 66, 64, 84, 62 and 86 and the criss-cross latch 58 and
the amplifier circuits 68, 70 and 72. The criss-cross latch 58 1s
shown to include transistors 74, 76, 78 and 80 and the ampli-
fier circuit 68 1s shown to include transistors 90, 92, 94 and 96.
Criss-cross latch 38 1s well known as are the amplifiers 68, 70
and 72. However, to overcome the problem of undesirable
amplification of noise and disturbances caused by the switch-
ing of signals associated with the criss-cross latch 58, the
sense amplifier 230 advantageously slightly delays sensing of
the voltages of the reference memory eclement and the
memory element to be read to allow for the disturbances to
subside before beginning sensing.

The transistors 74, 78, 90, 94, 46 and 66 arec generally
p-type transistors and the transistors 92, 96, 86, 62, 84, 80,76,
82 and 60 are generally n-type transistors. In FIG. 3, the gate
of the transistor 88 1s shown coupled to the source of the
transistor 60. The source and drain of the transistor 88 are
shown coupled to actual ground The A node 56 1s shown
coupled to the drain of the transistor 82 and the drain of the
transistor 60 1s shown coupled to ground. The node 52 1s
turther shown coupled to the drain of the transistor 76 and to
the source of the transistor 74. The drain of the transistor 60
are shown coupled to ground. The source of the transistor 60
1s shown coupled to the drain of the transistor 82. The source
of the transistor 82 1s shown coupled to the node 52 and 1ts
gate 1s shown coupled to a Sab node 56. The source of the
transistor 66 1s shown coupled to the node 52, and 1ts drain 1s
shown coupled to the node 50 and its gate 1s shown coupled to
a node Sae 54. The gate of the transistor 64 1s shown coupled
to the node 54 and 1ts drain 1s shown coupled to actual ground
and 1ts source 1s shown coupled to the respective sources of
cach of the transistors 80 and 76. The source of the transistor
84 1s shown coupled to the node 50, 1ts drain 1s shown coupled
to the source of the transistor 62 and 1ts gate 1s shown coupled
to the node 56. The source and drains of the transistor 86 are
shown coupled to actual ground and 1ts gate 1s shown coupled
to the drain of the transistor 84.

The drain of the transistor 74 1s shown coupled to VCC and
its source 1s shown coupled to the node 352 and its gate 1s
shown coupled to the node and the source of the transistor 78.
The source of the transistor 76 1s shown coupled to the node
52 and the gate of the transistor 76 1s shown coupled to the
gate of the transistor 74 and the drain of the transistor 76 1s
shown coupled to the source of the transistor 64. The gate of
the transistor 80 1s shown coupled to the node 52, 1ts drain 1s
shown coupled to the node 50, its source 1s shown coupled to
the source of the transistor 64. The source of the transistor 78
1s shown coupled to Vcc, its gate 1s shown coupled to the node
52 and to the gate of the transistor 80 and 1ts drain 1s shown
coupled to the node 50. The gate of the transistor 74 1s shown
coupled to the node 50, its drain 1s shown coupled to the node
52 and 1ts source 1s shown coupled to Vcc.

While the transistors 46, 42 and 44 are shown to be P-type
transistors in FIG. 3, they may be of N type, in alternative
embodiments. In fact, any type of CMOS or bipolar transistor
may be used as these transistors. Alternatively, another type
of current source may be employed. It 1s however desirable to
have the current provided by each of the transistors 42 and 44
be substantially equal. In one embodiment of the present
invention, the current produced by each one differs by 10%
from the other one

The drain of the transistor 90 1s shown coupled to Vcc, its
source 1s shown coupled to the input of the amplifier 70 and 1ts
gate 1s shown coupled to the mput of the amplifier 72. The
drain of the transistor 94 1s shown coupled to the Vcc and 1ts
gate 1s shown coupled to the mput of the amplifier 70 and 1ts
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source 1s shown coupled to the amplifier 72. The drain of the
transistor 92 1s shown coupled to the input of the amplifier 70,
its gate 1s shown coupled to the node 52 and 1ts source 1s
shown coupled to ground. The drain of the transistor 96 1s
shown coupled to the mput of the amplifier 72, 1ts gate 1s
shown coupled to the node 50 and its source 1s shown coupled
to ground.

The amplifier 68 amplifies the output of the criss-cross
latch 58 and one of the amplifiers 70 or 72 acts to further
amply the output of the criss-cross latch 58. Use of both
amplifiers helps to balance the two sides of the criss-cross
latch 58 although 1n alternative embodiments, a single ampli-
fier may be employed. Additionally, the amplifiers 68, 70 and
72 may be one amplifier in other embodiments. It 1s under-
stood that other combinations of amplifiers may be employed.

In operation, during sensing or reading of a memory ele-
ment, such as the memory element 100, the latter 1s advanta-
geously sense not immediately, rather a delay 1s introduced
prior to the time the sense amplifier 230 starts reading.
Namely, the address of the memory element to be read 1s not
latched (or captured) until some time after the reading opera-
tion starts. This 1s done by delaying activation of the sense
amplifier 230. The delay 1s a design choice an 1n an exemplary
embodiment 1s 1n the order of a couple of nano seconds.

In an exemplary embodiment, upon selection of the
memory element 100 by the decoder 216 through the bit line
244, after a predetermined delay, the sense amplifier 230 1s
activated by raising the voltage at each of the nodes Sab 56
and Sae node 54. The Sae node 54, when activated, causes the
activation of the criss-cross latch 58, which stays activated
during the remainder of the read operation. Activation of the
Sab node 56 causes coupling of the criss-cross latch 58 to the
transistors 60 and 62. As earlier indicated, the node 56 1s
activated for a short period of time, such as a couple of nano
seconds. While the node 56 1s high (or activated), the two
transistors 60 and 62 pull on the different sides of the criss-
cross latch 58. That 1s, the transistor 60 pulls the node 52 and
the transistor 62 pulls the node 50. The node with the higher
voltage pulls 1ts side of the criss-cross latch 58 toward ground.
This makes the criss-cross latch 58 unbalanced with each of
the nodes 50 and 52 being at voltage levels different than one
another, 1n fact, when one node raises 1n potential by a certain
amount, the other node lowers 1n potential by substantially
the same certain amount. This trend continues even after the
node 56 1s deactivated, and one side of the criss-cross latch 58
eventually 1s driven to ground, indicating the memory ele-
ment with the ligher potential and therefore higher resis-
tance. Accordingly, the potential of each of the nodes 52 and
50 1s compared by the criss-cross latch 58 and the result 1s
amplified by amplifiers and ultimately latched. For example,
the amplifiers 68 and 72 amplify the signals to solid Os and 1s.

In summary, in an exemplary embodiment, a memory ele-
ment and a reference memory element are selected through a
decoder. The current sources to each are also activated. The
voltages generated by the currents flowing through the
memory element and the reference memory element are
applied to the gates of the transistors 60 and 62, respectively.

FIG. 4 shows a timing diagram of the nodes 54 and 56. The
node 54 generates the signal 99 and the node 56 generates the
signal 91. An enable signal, chip enable (CEB) 95 activates
chip or device including an array of memory elements having
MTlIs, such as the memory elements 100 and 240. Address
signals 97 carry the address of the memory element to be
sensed.

In one embodiment of the present invention, the decoder
transistors 216 and 214 are a part of the address logic that are
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selected by the address 97 although i1t 1s understood that these
transistors are two among many others.

After the selection of a memory element by activation of
the signal 95 and the indicated address on the address signals
97 the desired memory element 1s selected, the sense ampli-
fier 230 1s activated by raising the voltages at the node 54
tollowed by raising the voltage at the node 56 for a short time.
In an exemplary embodiment, the node 56 1s raised or acti-
vated 5 nano seconds after activation of the node 54. Activa-
tion of the node 56 causes coupling the criss-cross latch 38 of
the sense amplifier 230 to the transistors 60 and 62. The node
56 remains activated only for a short time, such as a couple of
nano seconds, during which time, the two transistors 60 and
62 pull on the different sides of the criss-cross latch 58 to start
the latching process. The criss-cross latch 38 1s also known as
a “cross-coupled latch”.

FIG. 5 shows a flow chart of the steps performed by the
sense amplifier 230 when sensing a memory element such as
the memory element 100. At step 300, the node 54 1s enabled
(or activated) and then a predetermined period of time 1s
awaited at 302 and 304, an example of such time 1s 5 nano
seconds. Then the node 56 1s enabled. This initiates the direc-
tion of the criss-cross latch 58 from the balanced position, 1.¢.
the voltages at each of 1ts sides are ofl with respect to each
other. Next, at step 310, the node 56 1s deactivated after which
the output of the criss-cross latch 58 1s amplified at step 312
and thereafter, the node 54 1s disabled and the address of the
memory element to be read 1s latched (or captured or stored).

The time period from enabling the node 56 at step 306 to
deactivating 1t at step 310 1s fairly short. This mitiates the
movements of two sides of the criss-cross latch. When the
movements start, they will continue autonomously. FIG. 6
shows a magnetic memory write circuit 102, 1n accordance
with an embodiment of the present invention. The write cir-
cuit 102 1s a circuit for writing to the magnetic memory
element 104, made of a MTJ and 1s shown to include the
memory element 104, an access transistor 106 and the inver-
tors 110-114. Data to the memory element 104 1s written at
the node 116, in accordance with a method and apparatus of
the present invention.

The access transistor 106 1s shown to be coupled to the
word line 118 at its gate and to virtual ground 108 at its source
and to one side of the memory element 104 at its drain. At an
opposite side thereof, the memory element 104 1s shown
coupled to the bit line 120. The memory element 104 and the
access transistor 106 collectively comprise a magnetic
memory cell. The imnverter 114 1s shown to recerve data atnode
116 at 1ts mput, which 1s also coupled to the input of the
inverter 112. The output of the mverter 114 1s shown coupled
to the bit line 120 and the output of the inverter 112 1s shown
coupled to the mput of the inverter 110. The output of the
inventor 110 1s shown coupled to ground 108 and the source
of the transistor 106.

Virtual ground 108 fluctuates between states (or voltage
levels ground and Vc¢c) depending on the logical state being
written. That 1s, 1t 1s driven, for example, to a logical state “1°,
in the case where logical state 1’ 1s being written (or pro-
grammed) and it 1s driven to a state ‘0’, 1n the case where
logical state ‘0’ 1s being written. Similarly, bit line 120 1s
driven to a different voltage level, dictating a particular logi-
cal state, depending on the logical state being programmed.
For example, when programming logical state “1°, bit line 120
1s driven to logical state ‘0’, 1n the embodiment of FIG. 6, and
when programming logical state ‘0, bit line 120 1s driven to
logical state “1°.

The high resistance of the memory element 104 1s repre-
sented by an active or high logic state “1”” and 1s indicative of

10

15

20

25

30

35

40

45

50

55

60

65

14

the two magnetic layers of 1ts MTJ being 1n opposite orien-
tation relative to each other. If the two magnetic layers have
the same orientation, then the resistance of the memory ele-
ment 104 1s low and this 1s represented by an inactive or
logical state “0”. Originally all memory elements are in the
“0” state (their two magnetic layers have magnetic moments
in parallel). To have the memory element 104 take on alogical
state, which 1s commonly referred to as writing to the memory
clement, which 1s, for example a “1” or high logical state,
current need be forced to flow from the lower magnetic layer
(or fixed layer) of the MT1 toward the top magnetic layer, or
the free layer. A state of “1” appears as the data to be written
at node 116. Conversely to write “0” current need be forced
from the top magnetic layer (Iree layer) of the memory ele-
ment 104°s MTJ toward its lower magnetic layer (fixed layer).

The write circuit 102 accomplishes the foregoing writing,
in the following manner. When data, as “1”°, appears at node
116, the output of the mventor 112 1s “0” and the output of
mverter 110 1s “17°, therefore, virtual ground 108 1s at a high
or active or “1” state. In the meanwhile, the output of the
inverter 114 1s <07, thus, the bitline 120 1s “0” thereby forcing
current from the lower magnetic layer of the memory element
104 to 1ts top magnetic layer. When the data at node 116 15 <0~
or the memory element 104 1s to be programmed or written to
an 1nactive state, the reverse occurs and the output of the
inverter 112 1s “1”” causing the output of the inverter 110 or the
ground 108 to be “0”. In the meanwhile, the output of the
inverter 114 1s ““1” and therefore the bit line 120 1s “1” thereby
forcing current to flow from the top magnetic layer of the
memory element 104 to 1ts lower magnetic layer.

It 1s understood that the inverters 110-114 can be replaced
with any suitable circuit or structure accomplishing an inver-
sion function.

FIG. 7 shows a memory array 320 made of magnetic
memory elements and including circuits for reading and writ-
ing to the same, 1n accordance with an embodiment of the
present invention. It 1s understood that the memory element
320 represents a portion of a potentially larger memory array
made of additional memory elements. In one embodiment,
the array 320 1s 4 kilobytes by 16 bits. Furthermore, memory
arrays, stacked on top of each other, with each stack including
one of more of the memory array 320 are contemplated. Such
memory arrays may form three-dimensional arrays.

In FIG. 7, ‘n” number of columns (or bit lines) and ‘m’
number of rows (or word lines) are shown coupled to mag-
netic memory arrays with ‘n” and ‘m’ being integer values.
Magnetic memory elements are represented by a resistor
symbol to indicate the resistive behavior thereof. It 1s under-
stood that magnetic memory elements discussed herein
behave like variable resistors with their resistances changing,
depending upon the orientation of the two magnetic layers of
the MTJ thereof. The orientation of the free layer 1s set by the
direction of the write current flowing through the magnetic
memory. Each magnetic memory element 1s shown coupled
to 1ts corresponding access transistor, which serves to select
the memory element. For example, the magnetic memory
clement 356, which 1s analogous to the memory element 100,
1s shown coupled to access transistor 358, which 1s analogous
to the transistor 222. The access transistor 358 serves to select
the memory element 356. A column decoder 400 1s shown
coupled to a group of bit line select transistors (or decoders)
360, which 1n this case 1s ‘n’ number of transistors. In an
exemplary embodiment, the group of transistors 360 includes
the transistors 214 and 216. Each of the transistors of the
group of transistors 360 serves to select or activate the bit line
to which 1t 1s coupled when it 1s activated by the column
decoder 400. The input of the column decoder 400 1s a part of
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the memory address provided to the array 320 to select a
particular memory element to be written or read. The remain-
der of the address 1s provided to the row decoder 402, which
selects one of the ‘m’ number of word lines. The part of the
address that 1s coupled to the column decoder and includes a 5
write enable indicative of the start of a write operation 1s
referred to as ‘write enable/address 404.

As earlier noted, the row decoder 402 receives the remain-
der of the address to the array 320 and based thereupon,
activates a word line among the ‘m’ number of word lines. 10
The activation of a particular word line and a particular bit
line serve to select a memory element within the array 320 to
be written to or read. The column decoder 400 and the row
decoder 402 collectively decode the received address, accord-
ingly activating a particular word line and bit line and thereby 15
selecting a magnetic memory element to be written to or read.

Ver or virtual ground 1s shown coupled between the source
ol an access transistor of a word line to the drain of an access
transistor of a subsequent word line.

A read enable signal 324 mitiates a read (or sensing) opera- 20
tion, which 1s performed as discussed herein using a reference
magnetic memory element, as shown 1n FIG. 1. The data to be
written during a write operation 1s introduced at node 322 and
the write operation takes place as discussed herein with retf-
erence to FIG. 6. It 1s understood that the write circuitry and 25
read circuitry, as shown and discussed herein are simplified in
that 1n an actual design, provisions are made so that the write
and read operation do not interfere with each other, as well
known to those skilled in the art. Thus, the inverters 338, 340
and 336 are analogous to the mverters of FIG. 6. 30

In operation, to write to, for example, the memory element
356 current flows in the direction indicated by the arrows
starting from the memory element 356, tlowing through the
transistor 358, through Ver, and back up to the transistor 354
because the word line 332 are active to choose the memory 35
element 356, as would the column 328 be active. The current
flows through the transistor 354 back down to Ver and all the
way down to the transistor 32 and to the transistor 54.

It 1s contemplated that the various embodiments of the
present invention, such as those of FIGS. 1-7, have a variety 40
ol applications. For example, they may be used to replace
hard disk drives as storage although, currently the costs may
not justily such a substitute but 1n the future, as costs of
memory e¢lements such as those of the present invention
decrease, it 1s anticipated that such a replacement will be 45
practical. Alternatively, they may replace DRAM or other
types of dynamic and even static memory and/or other types
of memory currently 1n use. Another application of the vari-
ous embodiments of the present invention includes the
replacement of flash with the advantage that, for example, the 50
memory elements of the embodiments of the present inven-
tion can withstand far more programming/writing thereto
than the life span experienced by tlash cells. The scalability of
the embodiments of the present invention allow the same to
replace many types of memory or storage devices. 55

Although the present invention has been described 1n terms
ol specific embodiments, 1t 1s anticipated that alterations and
modifications thereof will no doubt become apparent to those
skilled 1n the art. It 1s therefore mtended that the following
claims be interpreted as covering all such alterations and 60
modification as fall within the true spirit and scope of the
invention.

The mvention claimed 1s:

1. A reference magnetic memory element employed for
reading to a magnetic memory element comprising: 65

a first magnetic tunnel junction (MT1);

a second M1 coupled 1n parallel to the first MT1;
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a third MT1J; and

a Tourth M'TJ coupled 1n parallel to the first MTJ, said first
and third MTJs coupled together 1n series and said sec-
ond and fourth MTJs coupled together 1n series,

wherein the first, second, third and fourth MTJs mnitially
cach have a resistance value of R;,__ ;

the reference magnetic memory element further including
a Tormatting circuit coupled, at an output, to the second
MTIJ and to the fourth MTJ at a node, said first and
second MTJs being coupled to a control gate of the
formatting circuit and to a bit line, wherein the format-
ting circuit 1s operative to pump programming current
through the first and second MTlIs thereby changing
their resistance values to R, ,, the third and fourth
MTIs being coupled at ends opposite to a respective end
that 1s coupled to the formatting circuit, to a source of an
access transistor, a gate of the access transistor being
coupled to aword line and a drain of the access transistor
being coupled to virtual ground,

wherein activation of the formatting circuit causes pro-
gramming of the first and second MTJs thereby increas-
ing the resistance values of the first and second MT s to
R,z the collective resistance value of the first and
second MT s being represented by the average of R
and R;,;;,.

2. A magnetic memory sensing circuit comprising:

a sense amplifier circuit having a first and a second node
through which a magnetic memory element 1s to be read;

a first current source coupled to the first node and operative
to provide current;

a second current source coupled to the second node and
operative to provide current;

a reference magnetic memory element having a resistance
associated therewith and coupled to the first node, the
reference magnetic memory element operative to
rece1ve current from the first current source;

the magnetic memory element that 1s to be read, having a
resistance associated therewith, coupled to the second
node, the memory element operative to recerve current
from the second current source, current from the first
current source and current from the second current
source are the same;

a transistor coupled to the second current source and to
which a resistor 1s coupled, the transistor and the resistor
operative to set the current value for the first current
source and the second current source with the resistance
value of the resistor determining the amount of current to
be supplied by each the first and second current sources;
and

a formatting circuit having an output and a control gate, the
formatting circuit coupled, through 1ts output, to a first
formatting magnetic memory element and a second for-
matting magnetic memory element at a third node and,
through its control gate, to a third formatting magnetic
memory e¢lement and a fourth formatting magnetic
memory element, the first, second, third and fourth for-
matting magnetic memory elements each having a resis-
tance associated therewith and defining a reference mag-
netic memory eclement, the formatting circuit being
operable to provide programming current through the
third and fourth formatting magnetic memory elements
thereby changing the respective resistances of the third
and fourth formatting magnetic memory elements to a
resistance ‘R, ;. R,,.;, being greater than a resistance
R,,,, and the average ot R, ;, and R, defining substan-
tially an average resistance, the third and fourth format-
ting magnetic memory elements each being coupled to a
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source of an access transistor 18, a gate of the access
transistor being coupled to a reference word line and a
drain of the access transistor 18 being coupled to virtual
ground, the third and fourth formatting magnetic
memory elements being respectively coupled to a refer-
ence bit line, at nodes other than the third node, the
formatting circuit operable to program the third and
fourth formatting magnetic memory elements, under
average conditions, thereby increasing the respective
resistances of the third and fourth formatting magnetic
memory elements to R, and the reference magnetic
memory element having a substantially average resis-

tance,
wherein the logic state of the magnetic memory element 1s

sensed by a comparison of the resistance of the memory
clement to the resistance of the reference magnetic
memory element.
3. The magnetic memory sensing circuit, as recited in claim
2 including a criss-cross latch that 1s delayed 1n being acti-
vated.
4. The magnetic memory sensing circuit, as recited in claim
2 including a criss-cross latch that when activated causes an
imbalance between the first and second nodes of the sense
amplifier.
5. The magnetic memory sensing circuit, as recited in claim
2, wherein the at least one magnetic memory element 1s
included 1n a memory array having a plurality of magnetic
memory elements, each of the magnetic memory elements of
the plurality of magnetic memory elements have correspond-
ing access transistors, and having ‘n’ number of bit lines and

10
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‘m number of word lines, n and m being integer values, the bit
lines being coupled to the magnetic memory elements and the
word lines being coupled to the gate of the access transistors,
the memory array further including a column decoder
coupled to the bit lines, and a row decoder coupled to the word
lines, the column decoder and the row decoder being opera-
tive to activate a particular word line and a particular bit line,
the magnetic memory sensing circuit being operative to select
a single one of the plurality of memory elements though a
corresponding access transistor through the particular word
line and the particular bit line.

6. The magnetic memory sensing circuit, as recited in claim
2 wherein the first current source 1s a first transistor and the
second current source 1s a second transistor.

7. The magnetic memory sensing circuit, as recited in claim
6 wherein the first transistor has a first gate, a first drain and a
first source and the second transistor has a second gate, a
second drain and a second source and the drain of the first
transistor 1s coupled to the first node and the drain of the
second transistor 1s coupled to the second node and the gates
of each of the first and second transistors are coupled to each
other.

8. The magnetic memory sensing circuit, as recited in claim
2, wherein during a read operation, the sense amplifier com-
pares the resistance of the at least one memory element to the
resistance of the reference magnetic memory element,
wherein at least two logic states are distinguished based on
the resistance of one logic state being at least half of the
resistance of that of another state.
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