12 United States Patent

US008346958B2

(10) Patent No.: US 8.346,958 B2

Aschen et al. 45) Date of Patent: Jan. 1, 2013
(54) RATE CONTROL TECHNIQUE FOR A (56) References Cited
LIGHTWEIGHT DIRECTORY ACCESS
PROTOCOL OVER MQSERIES (LOM) U.S. PATENT DOCUMENTS
SERVER 6,304,906 B1* 10/2001 Bhatti et al. 709/227
6,779,058 B2 82004 Kishietal. 710/60
(75) Inventors: Sean E. Aschen, Torrington, CT (US); 2004/0230675 Al1* 11/2004 Fremmuthetal. 709/223
: - : 2006/0029016 Al* 2/2006 Pelesoevvvvvviiinnnnnnn, 370/328
gai'l? 5. B;h”Bcary " Nl(\:/[(Usﬁ)"l 1 A 2006/0224725 AL* 10/2006 Bali etal. ..oooooooecocc... 709/224
atierine x. barnes, Mansteld, 2006/0259905 Al* 11/2006 Diao etal.cocooveon...... 718/100
(US); Gordan G. Greenlee, Endicott, 2007/0013948 Al 1/2007 Bevan
NY (US); Dennis L. Hartel, Berthoud, 2007/0061864 Al* 3/2007 Balietal.ccocvvvvvvernnnn, 726/2
CO (US) 2007/0250631 Al* 10/2007 Balietal. 709/226
2007/0271570 Al1* 11/2007 Brownetal. 718/105
- _ ; ; ; 2007/0294399 Al* 12/2007 Grossneretal. 709/224
(73) ASSlgnee‘ Internatl?nal BuSlneSS MﬂChlIlES 2008/0010563 A 2 1/2008 NlShlIIllll‘.‘:l **************** 714/55
Corporation, Armonk, NY (US) 2008/0279189 Al* 11/2008 Smithetal. 370/394
2009/0113099 Al* 4/2009 Shuklaetal. 710/241
(*) Notice: Subject to any disclaimer, the term of this . _
patent is extended or adjusted under 35 cited by examiner
U.S.C. 154(b) by 860 days. _ _
Primary Examiner — George C Neurauter
(21) Appl. No.: 12/328,424 (74) Attorney, Agent, or Firm — John Pivnichny; Roberts,
Mlotkowski, Satran & Cole, P.C.
(22) Filed: Dec. 4, 2008
(37) ABSTRACT
(65) Prior Publication Data A system and method for controlling rates for a Lightweight
US 2010/0146517 Al Jun. 10, 2010 Directory Access Protocol (LDAP) over MQSeries (LoM)
server. The system comprises a health metrics engine config-
(1) Int. CI. H ured to calculate an actual delay value, at least one LoM
GOOF 15/16 (2006'0;~) server configured to asynchronously obtain the actual delay
GO6E 7/00 (2006'();“) value from the health metrics engine and place the delay value
GOoF 17/30 (2006.01) between one or more requests, and a LDAP master configured
(52) U-S- Cl- .. 709/232:J 707/7 69 to accept the one or more requests and Send in_formation 111 the
(58) Field of Classification Search 709/232; one or more requests to a [.DAP rep]ica_

707769
See application file for complete search history.

10 Claims, 7 Drawing Sheets

Send request
100

l

Obtain
health metrics
110

l

Calculate delay
120

l

Put delay
between reads
130

l

Send request to
LDAP master
140

l

Replicate
LDAP master
150

US 8,346,958 B2

Sheet 1 of 7

Jan. 1, 2013

U.S. Patent

l OId

0S
(s)loniDs
INOT

Zc W3sAg abeliols

8¢
82iAeQ O/l

JX 92 74
9be.0IS NOH NOY

G
auIbug

SOUJN UNESH

Yz
AMowa\

71 e21neq Buindwon

174
ovelRlU] O/

J0SS9201d

I

-
—

U.S. Patent Jan. 1, 2013 Sheet 2 of 7 US 8,346,958 B2

| Send request
| 100

Obtain
health metrics
110

Calculate delay
120

Put delay
between reads
130

Send request to
LDAP master

140

Replicate
LDAP master
150

US 8,346,958 B2

seyepdn dvd

Sheet 3 of 7

Jan. 1, 2013

U.S. Patent

¢ 'Ol Uee

".'IIHH.I.'

i geby

0tc

....... > | OURW 1]
\ - TN S0 i
St U ' B R SRR (TS0 i
B U S 4w B I e ST EETER . TS0 1y
—p{ PN - . SO
pf
dva i -4/

+—4Glc

SJLIRN Mol 23epdn
R Sy Sy A o AP
(uoneziin Ndd)

(quno) edljday dva)
SIS 2IUEBLUIOLIDd SO

SO MOi4 a3epdn)

Wda5

m (awi] Isuodsay)

(S1ey abuey) Jaasel dyal)

(Junc) ydsqg ansnd)
SJIN3 MO 21epdn

g | 101 PR0OE

auIbug epdn o RO o @u

» y
\)

Y F ___r

b

Em.._w,ammn_ vﬁ& ®A

suiBug a1epdn

e "

SOURISUT JeAIsS WO

sanand INHur WO

= % - QUBID WO ;|
MO}4 pPaded E O . Nu ..n‘.....
duibuz sjepdn |&@ ok P o

092 D3¢

¥ Ol

)
aa
o
Ye
<3
O
4
)
o
7p
-

En_u_ﬁ_

'-

000°01L E 0000000 E'E-EE 001 E ooL | ooL | 091 | o
- 0G°LL EEEH 0000S1°0 n 000000°0 ooc | ovz | ocz | ooz | oL
M E 00LLLF O E 00L1 EHEE 0012 | 0001 | 0OS! E oozk | 8 |
- |
- T e e e N ey e e B S B
N e e e o e e S A A B A
—
s I e e o K e B e e S I E R A
EN TN o o e e e e S S ES A A
I e e I e B e e S S A A
I e ey e e e e e e e A Y
I KN I I 1 O N R D

U.S. Patent

US 8,346,958 B2

L1501 €ec8ads | 1991600

¢G8 Gl €65 ¢6L | 98149850

19991 | €££€€8 | L99999°0
090'LL | 9.67¢SS | 2965010
— cv0'9L | €80°208 | L91¥09°0
&
\f,
= ¢e8'GlL | €6926L | G81G8S 0O
W
7
00S'0L | 000°62S | 0000S0°0
0EL L 18'9GG | €96211°0
o
=
S 00001 | 000°00S | 0000000
1_-..,.
= 19921 | €€E€'€E9 | 19999270
= _

U.S. Patent

0000000

ErLLGE 0

00005¢ 0

LELLLLO

0000000

8LLLLL°0

00000070

0000000

0000010

LLLLLLE O

)
AN

e |efe]|ofe]8|e]2|a]g]-
Illllllllll
B EDDDDDoE
II.III.III.
l.llllll.ll

g Old

0000000
0000010
0000500
00 oom 10
0000000
00000L 0
000000°0
000000°0
000050°0

0000000

999990
0000000
0000550
mmmmnw.o
0000500
0000000
0000000
2999920
0000000

£eeess’o

000001

000 0%

000°t6

00098

000°¢9

000°6V

000 ¥V

000°94

000

|G

000°G6

D
(-
—
o Q
E

-
-
=

-
-
T

-
M~

LD
1®

H
Te! 0) 8
N~ e N =

- -
L - - - Ty
-

-
-
-«

-
o

-
O

-
)
T
e

-
S

Gy 0¢
Gv
0L Ge
GG
06 G6

9 'Old

mm_u_Q

US 8,346,958 B2

-
o)
F
-
O
P

198°EC LGE'G6L | ¥1.06G°0 | 62v1LL00 0000500 0000vG 0 | 000vGl 00¢

€96 L1 LIPG8G | £€80LL°0 f| €£eEe800 0000500 0000210 | 000¢cll

GLZ GC ¥8Y'0¥8 | 8960890 | ¥..960°0 H 0000010 - 0000850 § Q008SL § OLL | 9SL | 091 E 0G1
048Gl €ee'8ca | 4999500 | 4999990 H 0000500 “ 0000000 | 00008 § 00L HHEH
m 196°¢cC [G€°G9L | v1.L0ES0 | 67100 H 0000500 “ 00008¥'0 | 000 8¥L E Okl | OEL | OLL | 0%l
&
,__w 06291 000°¢€yG | 0009800 | 0000000 § OL- § 0000900 “ 0009€0°0 | 009€0l EE e0l EH
8GC LI €9¢°GLG | 9¢90G1°0 § ¢cL9cs00 n 0000510 n 0000000 § 00006 EEHHH
e 00G ¢c 000°0GZ | 0000050 § 0O0COOOC H 0000G0 O - 00000G°0 § 0000GL § OGL | OGL | OG9L | OGSl | OSL
v—
—
« 000 81 000°009 | 0000020 § 000GOOC ﬂ 0000C0 0 n 0000020 § 000°0cL § O0L | 001 H 0Ll | 0S}
v—
=
.nJa 0S0°Ch 000°gEYL § 0000.8°L § 0000000 § Oc- § 0000900 “ 0000¢8°L | 000¢c8C | O0E | 02t | OLE | 0€C | 0GC
amso | waoso | conion | o | eoooo | ¢
urs | oo | cowon | o | eooowo | ¢

- Q
m -
P ?

' -
i
. :
-
-
. o
N
\

U.S. Patent

8 Ol

US 8,346,958 B2

E 8L0°6.G | 9€00GL°0 § 8181810 | 000L | 0000%L°0 n 0000000 § 0000009 E 005G | 004Lv | O0Ey | OO0V '

000°S0l E 0000500 § 0000000 E 0000G0°0 H 0000000 § 0000V8 EE 00¢lL | 00LL | 000} '
LOO'GLL | €€0'G.G | /900GL°0 | €€£€€€0 E 0000GL°0 n 0000000 § 0000001 § 0002 | 00GL | 0001 EHI

M., Q _ _
a0 u L 3 (1A

Sheet 7 of 7

Jan. 1, 2013

_ L Old
000" ﬂ _

000 v. 000°0vL § 00008%°0 3 0000000 E 000000°0 - 00008+'0 § 000°¢CiC EEEHHI

U.S. Patent

US 8,346,958 B2

1

RATE CONTROL TECHNIQUE FOR A
LIGHTWEIGHT DIRECTORY ACCESS

PROTOCOL OVER MQSERIES (LOM)
SERVER

FIELD OF THE INVENTION

The invention generally relates to a system and method for

a rate control technique and, 1n particular, to controlling rates
for a Lightweight Directory Access Protocol (LDAP) over
MQSeries (LoM) server.

BACKGROUND

Many organizations have implemented a Lightweight
Directory Access Protocol (LDAP) for accessing and manag-
ing information directories in a network. LDAP information
directories are structured as a tree hierarchy, which includes a
root directory, as well as directories for divisions and/or
departments within the LDAP organization. The tree hierar-
chy may also include information about individuals, files,
shared resources, eftc.

A LDAP directory can be distributed among many servers.
Each server can have a replicated version of the entire LDAP
directory, which may be synchronized periodically. The
LDAP server can receive requests from one or more users and
coordinate responses to the user. The type of requests may
include requests to read, update, delete, etc., information
stored on the LDAP server. The number of requests received
from the LDAP server and the order in which the requests are
carried out may vary between servers.

Any number of authorized or unauthorized persons may
send requests to the LDAP server. The LDAP server may
process all requests received or only those requests coming,
from persons that are authorized to make the request. Autho-
rization may be determined based permissions, which may be
set by an administrator. An administrator may also describe a
schema for the LDAP, 1.e., a way to describe the format and
attributes of data 1n the LDAP server.

SUMMARY

In a first aspect of the ivention, a system comprises a
health metrics engine configured to calculate an actual delay
value. The system also comprises at least one LoM queue
configured to asynchronously obtain the actual delay value
from the health metrics engine and place the delay value
between one or more requests and a LDAP master configured
to accept the one or more requests and send information 1n the
one or more requests to a LDAP.

In another aspect of the invention, a computer implemented
method to determine a delay value comprises obtaining met-
ric data about at least one of an operating system performance
metric, a LDAP performance metric, and an update flow
metric and assigning a weight to the metric data. The method
turther comprises calculating one or more weighted delay
values for each of the metric data, wherein the sum of the
weilghted values equals a calculated delay value and using the
calculated delay value and a queue bias to ascertain an actual
delay value. The actual delay value may be sent to a LoM
server, which 1s configured to place the actual delay value
between one or more request reads to control a processing,
pace of the LoM queue.

In yet another aspect of the invention, a computer program
product comprising a computer usable medium having read-
able program code embodied in the medium 1s provided. The
computer program product includes at least one component

10

15

20

25

30

35

40

45

50

55

60

65

2

operable to: obtain metric data; assign a weight to the metric
data; calculate a delay value using one or more known math-
ematical algorithms and/or techmiques such as time-series
analysis, moving average, linear regression, and dynamic
programming; determine one or more weighted delay values
for each of the metric data, wherein the one or more weighted
delay values are added together to obtain the calculated delay
value; ascertain an actual delay value using the calculated
delay value and a queue bias; and send the actual delay value
to a LoM server, wherein the actual delay 1s put between one
or more request reads to control a processing pace ol the LoM
queue.

In a further aspect of the invention, a method for computing,
a delay value, comprises providing a computer infrastructure
being operable to: obtain metric data about at least one of an
operating system performance metric, a LDAP performance
metric, and an update flow metric; assign a weight to the
metric data; determine one or more weighted delay values for
cach of the metric data, wherein the one or more weighted
delay values are added together to obtain the calculated delay
value; multiply the calculated delay value by a queue bias to
ascertain an actual delay value; and send the actual delay
value to a LoM server, where the actual delay 1s put between
one or more request reads to control a processing pace of the
LoM queue.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s described 1n the detailed descrip-
tion which follows, in reference to the noted plurality of
drawings by way of non-limiting examples of exemplary
embodiments of the present invention.

FIG. 1 shows an illustrative environment for implementing,
the steps 1n accordance with the invention;

FIG. 2 shows a flow chart of an exemplary process in
accordance with aspects of the invention;

FIG. 3 shows an 1llustrative embodiment of a LoM queue
pacing design i accordance with aspects of the invention;
and

FIGS. 4-8 1llustrate calculations that may be performed to
determine mput values in accordance with aspects of the
invention.

DETAILED DESCRIPTION

The invention 1s directed to a system and method for a rate
control technique and, 1n particular, to controlling rates for a
Lightweight Directory Access Protocol (LDAP) over
MQSeries (LoM) server. More specifically, the invention
includes a LoM server that 1s configured to recerve LDAP
directory requests, e.g., update requests, on an MQSeries
queue. Once received, the update requests can be checked to
determine whether the requestor has permission, 1.e., autho-
rization, to update the information requested. If so, the LoM
server applies the update to a master LDAP directory.

The LoM server 1s the sole application that 1s authorized to
make updates to the LDAP master directory; therefore, it 1s
important that the LoM server be able to process requests as
fast as possible. However, when a large amount of sequential
requests are rapidly receiwved, the LDAP becomes a bottle-
neck and the speed at which the requests are processed dimin-
ishes.

For example, processing a rapid series of modification
requests causes LDAP replicas to spend excessive time pro-
cessing updates from the LDAP master. This results in the
LDAP directory responding slowly to user searches and may
result 1n user searches failing due to time out conditions. The

US 8,346,958 B2

3

rate control technique described herein 1s configured to con-
trol the rate at which changes are applied to the LDAP direc-
tory to ensure that users get timely responses to their search
requests.

The rate control technique utilizes existing LDAP environ-
ment health metrics, which are obtained from the L.oM server,
to determine what length of a pause, 11 any, should be mserted
between requests so as to help directory servers maintain

service level agreement objectives for performance. In
embodiments, the LDAP environment health metrics may be
checked asynchronously or synchronously at predefined
intervals. The information obtained from the LDAP environ-
ment health metrics may be used to determine whether any
pacing on processing updates 1s needed. The length of the
pacing may range from none to a full stop until the next health
metric check 1s performed.

In embodiments, pacing can be used by an operator, admin-
1strator, etc., to alter how health metric values are converted
into duration of delays between processing queued updates.
For example, since updates to an LDAP directory are likely to
consume the most resources, the pacing of these updates can
be altered according to the availability of LDAP system
resources. This allows the LDAP directory servers, 1.e., rep-
licas, to spend more time on processing requests from LDAP
users, such as authentication requests, search requests, eftc.
Beneficially, by pacing requests to an LDAP directory, the
overall LDAP directory performance increases during peak
times.

A number of designs having a pacing delay may be used.
For example, a delay may be placed between reads to control
the LoM server’s queue processing pace, thereby allowing
the pace to speed up or slow down based on the overall system
status. For example, if an overwhelming number of updates
are sent to the LoM server, the number of updates that the
LDAP master needs to process increases. This increase
degrades the LDAP master’s performance and causes signifi-
cant increases 1n replication volume, which in turn forces
LDAP replicas to spend more time on replication than serving
LDAP clients. Moreover, this increase eventually degrades
the performance of the entire system aflecting LDAP users.

The use of a delay value that can be changed dynamically
based on the overall system status represented by different
factors/inputs minimizes the degradation of the system. The
calculation of the amount of delay may be based on a number
of different factors including the overall update flow within
the directory system, LDAP performance, and operating sys-
tem performance at a given time. The acquisition of the data
required for the delay calculation, as well as the calculation

itself, may be performed by a software agent such as a Health
Metrics Engine (HME).

DEFINITION OF ACRONYMS
ACRONYM DEFINITION
a Metrics Data Average
d Default Delay Value
D Computed Delay Value
EDRM Enterprise Directory Resource Monitor
FL Maximum Increase Amount (%) for Longest
Increasing/Decreasing Subsequence
h Time
HME Health Metrics Engine
1 Time index
k Component (server or queue) Index
I Number of servers or queues
L Length of Longest Increasing/Ascending Subsequence

10

15

20

25

30

35

40

45

50

55

60

65

4
-continued
DEFINITION OF ACRONYMS
ACRONYM DEFINITION
LMR LDAP Master [Change Application] Rate
LoM LDAP over MQSeries
LPM LDAP Performance Metrics [response time]
LRR LDAP Replication Rate [replica count]
OPM Operating System Performance Metrics [CPU utilization]
q Queue Index
QB Queue Bias
QDR Queue Depth [Change] Rate
N Sequence
S Subsequence
t Threshold value
UM Update Flow Metrics [combines LRR, LMR, and QDR]
\Y Metrics data [server response time,
CPU utilization, replica count, change
application rate, or queue depth]
W Weight value [%]

System Environment

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method or computer
program product. Accordingly, the present mmvention may
take the form of an entirely hardware embodiment, an entirely
soltware embodiment (1including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, the
present invention may take the form of a computer program
product embodied in any tangible medium of expression hav-
ing computer-usable program code embodied 1n the medium.

Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, mirared, or semiconductor system, apparatus,
device, or propagation medium. More specific examples (a
non-exhaustive list) of the computer-readable medium would
include the following:

a portable computer diskette,

a hard disk,

a random access memory (RAM),

a read-only memory (ROM),

an erasable programmable read-only memory (EPROM or

Flash memory),

a portable compact disc read-only memory (CDROM),

and/or

an optical storage device.

The computer-usable or computer-readable medium could
even be paper or another suitable medium upon which the
program 1s printed, as the program can be electronically cap-
tured, via, for instance, optical scanning of the paper or other
medium, then compiled, interpreted, or otherwise processed
in a suitable manner, if necessary, and then stored 1n a com-
puter memaory.

In the context of this document, a computer-usable or com-
puter-readable medium may be any medium that can contain,
store, communicate, propagate, or transport the program for
use by or in connection with the mstruction execution system,
apparatus, or device. The computer usable program code may
be transmitted using any appropriate transmission media via
a network.

Computer program code for carrying out operations of the
present invention may be written 1n any combination of one or

US 8,346,958 B2

S

more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network. This may 1nclude, for example, a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

FIG. 1 shows an illustrative environment 10 for managing,
the processes 1n accordance with the invention. To this extent,
the environment 10 includes a computer infrastructure 12 that
can perform the processes described herein. In particular, the
computer infrastructure 12 includes a computing device 14
that comprises a Health Metrics Engine (HME) 45, which 1s
a soltware agent that 1s configured to acquire data for calcu-
lating a delay. The data may include the overall update flow
within the directory system, the LDAP performance, and the
operating system’s performance. The HME 45 1s further con-
figured to use the acquired data to dynamically calculate a
delay, which may be placed between reads to control the
processing pace of a LoM server 50.

The computing device 14 also includes a processor 20, the
memory 22A, an I/0 interface 24, and a bus 26. The memory
22A can include local memory employed during actual
execution of program code, bulk storage, and cache memories
which provide temporary storage of at least some program
code 1n order to reduce the number of times code must be
retrieved from bulk storage during execution.

The computing device 14 1s 1n further communication with
the external I/O device/resource 28 and the storage system
22B. For example, the IO device 28 can comprise any device
that enables an individual to interact with the computing
device 14 or any device that enables the computing device 14
to communicate with one or more other computing devices
using any type ol communications link. The external I/0O
device/resource 28 may be keyboards, displays, pointing
devices, microphones, headsets, etc. The storage system 22B
can include an “inventory” of sounds, modifications, etc.,
which may be selected by the user’s avatar.

In general, the processor 20 executes computer program
code, which 1s stored in the memory 22A, a read-only
memory (ROM) 25, random access memory (RAM) 26, stor-
age 27, and/or storage system 22B. The computer code may
be representative of the functionality of the HME 45. While
executing computer program code, the processor 20 can read
and/or write data to/from memory 22A, storage system 22B,
and/or I/O 1nterface 24. The program code executes the pro-
cesses of the invention. The bus 26 provides a communica-
tions link between each of the components 1n the computing,
device 14.

The computing device 14 can comprise any general pur-
pose computing article of manufacture capable of executing
computer program code installed thereon (e.g., a personal
computer, server, handheld device, etc.). However, it 1s under-
stood that the computing device 14 1s only representative of
various possible equivalent computing devices that may per-
form the processes described herein. To this extent, 1n
embodiments, the functionality provided by the computing
device 14 can be implemented by a computing article of
manufacture that includes any combination of general and/or
specific purpose hardware and/or computer program code. In

10

15

20

25

30

35

40

45

50

55

60

65

6

cach embodiment, the program code and hardware can be
created using standard programming and engineering tech-
niques, respectively.

Similarly, the server 12 1s only 1llustrative of various types
of computer infrastructures for implementing the mvention.
For example, in embodiments, the server 12 comprises two or
more computing devices (e.g., a server cluster) that commu-
nicate over any type of communications link, such as a net-
work, a shared memory, or the like, to perform the processes
described herein. Further, while performing the processes
described herein, one or more computing devices on the
server 12 can communicate with one or more other computing,
devices external to the server 12 using any type of communi-
cations link. The communications link can comprise any
combination of wired and/or wireless links; any combination
ol one or more types of networks (e.g., the Internet, a wide
area network, a local area network, a virtual private network,
ctc.); and/or utilize any combination of transmission tech-
niques and protocols.

In embodiments, the invention provides a business method
that performs the steps of the invention on a subscription,
advertising, and/or fee basis. That 1s, a service provider, such
as a Solution Integrator, could offer to perform the processes
described herein. In this case, the service provider can create,
maintain, deploy, support, etc., a computer infrastructure that
performs the process steps of the invention for one or more
customers. In return, the service provider can receive pay-
ment from the customer(s) under a subscription and/or fee
agreement and/or the service provider can receive payment
from the sale of advertising content to one or more third
parties.

As will be appreciated by one skilled 1n the art, the present
invention may be embodied as a system, method or computer
program product. Accordingly, the present mmvention may
take the form of an entirely hardware embodiment, an entirely
soltware embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, the
present invention may take the form of a computer program
product embodied 1n any tangible medium of expression hav-
ing computer-usable program code embodied in the medium.

Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, mirared, or semiconductor system, apparatus,
device, or propagation medium. More specific examples (a
non-exhaustive list) of the computer-readable medium would
include the following: an electrical connection having one or
more wires, a portable computer diskette, a hard disk, a ran-
dom access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a transmission
media such as those supporting the Internet or an intranet, or
a magnetic storage device. Note that the computer-usable or
computer-readable medium could even be paper or another
suitable medium upon which the program 1s printed, as the
program can be electromically captured, via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, or otherwise processed 1n a suitable man-
ner, 1f necessary, and then stored 1n a computer memory. In the
context of this document, a computer-usable or computer-
readable medium may be any medium that can contain, store,
communicate, propagate, or transport the program for use by
or 1n connection with the istruction execution system, appa-

US 8,346,958 B2

7

ratus, or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code embodied therewith, either 1n baseband or as part of a
carrier wave. The computer usable program code may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc.

Exemplary Implementation of the System

The present invention 1s described below with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart i1llustrations and/or block
diagrams, and combinations of blocks in the flowchart 1llus-
trations and/or block diagrams, can be implemented by com-
puter program instructions. These computer program nstruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified 1n the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable medium that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the mstructions stored 1in the
computer-readable medium produce an article of manufac-
ture including mstruction means which implement the func-
tion/act specified 1in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
1llustration, and combinations of blocks 1n the block diagrams
and/or tlowchart 1llustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

FIG. 2 shows an exemplary process according to embodi-
ments of the invention. In particular, at step 110, the HME
may obtain one or more health metrics about the system. The
health metrics may include OS performance metrics, LDAP
performance metrics, update tlow metrics, etc. The HME may
also obtain one or more input metric weights for the health

10

15

20

25

30

35

40

45

50

55

60

65

8

metrics, a queue bias, etc. The HME may use this information
to calculate a queue delay, at step 120.

In embodiments, the calculated queue delay may be put
between one or more requests, at step 130. One or more of the
requests may be from a LoM client and may include, e.g.,
update requests, delete requests, add requests, etc. Once a
queue delay 1s placed between the requests, the requests may
be sent to an LDAP master at step 140. The LDAP master may
process the requests and send information stored 1in the LDAP
master to one or more LDAP replicas, at step 150.

LoM Queue Pacing Design

Traditionally, a LoM server consumes messages from a
queue without any delay between reads. For example, the
LLoM can read a message containing an update to the direc-
tory, processes the update, and obtain the next message 1n the
queue, 11 any. However, this design may result in the LoM
acting as a bottleneck, which poses problems when numerous
requests are 1 a queue. The present mvention beneficially
overcomes this problem by putting a delay between LoM
server reads.

Putting a delay between LoM server reads beneficially
controls the LoM server’s queue processing pace so that the
pace can be sped up or slowed down depending on the overall
system status. For example, when an overwhelming number
of updates are sent to the LoM server, the amount of updates
the LDAP master must process increases. This degrades the
LDAP master’s performance, thereby causing a significant
increase 1n replication volume. The increase forces LDAP
replicas to spend more time on replication than serving LDAP
clients. This eventually degrades the performance of the
entire system aflecting LDAP users. This degradation can be
avoided by putting a delay between LoM server reads,
wherein the calculation of the delay value can be changed
dynamically based on the overall system status represented
by different factors/inputs.

The amount of delay put between LoM server reads can be
calculated based on different factors, which include the over-
all update tflow within the directory system, LDAP perfor-
mance, and operating system performance at a given time.
The calculation of the delay and the acquisition of the data
required for calculation can be performed by the HME, such
as HME 45.

The HME 1s configured to obtain the performance metrics
data from different sources (metrics sources). Exemplary
metrics sources include LDAP performance data from an
Enterprise Directory Resource Monitor (EDRM), operating
system performance data from small remote software agents,
and update flow rate from queue and various standard LDAP
statistics.

LDAP performance metrics (LPM) may be based on the
changes in the individual response time values for each LDAP
replica 1n the cluster. Operating system performance metrics
(OPM) can be based on the changes in the individual CPU
utilization (1n percentage) by each LDAP replica 1n the clus-
ter. Update tlow metrics (UFM) may be based on the changes
in the “update consumption or application™ rates obtained
from various input/output points in the system. These mput/
output points may include changes in the LoM input queue
depths, LDAP master change application rate, and LDAP
replication rate. The impact of each rate on the delay can be
weighted using a predefined percentage.

The HME 1s configured to implement a logic to employ
LPM, OPM, and UFM 1n the calculation of the delay for each
LoM queue. This 1s referred to as the “computed delay value™
(D). The LoM Server may communicate with HME at certain

US 8,346,958 B2

9
intervals to obtain D for the queue 1t 1s processing. If the HME
1s unavailable, the present imnvention 1s configured to use a
default delay value. The HME may repeat this process at

certain intervals to recalculate the delay based on the changes
in the system performance and the update flow.

[llustration of LoM Queue Pacing Design

FI1G. 3 shows an 1llustrative embodiment of the LoM queue
pacing design 1n accordance with the mvention. Specifically,

FIG. 3 includes one or more LLoM clients 200. The LLoM

clients can make any number of requests, which may be
received by one or more queues 205. Exemplary requests may
include, e.g., requesting user password updates, user group
updates, user profile updates, etc.

The queues 205 are configured to recerve requests from one
or more LoM clients and obtain information about the system
to determine an appropriate amount of time to delay one or
more of the requests. In embodiments, the queues 205 obtain
information by pulling the HME 45 periodically or by pulling
the HME 45 upon the occurrence of an event. The queues 2035
are also configured to send update flow metrics associated
with a queue depth count to the HME 45.

The HME 45 1s configured to asynchronously pull infor-
mation about LDAP performance metrics from an Enterprise
Directory Resource Monitor (EDRM) 213 or a similar system
that 1s structured to measure LDAP response times. The
EDRM 215 1n turn 1s configured to asynchronously accumus-
late replica information and LDAP response times from one
or more LDAP replicas 220. It should be understood that
while the EDRM 215 1s illustrated in FIG. 3, embodiments
may allow the HME 45 to obtain LDAP performance metrics
directly from the LDAP replicas 220 without using the
EDRM 215.

In embodiments, the HME 45 may be further configured to
obtain update tlow metrics from, such as the LDAP master’s
change rate, the LDAP master 230. The HME may also obtain
operating system (OS) performance metrics relating to utili-
zation of the central processing unit (CPU). In embodiments,
the OS performance metrics may be obtained from an OS
metrics agent 240 using a secure shell protocol (SSH), a
remote shell protocol (RSH), etc. Specifically, the OS metrics
agent 240 1s configured to measure OS responsiveness on an
LDAP server by, e.g., checking CPU utilization, verifying
memory usage, etc. For example, the OS metrics agent 240
may periodically measure CPU, memory, I/O, etc., usages for
the entire system and report the measurements to the HME
45. In embodiments, the OS metrics agent 240 may be a
separate program running independently on a server to mea-
sure operating system related performance.

The HME 45 may also obtain one or more input metric
weights relating to the LDAP performance metrics, the
update tlow metrics, and the OS performance metrics. In
embodiments, one or more of the mput metric weights may be
set to default values and/or assigned by an administrator, user,
etc. In addition to obtaining input metric weights, the HME 45
may also determine existing queue bias and/or calculate a
queue bias. Once calculated, the queue bias may be used by
the HME 45 to calculate a queue delay.

One or more LoM server instances 250 may receive
requests from one or more of the queues 205 and asynchro-
nously pull the HME 45 for the calculated queue delay. In
embodiments, the calculated queue delay may be placed
between reads to control the LoM server’s processing pace,
thereby allowing the pace to sped up or slow down based on
the overall system status.

10

15

20

25

30

35

40

45

50

55

60

65

10

Prior to sending the requests to the LDAP master 230,
embodiments may determine whether the LoM client 200 has
authorization to make the request, e.g., update, delete, etc.,
via an update engine 260. It the LoM client 200 does not have
the proper authorization, the request 1s not sent to the LDAP
master 230. However, 11 the LoM client 200 has the proper
authorization, the request is sent to the LDAP master 230. The
LDAP master 230 1s a designated LDAP server configured to
replicate the request to one or more LDAP replicas 220 such
that the LDAP replicas 220 include the same imnformation as
the LDAP master 230.

The features discussed 1n reference to FIG. 3 and the cal-
culations used by the HME 45 to determine the queue delay
are described 1n more detail herein.

LoM Queue Pacing Calculations

1. Default Delay Value (d) for a Queue

In embodiments, the HME uses a default delay value (d) as
a pivot to produce a computed delay value (D) for each queue.
If the system 1s functioning normally, d 1s the delay value for
the LoM server. A system functions normally when all of the
performance measurements, which includes LDAP response
times, CPU utilizations, etc., are within acceptable ranges and
the input/output rates are also within acceptable ranges.

If the system 1s not functioning normally, 1.e., measure-
ments and/or rates indicate an overall change or an i1solated
performance degradation within the system, d will be
increased accordingly to produce the computed delay value
(D). The amount of the increase 1s based on a number of
calculations, which are described herein.

2. Manual Bias Value (QB) for a Queue

Embodiments of the invention allow for a manual interven-
tion of D. This manual intervention may be accepted as a
“bias” value for each queue (QB). The default QB for a queue
1s “1.0”, however, the value for QB may be changed so as to
istruct LoM servers to slow down or speed up requests,
regardless of what the performance measurements and/or
rates mndicate. For example, 11 queue 1 (g=1) 1s used by a vital
application and the LoM server processing the queue needs to
consume at a faster rate than the rate dictated by D for the
queue, a QB equal or greater than 0.0 and less than 1.0 can be
used.

3. Actual Delay Value (D') for a Queue
An actual delay value (D') for a queue may be calculated by

multiplying QB by D, as illustrated by the following equa-
tion:

(1)

For instance, 11 D, 1s 6 seconds and (OB, 1s set to 0.4, D', will
be 2.4 seconds. It OB, 1s greater than 1.0, e.g., 2.0, D', will be
12 seconds.
4. Weight Distributions Between Metrics Sources

Any number health metrics may be used to calculate D,
which 1s based on d. Each metric may be associated with a
predefined “weight” value, which may be represented as a
percentage such that the total weight of all of the metrics

involved adds up to 100%. For example, UFM may be
assigned a weight of 70% (W, -, ,) whereas LPM and OPM

may be assigned a weight of 20% (W, 5,) and 10% (W ;5-.,),
respectively.

The weight assigned to UFM (W, ,) may be divided into
small predefined weights by the HME to factor 1n the effects
of queue depth change rate (QDR), LDAP Master change
application rate (LMR), and LDAP replication rate (LRR). In
embodiments, the division of weight may be performed based
on the concerved importance of each “update” point within

D' =QB_D,

US 8,3
11

the system. For example, as 1llustrated in the table 1, W, -, ,
can be associated with a weight of 60%. This weight may be

distributed, e.g., as 20% for QDR (W p5z), 10% tor LMR
(W, »), and 30% for LRR (W, »5).

46,958 B2

12

based on the LPM obtained and processed by the HME, d
should be increased by 100 milliseconds to 600 m1111-
seconds (D)

based on OPM, LMR, and LRR, D should be 550, 580, and
600 milliseconds, respectively.

based on QDR wvalues for each queue, D should be 390
milliseconds for queue 1, 610 milliseconds for queue 2,

and 600 milliseconds for queue 3

5

TABLE 1
LPM OPM UM
Wipnr= Wopar=20% Wemag = 60%
20% QDR LMR LRR

The weight associated with a metric can be used to deter-
mine the computed delay value. For example, the LDAP
performance can be measured using the LDAP performance
metrics (LPM). As 1llustrated in table 1, the impact of the
changes 1n the LDAP performance to the computed delay
value (D) 1s 20%. Accordingly, 11 LPM were the only source
used to calculate the delay, 1ts weight would be 100%. How-
ever, there are other metrics to be factored into the calculation
and, as such, a weight 1s assigned to each metric.

Multiple update points 1n the system exist, theretore, UFM
1s comprised of metrics obtained from queues, the LDAP
master, and LDAP replicas. As such, embodiments may dis-
tribute weight assigned to UFM based on the conceived
importance of sources that comprise UFM. For example, 1n
table 1, UFM’s overall weight 1s set to 60% and 1s distributed
among queue depth change rate (QDR), LDAP master appli-
cation change rate (LMR), and LDAP replication rate (LRR)
as 20%, 10%, and 30%, respectively.

When computing D, embodiments may treat each metric’s
source as 1f 1t 1s the only source within the system that can be
used to determine the performance. Thus, each metric’s
source produces its own D, which can be multiplied by the
weilght assigned to the source to produce the source’s “share”™
in D. The sum of all shares produces D.

5. Queue Depth Rates (QDR) for a Queue

Embodiments may provide an exception for computing D
based on queue depth rates (QDR). This exception involves
calculating D for each queue as if a queue and the queue’s
queue depth are the only sources factored. Thus, e.g., if there

are four queues, four different D values can be calculated
based on the queue depth data collected for each queue.

LPM OPM

WLPM = WGPM =

Based on these assumptions, and the weights specified 1n
10 Table 1, the following can be deduced:

D, =(600% W, 1, J+H(550% W) N+ (3R0% T, , =)+
(600* W, z2)+(590* W5 pp)

D, =(600%0.20)+(550%0.20)+(580*0.10)+(600*0.30)+

15 (590%0.20)

D=120+110458+180+11%

D ;=586 milliseconds

20
Do=(600% Wy o1 V(550 Wy)+ (580% W, 1 1)+
(600* W,) +(610% W)

Do=(600%0.20)+(550%0.20)+(580%0.10)+(600*0.30)+
(610%0.20)
25

D5=120+110+58+180+122

D5,=590 milliseconds

30 Dy=(600% Wy pa) +(550%* Wopa) +(S80* Wy g n)+

(600* W, zg)+(600* W5 pz)

D5=(600%0.20)+(550*0.20)+(580%0.10)+(600*0.30)+
(600*0.20)

33 D,=120+110+58+180+120

D;=588 milliseconds

As there are multiple LDAP replicas in an LDAP cluster,
W, »» can be distributed in equal shares to factor 1n the 1ndi-
vidual LRRs. For example, it W, ., 1s 30% and there are ten
LDAP replicas (n=10) in the cluster, the individual weight for
cach replica would be factored 1n at 3% (w). The sum of
weilghed rates from all replicas will produce W, . ».

40

20% 20%

TABLE 2
UFM
LRR
QDR LMR W, e = 30%

20%

For purposes of non-limiting illustration, the following
situation 1s assumed:
the default delay value (d) 1s set to 500 milliseconds

10% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%

55
Similarly, the distribution method of the assigned weight

described above can also be used to factor in LPM and OPM
as LPM and OPM are based on individual stimulus trom

there are three queues 1n the system LDAP replicas like LRR.
TABLE 3
LPM OPM
W= w= W= W= W= W= W= W= W= W= W= W= W= W= W= W= W=
w=2% w=2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% w=2%

US 8,346,958 B2

13

By further distributing the weight assigned to LPM, OPM
and LRC, each LDAP replica 1s allowed to affect D individu-
ally at a certain level. The smaller the assigned weight values

(€.2., Wro1, Wona), the smaller the impact on D by an
individual server. Thus, the more LDAP replicas in the equa-
tion, the smaller the impact on D.

6. Threshold Value (t)

A threshold value (1) 1s configured to help HME determine
whether the performance depicted by metrics data should
start affecting D and 11 so, how much. In embodiments, the
threshold value can be determined separately for each metric
(LPM, OPM, QDR, LMR, and LRR). The threshold value
may be represented 1n the same unit used to describe metrics
data. Moreover, in embodiments, the threshold value may be
an integer, which represents, e.g., a count or length.

For example, a threshold value of 1000 milliseconds for
LDAP performance metrics (LPM) may be used. Addition-
ally, a threshold value of 60% for operating system perfor-
mance metrics (OPM) based CPU utilization 1n percentage.

7. Computed Delay Value (D) for a Queue

The calculation of D for each component requires the
implementation of mathematical methods and/or algorithms
such as time-series analysis, moving averages, linear regres-
sion, and dynamic programming. Such methods/algorithms
require a series ol data collected for a certain period of time.
In embodiments, the metrics data collected by HME can be
used as an 1put to these methods/algorithms.

In embodiments, the HMFE can take three factors into
account when computing the delay value (D) using the met-
rics data collected for a server or queue for a specified period
of time. The first factor 1s the average of the metrics data. The
second factor 1s the longest increasing/ascending or decreas-
ing/descending subsequence within the metrics data. The
third factor 1s the differences between the current metrics data
and the previous metrics data, 1.e., the change rate.

The first factor, the average of the metrics data collected for
a server or queue, helps HME determine whether a server or
queue has been performing within acceptable ranges. An
“acceptable range” for a server or queue may depend on what
1s being collected as the metric’s data. For example, 11 the
metric’s data comprises LDAP response times, the acceptable
range could be expressed as “between 0 and 1000 millisec-
onds.” The upper bound of the range may determined by a
“threshold” (t) value, whereas, the lower bound may be setto
Zero.

An average value that exceeds the threshold value indicates
that the server or queue has been performing poorly. For
example, 1f the average of the LDAP performance metrics
(LPM) data (a) collected for an individual server (k) in a
certain period of time (h) 1s 2000 milliseconds, and the thresh-
old 1s set to 1000 milliseconds, HME can deduce that the
performance of that particular server 1s not good (a,>t) and
the default delay value (d) should be increased based on the
difference between a and t_. With t_ set to 1000 milliseconds,
an average of 2000 milliseconds indicates a 100% 1increase
over t_. This can be reflected on d, which yields a D that 1s
equal to (d*2). The reflection of the average of the metrics
data on the delay can be compared to “hitting the brakes™ of
a car to reduce the speed significantly.

The example below 1s provided for illustrative purposes.
The metric’s data 1n this example represents LDAP response
times (1n milliseconds) collected for a server at one-minute

intervals for 10 minutes (h). The threshold (t) 1s set to 1000

10

15

20

25

30

35

40

45

50

55

60

65

14

milliseconds and the default delay (d) 1s set to S00 millisec-
onds. The metric’s data sequence 1s denoted as “v”.

v={600, 750, 700, 850, 1200, 900, 1500, 950, 1300, 1350}
a=(600+750+700+850+12004+900+1500+950+1300+
1350)/10=1010
a1s 1% abovet,. (1010-1000)/1000=1%
Upon increasing the default delay value 1%, the server’s D for

this data sequence v would be:

D=d*(1+1%)=500%1.01=505 mulliseconds

The HME can collect metrics data (v) for a given compo-
nent such as the LDAP master, LDAP replica, or queue, for a
specified number of times (h). The HME can calculate the
average value of the metrics data (a) using equation 2 below.
The k value 1n equation 2 denotes the individual component
such as, e.g., the LDAP master, LDAP replica, or queue, for
which the average 1s being calculated. The 1 value denotes the
time 1ndex when v has been obtained. The 1 value may range
between 1 (the oldest) and h (the most current).

2 (2)

k
2,

i=1
d* =
h

When compared with the corresponding threshold, the
value of a roughly indicates how the given component has
been performing within the specified time period. HME can
use this information to decide whether the performance of the
component 1s within the acceptable range or not. If not, the
HME can reflect the difference between the average value and

the threshold on D.

The HME checks whether the average for LPM, OPM,
QDR, and LRR, 1s greater than the specified threshold value.
For LMR, the HME checks whether the average 1s less than
the threshold value. This 1s because a higher LDAP master
change application rate value indicates a faster LDAP master
server. Therefore, 11 the average of LMR values 1s below the
threshold, the difference between the LMR values should be
reflected on the delay value. In embodiments, the HME can
express the difference between a and t, as a percentage (M)
using equations 3a and 3b.

(3a)

a —i (3b)

The amount 1n which the average value 1s greater than the
threshold value, should have the most impact on D since 1t 1s
an indicator of the performance calculated based on the past
metrics data and their averages.

8. Determining the Longest Ascending or Descending Sub-
sequence (L)

The length of the longest increasing/ascending or decreas-
ing/descending subsequence (L) within the metrics data can
help HME determine 1f a queue 1s starting to congest, €.g., a
server 1s starting to perform poorly. Similarly, the length may
also help HME to determine 11 an LDAP master 1s starting to
apply updates at a slower rate. This 1s useful 1n case the
average ol the metrics data collected for a server or queue 1s
below the average threshold (t), but there 1s an observable
increase or decrease 1n the metrics numbers that may require
a slight increase 1n D.

US 8,346,958 B2

15

(Given a sequence v,, v,, . . ., V;, L 1s the longest of the
increasing/ascending subsequences such that for every 1<,
v,<v,. Conversely, L 1s the longest of the decreasing/descend-
ing subsequences such that for every 1>}, v,>v.. Given distinct
integers, V={v[0], ..., v[N-1]} (e.g., LDAP response times,
CPU utilizations, etc.), a subsequence S={s,, ..., s, | is said
to be an ascending subsequence 1f s,<. . . <<s_. Siumilarly, a
subsequence S={s,, . . ., s_} is said to be a descending
subsequence 1f s> . . . >s_ . The following example provides
a sequence (v) having a number of ascending subsequences
(S) that can be generated from the sequence (v).

v={600, 750, 700, 850, 1200, 900, 1500, 950, 1300, 1350}

S1={600, 750}

S2={900, 950, 1300, 1350}

S3={700, 850, 1200}

S4={600, 750, 850, 1200}

S5={600, 700, 850, 1500}

S6={850, 900, 950, 1300, 1350}

S7={700, 850, 900, 1500}

S8={950, 1300, 1350}

S9={600, 750, 850, 900, 950, 1300, 1350}

S10={600, 700, 850, 900, 950, 1300, 1350}

Sn={ ...}

The longest ascending subsequences (S9 and S10) in the
above sequence (v) 1s 7. Accordingly, the length (L) of the
sequence (v) 1s 7. In embodiments, the length (L) can be
found using dynamic programming techniques by the HME.
For example, a greedy non-recursive algorithm to find
increasing or decreasing subsequences and their lengths can
be employed.

Once the length 1s determined, the length (L) can be com-
pared to another threshold (t,) value to determine whether the
increase/decrease, 1 any, warrants an increase i D. For
example, 1f there are 10 ditferent metric data (h) values for a
server or queue, and t, 1s set to 7, L within 10 values must be
equal to or greater than 7 to indicate that there 1s an increase
or a decrease and the server or the queue 1n question 1s starting
to perform poorly. In such cases, the default delay value (d)
can be increased based on a predefined percentage (F).

9. Determining the Predefined Percentage (F,)

The predefined percentage (FL) corresponds to the maxi-
mum 1ncrease amount 1f and/or when L 1indicates a “monoto-
nous increase or decrease” 1n the sequence. A sequence 1s
monotone increasing 1f the next element in the sequence 1s
always greater than the previous one. For example, {1, 3, 5,7,
8, 10} is a monotone increasing sequence. Similarly, if the
next element 1n the sequence 1s always less than the previous
one, the sequence 1s monotone decreasing. For such
sequences, L will be equal to h. If L 1s equal to h, d will be
increased by F,, 1.e., the maximum increase.

If L 1s less than h but equal to or greater than t,, F, will be
decreased 1n equal shares based on the difference between h
and t;. For example, 11 F; 1s set to 24%, h1s 10, and t, 1s 7, F,
will be increased/reduced 1n 6% equal shares (F',) when L 1s
equal or greater than t,. So, 1 L. 1s 8, F; will be reduced 1n half
to 12%. This value, denoted by - 1n the equations, can be
reflected on d as-1s, which yields a D that 1s equal to (d*0.12).
The reflection of L on the delay can be compared to “tapping
on the brakes™ of a car to reduce the speed slightly.

For 1llustrative purposes, the following example mcludes

metrics data that 1s used to represent queue depths collected

for a LoM 1nput queue at one-minute intervals for 10 (h)
minutes. F, 1s 20%, the threshold (t;) 1s set to 7, and the
default delay (d) 1s set to 500 milliseconds. The value v

10

15

20

25

30

35

40

45

50

55

60

65

16

denotes the metrics data sequence and S; denotes the longest
Increasing subsequence.

v={60, 75,70, 85, 120, 90, 150, 95, 130, 135}

S,={60, 75, 85, 90, 95, 130, 135}=>L=7
Since L 1s less than h but equal to t,, F, can be reduced to
(0.20/(10-7+1))=0.05=+= By increasing the default delay
value 5%, D for v for this particular queue can be calculated
as follows:

D=d*(1+0.05)=500%1.05=525 milliseconds

In another 1llustrative example, metrics data may represent
a LDAP master change application rate (LMR) collected at
one-minute intervals for 10 (h) minutes. F; 1s 10%, the thresh-
old (t;) 1s set to 5, and the default delay (d) 1s set to 500
milliseconds. Unlike other metrics data processed by HME
(LPM, OPM, LRR, and QDR), when/1f the metrics data for
LMR demonstrate a decrease, it indicates that the LDAP
master 1s starting to slow down. Therefore, v denotes the
metrics data sequence and S; denotes the longest decreasing
subsequence.

v={1100, 1000, 900, 1000, 1000, 850, 800, 700, 800, 600}
S,;={1100, 1000, 900, 850, 800, 700, 600}=>L=7
Since L 1s less than h but higher than t, F, can be reduced to
(0.10/(10-7+1))=0.025=+- By increasing the default delay
value 2.5%, D for v for this particular queue can be calculated
as follows:

D=d*(1+0.025)=500%1.025=512.5 milliseconds

10. Calculating Metric Data Values (h) and a Fraction of the
Change Rate (1) for a Queue

The HME can calculate = by using equation 4. In using
this equation, - 1n the example above can be calculated as

0.05 (5%).

F 4

Fl = L (4)
(h—-L)+1
=01t L <1

O=(L-1.+1)-F;,if Lzt

The HME can also utilize the change rate calculated based
on the last two consecutive states of a given server or a queue
(1.e., component) 1n the system. Although the change rate
cannot be used alone to determine the actual performance of
a component, a fraction of 1t (1) can be reflected on D. The
fraction (1), shown 1n equation 5, can be reciprocal of the
average threshold (t) set for the component. Such value can
be small enough not to cause drastic changes in D 1f and/or
when there 1s considerable change between the current state
and the previous state of the component. It will also be large
enough to 1crease D slightly. The retlection of the change
rate on the delay can be compared to “taking foot oif of the
gas” of a car to slow i1t down.

f=t (5)

11. Calculating Percentage of Increase or Decrease (A) for a
Queue

The HME will calculate the difference between the current
metric data (v,) and the previous metric data (v,_,) for a given
component and convert 1t to a percentage (A) 1f there 1s an
increase or decrease. For LPM, OPM, QDR, and LRR, HME
will check whether the change rate indicates an increase. For
LMR, however, 1t will check whether the rate indicates a
decrease. This 1s because a higher LDAP master change
application rate value indicates a faster LDAP master server.
Theretore, 11 the difference between the current LMR value

US 8,346,958 B2

17

and the previous value 1s a negative number, 1t will be
reflected on the delay value. Formulas 6a-6¢ can be used to
calculate A:

Sk = it] (6a)
5% (6b)
A% e =0,if 6F 20, A%y, = Vh—_l,if 5 <0
&
o~ (6¢)
A =0, if & <0, A= — if § >0

1 »
il

12. Calculating Computed Delay Value (D) for a Queue
Based on the information herein, HME can use equations
7a and 7b to calculate D for a given server or queue:

O =N+ O +(FAF) (7a)

DF=d-(1+0%)

13. Establishing a Relationship Between the Computed
Delay Value (D) and Weight Distributions Between Metrics
Sources

As explained above, each metrics group (e.g., LPM, OPM,
UFM) may be assigned a weight value to be used when
calculating overall D. Formula 8 can be used by the HME to
calculate weighted delay values for each metrics group. The
variable m may be used to identify the metrics group and W
may be used to denote the weight value assigned to a metrics

group (€.2., Wrzan Wopasn WQDR: Wiarms Wirr)-

7(b)

L (8)

In embodiments with metrics groups, W 1s distributed
among individual LDAP replicas such that w=W _/n may be
used instead of W . This 1s illustrated 1n equations 9a-9e,
wherein q 1dentifies the queue (queue 1, 2, 3, etc.) in the
equation for calculating the delay value based on queue depth
rates.

Dipu = (Wrpn /1) ; D (Ya)

Dopn = (Wopn /1) ki:‘ Dt (9b)

Drrr = (Wigg /n).ZDk (9¢)

Diyr = WWE-ZHZD’{‘, n=1 (9d)
k=1

(9e)

Dopr, = Wobr Z Dﬁﬁ n=1
k=1

(Ll

Using the values obtained from equations 9a-9e¢, the HM.
can use equation 10 to calculate the overall D value.

D =D partDopartDiarctrrctopr J (10)

In embodiments, equation 1 can be used by the HME to
multiply D with a “bias value”, which can be assigned by each
queue processed by a LoM Server instance to allow “manual
intervention” to the calculated delay value, D. In embodi-

10

15

20

25

30

35

40

45

50

55

60

65

18

ments, this will result 1n the actual delay value, denoted by D',
for a given queue, denoted by g. The default QB for a queue,
which can be set to “1.0”, has no effect on D. QB can be used
to 1nstruct LoM servers to slow down or speed up regardless
of what the performance measurements and/or rates indicate
when consuming the updates. In embodiments, the D' value 1s
the ultimate value communicated by the HME to a LoM
server instance for a given queue 1n the system.

Exemplary Embodiments

The following 1s an 1llustrative example of the 1nvention,
wherein sample metrics data 1s provided and calculations
using the equations described herein are performed. The
example includes three LoM server instances in the system
processing three mput queues. One mstance may be used for
user password updates (g=1, Q,), another for user groups
updates (q=2, Q,), and yet another for employee profile data
updates (q=3, Q). The queue bias value for Q, (QB,), 1s set
to 0.7, whereas the value for QB, 1s set to 1.20 and the value
for QB 1s set to 1.0. These bias values are used to determine
that the LoM’s processing pace against the first queue should
be 30% faster than what 1s indicated by the computed delay
value for this particular queue. Similarly, the bias values can
be used to indicate that the pace against the second queue
should be 20% slower than what 1s indicated by the computed
delay value and the pace against the third queue should not be
affected.
In this example, there 1s one LDAP master server replicat-
ing to 10 LDAP replica server. Hence, n 1s 10 and the upper
bound limit of k 1s n. The lower bound 1s 1. The HME con-
tinuously collects metrics data at one-minute intervals for
cach queue and LDAP server up to 5 minutes. Hence, h 1s 5.
The default delay value, d, 1s setto 500 ms and the weights are
as follow:
LDAP replica performance metrics data (LPM) 1s set to
20% (W, pp0)

LDAP replica OS performance metrics data (OPM) 1s set to
20% (W i00)

LDAP replication rate metrics data (LRR) 1s set to 30%

(Wizrz) |
LDAP master change application rate metrics data (LMR)

1s set to 10% (W, »)
LoM queue depth rate metrics data (QDR) 1s set to 20%
(WQDR)
The threshold values are set as follows:
LPM average (t) 1s set to 1000 milliseconds
OPM average (t) 1s set to 60 percent
LRR average (t) 1s set to 100 replication entries
LMR average (t) 1s set to 600 updates per unit of time
QDR averages (t) 1s set to 5000 queue entries
LPM longest increasing subsequence (t,) 1s set to 3
OPM longest increasing subsequence (t,) 1s set to 3
LRR longest increasing subsequence (t,) 1s set to 3
LMR longest decreasing subsequence (t;) 1s set to 3
QDR longest increasing subsequence (t,) 1s set to 3
The chart 1n FIG. 4 illustrates the calculations that may be
performed to determine a D, ,,,0f 111.232 given the follow-
ing input values:

HZIU,/(ZI H,h:5, WLPM :20%,W: Wme/HZZ%

d =500 ms, = 1000 ms, f = ¢! =0.001

0.15
5-3)+1

i =3, Fr = 15%, FL:(]:0.050

US 8,346,958 B2

19

The chart in FIG. 5 illustrates the calculations that may be
pertormed to determine a D ., , 01 130.285 given the follow-
ing input values:

HZIO,.}'(ZI H,h:5, WGPM :20%,W:WQPM/H:2%
d =500 ms, =60, f=r"' =0.016667

0.15
(5-3)+1

f =3, Fr = 15%, FL:(]:0.050

Similarly, the chart in FI1G. 6 1llustrates the calculations that
may be pertormed to determine a D, ., of 222.546 given the
following input values:

H:].O,k:]. ﬂ,hZS, WLRR :30%,W:WLRR/FL:3%
d=500ms,t=100, f=r!=0.01

0.15
5-3)+1

1 =3, FL=15%, F, = (] = 0.050

The chart in FIG. 7 1llustrates the calculations that may be
pertformed to determine a D, , ., 01 74.000 given the following

iput values:

n=10,k=1...n k=5 Wr = 10%, w= Wiz

d =500 ms, =600, f=r"' =0.001667

=3, F,=15%, F| = (] = 0.050

5-3)+1

Further the chart in FIG. 8 illustrates the calculations that
may be performed to determine a D, 01 115.007, 105.000,
and 1135.004, respectively, given the following input values:

n=10 k=1 ... n, h =275, WQQ,Q:QO%aW:WQDR

d =500 ms, 7 = 5000, f =r1 =0.0002

1 =3, FL=15%, F, = (] = 0.050

(5-3)+1

Accordingly, FIGS. 4-8 provide the following information:

f’ _ =1
Dppy = 111232 pZo. = 115.007

Dopy = 130.285 DE}ZR = 105.000

<4

— =3
Dirg =222.546 pT50 = 115.004
Dye = 74.000 J

.

Using this information, the HME can compute a delay D as
follows:

D=D; ;14D ppr Dy ortDrage=(111.232+130.285+222 546+
74.000)=538.063

D,__=D+D,pp7 ' =538.063+115.007=653.070

D,__,=D+D,p,72=538.063+105.000=643.063

D, _3=D+Dpp73=538.063+115.004=653.066

10

15

20

25

30

35

40

45

50

55

60

65

20

Moreover, the HME can compute an actual delay value D' to
put between LoM server reads as follows:

D'_=D,_;-QB,__,=(653.070*0.70)=457.149 ms

=D__,
delay before the next poll against password
queue.

D' _,=D,_>-0OB,__,=(643.063%1.20)=771.675 ms

=D__-
delay before the next poll against groups data
queue.

D' _3=D,_3-QB._3~(653.066*1.00)=653.066 ms

=D_5-
delay before the next poll against profile data
queue.

While the invention has been described 1n terms of embodi-
ments, those skilled in the art will recognize that the invention
can be practiced with modifications and 1n the spirit and scope
of the appended claims. Additionally, the terminology used
herein 1s for the purpose of describing particular embodi-
ments only and 1s not intended to be limiting of the invention.
As used herein, the singular forms “a”, “an” and “the” are
intended to include the plural forms as well, unless the con-
text clearly indicates otherwise. It will be further understood
that the terms “comprises” and/or “comprising,” when used in
this specification, specily the presence of stated features,
integers, steps, operations, elements, and/or components, but
do not preclude the presence or addition of one or more other
features, 1ntegers, steps, operations, elements, components,
and/or groups thereofl.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements 1n the claims,
il applicable, are imntended to include any structure, matenal,
or act for performing the function 1n combination with other
claimed elements as specifically claimed. The description of
the present mvention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the invention 1n the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill 1n the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the mven-
tion and the practical application, and to enable others of
ordinary skill 1n the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated. Accordingly, while the invention
has been described 1n terms of embodiments, those of skill in
the art will recogmize that the invention can be practiced with
modifications and 1n the spirit and scope of the appended
claims.

What 1s claimed 1s:
1. A computer implemented method for determining a
delay value, comprising:
obtaining metric data about at least one of an operating
system performance metric and an update tlow metric;
assigning a weight to the metric data;
calculating one or more weighted delay values for each of
the metric data, wherein the sum of the weighted values
equals a calculated delay value;
using the calculated delay value and a queue bias to ascer-
tain an actual delay value; and
sending the actual delay value to a Lightweight Directory
Access Protocol (LDAP) over MQSeries (LoM) server,
which 1s configured to place the actual delay value
between one or more request reads to control a process-
ing pace of the LoM queue.
2. The computer implemented method of claim 1, further
comprising averaging the metric data to determine whether a

US 8,346,958 B2

21

server or a queue has been performing within a predefined
range, wherein the predefined range 1s between zero and a

threshold.

3. The computer implemented method of claim 1, further
comprising determining a longest increase or decrease sub-
sequence 1n the metric data to identily whether a queue 1s
starting to congest.

4. The computer implemented method of claim 1, further
comprising determining a change rate between the metric
data and previous metric data.

5. The computer implemented method of claim 1, wherein
the calculated delay value 1s ascertained using one or more of
a time-series analysis, a moving average, a linear regression,
and dynamic programming.

6. The computer implemented method of claim 1, wherein
the steps of claim 1 are implemented on hardware or a com-
bination of software and hardware.

7. The computer implemented method of claim 1, wherein
the steps of claim 1 are offered by a service provider based on
one of a fee and subscription basis.

8. The computer implemented method of claim 1, wherein
the update flow metric comprises a queue depth rate, a LDAP
master rate, and a LDAP replication rate.

9. The computer implemented method of claim 1, wherein
the operating system performance metric comprises one or

10

15

20

22

more changes i CPU utilization by each LDAP replica in a
cluster, the CPU utilization obtained from an OS metrics
agent using at least one of a secure shell protocol (SSH) and
a remote shell protocol (RSH).
10. A method for deploying an application for computing a
delay value, comprising;:
providing a computer infrastructure that implements the
steps of:
obtain metric data about an operating system perior-
mance metric and an update tlow metric;
assign a weight to the metric data;
determine one or more weighted delay values for each of
the metric data, wherein the one or more weighted
delay values are added together to obtain the calcu-
lated delay value;
multiply the calculated delay value by a queue bias to
ascertain an actual delay value; and
send the actual delay value to a Lightweight Directory
Access Protocol (LDAP) over MQSeries (LoM)
server, where the actual delay 1s put between one or
more request reads to control a processing pace of the
LoM queue.

	Front Page
	Drawings
	Specification
	Claims

