US008346740B2

12 United States Patent

Trask et al.

(10) Patent No.:

45) Date of Patent:

US 8.346,740 B2
Jan. 1, 2013

(54) FILE CACHE MANAGEMENT SYSTEM

(75)

(73)

(%)

(21)

(22)

(65)

(1)

(52)
(58)

(56)

Inventors: Barrett Trask, Fort Collins, CO (US);

Robery Gilanyi, Fort Collins, CO (US);
Arthur L. Sabsevitz, Monroe Township,

NJ (US)

Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1634 days.

Appl. No.: 11/187,149

Filed: Jul. 22, 2005

Prior Publication Data

US 2007/0022143 Al Jan. 25, 2007

Int. CI.

Gool’ 7/00 (2006.01)

US.CL e, 707/694

Field of Classification Search

707/200,
707/694; 711/1°70; 705/8

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,062,055 A * 10/1991 Chinnaswamy et al. 702/182
0,514,561 Bl

11/2001 Funk

6,421,761

0,587,937

6,701,359

6,757,786

6,792,436
2002/0026561
2003/0061444
2003/0143988
2004/0034°746
2004/0107319
2004/0193803
2004/0193827
2005/0033621
2005/0044321
2005/0055506
2005/0060483
2005/0154821
2006/0143395

1 *

AT LT

1 *

* cited by examiner

7/2002
7/2003
3/2004
6/2004
9/2004
2/2002
3/2003
7/2003
2/2004
6/2004
9/2004
9/2004
2/2005
2/2005
3/2005
3/2005
7/2005
6/2006

Arimilli
Jensen
Calabrez
Metayer

Zhu

Park

Herbst et al.

Jamadagni 455/418
Hometal. 711/141
D’Orto

Mogi

Mogretal. 711/170
Hartmann et al. 705/8
Bialkowski

Dement

Azuma
Furuhashietal. 711/112
Zoharetal. 711/133

tttttttttttttttttttt

Primary Examiner — 1Truong Vo

(57)

ABSTRACT

In one embodiment a method of file cache management 1n a
computer system comprises creating a resource group; devel-
oping one or more cache management policies for the
resource group; and managing one or more subsequent
requests for cache memory 1n accordance with the one or
more cache management policies.

24 Claims, 8 Drawing Sheets

r_

MEMORY 130
INTERFACE APPLICATION —
() ==
d OPERATING SYSTEM 140
l SvsTEM CALL INTERFACE MODULE 142 l
FILE SYSTEM
150
r - — "
FILE CACHE MANAGEMENT FILE CACHE
SYSTEM 144 156

| HARDWARE INTERFACE MODULE 154 '

‘ SyYsTEM HARDWARE 120 I

‘,-—106

File Store

ﬁmﬁ

OTHER

180

DEVICE(S)

o

MOUSE

KEYBOARD

112
102

104

U.S. Patent Jan. 1, 2013 Sheet 1 of 8 US 8,346,740 B2

MEMORY 130

INTERFACE APPLICATION
MopuLE 160 MODULES 162 LIBRARIES 164
OPERATING SYSTEM 140

SYSTEM CALL INTERFACE MODULE 142

FILE SYSTEM
150

FILE CACHE MANAGEMENT FILE CACHE

SYSTEM 144 156

HARDWARE INTERFACE MODULE 154

SYSTEM HARDWARE 120

108

100
- KEYBOARD

o] [00o000

File Store OTHER
180 DEVICE(S)

(35*114

MOUSE

U.S. Patent Jan. 1, 2013 Sheet 2 of 8 US 8,346,740 B2

210
Create/Update Resource
Management Policy
Download Policy to File 215

Cache Management
System

Enforce Policy

Collect Workload 225

Statistics

U.S. Patent Jan. 1, 2013 Sheet 3 of 8 US 8.346,740 B2

310

Create a Resource
Group

315

Set Group Membership

320

Assign Shares of Each

Resource

325

Set Resource Maximum
Threshold

330

More Groups?

335

U.S. Patent Jan. 1, 2013 Sheet 4 of 8 US 8,346,740 B2

410

Receive File Access
Request From User
Process

415

File Data
in Cache?

Yes

420

File Cache Memory
Allocation Request

425

Perform |/O to Acquire
Data

430

Make Data Available to
Process

435
End

U.S. Patent Jan. 1, 2013 Sheet 5 of 8 US 8.346,740 B2

910

Memory Request
Recelved

515 520 525

Yes Self Reuse
(LRU)

Assigned Yes

Maximum? .

No 530 No

Request Cache
Memory Allocation

535

045

990

Global Reuse

560
End

U.S. Patent Jan. 1, 2013 Sheet 6 of 8 US 8.346,740 B2

610

Global Reuse
Requested

615

Read Resource
Allocation Policy

620

Select Initial Group

625 630

Score Group by
Percent Qver
Entitlement

640

Select Next
Group

Overachieving? yes

No
635

No 645

Reassign Memory
from High-Scoring
Group(s)

U.S. Patent Jan. 1, 2013 Sheet 7 of 8 US 8.346,740 B2

710

Activate Cache Partitioning

715

Download Group and Share
Configuration

720

Populate Data Structures

725

Intercept File Cache
Allocation Request

730

Allocation
Denied?

735
Yes Reuse Cache Memory
Per Policy

No

740
Read File Data Into New
Cache Memory

745

No

Deactivate
nforcement?

Yes
750
Deallocate Related Control
Structures
755

U.S. Patent Jan. 1, 2013 Sheet 8 of 8 US 8.346,740 B2

850
800 N\ 826 828

1] | 832

844 858 o

EOIOIOIOA

Remote
Device

852
S~ 860 Remote
Software
802 Components

Operating
System 81

Application
Programs 818

Software
Components 820

lllllllll

o)

System Bus

804

QN -

o2 A

Application g4a .
Processing

Program
Data

Unit
842
Data ~ _= |]|]|]D =I=
1 |:n:i|:||:|I=I]

/O Interfaces

US 8,346,740 B2

1
FILE CACHE MANAGEMENT SYSTEM

TECHNICAL FIELD

This application relates to electronic computing, and more
particularly to a file cache management system.

BACKGROUND

Computer system elliciency remains an important issue. In
a multi-process computing environment, processes compete
for computing resources, including cache memory. Adroit
management of cache memory resources 1s desirable.

SUMMARY

In one embodiment a method of file cache management in

a computer system comprises creating a resource group;
developing one or more cache management policies for the
resource group; and managing one or more subsequent
requests for cache memory 1n accordance with the one or
more cache management policies.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a schematic illustration of one embodiment of a
file cache management system.

FIG. 2 1s a flowchart illustrating high-level operations in
one embodiment of a method of managing file cache.

FI1G. 3 1s a flowchart illustrating operations 1n one embodi-
ment of allocating system resources to a resource group.

FI1G. 4 1s a flowchart 1llustrating operations 1n one embodi-
ment of executing an input/output (I/0) request.

FI1G. 5 1s a flowchart illustrating operations 1n one embodi-
ment of managing cache memory.

FIG. 6 1s a flowchart 1llustrating operations 1n one embodi-
ment of managing cache memory.

FI1G. 7 1s a flowchart 1llustrating operations 1n one embodi-
ment of an enforcement module of a file access management
system.

FI1G. 8 1s a schematic illustration of an exemplary comput-
Ing environment.

DETAILED DESCRIPTION

Described herein are exemplary systems and methods for
managing a file system cache in a computer system. The
methods described herein may be embodied as logic mnstruc-
tions stored on a computer-readable medium. When executed
on a processor, the logic instructions cause a general proces-
sor to be programmed as a special-purpose machine that
implements the described methods. The processor, when con-
figured by the logic instructions to execute the methods
recited herein, constitutes structure for performing the
described methods.

FI1G. 1 1s a schematic illustration of an exemplary computer
system adapted to include a file cache management system
100. The file cache management system 100 includes a com-
puter 108 and one or more accompanying input/output
devices 106 including a display 102 having a screen 104, a
keyboard 110, other I/O device(s) 112, and a mouse 114. The
other device(s) 112 can include a touch screen, a voice-acti-
vated mput device, a track ball, and any other device that
allows the system 100 to receive mput from a developer
and/or a user. The computer 108 includes system hardware
120 and random access memory and/or read-only memory
130. A file store 180 1s communicatively connected to com-

10

15

20

25

30

35

40

45

50

55

60

65

2

puter 108. File store 180 may be internal such as, e.g., one or
more hard drives, or external such as, e.g., one or more exter-

nal hard drives, network attached storage, or a separate stor-
age network.

Memory 130 includes an operating system 140 for manag-
ing operations of computer 108. In one embodiment, operat-
ing system 140 includes a hardware interface module 154 that
provides an interface to system hardware 120. In addition,
operating system 140 includes a file system 150 that manages
files used 1n the operation of computer 108. Operating system
140 turther includes a system call interface module 142 that
provides an interface between the operating system 140 and
one or more application modules 162 and/or libraries 164.

In operation, one or more application modules 162 and/or
libraries 164 executing on computer 108 make calls to the
system call interface module 142 to execute one or more
commands on the computer’s processor. The system call
interface module 142 mnvokes the services of the file system
150 to manage the files required by the command(s) and may
invoke the services ol a process control subsystem (not
shown) to manage the process required by the command(s).
The file system 150, 1n turn, invokes the services of the
hardware interface module 154 to interface with the system
hardware 120.

The particular embodiment of operating system 140 1s not
critical to the subject matter described herein. Operating sys-
tem 140 may be embodied as a UNIX operating system or any
derivative thereof (e.g., Linux, Solaris, etc.) or as a Win-
dows® brand operating system.

In one embodiment operating system 140 includes a file
cache management system 144 interposed logically between
the file system(s) 150 and underlying modules such as, e.g.,
the hardware interface module 154. File cache management
system 144 interfaces with the file system(s) 150 to manage
the file cache 156 as a resource that may be shared between
users of the computer system, e.g., on a per-workload basis.

An 1nterface module 160 resides at the application (i.e.,
user) level to provide an mtertace with file cache management
system 144. In operation, an administrator (or administration
soltware) may use the interface module 160 to establish poli-
cies for managing the file cache 156. The file cache manage-
ment system 144 may be configured to use one or more cache
management policies to manage the file cache 156 1n memory
130. Details of the operation of access management system
are described below.

Exemplary Embodiments of Operations

FIG. 2 15 a flowchart 1llustrating high-level operations 1n
one embodiment of a method of managing file cache. Refer-
ring briefly to FIG. 2, at operation 210 a resource manage-
ment policy 1s created (or updated either statically or dynamai-
cally). Operation 210 may be performed by an administrator
using the interface module 160, or by management soiftware.
At operation 215 the cache management policy 1s down-
loaded to the file cache management system 144. At operation
220 the file cache management system 144 enforces the cache
management policy to manage the system cache in accor-
dance with the policy established 1n operation 210. In some
embodiments the file cache management system 144 may
collect workload statistics (operation 225), which may be
provided as feedback to the interface module 160. High-level
operations depicted in FIG. 2 are explained 1n greater detail in
the following text and the flowcharts of FIG. 3-FIG. 7.

FIG. 3 15 a flowchart illustrating operations in one embodi-
ment of allocating system resources to a resource group. The
operations of FIG. 3 permit a resource group(s) to be defined

US 8,346,740 B2

3

and to have system resources including, e.g., file cache
memory assigned to members of the resource group. As used
herein, the term “resource group” refers to a set of processes
that work under the same set of constraints (or entitlements)
on system resources. In one embodiment, the operations
depicted 1n FIG. 3 may be the operations implemented by the
interface module 160.

At operation 310 a resource group 1s created, and at opera-
tion 315 the group membership of the resource group 1s set. In
one embodiment the interface module 160 may present a
collection of processes on a user interface such as, e.g., a
computer display, such that an administrator can manually
select a group of processes to define the members of a
resource group. In alternate embodiments processes may be
collected 1nto a resource group automatically by characteris-
tics of the processes.

At operation 320 minimum, guaranteed shares of system
resources are assigned to the resource group. In one embodi-
ment a particular resource group receives a resource entitle-
ment (1.e., a mimmum resource allocation) that corresponds
to a percentage of the resource that corresponds to the number
of shares allocated to a particular group divided by the total
shares allocated for the resource. In one embodiment the
interface module 160 provides a user interface that permits an
administrator to assign shares of a selected resource such as,
e.g., file cache 156 to the resource group. In alternate embodi-
ments resources may be allocated automatically using any
conventional resource allocation routine.

In one embodiment, a maximum value (1.e., a threshold) 1s
set on the resource(s) allocated to the resource group, 1n
operation 325. The maximum threshold may be set by an
administrator via the mterface module 160 or by a resource
allocation routine. It, at operation 330, there are more
resource groups to be defined, then control passes back to
operation 310 and the process 1s repeated. By contrast if, at
operation 330, there are no more resource groups to define,
then control passes to operation 3335 and the process termi-
nates.

The resource allocations established by operations 310-
325 may be transmitted from the mtertace module 160 to the
file cache management system 144 (operation 215), which
implements the resource allocations as a file cache manage-
ment policy to manage the file cache 156.

FIG. 4 1s a flowchart illustrating operations for executing,
an iput/output (I/0) request. In one embodiment, the opera-
tions of FI1G. 4 may be performed by the file system 150, the
file cache management system 144, or a combination thereof.
At operation 410 a file access request 1s recerved from a user
process. The file access request may originate from a user
application or from a user request to the file system 150. If, at
operation 4135, the file data requested in the user file access
request resides in the file cache 156, then control passes to
operation 430, and the data 1s made available to the requesting
user process, €.g., by retrieving the data from file cache 156.

By contrast, 11 at operation 415 the requested data 1s not in
the file cache 156, then control passes to operation 420 and a
file cache memory allocation request 1s executed to allocate a
section of the file cache 156 for the data responsive to the file
access request. At operation 425 an I/0 operation 1s executed
to retrieve the data responsive to the I/0 request 1nto the file
cache 156. In one embodiment the I/O operation may 1nclude
executing a read operation to one or more persistent storage
devices such as, e.g., a hard disk drive, an external disk drive,
network attached storage, a storage area network, or the like.
Then, at operation 430 the data 1s made available to the
requesting user process, €.g., by retrieving the data from file

cache 156.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 1s a flowchart illustrating operations 1n one embodi-
ment of managing cache memory. In one embodiment the
operations of FIG. 5 may be executed by the file cache man-
agement system 156. Referring to FIG. 5, at operation 510 a
request for file cache memory 1s recerved. In one embodiment
the memory request may have been generated 1n operation
420. If, at operation 515, a maximum threshold has been
assigned to the file cache 1n this resource group, then control
passes to operation 520. If, at operation 520, the resource
group 1s at its maximum threshold of the file cache resource,
then control passes to operation 525 and a self-reuse algo-
rithm 1s implemented. In one embodiment a least-recently
used (LRU) cache algorithm may be implemented, although
other algorithms may be used.

If the file cache 1s not capped (i.e., no maximum threshold
assigned) for this resource group (operation 515) or 11 the file
cache 1s capped for this resource group, but the resource
group 1s not at the specified threshold (operation 520), then
control passes to operation 530, and a request for file cache
memory allocation 1s made from a separate memory manager.
If, at operation 533, the allocation of file cache memory 1s
successiul, then control passes to operation 560, and the
operation terminates. By contrast, 1f at operation 535 the
allocation of file cache memory 1s not successtul, then control
passes to operation 545. 11, at operation 545, the amount of
resources (e.g., file cache memory) dedicated to the resource
group exceeds the entitlement (1.., minimum threshold) allo-
cated to the resource group in operation 320, then control
passes to operation 5235, and a self-reuse algorithm 1s 1mple-
mented. In one embodiment a least-recently used (LRU)
cache algorithm may be implemented, although other algo-
rithms may be used.

I1, at operation 545, the amount of resources dedicated to
the resource group does not exceed the entitlement (1.¢., mini-
mum threshold) allocated to the resource group 1n operation
320, then control passes to operation 550 and a global reuse
technique 1s 1mplemented. One global reuse technique 1s
explained with reference to FIG. 6.

FIG. 6 15 a flowchart illustrating operations in one embodi-
ment of managing file cache memory when a global resource
reallocation 1s executed, e.g., when the file cache memory 1s
reallocated among multiple competing resource groups.

At operation 610 a global reuse request 1s received, e.g.,
from operation 550, and at operation 615 the resource allo-
cation policy 1s read. In one embodiment the resource alloca-
tion policy corresponds to the resource allocation policy gen-
erated via the mterface module 160 by an administrator.

Operations 620-633 define a loop that scores the resource
groups competing for the resource of the cache memory 156.
At operation 620 an 1nitial group 1s selected for evaluation. If,
at operation 623 the mitial group 1s not overachieving (i.e.,
using more than the amount of cache memory resource allo-
cated to the group by the resource allocation policy), and there
are more groups (operation 635) then the next group is
selected and control passes back to operation 625.

If, at operation 625, the selected group 1s overachieving,
then control passes to operation 630, and the group 1s
assigned a score that corresponds to an amount by which 1t 1s
exceeding the new resource entitlement assigned to the group
by the resource allocation policy. In one embodiment the
score may correspond to a percentage by which the resource
group exceeds 1ts resource allocation. In another embodiment
the score may correspond to an absolute amount by which the
resource group exceeds i1ts resource allocation. In another
embodiment, the new resource entitlement 1s based on the
expected total file cache memory after the size of the file
cache has been reduced as a result of this request. For

US 8,346,740 B2

S

example, 1f the resource group exceeds its allocation of cache
memory by a 500 MB, then the score may Correspond to the
500 MB. The group scores may be stored in a suitable
memory location such as, e.g., a non-volatile or a volatile
memory location.

I, at operation 6335, there are no more groups to score then
control passes to operation 645 and the resource (e.g., cache
memory) 1s reassigned from one or more high-scoring
groups.

Unlike other computing resources such as, €.g., processor
cycles, the amount of file cache memory may dynamically
change over time. When the file cache memory increases 1n
size, the additional cache memory may be allocated to
resource groups on request or by a suitable heuristic. When
the file cache memory decreases i1n size, cache memory
resources may need to be deallocated or reclaimed from one
Or MOre resource groups.

In one embodiment, file cache memory may be reclaimed
in proportion to the relative share of memory consumed by a
particular resource group(s). By way of example, 1n one
instance there may be three resource groups identified by A,
B, and C, which have entitlements of 25%, 25%, and 50% of
the memory, respectively. Group A 1s overachieving by 50
units and group C 1s overachueving by 110 units. If for some
reason the available file cache memory 1s reduced by 100
units, then the remaining 60 units of excess cache memory
may remain in groups A and C in proportion to their relative
entitlements by permitting A to retain (25/75)*60=20 units,
and permitting C to keep (50/75)*60=40 units. Hence, A
would contribute 30 units and C would contribute 70 units.

Other possible allocation routines may be used. For
example, the entire file cache memory allocation may be
drawn from the resource group that 1s overachieving by the
highest amount. In the previous example, resource group C
would contribute the entire 100 units. In the event that the
resource group that 1s overachieving by the greatest amount
cannot satisly the memory allocation, the balance may be
drawn from the resource group that is the next-highest 1n
overachieving, and so on.

FI1G. 7 1s a flowchart 1llustrating operations 1n one embodi-
ment of managing cache memory. Referring to FIG. 7, at
operation 710 cache partitioning is activated, e.g., by activat-
ing the file cache management system 144 via the interface
module 160. At operation 7135 the group and share configu-
ration 1s downloaded from the interface module 160. At
operation 720 one or more data structures are populated with
data such as, e.g., memory allocations for various resource
groups.

In operation, the file cache management system 144 inter-
cepts a file cache memory allocation request (operation 725),
¢.g., Irom a resource group. If, at operation 730, no cache
memory 1s available for allocation, then control passes to
operation 733 and the cache management system 144 reallo-
cates file cache memory according to the cache management
policies established via the interface module 160. By con-
trast, 1f file cache memory 1s available for reallocation, then at
operation 730 control passes to operation 740 and file data 1s
read into the file cache memory allocated 1n response to the
memory request.

I, at operation 7435, there 1s a request to deactivate enforce-
ment of the cache management policies by the cache man-
agement module, then control passes to operation 750 and the
control structures used by the cache management system 144
are deallocated and the cache management system terminates
at operation 755. By contrast, 1f at operation 745 there 1s no
request to deactivate enforcement of cache management poli-
cies by the cache management system 144, then control

10

15

20

25

30

35

40

45

50

55

60

65

6

passes back to operation 725 and the cache management
system 144 waits for another file allocation request.
Exemplary Computing Environment

Select embodiments discussed herein (such as those dis-
cussed with reference to FIG. 1) may include various opera-
tions. These operations may be performed by hardware com-
ponents or may be embodied in machine-executable
instructions, which may be in turn utilized to cause a general-
purpose or special-purpose processor, or logic circuits pro-
grammed with the instructions to perform the operations.
Alternatively, the operations may be performed by a combi-
nation of hardware and software.

The wvarious components and functionality described
herein are implemented with a number of individual comput-
ers. F1IG. 8 shows components of typical example of such a
computer, referred by to reference numeral 400. The compo-
nents shown in FI1G. 8 are only examples, and are not intended
to suggest any limitation as to the scope of the functionality of
the mnvention; the invention 1s not necessarily dependent on
the features shown in FIG. 8.

Generally, various different general purpose or special pur-
pose computing system configurations can be used.
Examples of well known computing systems, environments,
and/or configurations that may be suitable for use with the
invention include, but are not limited to, personal computers,
server computers, hand-held or laptop devices, multiproces-
sor systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, network PCs, mini-
computers, mainirame computers, distributed computing
environments that include any of the above systems or
devices, and the like.

The functionality of the computers 1s embodied in many
cases by computer-executable nstructions, such as program
modules, that are executed by the computers. Generally, pro-
gram modules include routines, programs, objects, compo-
nents, data structures, etc. that perform particular tasks or
implement particular abstract data types. Tasks might also be
performed by remote processing devices that are linked
through a communications network. In a distributed comput-
ing environment, program modules may be located in both
local and remote computer storage media.

The mstructions and/or program modules are stored at
different times 1n the various computer-readable media that
are either part of the computer or that can be read by the
computer. Programs are typically distributed, for example, on
floppy disks, CD-ROMs, DVD, or some form of communi-
cation media such as a modulated signal. From there, they are
installed or loaded into the secondary memory of a computer.
At execution, they are loaded at least partially into the com-
puter’s primary electronic memory. The mvention described
herein 1ncludes these and other various types of computer-
readable media when such media contain nstructions, pro-
grams, and/or modules for implementing the steps described
below 1n conjunction with a microprocessor or other data
processors. The mvention also includes the computer itself
when programmed according to the methods and techniques
described below.

For purposes of illustration, programs and other executable
program components such as the operating system are illus-
trated herein as discrete blocks, although 1t 1s recognized that
such programs and components reside at various times 1n
different storage components of the computer, and are
executed by the data processor(s) of the computer.

With reference to FIG. 8, the components of computer 800
may include, but are not limited to, a processing unit 804, a
system memory 806, and a system bus 808 that couples vari-
ous system components including the system memory 806 to

US 8,346,740 B2

7

the processing unit 804. The system bus 808 may be any of
several types of bus structures including a memory bus or
memory controller, aperipheral bus, and a local bus using any
ol a variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard

Architecture (ISA) bus, Micro Channel Architecture (MCA)
bus, Enhanced ISA (EISA) bus, Video F

Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus also known as the Mezzanine bus.

Computer 800 typically includes a variety of computer-
readable media. Computer-readable media can be any avail-
able media that can be accessed by computer 800 and includes
both volatile and nonvolatile media, removable and non-re-
movable media. By way of example, and not limitation, com-
puter-readable media may comprise computer storage media
and communication media. “Computer storage media”
includes volatile and nonvolatile, removable and non-remov-
able media implemented 1n any method or technology for
storage of mformation such as computer-readable instruc-
tions, data structures, program modules, or other data. Com-
puter storage media includes, but 1s not limited to, RAM,
ROM, EEPROM, tlash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computer 800. Communication
media typically embodies computer-readable instructions,
data structures, program modules or other data in a modulated
data signal such as a carrier wave or other transport mecha-
nism and includes any information delivery media. The term
“modulated data signal” means a signal that has one or more
of 1ts characteristics set or changed 1n such a manner as to
encode information 1n the signal. By way of example, and not
limitation, communication media includes wired media such
as a wired network, fiber optic networks, or direct-wired
connection and wireless media such as acoustic, RF, infrared
and other wireless media. Combinations of any of the above
should also be 1included within the scope of computer read-
able media.

The system memory 806 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 810 and random access memory
(RAM) 812. A basic input/output system 814 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 800, such as during start-
up, 1s typically stored in ROM 810. RAM 812 typically con-
tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing umt 804. By way of example, and not limitation, FIG. 8
illustrates operating system 816, application programs 818,
other software components 820, and program data 822.

The computer 800 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, the computer system of FIG. 8 may
include a hard disk drive 824 that reads from or writes to
non-removable, nonvolatile magnetic media, a magnetic disk
drive 826 that reads from or writes to a removable, nonvolatile
magnetic disk 828, and an optical disk drive 830 that reads
from or writes to a removable, nonvolatile optical disk 832
such as a CD ROM or other optical media. Other removable/
non-removable, volatile/nonvolatile computer storage media
that can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital video tape, solid
state RAM, solid state ROM, and the like. The hard disk drive

824 1s typically connected to the system bus 808 through a

10

15

20

25

30

35

40

45

50

55

60

65

8

non-removable memory interface such as data media inter-
face 834, and magnetic disk drive 826 and optical disk drive
830 are typically connected to the system bus 808 by a remov-
able memory intertace.

The drives and their associated computer storage media
discussed above and 1llustrated 1n FIG. 8 provide storage of
computer-readable 1nstructions, data structures, program
modules, and other data for computer 800. In FIG. 8, for
example, hard disk drive 824 1s 1llustrated as storing operating
system 816', application programs 818', soltware compo-
nents 820", and program data 822'. Note that these compo-
nents can either be the same as or different from operating
system 816, application programs 818, software components
820, and program data 822. Operating system 816, applica-
tion programs 818, other program modules 820, and program
data 822 are given different numbers here to illustrate that, at
a minimum, they are different copies. A user may enter com-
mands and information into the computer 800 through input
devices such as a keyboard 836 and pointing device 838,
commonly referred to as a mouse, trackball, or touch pad.
Other mput devices (not shown) may include a microphone
840, joystick, game pad, satellite dish, scanner, or the like.
These and other input devices are often connected to the
processing unit 804 through an mput/output (I/0) interface
842 that 1s coupled to the system bus, but may be connected
by other interface and bus structures, such as a parallel port,
game port, or a universal serial bus (USB). A monitor 844 or
other type of display device 1s also connected to the system
bus 806 via an interface, such as a video adapter 846. In
addition to the monitor 844, computers may also include
other peripheral output devices (e.g., speakers) and one or
more printers 870, which may be connected through the 1/O
interface 842.

The computer may operate in a networked environment
using logical connections to one or more remote computers,
such as a remote computing device 8350. The remote comput-
ing device 850 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to computer 800. The logical connections
depicted 1n FIG. 8 include a local area network (LAN) 852
and a wide area network (WAN) 854. Although the WAN 854
shown 1n FIG. 8 1s the Internet, the WAN 854 may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets, and the like.

When used 1n a LAN networking environment, the com-
puter 800 1s connected to the LAN 852 through a network
interface or adapter 856. When used in a WAN networking
environment, the computer 800 typically includes a modem
838 or other means for establishing communications over the
Internet 854. The modem 858, which may be internal or
external, may be connected to the system bus 806 via the I/O
interface 842, or other appropriate mechanism. In a net-
worked environment, program modules depicted relative to
the computer 800, or portions thereof, may be stored in the
remote computing device 850. By way of example, and not
limitation, FIG. 8 i1llustrates remote application programs 860
as residing on remote computing device 850. It will be appre-
ciated that the network connections shown are exemplary and
other means of establishing a communications link between
the computers may be used.

Moreover, some embodiments may be provided as com-
puter program products, which may include a machine-read-
able or computer-readable medium having stored thereon
instructions used to program a computer (or other electronic
devices) to perform a process discussed herein. The machine-

US 8,346,740 B2

9

readable medium may include, but 1s not limited to, floppy
diskettes, hard disk, optical disks, CD-ROMs, and magneto-

optical disks, ROMs, RAMs, erasable programmable ROMs
(EPROMs), electrically EPROMs (EEPROMSs), magnetic or
optical cards, flash memory, or other suitable types of media
or computer-readable media suitable for storing electronic
istructions and/or data. Moreover, data discussed herein
may be stored in a single database, multiple databases, or
otherwise 1n select forms (such as 1n a table).

Additionally, some embodiments discussed herein may be
downloaded as a computer program product, wherein the
program may be transierred from a remote computer (e.g., a
server) to a requesting computer (e.g., a client) by way of data
signals embodied in a carrier wave or other propagation
medium via a communication link (e.g., a modem or network
connection). Accordingly, herein, a carrier wave shall be
regarded as comprising a machine-readable medium.

Reference 1n the specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or
characteristic described 1n connection with the embodiment
1s included 1n at least an implementation. The appearances of
the phrase “in one embodiment” in various places in the

specification are not necessarily all referring to the same
embodiment.

What 1s claimed 1s:

1. A method of file cache management in a computer sys-
tem, comprising:

creating a resource group that will include a set of pro-

cesses that are running in the computer system, said
creating the resource group comprising selecting pro-
cesses as members of the resource group:;
developing one or more cache management policies for the
resource group, wherein the one or more policies are
used for managing cache memory in the computer sys-
tem and are created by use of an interface module;

downloading the one or more cache management policies
from the interface module to a file cache management
system that enforces cache management policies; and

managing one or more subsequent requests for cache
memory 1n accordance with the one or more cache man-
agement policies, wherein the one or more subsequent
requests are transmitted from a process in the resource
group.

2. The method of claim 1, wherein developing one or more
cache management policies for the resource group comprises:

identifying one or more members of the resource group;

and

assigning a minimum share of file cache memory to the one

or more members of the resource group.

3. The method of claim 2, further comprising;

assigning a maximum threshold of cache memory avail-

able to the one or more resource groups.
4. The method of claim 1, wherein managing one or more
subsequent requests for file cache memory 1n accordance
with the one or more cache management policies comprises:
receiving a request for file cache memory from a member
ol a resource group;

implementing a self reuse algorithm when the resource
group has consumed a threshold amount of cache
memory.

5. The method of claim 1, wherein managing one or more
subsequent requests for file cache memory in accordance
with the one or more cache management policies comprises:

receiving a request for file cache memory from a member

of a resource group;

5

10

15

20

25

30

35

40

45

50

55

60

65

10

implementing a global reuse algorithm when the resource
group has not consumed a threshold amount of file cache
memory.

6. The method of claim 5, wherein implementing a global
reuse algorithm comprises reassigning cache memory
resources from a first resource group to a second resource
group.

7. The method of claim S, wherein implementing a global
reuse algorithm comprises:

assigning to one or more resource groups a score that
represents an amount by which the resource group
exceeds a threshold allocation of cache memory
resource; and

reassigning cache memory resources from a resource
group with a high score to a resource group with a low
score.

8. The method of claim 1, further comprising:

monitoring file cache memory utilization; and

modifying the cache management policies in response to a
change 1n available cache memory.

9. A computer system to manage cache memory resources,

comprising;
a Processor;
a memory module including logic mstructions stored 1n a
computer-readable medium which, when executed by
the processor, configure the processor to:
create a resource group that will include a set of pro-
cesses that are running in the computer system, and
create the resource group by selecting processes as
members of the resource group;

develop one or more cache management policies for the
resource group, wherein the one or more policies are
used for managing cache memory 1n the computer
system and are created by use of an interface module;

download the one or more cache management policies
from the interface module to a file cache management
system that enforces cache management policies; and

manage one or more subsequent requests for cache
memory in accordance with the one or more cache
management policies, wherein the one or more sub-
sequent requests are transmitted from a process 1n the
resource group.

10. The computer system of claim 9, further comprising
logic 1nstructions which, when executed by the processor,
coniigure the processor to:

identily one or more members of the resource group; and

assign a share of cache memory to the one or more mem-
bers of the resource group.

11. The computer system of claim 9, further comprising
logic instructions which, when executed by the processor,
configure the processor to assign a maximum threshold of
cache memory available to the one or more members of the
resource group.

12. The computer system of claim 9, further comprising
logic instructions which, when executed by the processor,
configure the processor to:

recerve a request for cache memory from a member of a
resource group;

implement a self reuse algorithm when the resource group
has consumed a threshold amount of cache memory.

13. The computer system of claim 9, further comprising
logic 1nstructions which, when executed by the processor,
configure the processor to:

recerve a request for cache memory from a member of a
resource group;

US 8,346,740 B2

11

implement a global reuse algorithm when the resource
group has not consumed a threshold amount of cache
memory.

14. The computer system of claim 13, further comprising
logic 1nstructions which, when executed by the processor,
configure the processor to reassign cache memory resources
from a first resource group to a second resource group.

15. The computer system of claim 13, further comprising
logic 1nstructions which, when executed by the processor,
configure the processor to:

assign to one or more resource groups a score that repre-

sents an amount by which the resource group exceeds a
threshold allocation of cache memory resource; and
reassign cache memory resources from a resource group

with a high score to a resource group with a low score.

16. The computer system of claim 15, further comprising
logic 1nstructions which, when executed by the processor,
configure the processor to:

monitor cache memory utilization; and

modily the cache management policies 1in response to a

change 1n available cache memory.

17. A computer program product comprising computer
storage media and logic instructions stored on the computer
storage media which, when executed by a computer proces-
sor, configure the processor to:

create a resource group that will include a set of processes

that are running in the computer system, and create the
resource group by selecting processes as members of the
resource group;
develop one or more cache management policies for the
resource group, wherein the one or more policies are
used for managing cache memory in the computer sys-
tem and are created by use of an interface module;

download the one or more cache management policies
from the interface module to a file cache management
system that enforces cache management policies; and

manage one or more subsequent requests for cache
memory 1n accordance with the one or more cache man-
agement policies, wherein the one or more subsequent
requests are transmitted from a process in the resource
group.

18. The computer program product of claim 17, further
comprising logic instructions which, when executed by the
processor, configure the processor to:

5

10

15

20

25

30

35

40

12

1dentify one or more members of the resource group; and

assign a share of cache memory to the one or more mem-

bers of the resource group.

19. The computer program product of claim 17, further
comprising logic instructions which, when executed by the
processor, configure the processor to assign a maximum
threshold of cache memory available to the one or more
members of the resource group.

20. The computer program product of claim 19, further
comprising logic instructions which, when executed by the
processor, configure the processor to:

receive a request for cache memory from a member of a

resource group;

implement a self reuse algorithm when the resource group

has consumed a threshold amount of cache memory.

21. The computer program product of claim 17, turther
comprising logic instructions which, when executed by the
processor, configure the processor to:

recerve a request for cache memory from a member of a

resource group;

implement a global reuse algorithm when the resource

group has not consumed a threshold amount of cache
memory.

22. The computer program product of claim 21, further
comprising logic instructions which, when executed by the
processor, configure the processor to reassign cache memory
resources from a first resource group to a second resource
group.

23. The computer program product of claim 21, turther
comprising logic instructions which, when executed by the
processor, configure the processor to:

assign to one or more resource groups a score that repre-

sents an amount by which the resource group exceeds a
threshold allocation of cache memory resource; and
reassign cache memory resources from a resource group

with a high score to a resource group with a low score.

24. The computer program product of claim 23, further
comprising logic instructions which, when executed by the
processor, configure the processor to:

monitor cache memory utilization; and

modily the cache management policies 1n response to a

change 1n available cache memory.

	Front Page
	Drawings
	Specification
	Claims

