12 United States Patent

Jain et al.

US008341570B2

US 8,341,570 B2
Dec. 25, 2012

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
EXECUTING A HARDWARE SIMULATION
AND VERIFICATION SOLUTION

(75) Inventors: Manish Jain, San Jose, CA (US); Subha
S. Chowdhury, West Bengal (IN);
Sridhar Seshadri, Sunnyvale, CA (US)

(73) Assignee: Synopsys, Inc., Mountain View, CA
(US)
( *) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21)  Appl. No.: 13/359,386

(22) Filed: Jan. 26, 2012
(65) Prior Publication Data
US 2012/0123763 Al May 17, 2012

Related U.S. Application Data

(62) Daivision of application No. 12/112,222, filed on Apr.
30, 2008, now Pat. No. 8,121,825.

(51) Int.CL

GO6F 17/50 (2006.01)
(52) US.CL ., 716/106; 703/14
(58) Field of Classification Search .................. 716/106;

703/14
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,087,967 A 7/2000 Budnik et al.
6,691,301 B2 2/2004 Bowen
7,408,336 B2 8/2008 Birmmwal et al.
7,827,541 B2 11/2010 Chen et al.
2004/0154002 Al 8/2004 Ball
2004/0243372 Al 12/2004 Tester
2004/0249623 Al 12/2004 Selvidge
2006/0004557 Al 1/2006 Maturana et al.

OTHER PUBLICATIONS

Koch, Michael et al., “Distributed VHDIL. Simulation within a Work-
station Cluster”, Proceedings of the 27th Annual Hawail Interna-
tional Conference on System Sciences, 1994, pp. 313-322.

Naroska, Edwin et al., “A Novel Approach for Digital Waveform
Compression”, pp. 712-715, XP-002546840, IEEE 2003.

Dawson, Charles et al., “The Verillog Procedural Interface for the
Verilog Hardware Description Language™, pp. 17-23, IEEE 1996.
Marantz, Joshua, “Enhanced Visibility and Performance in Func-
tional Verification by Reconstruction, pp. 164-169, 1998.
Martinolle et al, “A Procedural Language Interface for VHDL and its
Typical Applications”, Verilog HDL Conference and VHDL Interna-
tional Users Forum, 1998.

Jou et al, “Coverage Analysis Techniques for HDL Design Valida-
tion”, 6th Asia Pacific Conference on Chip Design Languages 1999.
Shields, John, “Modeling Foreign Architectures with VHPI”, Pro-
ceedings of the VHDL International Users Forum Fall Workshop,
2000. Sutherland, Stewart, “The Verilog PLI Handbook, A User’s
Guide and Comprehensive Reference on the Verillog Programming
Interface”, Second Edition, Kluwer Academic Publishers, 2002, pp.
1-xx111; 197-269.

Primary Examiner — Vuthe Siek
(74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
Dowler LLP; Laxman Sahasrabuddhe

(57) ABSTRACT

One embodiment of the present invention provides systems
and techniques to execute a hardware simulation and verifi-
cation solution on a multiprocessor system. The hardware
simulation and verification solution can be partitioned nto
different modules which can include a simulation kernel to
simulate changes 1n signal values, a value change dump mod-
ule to store the changes in the signal values on a computer-
readable storage medium, a functional coverage module to
check functionality, a toggle coverage module to check signal
toggling, an assertion engine to check complex behaviors,
and a testbench module to generate test scenarios. Embodi-
ments of the present invention can execute different modules
on different processors, thereby improving performance.

18 Claims, 7 Drawing Sheets

START

EXECUTE THE SIMULATION KERNEL ON A FIRST PROCESSOR, THEREBY CAUSING THE
FIRST PROCESSOR TO NOTIFY THE ASSERTION ENGINE ON A SECOND PROCESSOR
(WHICH IS DIFFERENT FROM THE FIRST PROCESSOR) AS SOON AS A SIMULATION
CLOCK CYCLE BEGINS, SIMULATE CHANGES IN SIGNAL VALUES OF THE DUT DURING

THE SIMULATION CLOCK CYCLE, AND CHECK WHETHER THE ASSERTION ENGINE
COMPLETED EXECUTION ON THE SECOND PROCESSOR

EXECUTE THE ASSERTION ENGINE ON THE SECOND PROCESSOR, THEREBY CAUSING
THE SECOND PROCESSOR TO, IN RESPONSE TO RECEIVING A NOTIFICATION FROM
THE SIMULATION KERNEL THAT THE SIMULATION CLOCK CGYCLE HAS BEGUN,
EVALUATE ASSERTIONS USING SIGNAL VALUES THAT WERE DETERMINED DURING
PREVIOUS CLOCK CYCLES, REPORT RESULTS OF EVALUATING THE ASSERTIONS, AND
NOTIFY THE SIMULATION KERNEL ONCE THE ASSERTIONS HAVE BEEN EVALUATED




US 8,341,570 B2

™~

Coje

° 3¢k 9C| 4! ¢el 0Cl 8Ll 9Ll 189 PLL JUSA
= "OUBYUT uoneoutsp ( oenxg 9 { quswedw| { Buluueld ( uoneoyusp (4o ubiseq 'un{ pue
2 UOIN|0SaY eoIsAyd SISA[eUY oISAU ubise(] EIN 0 SISSYUAG  \ ubIsa( 21607
s 9,

—_

> 091

g 0/ Alquassy 0c| o_ﬂ | @ww | 001

5 sdiyn 9 LonesLge- H HEMES =op)

= puibexoed o ode] vad PPl

U.S. Patent



U.S. Patent Dec. 25, 2012 Sheet 2 of 7 US 8,341,570 B2

START

CREATE SOURCE FILES
WHICH DESCRIBE THE DUT
202

SOURCE FILES
204

COMPILE SOURCE FILES
TO OBTAIN SIMULATION

EXECUTABLE
SIMULATION Al
EXECUTABLE
206

204
SIMULATE DUT, PERFORM
INTERACTIVE DEBUGGING,
AND GENERATE SIMULATION
DUMP FILES FOR

SUBSEQUENT ANALYSIS
208
SIMULATION
DUMP FILES
210
ANALYZE
SIMULATION
DUMP FILES
212

END

FIG. 2



U.S. Patent Dec. 25, 2012 Sheet 3 of 7 US 8,341,570 B2

MULTI-PROCESSOR
SYSTEM

300
\ PROCESSOR

304

306 308
PROCESSOR
CACHE CACHE
302

BUS 320

PROCESSOR
310

FIG. 3



U.S. Patent Dec. 25, 2012 Sheet 4 of 7 US 8,341,570 B2

CURRENT
TIME SLOT

|
PREVIOUS PREPONED
TIME SLOT 402

ACTIVE
404

OBSERVE
410

REACTIVE
412

POSTPONED
414

INACTIVE
400

COMPUTER SYSTEM 502

DISPLAY

514 <Jdi>
516

STORAGE COMPILER
508 518

EXECUTABLE
520

KEYBOARD POINTING
510 DEVICE 512

FIG. 5



U.S. Patent Dec. 25, 2012 Sheet 5 of 7 US 8,341,570 B2

START

EXECUTE THE SIMULATION KERNEL ON A FIRST PROCESSOR, THEREBY CAUSING THE
FIRST PROCESSOR TO GENERATE VALUE CHANGE DATA WHICH REPRESENTS
CHANGES IN A SET OF SIGNAL VALUES, AND STORE THE VALUE CHANGE DATA SO
THAT A SECOND PROCESSOR, WHICH 1S DIFFERENT FROM THE FIRST PROCESSOR, IS
ABLE TO ACCESS THE VALUE CHANGE DATA
602

EXECUTE THE VCD MODULE ON THE SECOND PROCESSOR, THEREBY CAUSING THE
SECOND PROCESSOR TO COMPRESS THE VALUE CHANGE DATA, AND STORE THE
COMPRESSED VALUE CHANGE DATA IN THE COMPUTER READABLE STORAGE
MEDIUM FOR SUBSEQUENT ANALYSIS
604

END

START

EXECUTE THE SIMULATION KERNEL ON A FIRST PROCESSOR, THEREBY CAUSING THE
FIRST PROCESSOR TO GENERATE VALUE CHANGE DATA WHICH REPRESENTS
CHANGES IN A SET OF SIGNAL VALUES WHICH ARE USED IN A FUNCTIONAL
COVERAGE MODEL FOR THE DUT, AND STORE THE VALUE CHANGE DATA SO THAT A
SECOND PROCESSOR, WHICH IS DIFFERENT FROM THE FIRST PROCESSOR, IS ABLE
TO ACCESS THE VALUE CHANGE DATA
702

EXECUTE THE FUNCTIONAL COVERAGE MODULE ON THE SECOND PROCESSOR,
THEREBY CAUSING THE SECOND PROCESSOR TO DETERMINE A FUNCTIONAL
COVERAGE METRIC USING THE FUNCTIONAL COVERAGE MODEL AND THE VALUE

CHANGE DATA, AND REPORT THE FUNCTIONAL COVERAGE METRIC TO A USER
704

END

FIG. 7



U.S. Patent Dec. 25, 2012 Sheet 6 of 7 US 8,341,570 B2

START

EXECUTE THE SIMULATION KERNEL ON A FIRST PROCESSOR, THEREBY CAUSING THE
FIRST PROCESSOR TO GENERATE VALUE CHANGE DATA WHICH REPRESENTS
CHANGES IN A SET OF SIGNAL VALUES WHICH ARE USED IN A TOGGLE COVERAGE
MODEL FOR THE DUT, AND STORE THE VALUE CHANGE DATA SO THAT A SECOND
PROCESSOR, WHICH IS DIFFERENT FROM THE FIRST PROCESSOR, IS ABLE TO
ACCESS THE VALUE CHANGE DATA
802

EXECUTE THE TOGGLE COVERAGE MODULE ON THE SECOND PROCESSOR, THEREBY
CAUSING THE SECOND PROCESSOR TO DETERMINE A TOGGLE COVERAGE METRICG
USING THE TOGGLE COVERAGE MODEL AND THE VALUE CHANGE DATA, AND REPORT
THE TOGGLE COVERAGE METRIC TO A USER
804

END

FIG. 8

START

EXECUTE THE SIMULATION KERNEL ON A FIRST PROCESSOR, THEREBY CAUSING THE
FIRST PROCESSOR TO NOTIFY THE ASSERTION ENGINE ON A SECOND PROCESSOR
(WHICH IS DIFFERENT FROM THE FIRST PROCESSOR) AS SOON AS A SIMULATION
CLOCK CYCLE BEGINS, SIMULATE CHANGES IN SIGNAL VALUES OF THE DUT DURING
THE SIMULATION CLOCK CYCLE, AND CHECK WHETHER THE ASSERTION ENGINE
COMPLETED EXECUTION ON THE SECOND PROCESSOR
902

EXECUTE THE ASSERTION ENGINE ON THE SECOND PROCESSOR, THEREBY CAUSING
THE SECOND PROCESSOR TO, IN RESPONSE TO RECEIVING A NOTIFICATION FROM
THE SIMULATION KERNEL THAT THE SIMULATION CLOCK CYCLE HAS BEGUN,
EVALUATE ASSERTIONS USING SIGNAL VALUES THAT WERE DETERMINED DURING
PREVIOUS CLOCK CYCLES, REPORT RESULTS OF EVALUATING THE ASSERTIONS, AND
NOTIFY THE SIMULATION KERNEL ONCE THE ASSERTIONS HAVE BEEN EVALUATED
904

END

FIG. 9



U.S. Patent Dec. 25, 2012 Sheet 7 of 7 US 8,341,570 B2

START

EXECUTE THE SIMULATION KERNEL ON A FIRST PROCESSOR, THEREBY CAUSING THE
FIRST PROCESSOR TO NOTIFY THE TESTBENCH MODULE ON A SECOND PROCESSOR
(WHICH IS DIFFERENT FROM THE FIRST PROCESSOR) TO GENERATE TEST SIGNALS
FOR TESTING THE DUT, RECEIVE THE TEST SIGNALS FROM THE TESTBENCH MODULE
ON THE SECOND PROCESSOR, AND USE THE TEST SIGNALS TO SIMULATE CHANGES
IN SIGNAL VALUES OF THE DUT DURING A SIMULATION CLOCK CYCLE
1002

EXECUTE THE TESTBENCH MODULE ON THE SECOND PROCESSOR, THEREBY
CAUSING THE SECOND PROCESSOR TO GENERATE THE TEST SIGNALS FOR TESTING
THE DUT, AND SEND THE TEST SIGNALS TO THE SIMULATION KERNEL ON THE FIRST
PROCESSOR
1004

END

FIG. 10



US 8,341,570 B2

1

METHOD AND APPARATUS FOR
EXECUTING A HARDWARE SIMULATION
AND VERIFICATION SOLUTION

RELATED APPLICATION

This application 1s a divisional of, and claims priority to,
U.S. patent application Ser. No. 12/112,222, entitled
“Method and Apparatus for Executing a Hardware Simula-
tion and Verification Solution,” by the same inventors as the
instant application, filed on 30 Apr. 2008, the contents of
which are imcorporated by reference herein.

BACKGROUND

1. Field of the Invention

The present invention generally relates to hardware design
and verification. More specifically, the present invention
relates to methods and apparatuses for executing a hardware
simulation and verfication solution.

2. Related Art

Rapid advances in computing technologies have been
made possible by advances 1n design and verification tools
because without such tools it would have been almost impos-
sible to design and verily complicated integrated circuits
which are commonly found 1n today’s computing devices.
Due to the rapidly increasing size and complexity of inte-
grated circuits, there 1s a strong need to find methods and

apparatuses to improve the performance of hardware simula-
tion and verification solutions.

Unfortunately, conventional techniques for improving
soltware performance are not always effective. For example,
rewriting the software from scratch so that it can be executed
in parallel 1s impractical due to the enormous costs of rewrit-
ing such a complex piece of software. A parallelizing com-
piler may also fail to improve performance because even the

most sophisticated parallelizing compilers often fail to
exploit parallelization opportunities 1n such complex pieces
of software. Further, parallelizing only a small portion of the
soltware usually does not substantially improve performance
due to Amdahl’s law, and partitioning the software nto dii-
terent pieces may degrade performance 11 the different pieces
require large amounts of synchronization.

SUMMARY

One embodiment of the present invention provides systems
and techniques to execute a hardware simulation and verifi-
cation solution on a multiprocessor system. Specifically, an
embodiment partitions the hardware simulation and verifica-
tion solution into different modules so that they can be
executed 1n parallel without requiring a substantial amount of
communication or synchronization between the modules.

A hardware simulation and verification solution can be
partitioned into a simulation kernel to simulate changes in
signal values, a value change dump (VCD) module to store
the changes in the signal values on a computer-readable stor-
age medium, a functional coverage module to check function-
ality, a toggle coverage module to check signal toggling, an
assertion engine to check complex behaviors, and a testbench
module to generate test scenarios. Embodiments of the
present invention can execute different modules on different
processors, thereby improving performance.

BRIEF DESCRIPTION OF THE FIGURES

FI1G. 1 illustrates various steps 1n the design and fabrication
of an integrated circuit in accordance with an embodiment of
the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 illustrates a worktlow for a simulation and verifica-
tion solution in accordance with an embodiment of the
present 1nvention.

FIG. 3 illustrates a multiprocessor system 1n accordance
with an embodiment of the present invention.

FIG. 4 presents a diagram which illustrates different event
regions in a time slot 1 accordance with an embodiment of
the present invention.

FIG. 5 1llustrates a computer system which can be used to
execute a simulation and verification system 1n accordance
with an embodiment of the present invention.

FIG. 6 presents a tlowchart that illustrates a process for
executing a hardware simulation and verification solution on
multiple processors which includes a simulation kernel and a
value change dump module 1n accordance with an embodi-
ment of the present invention.

FIG. 7 presents a flowchart that illustrates a process for
executing a hardware simulation and verification solution on
multiple processors which includes a simulation kernel and a
functional coverage module 1n accordance with an embodi-
ment of the present 1nvention.

FIG. 8 presents a flowchart that illustrates a process for
executing a hardware simulation and verification solution on
multiple processors which includes a simulation kernel and a
toggle coverage module 1 accordance with an embodiment
of the present invention.

FIG. 9 presents a flowchart that illustrates a process for
executing a hardware simulation and verification solution on
multiple processors which includes a simulation kernel and
an assertion engine 1n accordance with an embodiment of the
present 1nvention.

FIG. 10 presents a flowchart that illustrates a process for
executing a hardware simulation and verification solution on
multiple processors which includes a simulation kernel and a
testbench module 1n accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION

Integrated Circuit (IC) Design Flow

FIG. 1 1llustrates various steps 1n the design and fabrication
ol an integrated circuit 1n accordance with an embodiment of
the present invention.

The process usually starts with a product 1dea (step 100)
which 1s realized using an EDA software design process (step
110). Once the design 1s finalized, i1t 1s usually taped-out
(event 140) and goes through the fabrication process (step
150) and packaging and assembly processes (step 160) to
produce the finished chips (result 170).

The EDA software design process (step 110) comprises
steps 112-130, which are described below for illustration
purposes only and are not meant to limait the present invention.
For example, an actual mtegrated circuit design may require
the designer to perform the design steps 1in a different
sequence than the sequence described below.

System design (step 112): In this step, the designers
describe the functionality that they want to implement. They
can also perform what-11 planning to refine functionality,
check costs, etc. Hardware-software architecture partitioning
can occur at this stage. Exemplary EDA software products
from Synopsys, Inc. that can be used at this step include
Model Architect, Saber®, System Studio, and Design Ware®
products.

Logic design and functional verification (step 114): At this
stage, the VHDL or Verilog code for modules in the system 1s
written and the design 1s checked for functional accuracy.




US 8,341,570 B2

3

More specifically, the design 1s checked to ensure that 1t
produces the correct outputs. Exemplary EDA software prod-
ucts from Synopsys, Inc. that can be used at this step include
VCS®, Vera®, DesignWare®, Magellan™, Formality®,
ESP and Leda® products.

Synthesis and design for test (step 116): Here, the VHDL/
Verilog 1s translated to a netlist. The netlist can be optimized
tor the target technology. Additionally, tests can be designed
and implemented to check the finished chips. Exemplary
EDA software products from Synopsys, Inc. that can be used
at this step include Design Compiler®, Physical Compiler®,
Test Compiler, Power Compiler™, FPGA Compiler, Tetra-
MAX®, and Design Ware® products.

Netlist verification (step 118): In this step, the netlist 1s
checked for compliance with timing constraints and for cor-
respondence with the VHDL/Verilog source code. Exemplary
EDA software products from Synopsys, Inc. that can be used
at this step include Formality®, PrimeTime®, and VCS®
products.

Design planning (step 120): Here, an overall floorplan for
the chip 1s constructed and analyzed for timing and top-level
routing. Exemplary EDA software products from Synopsys,
Inc. that can be used at this step include Astro™ and IC
Compiler products.

Physical implementation (step 122): The placement (posi-
tioming of circuit elements) and routing (connection of the
same) occurs at this step. Exemplary EDA software products
from Synopsys, Inc. that can be used at this step include the
Astro™ and IC Compiler products.

Analysis and extraction (step 124): Atthis stage, the circuit
function 1s verified at a transistor level, this 1n turn permaits
what-1f refinement. Exemplary EDA software products from
Synopsys, Inc. that can be used at this step include Astro-
Rail™, PrimeRail, PrimeTime®, and Star-RCX'T™ prod-
ucts.

Physical verification (step 126): In this step, the design 1s
checked to ensure correctness for manufacturing, electrical
issues, lithographic issues, and circuitry. Exemplary EDA
software products from Synopsys, Inc. that can be used at this
step include the Hercules™ product.

Resolution enhancement (step 128): This step involves
geometric manipulations of the layout to improve manufac-
turability of the design. Exemplary EDA software products
from Synopsys, Inc. that can be used at this step include
Proteus/Progen, ProteusAF, and PSMGen products.

Mask data preparation (step 130): This step provides the
“tape-out” data for production of masks to produce finished
chips. Exemplary EDA software products from Synopsys,
Inc. that can be used at this step include the CATS® family of
products.

Embodiments of the present invention can be used during
one or more of the above-described steps. Specifically, one
embodiment of the present invention can be used during the
logic design and functional verification step 114.
Simulation and Verification Solution

The mtroduction of HDLs (hardware description lan-
guages) revolutionized hardware verification, and by the
carly 1990s, HDL based simulators had already become an
important tool 1n hardware verification. Since 1ts 1ntroduc-
tion, HDL simulator performance continued to improve, and
verification technologies went through a phase 1 which a
number of “bolt-on” tools were developed to improve verifi-
cation capabilities.

However, the bolt-on tools approach reduced the overall
performance of the simulation and verification solution
because 1t resulted 1n a costly and fragmented solution which
was a mishmash of multiple methodologies and vendors.

10

15

20

25

30

35

40

45

50

55

60

65

4

Each bolt-on tool compiled or interpreted its own language
independently, which created inetliciencies during the analy-
s1s or compilation phase and also led to inconsistencies
between the tools because of the differences in the interpre-
tation of certain hardware constructs in the design. As semi-
conductor mtegration densities continued to increase rapidly,

it became clear that there was a need for a unified, compre-
hensive solution for hardware simulation and verification. In

response to this need, Synopsys itroduced VCS® which 1s a

comprehensive hardware simulation and verification solu-
tion.

FIG. 2 illustrates a worktlow for a simulation and verifica-
tion solution in accordance with an embodiment of the
present 1nvention.

The process typically begins by creating source files 204
that describe the design under test (DUT) (step 202). Source
files 204 may describe the DUT using a standardized, non-
proprietary hardware description language.

Next, a compiler 1s used to compile the source files to
obtain a simulation executable 206 (step 204). Simulation
executable 206 can be a solftware application which when
executed simulates the behavior of the DUT. The simulation
executable can also include instructions to perform verifica-
tion of the DUT during simulation. For example, the compiler
can be configured so that it generates 1nstructions for check-
ing the tunctionality of different parts of the DUT during
simulation. Similarly, the compiler can be configured so that
it generates instructions that check how many times a set of
user-specified signals toggled during simulation.

The simulation executable can then be executed to simulate
the DU, perform interactive debugging, and generate simu-
lation dump files 210 for subsequent analysis (step 208).
Simulation dump files 210 typically contain information
about how signal values changed during simulation. One
embodiment of the present invention uses compression tech-
niques to reduce the size of the simulation dump files. Next,
the simulation dump files can be analyzed (step 212) to debug
the DUT.

The worktlow shown 1n FIG. 2 1s for illustrative purposes
and 1t not intended to limit the scope of the present invention.
For example, interpretive simulators typically do not need a
compilation step i1n their worktlow. However, a compiler-
based approach usually simulates faster and uses less
memory than an interpreter-based approach because a com-
piler-based approach avoids the extra layers and inefficiency
of an interpreter-based approach. Further, the time required to
compile source files can be reduced substantially by using
incremental compilation which reuses compiled modules
unless the associated source files were updated since the last
compilation.

Although comprehensive simulation and verification solu-
tions represented a significant improvement over the earlier
bolt-on approaches, there 1s once again a need to find methods
and apparatuses to improve the performance of hardware
simulation and verification solutions because of the rapidly
increasing size and complexity of integrated circuits.

Until recently, microprocessor vendors have been able to
increase performance by increasing clock speeds. However,
as semiconductor densities continue to 1ncrease, 1t 1s becom-
ing increasingly difficult to increase clock speeds due to
physical limitations such as heat dissipation and synchroni-
zation. Hence, the computer industry 1s exploring other
avenues, such as parallel processing, for increasing applica-
tion performance. Specifically, microprocessor vendors have
introduced multi-core processors which include multiple pro-
cessors 1n a single chip.




US 8,341,570 B2

S

Multiprocessor System

FIG. 3 illustrates a multiprocessor system in accordance
with an embodiment of the present invention.

A multiprocessor system can include multiple processors
which may be coupled using a bus or a switch. A processor
can generally be any circuit that can execute instructions
thereby causing the circuit to perform operations on data
stored 1n a computer-readable storage medium. For example,
multiprocessor system 300 includes processors 302, 304, and
310 which are coupled using bus 320.

A processor can include one or more cores, wherein each
core 1s essentially a processor, 1.€., 1t 1s a circuit that 1s capable
of executing instructions. For example, processor 302
includes one core, processor 304 includes two cores (cores
306 and 308), and processor 310 includes four cores (cores
312, 314, 316, and 318). Hereinafter, the terms “processor”
and “core” are used interchangeably.

In addition to having one or more cores, a processor can
include one or more levels of cache. For example, processor
302 uses a single level cache, whereas processor 304 uses two
levels of caches. Specifically, each core in processor 304 has
its own L1 (level 1) cache, and these cores share an L, (level
2) cache. A processor may include separate mstruction and
data caches, or 1t may include a single cache that stores both
instructions and data.

Communication between the processors can be achieved
using a number of techniques. In shared-memory architec-
tures, multiple processors can access the same address space.
Hence, a first processor can store data 1n a shared-memory
location, and a second processor can read the data from the
shared-memory location. In other types of architectures, pro-
cessors can communicate with each other by sending mes-
sages or packets over a bus or a switch. For example, a first
processor can store data in a packet and send it to a second
processor, which can then use the data to perform further
processing.

There are a number of techniques for designing software
for multiprocessor systems. An application can be written 1n
a concurrent programming language which allows an appli-
cation developer to explicitly specify which steps are to be
performed 1n parallel. However, due to the enormous cost
associated with re-writing large software applications, this
option 1s often impractical. Another option 1s to use a paral-
lelizing compiler which can automatically detect sequences
of instruction that can be executed in parallel. However, even
the most sophisticated parallelizing compilers often fail to
exploit parallelization opportunities 1 complex solftware
applications.

Yet another option 1s to partition a soltware application into
different components or modules which can be executed 1n
parallel without requiring a large amount of communication
between the modules. Application level partitioming can be
very challenging since it requires a soitware developer to
have a deep understanding of the inner workings of the soft-
ware application. Even after the software developer gains a
deep understanding, the developer still has to find a way to
partition the software so that executing them in parallel will
improve performance. Specifically, 1f the software 1s parti-
tioned into components which require a large amount of
synchronization between them, it may actually degrade per-
formance because of communication bottlenecks. Addition-
ally, the partitioning solution must be fairly easy to imple-
ment, 1.e., 1t should be cost effective to modify the sequential
soltware code so that 1t can be executed on a multiprocessor
system.

Embodiments of the present invention are based on novel
insights of how a hardware simulation and verification solu-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion (which 1s a very complex piece of software) can be
partitioned into different modules 1n a cost effective manner
so that these modules can be executed 1n parallel without
requiring a substantial amount of synchromization or commu-
nication between the modules.

Simulation Kernel

The stimulation kernel 1s usually the part of the stmulation
and verification solution which, among other tasks, schedules
simulation events in an event queue, advances the sitmulation
time, and processes scheduled events as simulation time
progresses. Note that these tasks are not intended to be
exhaustive or to limit the simulation kernel to the tasks dis-
closed. In one embodiment, parts of the stmulation kernel can
be stored 1n a software library. During compilation, the sys-
tem can link the library with other code to create the simula-
tion kernel.

The simulation kernel can expose a callback interface
which can be used to install callback functions. A callback
function can be mvoked when an associated event occurs or
when the simulation 1s 1n a particular event region 1n a time
slot.

In one embodiment, the system can execute the stmulation
kernel on a single processor. In this embodiment, the signal
values 1n the entire DUT are determined by the simulation
kernel which 1s executing on the processor. In another
embodiment, different parts of the DUT can be simulated on
different processors. Note that this embodiment may require
a substantial amount of communication and synchronization
between the different processors because signal changes in
one part of the DUT are likely to affect the signal values 1n
another part of the DUT.

FIG. 4 presents a diagram which illustrates different event
regions 1n a time slot 1 accordance with an embodiment of
the present invention.

The time slot can be divided 1nto a set of ordered regions,
and each region can be used for processing certain types of
simulation events. Dividing a time slot into regions can
ensure that a set of stmulation events that are associated with
a particular region are guaranteed to be processed before (or
alter) another set of events which are associated with another
region. However, the order in which the events are executed in
any given region may not be specified by the semantics of the
HDL. Alternatively, the HDL may include constructs which
enable a user to specily the order of the events within a region.

In one embodiment, a time slot can include preponed
region 402, active region 404, mmactive region 406, NBA
(non-blocking assignment) region 408, observe region 410,
reactive region 412, and postponed region 414. Preponed
region 402 occurs before changes 1n signal values are simu-
lated for the current timeslot. Hence, preponed region 402 can
be used to install callback functions that need to access simu-
lation data betfore variables change state and before processes
are executed for the current timeslot. Preponed region 402 can
also be used to sample steady-state data. Active region 404,
inactive region 406, NBA region 408, observeregion 410, and
reactive region 412 are known as iterative regions. Postponed
region 414 occurs after all the changes 1n signal values have
been simulated for the current timeslot. Hence, postponed
region 414 can be used to nstall callback functions that need
to access simulation data after all variables have changed state
and after all processes have been executed for the current
timeslot.

The DUT’s description typically includes modules which
describe the functionality of a part of the DUT, e.g., a com-
ponent or a circuit. Active region 404 1s used to determine
signal values by executing the modules 1n the DUT’s descrip-
tion. Inactive region 406 1s used to perform any HDL code




US 8,341,570 B2

7

that could not be executed 1n the active region due to race
conditions. It may be possible to eliminate the need for 1nac-
tive region 406 11 the HDL code 1s written according to certain
coding principles.

NBA region 408 can be used to efficiently handle simula-
tion race conditions. Specifically, events in NBA region 408
are processed after all design clock signals have propagated
and clock triggered processes have executed, but before the
simulation time advances. Observe region 410 1s where
invariant assertions may be evaluated, and this region comes
alter NBA region 408 because non-blocking assertions 1n
NBA region 408 can change variable values. Observe region
410 1s also the last region 1n which clocked assertions may be
evaluated.

Testbench code 1s used to generate stimulus for the DUT,
and to check results to verity that the design conforms to
specifications. Reactive region 412 can be used to execute
testbench code, including the pass/fail statements of asser-
tions.

Value Chance Dump

Simulation and verification solutions often dump signal
value changes 1n a file for subsequent analysis. For example,
in the workflow shown 1n FIG. 2, the system generates simu-
lation dump files 210 to perform subsequent analysis. Since
the number of signal value changes can be quite large, some
simulation and verification solutions employ compression
techniques to reduce the size of the dump files. Unfortunately,
compressing the value change data can require a large amount
ol computation, which can reduce simulation performance.

Note that compression can be performed independently of
the stmulation 1tself because compressing value change data
doesn’t change any signal states in the DUT. One embodi-
ment of the present invention uses this insight to execute the
simulation kernel and the compression of the value change
data in parallel. Specifically, a callback function can be
installed 1n the simulation kernel to collect signal value
changes and to store the value change data 1n shared memory.
Next, a value change dump module can be executed on
another processor to compress the value change data, and to
store the compressed data for subsequent analysis.
Functional Coverage

Functional coverage can be used to measure the progress of
the verification effort. In one approach, the system can use a
functional coverage model to define how to measure progress
of the verification effort. A functional coverage model usually
includes functional coverage objects which represent condi-
tions for satisiying the verification plan.

In a constrained-random testing approach, the stimulus can
be instrumented with functional coverage. The random
stimulus can be measured to determine 11 all important input
conditions occur in the test suite as well as 1n the design.
Functional coverage can be collected for all verification tests
specified 1n the functional-coverage model, and a functional-
coverage metric can be determined based on the test data. The
functional-coverage metric can help an engineer to determine
what, 1f any, additional tests, random or possibly directed, are
needed. The functional-coverage objects can be used to deter-
mine a functional-coverage metric which can indicate the
progress of the verification eflort.

In one embodiment, the functional coverage model can be
described 1in a language which allows a user to specity behav-
1ors, and the function coverage module can keep track of the
number of times a behavior occur. Specifically, a coverage
model can 1nclude a set of coverage groups, wherein each
coverage group can include sampling events and coverage
expressions. A sampling event can generally be any simula-
tion event, e.g., a signal or variable change. A coverage

10

15

20

25

30

35

40

45

50

55

60

65

8

expression can specily the values of interests for the sampled
variables, 1llegal values, and 1gnored values. Values of interest
can be used to specity the desired behavior, 1llegal values can
be used to identify bugs 1n the DUT, and 1gnored values can be
used to define states which are not collected and/or which are
ignored while determining the functional coverage metric.
The functional coverage model can also specily crosses of
sampled variables of a coverage group, which can enable the
functional coverage module to correlate between multiple
coverage 1tems.

Note that the functional coverage computations can be
performed more or less independently of the hardware simu-
lation because determining functional coverage doesn’t
change signal states 1n the DUT. One embodiment of the
present mnvention uses this msight to execute the simulation
kernel and the functional coverage module 1n parallel. Spe-
cifically, a callback function can be installed 1n the simulation
kernel to collect signal value changes and to store the value
change data 1n shared memory. Next, a functional coverage
module can be executed on another processor to determine a
functional coverage metric and to report the metric to a user.
Toggle Coverage

Coverage metrics can be divided into two categories based
on the type of information they provide. A control-tlow-
coverage metric indicates the extent of control-flow coverage
that has been performed, 1.e., the extent to which lines, paths,
and branches 1n the DUT were taken during simulation. The
value-coverage metric indicates the extent of value coverage
that has been performed, 1.¢., the extent to which signal values
during simulation matched the expected signal values.

A toggle-coverage metric 1s a value-coverage metric that
tracks whether signal lines within the DUT are toggling or
not. Toggle coverage 1s typically used to ensure that a signal
line 1 the DUT 1s “alive,” 1.e., the signal line 1s changing 1ts
value during simulation.

A toggle coverage model can specily which signal lines are
to be monitored and how one or more toggle-coverage met-
rics are to be computed based on the test data. For example, a
toggle coverage model can include all signal lines 1n a bus,
and the associated toggle-coverage metric can report the per-
centage of signal lines 1n the bus that toggled at least once
during simulation. Alternatively, a toggle-coverage metric
can report the average number of times a signal line toggled
during simulation. These examples of toggle-coverage mod-
¢ls and metrics have been presented for illustration purposes
and are not intended to be exhaustive or to restrict the present
invention to the forms disclosed.

Note that the toggle coverage computations can be per-
formed more or less independently of the hardware simula-
tion because determining toggle coverage doesn’t change
signal states in the DUT. One embodiment of the present
invention uses this msight to execute the simulation kernel
and the toggle coverage module in parallel. Specifically, a
callback function can be installed 1n the simulation kernel to
collect signal value changes and to store the value change data
in shared memory. Next, a toggle coverage module can be
executed on another processor to determine a toggle coverage
metric and to report the metric to a user.

Assertions

Assertions are statements about design elements, €.g., si1g-
nals, registers, transactions, etc. which are supposed to evalu-
ate to true 1f the DUT 1s functioning properly. Checking an
assertion can require access to these design elements on a
cycle-by-cycle basis. Hence, to speed up simulation through-
put, 1t may be preferable to minimize the overhead for access-
ing design elements during simulation. Specifically, attempt-
ing to access design elements through an application interface




US 8,341,570 B2

9

(c.g., by 1nstalling a callback function) may substantially
degrade performance, and hence, 1t may be preferable to
support assertions within the simulation kernel.

In conventional approaches, assertions are typically evalu-
ated 1n the observeregion 410 shown in FI1G. 4. However, note
that assertions typically use signal values that were deter-
mined 1n previous time slots. Hence, 1t may be possible to
evaluate assertions at the beginning of a time slot. One
embodiment of the present imnvention exploits this msight to
evaluate assertions in a separate thread. Specifically, the
stimulation kernel can be executed on a first thread which
executes on a first core, and an assertion engine can be
executed on a second thread which executes on a second core.
The simulation kernel can notity the assertion engine that a
new time slot has begun. In response to receiving the notifi-
cation, the assertion engine can evaluate assertions using
signal values that were determined 1n previous time slots.

Since the assertion engine uses signal values that were
determined 1n previous time slots, the assertion can be
executed 1n parallel with the simulation kernel. Further, note
that a very small amount of synchronization may be required
between the assertion engine thread and the simulation kernel
thread because 1t may be suificient to synchronize the threads
at the beginning and/or at the end of a time slot.

Testbench

A testbench module 1s typically used to generate stimulus
for the DUT, and to check results to verity that the design
conforms to specifications. A testbench can mclude multiple
models, which may be written at different levels of abstrac-
tion, and which may sometimes require close synchroniza-
tion. The testbench models are typically described 1n a lan-
guage that enables a user to specily how to generate test
scenar1os. If the simulation kernel and the testbench require
close synchronization, it may not be beneficial to execute
them 1n parallel. However, 1t may be possible to minimize the
amount of synchronmization required by following certain cod-
ing restrictions. One embodiment of the present invention
uses this insight to create testbench models that can be
executed 1n parallel with the simulation kernel.

Specifically, the coding restrictions for the testbench
model can include the following: (1) the design signals should
be sampled with a non-zero skew, (2) hierarchical references
should not be present between the testbench code and the
simulation kernel code, (3) asynchronous sampling and
event-controls should not be used, and (4) variables should
not be shared between the testbench code and the simulation
kernel code. If these coding restrictions are observed, the
simulation kernel and the testbench module can most likely
be executed 1n parallel without requiring a substantial amount
of synchronization between the two.

In one embodiment, the simulation kernel and the test-
bench module have their own event driven schedulers which
execute more or less independently of each other. The test-
bench output events can be propagated to the simulation
kernel at the end of the reactive regions 1n a time slot. Since
events scheduled 1n the NBA region 1n the testbench corre-
spond to assignments to design signals only, they can be
handled by the simulation kernel after all other events 1n the
reactive region have been processed. Note that this scheme 1s
backward compatible since it maintains the usual semantics

ol propagation of events from the testbench module to the
simulation kernel. Further, note that 1t may be suflicient to
synchronize the simulation kernel and the testbench module
only once per time slot.

10

15

20

25

30

35

40

45

50

55

60

65

10

Process for Executing a Simulation and Verification Solution

FIG. 5 1llustrates a computer system which can be used to
execute a simulation and verification system 1n accordance
with an embodiment of the present invention.

Computer system 502 comprises processor 504, memory
506, and storage device 508. Computer system 302 can be
coupled to display 514, keyboard 510, and pointing device
512. Storage device 508 can store source files 5316, compiler
518, and executable 520. Processor 504 can include one or
more cores, and/or computer system 502 can include a mul-
tiprocessor system.

During operation, computer system 502 can load compiler
518 into memory 506. Next, a user can use compiler 518 to
compile source files 316 to generate executable 520. Execut-
able 520 can include one or more files, and can be stored on a
computer-readable storage medium, such as storage device
508. Computer system 502 can load executable 520 into
memory 506 and execute mnstructions stored 1n executable
520 using processor 304. In one embodiment, executable 520
can include instructions for a simulation kernel, a value
change dump module, a functional coverage module, a toggle
coverage module, an assertion engine, and a testbench mod-
ule.

In conventional techniques, a hardware and verification
solution 1s typically executed as a single process on a single
processor. As a result, convention techniques for improving
performance of a hardware simulation and verification solu-
tion have focused on code optimization. In contrast, embodi-
ments of the present invention improve performance by par-
titioning the hardware simulation and verification solution
into different components and executing the different com-
ponents as separate processes or threads on a multiprocessor
system.

FIG. 6 presents a flowchart that illustrates a process for
executing a hardware simulation and verification solution on
multiple processors which includes a simulation kernel to
simulate changes 1n signal values, and a VCD module to store
the changes in the signal values on a computer-readable stor-
age medium in accordance with an embodiment of the present
ivention.

During operation, the system can receive source files
which describe a DUT using a standardized, non-proprietary
HDL. Next, the system can compile the source files to obtain
the stmulation kernel. Alternatively, the system can receive a
pre-compiled simulation kernel.

In one embodiment, the simulation kernel can expose a
callback intertace which 1s used to install callback functions
which are invoked when specific events occur. During com-
pilation, a callback function can be installed which 1s invoked
in every time slot. The callback function can include mstruc-
tions for collecting the value change data, and for storing the
value change data so that another processor can access the
value change data.

Specifically, the callback function may use a library func-
tion to collect value change data. Next, the callback function
may store the value change data in a shared memory segment
that 1s accessible by another processor which 1s executing a
value change dump module. The value change dump module
on the other processor can then read the value change data and
process 1t accordingly, e.g., the value change dump module
may compress the value change data and store the com-
pressed value change data 1mn a computer-readable storage
medium for subsequent analysis.

After compilation, the system can execute the simulation
kernel on a first processor, thereby causing the first processor
to generate value change data which represents changes 1n a
set of signal values, and store the value change data so that a




US 8,341,570 B2

11

second processor, which 1s different from the first processor,
1s able to access the value change data (step 602).

The system can execute the VCD module on the second
processor, thereby causing the second processor to compress
the value change data, and store the compressed value change
data 1n the computer-readable storage medium for subsequent
analysis (step 604). The simulation kernel and the VCD mod-
ule can execute as separate processes or as separate threads.

FIG. 7 presents a flowchart that 1llustrates a process for
executing a hardware simulation and verification solution on
multiple processors which includes a simulation kernel to
simulate changes in signal values, and a functional coverage
module to check coverage for a DUT 1n accordance with an
embodiment of the present invention.

During operation, the system can execute the simulation
kernel on a first processor, thereby causing the first processor
to generate value change data which represents changes 1n a
set of signal values which are used 1n a functional coverage
model for the DUT, and store the value change data so that a
second processor, which 1s different from the first processor,
1s able to access the value change data (step 702).

The system can execute the functional coverage module on
the second processor, thereby causing the second processor to
determine a functional coverage metric using the functional
coverage model and the value change data, and report the
functional coverage metric to a user (step 704). The simula-
tion kernel and the functional coverage module can execute as
separate processes or as separate threads.

FIG. 8 presents a flowchart that illustrates a process for
executing a hardware simulation and verification solution on
multiple processors which includes a simulation kernel to
simulate changes in signal values, and a toggle coverage
module to check signal toggling for a DUT 1n accordance
with an embodiment of the present invention.

During operation, the system can execute the simulation
kernel on a first processor, thereby causing the first processor
to generate value change data which represents changes 1n a
set of signal values which are used 1n a toggle coverage model
tor the DU'T, and store the value change data so that a second
processor, which 1s different from the first processor, 1s able to
access the value change data (step 802).

The system can execute the toggle coverage module on the
second processor, thereby causing the second processor to
determine a toggle coverage metric using the toggle coverage
model and the value change data, and report the toggle cov-
crage metric to a user (step 804). The simulation kernel and
the toggle coverage module can execute as separate processes
or as separate threads.

FIG. 9 presents a flowchart that 1llustrates a process for
executing a hardware simulation and verification solution on
multiple processors which includes a simulation kernel to
simulate changes in signal values, and an assertion engine to
check complex behaviors for a design under test DUT 1n
accordance with an embodiment of the present invention.

During operation, the system can execute the simulation
kernel on a first processor, thereby causing the first processor
to notily the assertion engine on a second processor (which 1s
different from the first processor) as soon as a simulation time
slot begins, simulate changes in signal values of the DUT
during the simulation time slot, and check whether the asser-
tion engine completed execution on the second processor
(step 902).

The system can execute the assertion engine on the second
processor, thereby causing the second processor to, in
response to receiving a notification from the simulation ker-
nel that the simulation time slot has begun, evaluate assertions
using signal values that were determined during previous

10

15

20

25

30

35

40

45

50

55

60

65

12

time slots, report results of evaluating the assertions, and
notily the simulation kernel once the assertions have been
evaluated (step 904). The simulation kernel and the assertion

engine can execute as separate processes or as separate
threads.

In one embodiment, the system does not use the kernel’s
callback interface to install a callback function that notifies
the assertion engine of the beginning of a simulation time slot.
Instead, the compiler may generate instructions to notily the
assertion engine on the second processor that the simulation
time slot has begun. Specifically, these mnstructions can be
part of the simulation kernel’s code, and these instructions
may be executed by the first processor at the beginning of
cach simulation time slot, thereby causing the first processor
to notify the assertion engine thread on the second processor

that the simulation time slot has begun.

FIG. 10 presents a flowchart that illustrates a process for
executing a hardware simulation and verification solution on
multiple processors which includes a simulation kernel to
simulate changes 1n signal values, and a testbench module to
generate test scenarios for a DUT 1n accordance with an

embodiment of the present invention.

During operation, the system can execute the simulation
kernel on a first processor, thereby causing the first processor
to notify the testbench module on a second processor (which
1s different from the first processor) to generate test signals for
testing the DU, recerve the test signals from the testbench
module on the second processor, and use the test signals to
simulate changes 1n signal values of the DUT during a simu-
lation time slot (step 1002).

The system can execute the testbench module on the sec-
ond processor, thereby causing the second processor to gen-
erate the test signals for testing the DUT, and send the test
signals to the simulation kernel on the first processor (step
1004). The simulation kernel and the testbench module can
execute as separate processes or as separate threads.

In one embodiment, the compiler may generate instruc-
tions to notily the testbench module on the second processor
to generate test signals for testing the DU'T. These instructions
can be part of the simulation kernel’s code, and these mstruc-
tions may be executed by the first processor before the begin-
ning of a simulation time slot, thereby causing the first pro-
cessor to notily the testbench module to generate the test
signals for testing the DUT during the simulation time slot.

CONCLUSION

The data structures and code described 1n this detailed
description are typically stored on a computer-readable stor-
age medium, which may be any device or medium that can
store code and/or data for use by a computer system. This
includes, but 1s not limited to, volatile memory, non-volatile
memory, magnetic and optical storage devices such as disk
drives, magnetic tape, CDs (compact discs), DVDs (digital
versatile discs or digital video discs), or other media capable
ol storing computer readable media now known or later
developed.

Furthermore, the foregoing descriptions of embodiments
of the present invention have been presented only for pur-
poses of illustration and description. They are not intended to
be exhaustive or to limit the present invention to the forms
disclosed. Accordingly, many modifications and variations
will be readily apparent to practitioners skilled 1n the art.
Additionally, the above disclosure 1s not intended to limat the
present mmvention. The scope of the present mvention 1s
defined by the appended claims.



US 8,341,570 B2

13

What 1s claimed 1s:

1. A method for simulating and verifying a design under
test (DUT) on a computer comprising a first and second
processor, the method comprising:

executing a simulation kernel on the first processor,

thereby causing the first processor to:

notify an assertion engine executing on the second pro-
cessor that a simulation time slot has begun;

simulate changes 1n signal values of the DUT during the
simulation time slot; and

wait for the assertion engine executing on the second
processor to evaluate assertions corresponding to the
DUT on the second processor; and

executing an assertion engine on the second processor,

thereby causing the second processor to:

in response to recerving a notification from the simula-
tion kernel executing on the first processor that the
simulation time slot has begun, evaluate the assertions
corresponding to the DUT using signal values which
were determined during previous simulation time
slots; and

notity the simulation kernel executing on the first pro-
cessor that the assertions have been evaluated.

2. The method of claim 1, wherein prior to executing the
simulation kernel, the method comprises:

receiving source files which describe the DUT; and

compiling the source files to obtain the simulation kernel.

3. The method of claim 2, wherein compiling the source
files includes generating instructions to notily the assertion
engine on the second processor that the simulation time slot
has begun.

4. The method of claim 2, wherein compiling the source
files includes generating instructions to wait for a notification
from the assertion engine on the second processor indicating

that the assertions have been evaluated.

5. The method of claim 2, wherein the source files describe
the DUT using a standardized, non-proprietary hardware
description language (HDL ), and wherein the simulation ker-
nel and the assertion engine execute in separate threads.

6. The method of claim 1, wherein executing the assertion
engine on the second processor causes the second processor
to report results of evaluating the assertions corresponding to
the DUT.

7. A non-transitory computer-readable storage medium
storing nstructions that, when executed by a computer com-
prising a {irst and second processor, cause the computer to
perform a method for simulating and veriiying a design under
test (DUT), the method comprising:

executing a simulation kernel on the first processor,

thereby causing the first processor to:

notify an assertion engine executing on the second pro-
cessor that a simulation time slot has begun;

simulate changes in signal values of the DUT during the
simulation time slot; and

wait for the assertion engine executing on the second
processor to evaluate assertions corresponding to the
DUT on the second processor; and

executing the assertion engine on the second processor,

thereby causing the second processor to:

1in response to recerving a notification from the simula-
tion kernel executing on the first processor that the
simulation time slot has begun, evaluate the assertions
corresponding to the DUT using signal values which
were determined during previous simulation time
slots; and

notily the simulation kernel executing on the {first pro-
cessor that the assertions have been evaluated.

10

15

20

25

30

35

40

45

50

55

60

14

8. The non-transitory computer-readable storage medium
of claim 7, wherein prior to executing the simulation kernel,
the method comprises:

recerving source files which describe the DUT; and

compiling the source files to obtain the simulation kernel.

9. The non-transitory computer-readable storage medium
of claim 8, wherein compiling the source files includes gen-
erating instructions to notily the assertion engine on the sec-
ond processor that the simulation time slot has begun.

10. The non-transitory computer-readable storage medium
of claim 8, wherein compiling the source files includes gen-
crating instructions to wait for a notification from the asser-
tion engine on the second processor indicating that the asser-
tions have been evaluated.

11. The non-transitory computer-readable storage medium
of claim 8, wherein the source files describe the DUT using a
standardized, non-proprietary hardware description language
(HDL), and wherein the simulation kernel and the assertion
engine execute 1n separate threads.

12. The non-transitory computer-readable storage medium
of claim 7, wherein executing the assertion engine on the
second processor causes the second processor to report
results of evaluating the assertions corresponding to the DUTT.

13. A computer system, comprising:

a first and second processor; and

a non-transitory computer-readable storage medium stor-

ng:

a first set of 1nstructions executable by the first proces-
sor, comprising: instructions for notifying an asser-
tion engine executing on the second processor that a
simulation time slot has begun, 1nstructions for simu-
lating changes 1n signal values of the DUT during the
simulation time slot, and instructions for waiting for
the assertion engine executing on the second proces-
sor to evaluate assertions corresponding to the DUT
on the second processor; and

a second set of mnstructions executable by the second
processor, comprising: instructions for, i response to
receiving a notification from the simulation kernel
executing on the first processor that the simulation
time slot has begun, evaluating the assertions corre-
sponding to the DU'T using signal values which were
determined during previous simulation time slots, and
instructions for notifying the simulation kernel
executing on the first processor that the assertions
have been evaluated.

14. The computer system of claim 13, wherein the non-
transitory computer-readable storage medium further stores:

instructions for recerving source files which describe the

DUT:; and

instructions for compiling the source files to obtain the

simulation kernel.

15. The computer system of claim 14, wherein compiling
the source files includes generating instructions to notity the
assertion engine on the second processor that the stmulation
time slot has begun.

16. The computer system of claim 14, wherein compiling
the source files includes generating instructions to wait for a
notification from the assertion engine on the second processor
indicating that the assertions have been evaluated.

17. The computer system of claim 14, wherein the source
files describe the DUT using a standardized, non-proprietary
hardware description language (HDL ), and wherein the simu-
lation kernel and the assertion engine execute 1n separate
threads.

18. The computer system of claim 13, wherein the second
set of mstructions includes instructions for reporting results
of evaluating the assertions corresponding to the DUT.

¥ ¥ H ¥ H



	Front Page
	Drawings
	Specification
	Claims

