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MODELING OF SYSTEMS USING
CANONICAL FORM FUNCTIONS AND
SYMBOLIC REGRESSION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority of U.S. Pro-
visional Patent Application No. 60/778,361 filed Mar. 3,
2006, which 1s incorporated herein by reference. The appli-
cant acknowledges the participation of K.U. Leuven
Research and Development in the development of this mnven-
tion.

FIELD OF THE INVENTION

The present invention relates generally to the modeling of
systems. More particularly, the present invention relates to
the modeling of electrical circuits and to the generation of
symbolic expressions describing the performance parameters
and behavior of such circuits.

BACKGROUND OF THE INVENTION

Modeling of electrical circuits using symbolic analysis
based on a circuit’s topology in order to obtain symbolic
expressions of circuit parameters 1s known in the art.
Although such modeling allows for fast model creation and
simulation to produce predictive analyzable equations, 1t 1s
not well suited for modeling nonlinear circuits. Further, if
very good accuracy 1s required, the resulting symbolic
expressions can become impossible to interpret.

Numerical analysis of electrical circuits 1s also well known
in the art. This approach solves circuit equations extracted
from a circuit’s topology for a given set of conditions. The
resulting output pertains to operating points of the circuit in
question and/or to numerical wavetorms. Although such
approaches work for linear and nonlinear circuits alike, are
casy to set-up and accurate, they don’t produce any behavior
model of the circuit and offer little mnsight to circuit designers.

Nonlinear regression analysis of electrical circuits 1s
another known approach to modeling. This approach requires
extensive simulation of the circuit for different circuit param-
cter values and the generation of a black box model such as,
for example, a neural network model. Although this type of
approach works for arbitrary nonlinear circuits, allows for
fast model simulation, and can be accurate, the model cre-
ation 1s time-consuming and the approach itself does not
produce symbolic expressions.

Another known approach to circuit modeling 1s that of
symbolic modeling using templates for the symbolic expres-
s1ons used in describing characteristics of a given circuit. This
approach requires extensive simulation of the circuit for dit-
terent circuit parameter values and the generation of a model
based on a functional template. An instance of such an
approach uses posynomials 1n its functional template. Such
an approach provides symbolic expressions, works for arbi-
trary nonlinear circuits, allows for fast simulation and can be
somewhat accurate. However, questions remain as how to
choose the template. Further, in addition to the time-consum-
ing task of model creation, the accuracy of posynomial-based
models can be poor and the resulting expressions are too big,
to be interpretable.

The approaches described above deal mainly with model-
ing static models of electrical circuits. However, several
approaches 1in modeling the dynamic behavior of electrical
circuits are also known. Such approaches include manual
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2

behavior model design, Model Order Reduction, numerical
simulation and nonlinear regressions. Creating such models

can take weeks to years and even then, a model’s validity can
become obsolete as new technologies emerge.

It 1s, therefore, desirable to provide a circuit modeling
approach that produces symbolic expressions of circuit
parameters that are interpretable, accurate and adaptable to
emerging technologies.

SUMMARY OF THE INVENTION

It 1s an object of the present invention to obviate or mitigate
at least one disadvantage of the prior art.

In a first aspect, the present invention provides a method to
generate at least one expression describing a characteristic of
a system, the system associated with variables and with pre-
determined data related to the characteristic of the system.
The method comprises steps of generating at least one 1nitial
expression having a pre-defined canonical form and being a
function o the variables, and generating calculated data using
the at least one 1nitial expression.

The method further comprises steps of calculating an out-
put of a goal function 1n accordance with the pre-determined
data and the calculated data and, 11 the output of the goal
function 1s outside a pre-defined range, 1teratively: moditying
the at least one 1nitial expression 1n accordance with a search
algorithm to produce at least one modified expression having
the canonical form and being a function of the varnables;
generating additional calculated data using the at least one
modified expression; and calculating an additional output of
the goal function based on the additional calculated data and
the pre-determined data, until the additional output of the goal
function 1s within the pre-defined range.

In a fturther aspect, there 1s provided a method to generate
at least one expression describing a transient behavior of a
system, the system associated with at least one pre-deter-
mined transient mput waveform and with at least one pre-
determined transient output waveform. The method com-
prises steps of generating at least one 1nitial expression
having a pre-defined canonical form and being a function of at
least one of the at least one pre-determined transient input
wavelorm and the at least one pre-determined transient output
wavelorm, generating calculated data using the at least one
initial expression and, calculating an output of a goal function
in accordance with the pre-determined data and the calculated
data.

The method further comprises steps of, if the output of the
goal function 1s outside a pre-defined range, iteratively: modi-
tying the at least one 1nitial expression 1n accordance with a
search algorithm to produce at least one modified expression
having the canonical form and being a function of at least one
of the at least one pre-determined transient input wavetform
and the at least one pre-determined transient output wave-
form; generating additional calculated data using the at least
one modified expression; and calculating an additional output
of the goal function based on the additional calculated data
and the pre-determined data, until the additional output of the
goal function 1s within the pre-defined range.

In a further aspect, the present invention provides a method
to model an electrical circuit, the electrical circuit associated
with circuit variables, with pre-determined data, with at least
one pre-determined transient mput wavelform and with at
least one pre-determined transient output waveiform. The
method comprises steps of: generating at least one 1nitial
expression dependent on at least one of at least one of the
variables, at least one of the at least one pre-determined
transient mput waveform and at least one of the least one
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pre-determined transient output wavetorm, the at least one
initial expression having a pre-defined canonical form and
generating calculated data using the at least one initial expres-
$101.

The method further comprises steps of calculating an out-
put of a goal function 1n accordance with the pre-determined
data and the calculated data; and 1f the output of the goal
function 1s outside a pre-defined range, iteratively: moditying
the at least one 1nitial expression 1n accordance with a search
algorithm to produce at least one modified expression depen-
dent on at least one of at least one of the variables, at least one
of the at least one pre-determined transient input waveiorm
and at least one of the least one pre-determined transient
output wavelorm, the at least one modified expression having
the canonical form; generating additional calculated data
using the at least one modified expression; and calculating an
additional output of the goal function based on the additional
calculated data and the pre-determined data, until the addi-
tional output of the goal function 1s within the pre-defined
range.

In yet a further aspect, the present invention provides an
apparatus to provide a symbolic expression representing a
characteristic of a system, the system associated with system
variables and with pre-determined data related to the charac-
teristic of the system. The apparatus comprises: a generation
and evolution (GE) module to generate and to evolve sym-
bolic expressions having a pre-defined canonical form and a
first database in communication with the GE module, the first
database storing rules regarding the pre-defined canonical
form.

The apparatus also comprises a second database 1n com-
munication with the GE module, the second database storing,
pre-defined operators for use 1 generating and evolving the
symbolic expressions; an input connected to the GE module,
the mput to provide the system variables to the GE module,
the GE module generating and evolving the symbolic expres-
sions 1n accordance with the rules regarding the canonical
form and with the pre-defined operators; a goal function
output calculator and evaluator (GFOCE) in communication
with the GE module; a data input 1n communication with the
GFOCE, the data input to provide the pre-determined data to
the GFOCE; a goal function input in commumnication with the

GFOCE, the goal function input to provide a goal function to

the GFOCE, the GFOCE for calculating an output of the goal
function and for comparing the output with a pre-determined
target; and an exit port in communication with the GFOCE
and with the GE module, the exit port to prowde the output of
the goal function and the symbolic expression corresponding,
to the output of the goal function upon the output of the goal
function concording with the pre-determined target.

Other aspects and features of the present invention will
become apparent to those ordinarily skilled in the art upon
review of the following description of specific embodiments
of the invention in conjunction with the accompanying fig-

Uurcs.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be
described, by way of example only, with reference to the

attached Figures, wherein:

FI1G. 1 shows an embodiment of an apparatus of the present
invention used in generating and evolving symbolic expres-
S101S

FIG. 2A shows a first example of a canonical form expres-
s1on that can be used 1n the present invention;
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FIG. 2B shows an example of a canonical form function
shown 1n FIG. 2A that can be used 1n the present invention;

FIGS. 2C and 2D show other examples of canonical form
function expressions that can be used 1n the present invention;

FIG. 3 shows a block diagram of an exemplary method of
the present invention;

FIG. 4 1s a schematic representation of an electrical circuit
modeled with in accordance with the present invention;

FIGS. 5 to 10 show Error vs. Complexity plots for various
electrical characteristics of the circuit of FIG. 4;

FIG. 11 shows a comparison graph of the method of the
present invention and a posynomial method;

FIG. 12 shows a search space representation of a basis
function of one individual 1n Double-Strength CAFFEINE;

FIGS. 13 (A) to (R) show comparison graph of electrical
characteristics of the circuit of FIG. 4 modeled using CAF-
FEINE and Double-Strength CAFFEINE;

FIG. 14 1s a schematic representation of a latch circuit;

FIG. 15 shows the mput and output wavetorms of the
circuit of FIG. 14;

FIG. 16 shows modeled wavetorms for the circuit of FIG.
14: and

FIG. 17 shows a plot of complexity vs. error for models
related to the circuit of FIG. 14.

DETAILED DESCRIPTION

Generally, the present invention provides a system and
method for generating human-interpretable symbolic expres-
s1ons of performance characteristics of a system, without the
use of pre-determined templates for the symbolic expres-
sions. Any suificiently general search algorithm, such as, for
example, genetic programming, simulated annealing and
Tabu searching can be used. Canonical form functions are
used 1n the search for the symbolic expressions. In the case of
genetic programming, it 1s used to traverse the space of pos-
sible symbolic expressions, and a set of rules 1s used to
constrain the search to expressions having a pre-defined
canonical form.

Embodiments of the mvention are shown 1n relation to
non-linear electrical circuits and symbolic expressions
describing their static and dynamic behavior. However, as a
worker skilled in the art will understand, the method and
system of the present invention 1s also applicable to systems
other than electrical systems. For example, financial systems
and weather systems, amongst others, can also use the
method and system described herein.

The problem to be addressed can be formulated as follows.
(Given a set of data regarding a performance characteristic of
a system, determine a symbolic expression describing the
performance characteristic in question, with the expression
satisfying given criteria regarding predictability error and
complexity.

FIG. 1 shows an embodiment of an apparatus 100 of the
present invention as applicable to genetic programming, the
apparatus 100 for producing symbolic expressions defining a
characteristic of a given system. For example, as will be seen
in more detail below, the given system can be an electrical
circuit and the characteristic of interest can be the low fre-
quency gain of the circuit. As will be understood by a worker
skilled 1n the art, the apparatus 100 can be readily adapted to
implement any type of sulliciently general search algorithm
such as, for example, simulated annealing and Tabu search-
ing. The apparatus 100 comprises an input 10 for inputting the
variables of the system 1nto a generation and evolution (GE)
module 12, which 1s designed to generate and evolve sym-
bolic expressions defining the characteristic of interest. The
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variables can be design variable, environmental variables,
random variables or any other suitable variables.

The GE module 12 1s in communication with a database 14
containing predefined operators that can be used 1n generat-
ing and evolving symbolic expressions, the operators operat-
ing on the system variables. Such operators can include, e.g.,
single-input operators such as: x, log_(x), log,,(x), 1/x, abs
(X), X,, sin(x), cos(x), tan(x), max(0, x), and min(0,x), 2x,
10x, where x 1s an expression; double-input operators can
include x;+x,, X, *X,, max(x,,x,), min(x,,X,), power(x,,X,),
and Xx,/X,, where x, and x, are expressions. Also, “if then else”

(Ite) expressions such as, e.g., Ite(testExpr, condExpr,
exprliTestLessThanCond, elseExpr) and Ite(test']xpr 0,
exprIfTest Less T Expr” 1s an expres-

‘han O, elseExpr), where
s10n, can be used. Any mput variable could have an exponent
in the range { ... ,-2, -1, 1, 2, . . . }. While real-valued
exponents can also be used, but they tend to harm interpret-
ability.

The GE module 12 1s also 1n communication with a data-
base 16 containing a set of rules defiming allowable symbolic
expressions generated and/or evolved by the GE module 12.
The rules contained 1n the database 16 ensure that the sym-
bolic expressions generated and/or evolved by the GE module
12 are 1in a pre-determined canonical form, 1.e., 1s a form
written 1n a standard, conventional, and logical way. FIG. 2A
shows an example of such a canonical form function 24 1n
terms of a tree diagram. The generation and evolution of
mathematical expressions having a canonical form such as
function 24 1s based on what 1s termed as canonical functional
form expressions in evolution (CAFFEINE). As will be

understood by a worker skilled 1n the art, the function 24 can
be written as

F@) = Woffser T Z Wi Xﬁ@) XNLE@):-
1=0

where the variables of the system are represented as a vector

L ) B

X, “n” is an integer, W, .. 1s an offset value, w, are weights,
fz.(x) cach includes at least one of a polynomial function and

a rational function of the variables, and Nﬁ;i(?{}) 1s a non-linear

function of the variables, with NLD(?{})ZL . FIG. 2B shows an

example of function 24 1n text form and 1n 1ts corresponding
tree form. Other examples of canonical forms include a sum
of products (of sums of products), as shown 1n FIG. 2C, and
a product of sums (of products of sums) (not shown). An
example of CAFFEINE canonical form function with product
terms including unity functions 1s shown i FIG. 2D.
CAFFEINE uses genetic programming (GP) as a starting,
point, but extends 1t 1n order to properly address template-iree
symbolic modeling. As 1s usually the case 1n GP, the func-
tional form of results obtained from GP i1s completely unre-
stricted. While this may be advantageous compared to the
restrictions ol fixed-template regression 1t leads to expres-
sions almost always too difficult to analyze. Also, an unre-
stricted form can cause undesirable biases 1n the search, such
as tuning too many parameters which may even be redundant,
or making 1t difficult to add and/or remove basis functions.
CAFFEINE attacks the 1ssues of complexity and interpret-
ability in two main ways. First, CAFFEINE can use a multi-
objective approach that provides a tradeoil between error and
complexity, and second, CAFFEINE uses a specially
designed grammar to constrain the search to specific func-
tional forms, such as, for example, the form shown in FIG. 4,
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without cutting out good solutions CAFFEINE and other
suitable search algorithms can also use a single objective

approach. For example, a single objective approach can be
used for minimizing error and multi-objective approaches can
be used for minimizing error and for minimizing complexity.
Other multi-objective approaches can be used for minimizing
error and for constraining complexity; or, for constraining
error and for constraining complexity. CAFFEINE can use a
multi-objective evolutionary algorithm namely NSGA-II as
described 1n K. Deb, S. Agrawal, A. Pratap, T. A. Meyarivan,
“A Fast Elitist Non-dominated Sorting Genetic Algorithm for
Multiobjective Optimization: NSGA-II,” Proc. PPSN VI,
September 2000, pp. 849-858. NSGA-II returns a set of 1indi-
viduals that, collectively, trade off error and complexity (1.¢.
a non-dominated set). “Error” 1s normalized mean-squared
error. “Complexity” 1s dependent on the number of basis
functions, the number of nodes in each tree, and the exponents
of “variable combos”, VCs, which will be described later:

M ¢ (1)

nve( ) )

complexity( f) = E [Wb + nnodes( j) + Z ve cos 1(vey ;)

k=1 /

J=1

where w, 1s a constant and M, 1s the maximum number of
basis functions to give a mimimum cost to each basis function,
nnodes(1) 1s the number of tree nodes of basis function j,
nvc(y) 1s number of VCs of basis function 1, and

d
VC COS T = Wy Z abs{ve(dim)).
dim=1

“d” being the number of mput dimensions.

This approach accomplishes simplification during genera-
tion by maintaining evolutionary pressure towards lower
complexity. The user avoids an a priori decision on error or
complexity because the algorithm generates a set of models,
or symbolic expressions, that provide alternatives 1n terms of
error and complexity. Other multi-objective algorithms such
as, for example, NSGA, SPEA, SPEA II and PAES can also
be used.

In GP, a means of constraining search 1s via a grammar, as
described by A. Whigham in “Grammatically-based Genetic
Programming,” Proc. Workshop on GP: From Theory to Real-
World Applications, J. R. Rosca, ed., 1995. Evolutionary
operators must respect the dertvation rules of the grammar,
¢.g., only sub-trees with the same root can be crossed over,
and random generation of trees must follow the derivation
rules. A basis function is the leat nodes (terminal symbols) of
the tree; internal nodes (nonterminal symbols) reflect the
underlying structure; the tree root 1s the start symbol.

An example of a CAFFEINE grammar 1s as follows:

REPVC => *VC’ | REPVC **’ REPOP | REPOP
REPOP => REPOP “*’ REPOP | 10P *(* “W’ *+’
REPADD )’ | 20P “(’ 2ARGS *)’ | ... 30P, 40P

etc

2ARGS == "W’ *+> REPADD * MAYBEW | MAYBEW
W+ REPADD

MAYBEW => "W’ | "W’ *+> REPADD

REPADD => ‘W’ ** REPVC | REPADD *+’ REPADD
20P == *DIVIDE’ | T POW’ | " MAX’ |...

1OP => "INV’ | ‘TLOGI10’ [...
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Terminal symbols are 1n quotes. Each non-terminal symbol
has a set of derivation rules separated by “|”’. The start symbol
1s REVPC; one tree 1s used for each basis function; basis
functions are linearly weighted using least-squares learning.
Basis function operators can include: creating a new indi-
vidual by randomly choosing >0 basis function from each of
2 parents; deleting a random basis function; adding a ran-
domly generated tree as a basis function; copying a subtree
from one individual to make a new basis function for another.

The root 1s a product of variables and/or nonlinear func-
tions, respectively REPVC and REPOP. Within each nonlin-
car function 1s a weighted sum of basis functions (REPADD).
Each basis function can be, once again, a product of variables
and/or nonlinear functions, and so on.

The grammar 1s context-free, with two exceptions for the
sake of enhanced search. A real value 1s stored in the range
[-2*B, +2*B] at each weight node. During interpretation of
the tree the value 1s transformed 1nto

[-1e+B,-1e-B]U[0,0]U[le-B,le+B]

where B 1s user-set, e.g., B=10. In this way parameters can
take on very small or very large negative or positive values.
Zero-mean Cauchy mutation (e.g., see X. Yao, Y. Liu and G.
Lin, “Evolutionary Programming Made Faster,” IEEE Trans.
Evolutionary Computation 3(2), July 1999, pp. 82-102) 1s an
operator on the real value.

Single-basis rational combinations of variables (VC) are
related to vectors. With each VC a vector 1s stored, with
integer value per design variable as the variable’s exponent.
An example vector 1s [1,0,-2,1], which means

(X *%2)/ (?*13)2

For interpretability, real-valued and fractional-valued expo-
nents are not allowed. VC operators include: one point cross-
over, and randomly adding or subtracting to an exponent
value.

POW(a,b) is a”. Via 2ARGS with MAYBEW, either the
base or the exponent (but not both) can be constants. The
designer can turn oif any of the rules 1t they are considered
unwanted or unneeded. For example, one could easily restrict
the search to polynomials of variables or to rationals of vari-
ables, or remove potentially difficult-to-interpret functions
such as sin and cos. The designer could change or extend the
operators or inputs, €.g., to include w, 1., and WI/ 1., where w,
and 1, are the with and length of a tran31st0r

After the evolutionary run 1s complete, Simpliﬁcation after
generation (SAG) can be performed on each of the final set of
models 1n the tradeoil. SAG can be accomplished, for
example, via the Predicted Residual Sums of Squares
(PRESS) statistic (e.g., see L. Breiman, “Stacked Regres-
sion,” Machine Learning, vol. 5, 1996, pp. 49-64) coupled
with forward regression as shown 1n, e.g., X. Hong, P. M.
Sharkey, K. Warwick, “A Robust Nonlinear Identification
Algorithm Using PRESS Statistic and Forward Regression”,
IEEE Trans. Neural Networks 14(2), March 2003, pp. 454-
458. PRESS approximates leave-one-out Cross-vahdatlon on
the linear parameters; forward regression prunes basis func-
tions that harm predictive ability. This gives predictive robust-
ness to the linear parameters. As will we understood by the
skilled worker, any other suitable simplification approach can
be used. One such alternative approach 1s the LASSO tech-
nique.

After that, the tradeoil models (symbolic expressions) are
evaluated on test data, and filtered down to only models that
satisty pre-determined testing error and complexity criteria.
Such a final step might not be possible with more determin-
istic approaches having more homogenous results, but the
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stochastic nature of CAFFEINE, causing more heteroge-
neous results, makes such filtering possible.

As seen1n FIG. 2A, the exemplary canonical form function
24 has levels of expressions that alternate between linear
expressions and nonlinear expressions, “gated” by nonlinear
functions. The linear expressions are a sum ol basis functions;
each basis function has a weight (w,, w,, w,, . . . ), and there
i1s one overall offset (w . ..). A basis function is a combination
ol a polynomial/rational and/or one or more nonlinear opera-
tors. Inside each nonlinear function 1s another level of linear
CXPressions.

Returning to FIG. 1, the GE module 12 1s also 1n commu-
nication with a goal function output calculator and evaluator
(GFOCE) 18. The GFOCE 18 receives data for a system data
input 20. This data pertains to the characteristic of the system
that the apparatus 100 1s modeling. The data provided by the
data mput 20 can be simulated data, observed data or any
other type of data regarding the system to be modelled. For
example, 1n the case where the apparatus 100 1s used to
generate symbolic expressions describing a characteristic of
an electrical system, the data provided by the data input 20
can be obtained from a Simulation Program with Integrated
Circuit Emphasis (SPICE).

The GFOCE 18 15 also 1n communication with a goal
function mput 22 that provides the GFOCE 18 with a goal
function to be used 1n the calculation of the goal function
value. The goal function 1s a function of the symbolic expres-
sions generated and evolved by the GE module 12. The goal
function can include an “‘error” componenent and a “com-
plexity” component, as described above. The GFOCE 18 1s
programmed to calculate a goal function output and compare
it to a pre-determined desired output. If the goal function
output does not concord with the pre-determined desired
output, the GFOCE 18 instructs the GE module 12 to evolve
the symbolic expressions and recalculates the goal function
output based on the evolved symbolic expressions. Upon the
goal function value being within the desired range, the
GFOCE 18 and the GE module 12 provide the goal function
output and the corresponding evolved symbolic expressions
to the output 24.

FIG. 3 shows an exemplary embodiment of the method of
the present invention using the apparatus 100 of FIG. 1. As
will be understood by the skilled worker, the method shown 1n
FIG. 3 pertains to the genetic programming approach used by
apparatus 100. Other search algorithms such as, for example,
simulated annealing and Tabu searching will have their own
related method tlowchart. At step 30, the system variables are
defined through any means suitable for the system at hand.
Following this, data for a characteristic of the system 1n
question 1s simulated at step 31. At step 32, a population of
symbolic expressions describing the given characteristic 1s
generated, the symbolic expressions having the system vari-
ables as variables and satistying a pre-determined canonical
form. At step 34, a goal function output of a pre-defined goal
function 1s calculated based on the data simulated at step 31
and on the population of symbolic expressions generated at
step 32. Following this, the goal function output 1s compared
to a pre-determined desired output at step 36. If the goal
function output concords with the desired output, the goal
function output and the corresponding symbolic expressions
produced at step 40. Otherwise, the population of symbolic
expressions 1s evolved at step 38 and the goal function output
calculated again at step 34.

As will be understood by a worker having ordinary skill in
the art, the step 31 regarding the simulation of data can be
replaced by a step of measuring data for the system 1n ques-
tion.
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FIG. 4 shows an example of a non-linear electrical circuit
42 that can be modeled according to the present invention.
The circuit 42 represents a high-speed, 0.7 um, complemen-
tary metal-oxide-semiconductor (CMOS) operational
transconductance amplifier (OTA). The supply voltage 1s 5V
and the nominal threshold are 0.76V for NMOS-devices and
—-0.75V for PMOS devices. The circuit 42 has a drive load
capacitance ol 10 pF. Examples of performance characteris-
tics of the circuit 42 include the low frequency gain (A, ), the
unity gain frequency (1), the phase margin (PM), the input-
referred offset voltage (V .,), the positive slew rate (SR )
and the negative slew rate (SR)).

The first requirement 1n obtaining symbolic expressions of
the performance characteristics of the circuit 42 1s to obtain
data regarding the circuit 42. In the following example, the
data i question 1s simulated using a SPICE program.

In this example, an operating-point driven formulation
described 1n the article An Efficient DC Root Solving Algo-
rithm with Guaranteed Convergence for Analog Integrated
CMOS Circuits, by F. Leyn et al., Proceedings ICCAD 98
(November 1998), was used to determine the design variables
of the circuit 42, and the ranges of operation of the design
variables. Thirteen such design variables were chosen for the
circuit 42. These voltage and current variables are expressed
according to accepted terminology. They are: V.o, V zc,

Vis2 Yaszs Yasar Yass: VDS5_: Vpse Ip1s Ipas 1515 155, and
I.,, where GG, S and D respectively relate to the gate, source

and drain of a given device. V oo, V sz, Vses, and V ... can
range from -0.75V to -4V, V ., canrange from 0.75V to 4V,
Vo and V.. can range from -0.1 to -4V, [, can range
from —-10 uA to =10 mA; I 5, canrange from 10 uA to 10 mA;
and I5,, I5,, and 155 can range from 1 pA to 100 pA.

In stmulating data for the circuit 42, full orthogonal-hyper-
cube Design-Of-Experiments (DOE) sampling of design
points was used with scaled step si1zes 01 0.1. This yielded 243
samples with three simulations each, some of which did not
converge. Simulation time for one sample was about 1 s
(about 4 minutes for all samples). This 1s fully dependent on
the circuit, analyses, and experimental design being used.
These samples, otherwise unfiltered, were used as training
data inputs. As will be discussed further below, testing data
inputs were also sampled with full orthogonal-hypercube
DOE and 243 samples, but with scaled step sizes of 0.03.
Thus, 1n this experiment a localized model was created; how-
ever, one could just as readily model a broader design space.

The simulation data generated as described above was used
to generate interpretable symbolic expressions having the
form of equation 24 shown 1n FIG. 2A, the expressions relat-
ing to the circuit low frequency gain (A, unit gain frequency
(1), phase margin (PM), voltage offset (V ».,), positive slew
rate (SR ) and negative slew rate (SR,)).

The run settings were: maximum number of basis func-
tions=15, population size 200, 5000 generations, maximum
tree depth 8, and parameter range [-1e+10,-1e-10]U[0,0]U
[1e-10,1e+10]. All operators had equal probability, except
parameter mutation was Sx more likely. Complexity measure
settings were w,=10, w__=0.25. Just one run was done for
cach performance goal, for 6 runs total. Each run took about
12 hours on a 3 GHz Pentium IV Linux workstation. After
cach run, SAG was done, taking about 10 min.

Normalized mean-squared error on the training data and
separate testing data were used. These are standard measure-
ments 1n regression literature. Testing error 1s ultimately the
more important measure. These measures are identical to two
of the three posynomial “quality of fit” measures of W.
Daems, G. Gielen, W. Sansen, “Simulation-based generation
of posynomial performance models for the sizing of analog
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integrated circuits,” IEEE Trans. CAD 22(5), May 2003, pp.

517-534 where q,, . 15 training error, and q, . 1s testing error.
(q,,.. and q,. are 1dentical as long as the constant ‘c’ in the
denominator 1s zero, which 1s what Daems et al. did.) We
ignore q__., which measured the error at just one training
point.

FIGS.5,6,7, 8,9 and 10 show the results for A, 1,V _ ..
SR,,, SR, and PM respectively. As seen in FIGS. 5-10, CAF-
FEINE generates a tradeott of about 50 different models. As
expected, models with zero complexity, 1.e., models with just
a constant, have the highest traiming error, and models with
the highest complexity have the lowest training error.

Although not shown 1n FIGS. 5-10, the number of basis
functions generally increases with the complexity. This 1s not

always the case, however, as larger trees increase complexity
too. Plateaus and dips 1n the number of basis functions data
show that this does indeed occur. In every case shown 1n
FIGS. 5-10, CAFFFEINE used the maximum allowed number
ol basis functions (15) to achieve the lowest error. Error could
have been reduced further, but models with 15 basis function
models are already at the edge of interpretability.

The testing error 1s also shown in FIGS. 5-10. Unlike
training error, it 1s not monotonically decreasing as complex-

ity rises. This means that some less complex models are more
predictive than more complex ones. However, if the number
of models 1s pruned down to the ones that give a tradeoil
between testing error and complexity, approximately 5-mod-
¢ls are lett for each circuit characteristic. These 5-10 models
of the most interest. As 1s known in the art, tradeoils in general
are defined by the notions of Pareto dominance. A goal values
point 1s on the tradeotf if i1t 1s nondominated. It 1s nondomi-
nated 11 no other point dominates it. A point ‘a’ dominates
another point ‘b’ 1f all values of “a’ are at least as good as “b’,
and at least one value 1s better.

It 1s notable that the testing error 1s lower than the training

error 1n almost all cases. This sounds promising, but such
behavior 1s rare 1n the regression literature; however, there 1s
a valid reason for this. Recall that the training data 1s from
extreme points of the sampling hypercube (scaled dx=0.10),
and the testing data 1s internal to the hypercube (dx=0.03).
This testing data tests interpolation ability. Thus, models that
really are predictive should be able to interpolate well, even at
the cost of a perfect fit to the extreme points. In any case, to
validly have testing error lower than training error demon-
strates the strength of the CAFFEINE approach.

Let us now examine the actual symbolic models generated
by CAFFEINE. Table I shows the functions that provide less
than 10% error 1n both training and testing data (1 has been
converted to 1ts true form by putting the generated function to
the power of 10). We see that each form has up to 4 basis
functions, not including the constant. For V_ ., a constant
was sullicient to keep the error within 10%. We see that a
rational functional form was favored heavily; at these target
errors only one nonlinear function, In( ), appears (for A, ).
That expression etflectively says that the order of magnitude
of some input variables 1s useful.

TABLE 1

CAFFEINE-generated symbolic models which have
less than 10% training and testing error

Target (%)
Pert. d,.. Y, EXpression
A;p 10 10 -10.3 + 7.08e-5/id1 + 1.87 * In(-1.95e+9 +

1.00e+10/(vsgl *vsg3) +
1.42e+9 *(vds2*vsd5)/(vsgl *vgs2*vsgd*1d2))
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TABLE I-continued

CAFFEINE-generated symbolic models which have
less than 10% training and testing error

Target (%)

Pert. Q.. U, LXpression

t, 10 10 10n(5.68 — 0.03 * vsgl/vds2 — 5543 * 1d1 +
5.63e-6/1d1)

PM 10 10 90.5 +190.6 * idl/vsgl + 22.2 * 1d2/vds2

V o foer 10 10 —-2.00e-3

SR, 10 10 2.36e+7 + 1.95e+4 *1d2/1d1 - 104.69/1d2 +
2.15e+9 *1d2 + 4.63e+8 * 1d1

SR, 10 10 =5.72e+7 — 2.50e+11 * (1d1*1d2)/vgs2 + 5.53e+6 *

vds2/vgs2 + 109.72/1d1

One can examine the equations in more detail to gain an
understanding of how design variables 1n the topology attect
performance For example, A, - 1s inversely prepertienal to
1,,, the current at the OTA’s differential pair. Or, SR 1s solely
dependent on 1,, and 1 ,, and the ratio 1,,/1 ,,. Or, within the
design region sampled, the nonlinear coupling among the
design variables 1s quite weak, typically only as ratios for
variables of the same transistor. Or that each expression only
contains a (semetlmes small) subset of design variables. Or,
that transistor pairs M1 and M2 are the only devices aflecting
five ol the six performances (within 10%). By only putting the

relevant variables into a model, the approach demonstrates
the potential to provide expressions for circuits with signifi-
cantly more variables.

One may mmprove understanding in another fashion by
examining expressions ol varying complexity for a single
performance characteristic. Low-complexity models will
show the macro-effects; alterations to get improved error
point show how the model 1s refined to handle second-order
elfects. Table II shows models generated for PM 1in decreasing
training and testing error. A constant of 90.2, while giving
15% training error, had only 4% test error. For better predic-
tion, CAFFEINE injected two more basis functions; one basis
being the current into the differential pair 1 ,,, the other basis,
1,,/V -, the ratio of current to drain-source voltage at M2. The
next model turns the input current term into a ratio 1,;,/v,,,.
Interestingly, and reassuringly, almost all ratios use the same
transistor 1n the numerator and denominator. Such analyses

achieve the aim of this tool: to improve understanding of the
topology.

TABLE II

CAFFEINE-generated models of PM, 1n order of
decreasing error and increasing complexity

Test error Train error

(%) (%0) PM Expression

3.98 154  90.2

3.71 10.6 905 + 186.6 * 1id1 + 22.1 * 1d2/vds2

3.68 10.0  90.5 + 190.6 * id1/vsgl + 22.2 * 1d2/vds2

3.39 8.8  90.1 + 156.85 * idl/vsgl — 2.06e-03 *
1d2/1d1 + 0.04 * vgs2/vds2

3.31 8.0  91.1 - 2.05e-3 *1d2/id1 + 145.8 * 1dl +
0.04 * vgs2/vds2 — 1.14/vsgl

3.20 7.7 90.7 - 2.13e-3 *1d2/1d1 + 144.2 * 1d1 +
0.04 * vgs2/vds2 — 1.00/(vsgl*vsg3)

2.65 6.7  90.8 - 2.08e-3 *1d2/id1 + 136.2 * 1dl +
0.04 * vgs2/vds2 — 1.14/vsgl + 0.04 * vsg3/vsd3

2.41 39 91.1-591e-4 * (vsgl™1d2)/id1 + 119.79 *

1id1 + 0.03 * vgs2/vds2 — 0.78/vsgl + 0.03 *
vsgl/vsdd — 2.72e-77/(vds2*vsd5*1d1) + 7.11 *
(vgs2®vsgd®1d2) — 0.37/vsgd — 0.58/vsg3 -
3.75e-6/1d2 — 5.52e-6/1d1
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CAFFEINE was compared to the posynomial approach
using the numbers 1n W. Daems et al., “An ellicient optimi-
zation-based technique to generate posynomial performance
models for analog integrated circuits™, Proc. DAC 02, June
2002. The test and training errors are first compared. To pick
a model from a CAFFEINE-generated tradeotl for compari-
son, we fixed the traiming error to what the posynomial
achieved, then compared testing errors. Results are shown 1n
FIG. 11. In one case, for V_ » ., CAFFEINE did not meet the
posynomial traiming error (0.4%), so 1t probably could have
used more basis functions. Therefore, an expression which
very nearly matched the posynomaial approach’s testing error
ol 0.8% was chosen. FIG. 11 clearly shows that CAFFEINE
has lower testing error than training error, which provides
great confidence 1n the models. In contrast, in all cases but
V, mer the posynomials had higher testing error than training
error, even on this interpolative data set. CAFFEINE models’
testing errors were 2x to 5x lower than the posynomial mod-
els. The exception 1s V., where the posynomial achieves
0.8% testing error compared to 0.95% for CAFFEINE. With
posynomials having weak prediction ability even 1n mterpo-
lation, 1n comparison to more compact models, one might
question the trustworthiness of constraiming models of analog
circuits to posynomials.

Thus, the present mvention provides a tool which for the
first time can generate interpretable, template-free symbolic
models of nonlinear analog circuit performance characteris-
tics. CAFFEINE 1s built upon genetic programming, but its
key 1s a grammar that restricts symbolic models to a canonical
functional form. CAFFEINE generates a set of models that
collectively trade off between error and complexity. Visual
ispection of the models demonstrates that the models are
interpretable. These models were also shown to be signifi-
cantly better than posynomials in predicting unseen data.

The above modeling approach can be improved as
described below, the improvement generally referred to as

double-strength CAFFEINE.

Unlike other approaches CAFFEINE, as described above,
and as described 1, e.g, T. McConaghy, T. Eeckelaert, G.
Gielen, “CAFFEINE: Template-Free Symbolic Model Gen-
eration of Analog Circuits via Canonical Form Functions and
Genetic Programming”, Proc. DATE 2005, March 2005, gen-
erates symbolic models with open-ended functional forms,
1.e. without a prion supplied templates. CAFFEINE’s strat-
egy 1s to build Canonical Functional Form Expressions in
Evolution so that functions are interpretable.

CAFFEINE’s speed can be improved. In T. McConaghy,
G. Gielen, “Analysis of Simulation-Driven Numerical Per-
formance Modeling Techniques for Application to Analog
Circuit Optimization,” Proc. ISCAS 05, May 2003, ten mod-
cling techniques were compared on six problems, in the con-
text of circuit optimization. While CAFFEINE had the best
prediction ability, 1t needed to be at least 3x faster to have
model building time below 5 minutes. Speed would also help
behavioral modeling such as described in 'T. McConaghy, G.
Gielen, “IBMG: Interpretable Behavioral Model Generator
for Nonlinear Analog Circuits via Canonical Form Functions
and Genetic Programming,” Proc. ISCAS 05, May 2003,
which 1s incorporated 1n 1ts entirety herein by reference.

The following shows how to speed up CAFFEINE using
two techniques novel to analog CAD and to canonical-form
function building: “smooth operators” and “introns”. The
improvements include: reconciling so-called “smooth, uni-
form crossover” and “smooth mutation” with canonical form
functions; designing non-expressed subfunctions, or
“introns”, for canonical form functions; demonstrating faster
creation of template-Iree interpretable symbolic models, thus
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creating new opportunities for applying CAFFEINE, most
notably 1n automated circuit sizing.

The increase 1 speed 1s measured as the reduction in
number of candidate functions (individuals) to solve test
problems. The multi-objective nature of CAFFEINE adds a
wrinkle: one can measure performance ol multi-objective
algorithms (e.g., see E. Zitzler, K. Deb, and L. Thiele, “Com-
parison ol Multiobjective Evolutionary Algorithms: Empiri-
cal Results,” Evolutionary Computation 8(2), Summer 2000,
pp. 173-195), but such measures either lose information mak-
ing multi-objective measures scalar, or provide just qualita-
tive assessment. A simpler route appropriate to the problem
can be taken: have an upper bound of complexity, minimize
the training normalized mean-squared error (nmse) with a
single-objective algorithm, and stop when target nmse 1s hit.
This strategy 1s fair as long as the speedups are independent of
the number of objectives.

The following describes why an algorithm designer would
aim for operators that are “smooth”, that are “uniform,” and
what those terms mean in the context of search.

When a search operator 1s designed, the structure of the
space that the search algorithm will be traversing 1s actually
shaped. If the operator design are good, then the space will
appear relatively smooth to the search algorithm, have less
local optima, and thus be easier to navigate. Conversely, 11 the
operator design 1s bad, then the space will have jagged peaks,
crevasses, and a high number of local optima. Algorithms that
search 1n a space of possible structures (such as GP) usually
tend to belong in this latter category—but only because the
importance of operator design 1s underestimated.

“Smooth operators” in GP are an explicit attempt to make
structural change better behaved, to “melt” the jagged peaks
into smooth hills. Smooth operators cause small expected
change 1n fitness when an individual 1s changed slightly. This
in turn gives a higher expected probability of a successiul
search step. A key insight to designing such smooth operators
1s via “behavioral bridge” (e.g., see T. McConaghy, “Smooth
Operators 1n Optimization of Circuit Structures,” U.S. Pat.
No. 6,859,914), which can be summarized as: design an
operator such that a small change 1n a design space usually
causes a small change in behavior space, which usually
causes a small change 1n fitness space. Below, 1t 1s shown how
to create smooth operators for the search of structures of
functions.

Even 1f one has smooth operators, the space might be
structured such that two near-identical designs are at opposite
ends of the space, such thatreaching one from the other would
take an unreasonable number of mutations. What one needs in
search 1s a way to quickly “tunnel” between two design
regions that are similar (though of course not “tunnel” 1n a
way that 1s catastrophic to the design).

A good tool to consider “similar design regions™ 1s the
notion of “building blocks™ (e.g., see D. E. Goldberg. Genetic
Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.). In GP, a building block 1s a subtree;
not all nodes of that subtree need to have been chosen yet
(e.g., see W. B. Langdon, R. Poli. Foundations of Genetic
Programming. Springer, 2002). Similar points in the GP
search space have a large number of similar subtrees. From
this perspective, GP’s function 1s to process building blocks,
via 1ts sub-processes of selection, reproduction, crossover,
and mutation. A key aim 1s to ensure that building blocks
continue to “mix well,” which 1s equivalent to ensuring a good
set of tunnels between similar regions in design space. In GP,
it has been shown that “uniform crossover” accomplishes
such mixing (e.g, see W. B. Langdon, R. Poli. Foundations of
Genetic Programming. Springer, 2002). Recall that “cross-
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over’ swaps sub-portions of the design of one parent with the
sub-portions of the second parent, to create two children. In
uniform crossover, each node 1n each location of the child has
equal probability of coming from either parent. Compared to
other crossover styles, uniform crossover has the most possi-
bility for variety in new designs.

Uniform crossover on trees 1s hard to implement, as one
needs to align operators, handle different depths, and handle

functions of different arity. R. Poli, J. Page, W. B. Langdon,
“Smooth Uniform Crossover, Sub-Machine Code GP and

Demes,” Proc. Genetic and Ev. Comp. Conf. (GECCQO), vol 2,
July 1999, pp. 1162-1169, had heuristics to handle these

1ssues, which were complex but worked for its problem
domain; their payolil was a decent speedup. It 1s also chal-

lenging to find a way to add smoothness to uniform crossover.
This 1s addressed below.
“Smooth” and “uniform”™ operators were just discussed

together with their usefulness. Introns are discussed next after
which a proposed algorithm will be described.

Introns are subtrees that are not “expressed™, 1.e. when such
subtrees change the fitness stays the same. They are the
equivalent of “yunk DNA” 1n biology. They are usually unin-
tentional and theretore hard to control, but 1t has been shown
that they can be explicitly designed, and that doing so
improves search speed and reliability (e.g., see V. Vassilev, I.
Miller, “The Advantages of Landscape Neutrality in Digital
Circuit Evolution,”/CES, 2000, pp. 252-263).

The explanation from a fitness landscape perspective 1s that
such “neutral” changes connect regions of search space that
would otherwise be poorly connected, therefore reducing the
probability of getting caught 1n local optima (e.g., see W.
Banzhat, “Genotype-Phenotype Mapping and Neutral Varia-
tion—A Case Study 1 Genetic Programming,” In'Y. Davidor
ctal, eds., Proc. PPSN III, 1994, pp. 322-332). So whereas 1n
the last section we showed how an operator can be designed to
tunnel (crossover), introns actually leverage representation to
tunnel.

Below 1s presented how to embed smooth operators and
introns into CAFFEINE, yvet have interpretable functions via
a canonical form. The whole same algorithmic flow as the
original CAFFEINE 1s retained albeit with changed operators
and representation.

The trickiest part 1s 1n designing the crossover operator,
most notably making it both uniform and smooth. The key to
solve this 1s to notice that a canonical form function already
imposes a structure—rather than trying to work around it 1t
can be exploited. It will be shown how to abandon a “true”
tree representation, and instead use the canomical form to
wedge the tree into a bit string.

It 1s not straightforward since different sub-functions may
be of different depth, arity, etc. Introns provide the answer as
follows. The 1dea 1s to put all trees at maximum depth and
branchiness, but so that simpler functions remain possible
and allow sub-functions to be turned off, by merely setting
that sub-function’s exponent to zero. The same principle
applies to varniable combo exponents, and weights. There are
still symbols inside the subfunctions, but they do not get
expressed. Thus, we have explicit introns. Now, since all
individuals’ trees have the same number of symbols, they can
truly be represented as a fixed-length string. FIG. 12 illus-
trates the representation.

The canonical functional form 1s now 1mplicitly followed.
Equivalent types are aligned on a bitstring: the sums of basis
functions, the nonlinear operators, the arguments within the
operators, etc. Due to this, one can perform simple string-
style uniform crossover on them. Furthermore, having the
symbols line up means that the “behavioral bridge™ 1s main-
tained, thereby achieving smoothness 1n crossover.
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While 1t has an underlying hierarchical structure that fol-
lows the functional form of FIG. 4, 1t can be treated as a

fixed-length string of symbols too, to make uniform crossover
possible. This tree/string duality puts 1t 1n a gray area between
GP and genetic algorithms (which have fixed-length bit- 5
strings).

The VCO symbol 1s a depth-O Poly/Ratl varcombo, and
VPO 1s a varcombo pair consisting of a VVO0 variable name
and VEO variable exponent. There are max_num_inter-
acting_vars of these VP’s for each VC. OPE 1s the operator 10
exponent. The operator name 1s implicit based on 1ts position;
cach operator gets a place in each basis function. Inside each
operator OP 1s a list of arguments (ARGs). Each ARG has an
offset weight (OW2) and a set of weight-VC tuples (VCW2
plus the usual VC representatlon) Introns occur anytime a 15

VEO, OPE, VCW2, or VV2 1s zero.

A concern 1s that introns create a search space with too
many dimensions. So we use domain knowledge to prune the
space. First, we note that our operators always have arity of 1
or 2, which means exponential growth as depth grows 1s ;g
reasonable. Also, even though the focus application 1s sizing,
maintaining the constraint of “interpretability” from, e.g., T.

McConaghy, T. Eeckelaert, G. Gielen, “CAFFEINE: Tem-
plate-Free Symbolic Model Generation of Analog Circuits

via Canonical Form Functions and Genetic Programming”,
Proc. DATE 2005, March 2003, acts as a useful surrogate to 2>

reduce overfitting. Using that, it was decided never to embed
one nonlinear operator into another one. Finally, an interpret-
able design has a limit on how many variables interact, so we
change the design of varcombos from an exponent for each
variable, to a list of {variable name, variable exponent) pairs. 30
With the representation in place, 1t 1s now possible to

design smooth mutation operators for functions. They are as
follows. Change real-valued weights by a small amount;
delete basis functions with near-zero weights; copy a basis
function, then mutate the new basis function (and let linear 35
learning determine weight allocation). Other mutations are
less smooth, yet still small: changing the exponent of a single
variable or nonlinear operator; changing a variable name,
setting any weight to zero (akin to deletion, and simulta-
neously, intron insertion); copying a varcombo into another 49
varcombo location. Finally there are the neutral mutations
that naturally occur inside introns: swap the order of whole
basis functions within an individual; and swap the order of
basis functions inside a nonlinear operator. The following
shows experimental results. 45
The same test setup as 1n T. McConaghy, T. Eeckelaert, G.
Gielen, “CAFFEINE: Template-Free Symbolic Model Gen-
eration ol Analog Circuits via Canonical Form Functions and
Genetic Programming™, Proc. DATE 2005, March 2005. The
circuit being modeled 1s a high-voltage CMOS OTA as shown sg
in FIG. 4. The goal 1s to discover expressions for low-ire-
quency gain (A, ), unity-gain frequency (I ), phase margin
(PM), inputreferred oftset voltage (V. ,), and the positive
and negative slew rate (SR ,, SR, ). There are 13 design vari-

188 B2
16

ables. Full orthogonal-hypercube Design-Of-Experiments
sampling was used, with scaled range dx=0.1 to have 243
samples from simulation.

The settings for both CAFFEINE and Double-Strength
CAFFFEINE were identical. Operators: VX, log10(x), 1/x, abs
(x), x°, 10x, max(x,,X,), min(x,,x,). Maximum number of
basis functions=7, population size 200, stop when 500 gen-
erations or target nmse of 0.05 hit, varcombo exponents 1n
[-3,-2,-1,-15,-15,0,15,%4,1,2,3], and weights 1n [-1e+10,—
le=10]U[0]U[1e-10,1e+10]. CAFFEINE’s maximum tree
depth was 7, therefore allowing just one layer of nonlinear
operators. All operators had equal probability, except param-
cter mutation was 5x more likely. Ten runs were done, for
cach performance goal, on both the old and proposed algo-
rithm, for a total of 10*6*2=120 runs.

FIGS. 13(A)-(F) show the error vs. time for each of the ten
runs, six problems, and both algorithms. We see that both
algorithms converge towards the target nmse of 0.05 (5%),
but 1t 1s apparent that Double-Strength CAFFEINE 1s doing
better especially on the more challenging problems (SR, ,
PM, A, ). Whereas CAFFEINE often tapers off, Double-
Strength CAFFEINE aggressively charges on. Such behavior
1s attributable to the combination of smooth, uniform opera-
tors and introns (which together, allow refinement of struc-
ture, allow easy access to other regions of search space, and
bypass local optima). F1IGS. 13(G)-(L), show the normalized
mean square error averaged over all ten runs per performance
characteristic and highlights the difference in convergence
behavior on the challenging problems.

The measure of speedups 1s based on the number of 1ndi-
viduals (or equivalently, generations) to meet the target nmse.
FIGS. 13(M)-(R) allows to visualize this measure, shown as a
probability of success vs. the number of generations. For SR,
we see that CAFFEINE was successtul just twice, snagging
the last success 1n its final generations. In contrast, Double-
Strength CAFFEINE already had two successes within 2350
generations, and by generation 400 was 100% successiul. The

difference was even more pronounced in the PM modeling
problem, where Double-Strength CAFFEINE had chalked up

100% success by generation 250, whereas CAFFEINE barely
chalked up 30% success in runmng twice as long. In A, -,
CAFFEINE for once stole an early lead, but had forfeited that
by generation 400 and by generation 500 had only half the
success rate of Double-Strength CAFFEINE.

Table 3 shows the average number of generations to suc-
cess (in successiul runs), the probability of success, and
divides them to get the eil

ective number of generations to
solve a given problem. Speedup 1s the ratio of the effective
number of generations, from old to new. The average speedup

1s 3.0x, and on challenging problems the average speedup 1s
5.0x. Generally, the harder a problem was for CAFFEINE,

the more the speedup with Double-strength CAFFEINE Thls
makes the double-strength CAFFEINE approach fast enough
for automated circuit sizing applications.

TABLE 3

Speedups. Average 1s 3.0x; on challenging
problems, denoted by *, average 1s 5.0x.

CAFFEINE Double-Strength CAFFEINE
Avg. # Avg. #
gel. gel.
when when
Metric succ. p(succ) Eff.#gen succ. p(succ) Eff.#gen Speedup
A g 303 0.3 1010 394 0.7 563 1.8x
PM™ 260 0.3 867 173 1.0 173 5.0x
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TABLE 3-continued

Speedups. Average 1s 3.0x; on challenging
problems, denoted by *, average 1s 5.0x.

18

CAFFEINE Double-Strength CAFFEINE
Avg # Avg. #
gen. gen.

when when
Metric succ. p(succ) Eff.#gen succ. p(succ) Eff. # gen
SR,,” 399 0.2 1995 263 1.0 263
SR, 213 0.9 237 111 1.0 111
V o fier 30 1.0 30 39 1.0 39
f 29 10 29 26 1.0 2.6

The present invention also relates to dynamic modeling of
circuits. Fast, effective system-level analog design practices
are becoming increasingly important due to the rise in the use
of mixed signal integrated circuits (ICs) and communication
circuits in particular. How sub-circuits are modeled for design
and verification influences speed and risk of system-level
design. Using SPICE to simulate a single system-level design
can easily take hours or days, which makes verification pain-
tul and automated sizing infeasible.

A potential means to speed up simulation 1s via behavioral
models which approximate the dynamic behavior of sub-
circuits but simulate orders of magnitude faster (e.g., see G.
Gielen, R. A. Rutenbar, “Computer aided design of analog
and mixed-signal integrated circuits,” Proc. of the IEEE Vol.
88(12), 2000, pp. 1825-1849). These models can be manually
created, which makes them understandable (because they are
interpretable expressions, and a person generated them), and
somewhat trustworthy. However, creating such models can
take weeks to years and even then, the validity of the model
could expire when new technologies emerge.

An alternative 1s to generate models automatically with
approaches such as Model order reduction (MOR) and
regression. MOR uses projections to transform the system’s
states 1nto a smaller set that retain the essence of the system’s
behavior. Early MOR research focused on linear circuits, but
more recent research has tackled weakly non-linear circuits
and finally strongly non-linear circuits. A survey of these 1s
shown 1n J. Roychowdhury, “Automated macromodel gen-
eration for electronic systems,” BMAS 2003, San Jose, Calif.

For nonlinear circuits, piecewise linear (e.g., sece M. Rew-
ienski, J. White, “A trajectory piecewise-linear approach to
model order reduction and fast simulation of nonlinear cir-
cuits and micromachined devices,” Proc. ICCAD 2001, San
Jose, Calif., 2001, pp. 252-2577) and piecewise polynomial
approaches (e.g., see N. Dong, J. S. Roychowdhury, “Piece-
wise polynomial nonlinear model reduction,” DAC 2003:
484-489) each tie together a group of linear or polynomial
models along likely trajectories 1n state space. Kernel meth-
ods (e.g., see J. R. Phillips, J. Afonso, A. L. Oliveira, L. M.
Silveira, “Analog macromodeling using kernel methods,”
ICCAD 2003, pp. 446-453; and J. R. Phillips, “A statistical
perspective on nonlinear model reduction,” BMAS 2003, San
Jose, Calil.) transform the non-linear state space 1nto a high-
dimensional linear feature space which 1s more readily
handled. MOR uses the circuit’s internal dynamics to retain
some trust; however, since they are not interpretable they can
be less preferable to many designers. Also, they are subject to
the biases imposed by the particular choice of regression.
Specifically, polynomials extrapolate poorly; distance-based
kernels (e.g. radial basis kernels) and mnner product kernels
place equal importance on all state variables even though
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Speedup

7.6x
2.1x%
0.8x
1.1x

some state variables may affect the dynamics far more than
others. That1s why J. R. Phallips, J. Afonso, A. L. Oliverra, L.
M. Silverra, “Analog macromodeling using kernel methods,”
ICCAD 2003, pp. 446-453 mentions high sensitivity of

model error to the scaling of the state vanables. Finally,
nonlinear MOR approaches divide the problem 1nto two sub-
problems that are solved sequentially (finding a projector,
finding the corresponding regressor); the only way this divi-
sion could be optimal 1s 1f the two sub-problems are com-
pletely independent, and there 1s no reason to believe this 1s
s0. Thus, the approaches sacrifice their chances of optimality,
most notably the compressibility aspect (which directly 1ntlu-
ences interpretability).

On the other hand, regression or “black-box™ approaches
create models that learn from the simulation waveforms of the
circuit’s mputs and outputs (e.g., see D. E. Root, J. Wood, N.
Tufillaro, “New techniques for nonlinear behavioral model-
ing of microwave/RF ICs from simulation and nonlinear
microwave methods,” DAC 2004). The topology and internal
states of the circuit are not considered. As the problem i1s not
sub-divided into sub-problems, 1t has (at least the theoretical )
opportunity to optimally capture the dynamics. The models
can be compact. However, they are not iterpretable, which
impedes designer trust. Because they do not aim to project the
dynamics of the detailed system onto a smaller system, they
do not “gain back™ some trust.

The following presents an Interpretable Behavioral Model
Generator (IBMG), which uses GP, which evolves functions,
but modified so that differential equations follow a special
canonical form. As will be shown, trust 1s gained because the
models are readily-interpretable equations. IBMG creates
compositions of functions that best fit the problem at hand;
1.€. 1s not constrained to any specific basis function nor any
predefined functional template.

A p-input, g-output, nonlinear dynamical system, specifi-
cally a circuit, 1s assumed to have the form:

dx B (2)
rrin Jx(n), ulr))

y(1) = £2(1) + Dulr)

where x(1) 1s the system’s n-dimensional state (1.e. node volt-
ages and branch currents 1n the circuit), u(t) is the p inputs at
time t, and y(t) 1s the g outputs at time t. 1(x, u) 1s an arbitrary
nonlinear function vector field that describes how the state
changes. y(t) 1s a linear function of x(t) and u(t).

The task of the behavioral modeling system 1s to create a
more compact form of the given dynamical system, 1.e. one
with m states where m<<n. The model must be interpretable
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behavioral expressions, 1.e. easily readable functional forms
that describe how the state changes. Finally, the approach
must have error control by actually generating a set of models
that trade oif between error and complexity. The generator’s
iputs are u(t) and y(t), taken from a transient simulation
using a standard SPICE simulator. With the aim of interpret-
ability, x(t) 1s not an input, even though 1t creates a more
difficult learning problem. The expressions to be generated
must take the following form.

dz (3)

— = g0, u(D)

y(1) = Ez(1) + Fudi)

where z 1s the system’s state, and g, E, and F are the reduced-
system equivalents of 1, C, and D respectively. Initial system
state 1s set to be z(0)=(0,0, . . . ). IBMG must “learn’ the vector
valued function g(z, u) as well as Eand F. Learning E and F 1s

merely a set of linear learning problems (one for each output
variable) once z(t) for each t 1s known. Learning g(z, u) 1s the
major challenge, as each point g in the search space of pos-
sible Gs 1involves a choice of the number of basis functions,
and the functional form of each of those basis functions
(which takes the other basis functions and u as an 1nput). Any
possible composition of functions 1s allowed.

The problem could have been formulated more generally,
1.€. y as a nonlinear function of X and u. But IBMG approxi-
mates nonlinear mappings via state variables that do not
appear 1n 1( ), which relate x and u to y in a nonlinear fashion.
In making this choice we simplity IBMG and also encourage
re-use of expressions for outputs.

The set goals 1s to generate a set of models that trade off
according to the following.

(4)

{ minimize mmse;; (v, Vg )

minimize complexity(h)

he H

where h 1s a model 1n model space H; a given h 1s composed
ofa g, E, and F. nmse,_, 1s defined as

(3)
(nmse(y, yo)+nmse(dy, dy,))

2| —

lF‘
52

nmSEfo(yﬁ yga nyﬁ nyg) —

where dy(t)=y(t)-y(t—dt) and nmse follows the usual defini-
tion:

(6)

'{E”(J” ref )

Z ( Yref(j) = Y2(J) ]2
ma};(y ref ) - I]f]_lll(y ref )

J=1

nmse(Yrer, ¥2) =

len(y ef ) \

where len(y) 1s the number of samples 1n v.

As mentioned previously, GP 1s an evolutionary algorithm,
with the distinguishing characteristic that GP individuals
(points 1n the design space) are trees. While GP has been used
previously to evolve differential equations (e.g., see H. Cao,
L. Kang, Y. Chen, J. Yu, “Evolutionary Modeling of Ordinary
Differential Equations with Genetic Programming,” Genetic
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Programming and Evolvable Machines 1(4), October 2000,
pp. 309-337), the present ivention 1s the first to have an
up-iront emphasis on interpretability, to create tradeoils of
complexity and error, and to model circuits. The functional
form of results from canonical GP 1s completely unrestricted,
hindering interpretability. This 1s exacerbated by the obser-
vation that GP-evolved functions tend to bloat with improved
fitness (e.g., see W. B. Langdon, R. Poli, “Fitness Causes
Bloat: Mutation,” Lecture Notes mm Comp. Sci. 1391,
Springer, 1998, pp. 37-48). The main challenge with GP 1s to
find a way to restrict the form enough to make the expressions
interpretable, without actually constraimng away from any

possible functional forms.

IBMG uses an altered form of CAFFEINE. CAFFEINE
took GP as a starting point, but extended 1t to properly address
creating static mappings that were interpretable. It attacked
interpretability via a multi-objective approach that provides a
tradeoll between error and complexity, and most notably a
specially designed grammar to constrain search to specific
functional forms. As done in CAFFEINE, IBMG uses the
multi-objective evolutionary algorithm NSGA-II to generate
a set of models that, collectively, trade off nmse, , and com-
plexity. “Complexity” 1s dependent on the number of basis
functions, the number of nodes in each tree, and the exponents
of “variable combos”. It 1s measured as shown previously 1n
equation (1).

IBMG can do simplification during generation, as 1s known
in the art, via pressure to lower complexity. The user avoids a
prior1 decisions on the error and complexity because IBMG
provides a tradeoll set of alternatives.

As seen above, CAFFEINE includes a caretully designed
grammar specifically for modeling functional forms. The
grammar allows all functional compositions, but 1n just one
canonical form. A CAFFEINE individual consisted of a set of
trees. The root node of each tree (basis Tunction) was a prod-
uct of sums; and the weights on the basis functions could be
linearly learned from vy. In IBMG, however, the usage of the
set of basis functions 1s different: the expressions are simu-
lated 1n a dynamic fashion, starting from an initial state z(0),
and each the change 1n state dx/dt at time t 1s a function of the
current state x(t) and mnputs u(t). Thus, linear weights on the
basis functions cannot be determined by linear learning. This
means that the form for the root should be more open-ended;
it can be either a weighted sum of basis functions or a product
of variables and/or nonlinear functions. Once the system 1s
simulated, which computes z(t) for each t, then linear learning
can be employed on z and y to determine E and F. Accord-
ingly, the IBMG grammar makes just one adjustment to the
CAFFEINE grammar: 1t adds the first line in the grammar. An
example of IBMG grammar 1s as follows.

ROOTSYM =>W + REPADD | REPVC
REPVC =>VC | REPVC * REPOP | REPOP
REPOP => REPOP * REPOP | 10P ( W + REPADD ) |
20P( 2ARGS ) | ... (30OP, 40P etc)
2ARGS => W + REPADD, MAYBEW | MAYBEW, W + REPADD
MAYBEW =>W | W + REPADD
REPADD => W * REPVC | REPADD + REPADD
20P => DIVIDE | MAX | ...
1OP => INV | LOG10 | ...

REPVC and REPOP arerespectively a product of variables
and/or nonlinear functions. Within each nonlinear function 1s
a weighted sum of basis functions (REPADD). Each basis
function can be, once again, a product of variables and/or
nonlinear functions. IBMG treats basis function operators
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slightly different than CAFFEINE because expression inputs
are more tightly tied to the basis functions. In CAFFEINE the
order of the basis functions was not important because the
output was a weighted sum. In IBMG, the location 1 of a basis
tfunction describes the state variable z(1) that 1t updates. With
this in mind, basis function operators include: unmiform cross-
over of basis functions from two parents; deleting a random
basis function (therefore making 1ts location empty); adding
a randomly generated tree as a basis function; copying a
subtree from one individual to make a new basis function for
another.

The IBMG grammar 1s context-iree, with two exceptions
for the sake of enhanced search: weights and variable com-
binations (VCs). At each weight (W) node, a real value 1s
stored 1n the range [-2*B,+2*B]. During interpretation of the
tree the value 1s transformed into [-1e+B,-1e-B|UJ0.0]U
[1e-B, 1e+B]. B 1s user-set, e.g. 10. In this way parameters
can take on very small or very large negative or positive
values. Cauchy mutation 1s the operator. Each VC has an
accompanying vector that has one integer value per variable
as the variable’s exponent. There 1s one variable for each of
the p system inputs and one variable for each of the basis
functions 1n the candidate model. For interpretability, only
integer exponents are allowed. VC operators include: one
point crossover, and randomly adding or subtracting to an
exponent value.

A prototype IBMG system was written 1n about 2000 lines
of Matlab code. The grammar was defined 1n a separate text
file. Run settings were: maximum number of basis functions
10, population size 250, number of generations 1500, maxi-
mum tree depth 8, weight setting B=4, complexity measure
settings w,=10, w__=0.25. All operators had equal probabil-
ity, except parameter mutation was five times more likely.
Single-input operators allowed were: VX, loge(x), log10(x),
1/x, abs(x), X,, sin(x), cos(x), tan(x), max(0, x), and min(0,x),
2x, 10x, where x 1s an expression. Dual-input operators
allowed are x,+x,, X, *x,, max(x,,x, ), min(x,,X, ), power(x,,
X,),and X,/X,. Also, Ite(testExpr, condExpr, expriiTestLessT-
hanCond, elseExpr) and Ite(testExpr, 0, expriiTestLessT-
hanO, elseExpr) were used, along with “greater than”. While
it was possible to turn off any unwanted rules or operators,
¢.g. to restrict the search to linear functions or rationals, the
search was kept open-ended. Experiments are on a 3.0 GHz
Pentium IV PC running Matlab 6.5 on Red Hat Linux.

To test IBMG, the strongly nonlinear circuit of FIG. 14, a
latch used 1n a DAC system similar to, €.g., J. Deveugele, M.
Steyaert, “A 10b 250MS/s binary-weighted current-steering
DAC,” ISSCC 2004, was modeled. It synchronizes the digital,
differential input data at nodes Bit-nBit with the clock Clk.
Bit, nBit and Clk have been passed through butiers. All the
transistors except M14 and M13 form a David-Goliath
(strong-weak) inverter structure. The David inverters regen-
erate the signals on the gates of M0/M1/M9/M10 and hold
them while the pass transistors M14 and M13 are off. The
technology 1s 0.18 um CMOS. Vdd, Vdd_sub, Vss, and
Vss_sub are 1.8V, 1.8V, 0.0V, and 0.0V respectively. FIG. 15
shows the circuit’s input and output wavetforms. IBMG’s goal
1s to build a model that produces similar outputs given those
same 1puts. Vdd and Vs are also treated as inputs to IBMG.
Each waveform had 2001 samples.

IBMG was run to build models for the latch circuit of FIG.
14. Runtime was 72 hours (a compiled implementation would
be about an order of magnitude faster). FIG. 16 shows the
best-performing result, which achieved nmse, , of 1.31%.
This 1s a fairly tight fit, especially given that IBMG did notuse
the circuit’s internal state information and instead had to
invent 1ts own states and state transition equations. Examin-
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ing the waveform, we see that the sharp nonlinear transitions
are handled quite gracefully, though the model output jumps
around somewhat at around 0.5 ns. The output 1s fairly
smooth over time 1n part thanks to minimization of error of
derivatives. Thus, IBMG has accomplished the error-minimi-
zation goal.

FIG. 17 shows the outcome of IBMG’s error-control strat-
egy: a set of about 50 behavioral models that collectively
trade off model complexity with error. Table 4 shows some
IBMG models. The most complex one, 1n the bottom row,
achieved 1.31% error, yet 1s readily interpretable. It effec-
tively only has two state variables (X, and x,,); the other six
only actto create nonlinear mappings from x and u to y, which
1s fine, as section 1 discussed. Interestingly, polynomials
almost exclusively dominated the final models, though some
expressions had max and some intermediate results with error

less than 2.0% had used IteO and square. This 1s reasonable, as
polynomials are among the smoothest, simplest expressions.

TABLE 4

Some behavioral models of the latch
of FIG. 14 generated by IBMG

%

error Expression

15.1
0.25

dx,/dt = nBit, dx,/dt = Bit * x;
dx,/dt =-21.3 - 9.28e-03 * bufclk * x; + 1.0e+04 * nBit *
bufclk
3.32 dx/dt=2.21e-02 - 3.72e-02 * x; — 21.8 * Bit*nBit * bufclk
dx,/dt = nBit * bufclk * x, dx4/dt = x;
1.31 dx/dt=78.2 + 1.06e-03 * Bit * x, — 2.11e-02 * bufclk *

X, —4.85*Bit*nBit * bufclk * x4
dx,/dt = nbit * bufclk * x,
dx,/dt =x,
dx,/dt = Bit * nBit *
dxs/dt = Bit * nBit *
C
C
C

3 3
bufclk * x; * x4
bufclk * x,

butclk

Xo/dt = Bit * nBit *
Xo/dt = bufclk * x,
X,o/dt =25.9 + 1.44e-04 * Bit * x, — 1.89e-03 * x,,

Thus, IBMG 1s an approach to generate behavioral models
of nonlinear analog circuits, with the special distinction that
the models are compact, interpretable expressions that are not
restricted to any pre-defined functional templates. The key 1s
the use of a specialized grammar within the context of genetic
programming.

In the above description, for purposes ol explanation,
numerous details have been set forth in order to provide a
thorough understanding of the present invention. However, 1t
will be apparent to one skilled 1n the art that these specific
details are not required in order to practice the present mnven-
tion. In other instances, well-known electrical structures and
circuits are shown in block diagram form in order not to
obscure the present ivention. For example, specific details
are not provided as to whether the embodiments of the mven-
tion described herein are implemented as a software routine,
hardware circuit, firmware, or a combination thereof.

Embodiments of the invention may be represented as a
soltware product stored in a machine-readable medium (also
referred to as a computer-readable medium, a processor-read-
able medium, or a computer usable medium having a com-
puter readable program code embodied theremn). The
machine-readable medium may be any suitable tangible
medium, including magnetic, optical, or electrical storage
medium including a diskette, compact disk read only memory
(CD-ROM), memory device (volatile or non-volatile), or
similar storage mechanism. The machine-readable medium
may contain various sets of instructions, code sequences,
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configuration information, or other data, which, when
executed, cause a processor to perform steps in a method
according to an embodiment of the mvention. Those of ordi-
nary skill in the art will appreciate that other instructions and
operations necessary to implement the described invention
may also be stored on the machine-readable medium. Soft-
ware running from the machine readable medium may inter-
face with circuitry to perform the described tasks.

To summarize, the present invention provides a system and
method for generating human-interpretable symbolic expres-
s1ons of performance characteristics of a system, without the
use of pre-determined templates for the symbolic expres-
sions. Any sulliciently general search algorithm, such as, for
example, genetic programming, simulated annealing and
Tabu searching can be used. In the case of genetic program-
ming, 1t 1s used to traverse the space of possible symbolic
expressions, and a set of rules 1s used to constrain the search
to expressions having a pre-defined canonical form.

Embodiments of the mvention were shown 1n relation to
non-linear electrical circuits and symbolic expressions
describing their static and dynamic behavior. However, the
method and system of the present invention 1s also applicable
to systems other than electrical systems. For example, finan-
cial systems and weather systems, amongst others, can also
use the method and system described herein.

The above-described embodiments of the present mven-
tion are intended to be examples only. Alterations, modifica-
tions and variations may be etlected to the particular embodi-
ments by those of skill in the art without departing from the
scope of the invention, which 1s defined solely by the claims
appended hereto.

What is claimed 1s:

1. A tangible computer-readable medium having recorded
thereon statements and nstructions for execution by a com-
puter of a method to generate at least one mathematical
expression describing a performance characteristic of a sys-
tem, the system associated with variables and with pre-deter-
mined data related to the performance characteristic of the
system, the method comprising steps of:

generating at least one nitial mathematical expression

having a pre-defined canonical form and being a func-
tion of the variables, the at least one 1nitial mathematical
expression having operators operating on the variables,
the operators being selected from a pre-defined group of
operators, the at least one initial mathematical expres-
ston describing the performance characteristic of the
system:

wherein, the variables of the system are representable as a

—> . . —>
vector X and the canonical form of an expression F( x )
1s representable as

F() = Woger + ) Wi X fi(¥) X NL;(x),
=()

“n” being an integer, w ., being an otfset value, w; being
weights, 1.(X) including at least one of a polynomial function
of the variables and a rational function of the variables, and

Nﬁ;i(?{}) being a non-linear function of the variables, with

NL,(x)=1;

generating calculated data using the at least one 1nitial
mathematical expression;

calculating an output of a goal function 1n accordance with
the pre-determined data and the calculated data;
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determiming that the goal function 1s outside a pre-defined
range; and

iteratively performing the following steps a-c until an addi-
tional output of the goal function 1s within the pre-
defined range:

a. moditying at least one input mathematical expression in
accordance with a search algorithm to produce at least
one modified mathematical expression having the
canonical form and being a function of the variables, the
search algorithm to search at least the pre-defined group
of operators to 1dentity operators with which to modity
the at least one mput mathematical expression, the at
least one input mathematical expression being the at
least one 1n1tial mathematical expression 1n a first itera-
tion of steps a-c, the at least one input mathematical
expression being the at least one modified mathematical
expression 1n subsequent iterations of steps a-c;

b. generating additional calculated data using the at least
one modified mathematical expression; and

c. calculating the additional output of the goal function
based on the additional calculated data and the pre-
determined data.

2. The tangible computer-readable medium of claim 1
wherein, the goal function 1s a single objective goal function
for minimizing error.

3. The tangible computer-readable medium of claim 1
wherein, the goal Tunction 1s a multi-objective goal function
for minimizing error and for mimmizing complexity.

4. The tangible computer-readable medium of claim 1
wherein, the goal function 1s a multi-objective goal function
for minimizing error and for constraining complexity.

5. The tangible computer-readable medium of claim 1
wherein, the goal function 1s a multi-objective goal function
for constraining error and for constraining complexity.

6. The tangible computer-readable medium of claim 1
wherein, the goal function 1s at least for minimizing a nor-
malized root mean square error between the pre-determined
data and either the calculated data generated using the at least
one 1mitial mathematical expression or the additional calcu-
lated data generated using the at least one modified math-
ematical expressions.

7. The tangible computer-readable medium of claim 1
wherein, the step of modifying the at least one input math-
ematical expression in accordance with a search algorithm
includes modifying the at least one imput mathematical
expression 1n accordance with an evolutionary search algo-
rithm to produce the at least one modified mathematical
eXpression.

8. The tangible computer-readable medium of claim 1
wherein, the step of modifying the at least one input math-
ematical expression in accordance with a search algorithm
includes modifying the at least one mput mathematical
expression 1n accordance with a simulated annealing search
algorithm to produce the at least one modified mathematical
CXPression.

9. The tangible computer-readable medium of claim 1
wherein, the step of modifying the at least one input math-
ematical expression in accordance with a search algorithm
includes modifying the at least one mput mathematical
expression 1 accordance with a Tabu search algorithm to

produce the at least one modified mathematical expression.

10. The tangible computer-readable medium of claim 7
wherein, the goal function 1s an evolutionary multi-objective
goal function.
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11. The tangible computer-readable medium of claim 1
wherein, a step of simplifying the at least one modified math-
ematical expression 1s performed before generating addi-
tional calculated data.

12. The tangible computer-readable medium of claim 11,
wherein the step of simplifying 1s done 1n accordance with a
predicted sum of squares statistic process.

13. The tangible computer-readable medium of claim 7
wherein, the at least one 1nitial mathematical expression and
the at least one modified mathematical expressions are rep-
resentable as trees, the trees having a pre-determined depth
and a pre- determined branchiness, some of the at least one
initial mathematical expression and the at least one modified
mathematical expressions having introns.

14. The tangible computer-readable medium of claim 7
wherein, the step of generating at least one 1nitial mathemati-
cal expression and the step of modifying the at least one input
mathematical expression are performed in accordance with
genetic programming principles.

15. The tangible computer-readable medium of claim 1
wherein, the system 1s an electrical system.

16. The tangible computer-readable medium of claim 1
wherein, the variables associated with the system include at
least one of design variables, environmental variables and
random variables.

17. A tangible computer-readable medium having recorded
thereon statements and instructions for execution by a com-
puter of a method to model an electrical circuit, the electrical
circuit associated with circuit variables, with pre-determined
data, with at least one pre-determined transient mput wave-
form and with at least one pre-determined transient output
wavetform the method comprising steps of:

generating at least one initial mathematical expression

dependent on at least one of at least one of the variables,
at least one of the at least one pre-determined transient
input wavelorm and at least one of the least one pre-
determined transient output wavelorm, the at least one
initial mathematical expression having a pre-defined
canonical form, the at least one 1nitial mathematical
expression having operators operating on the variables,

the operators selected from a pre-defined group of

operators, the at least one initial mathematical expres-
sion describing a transient behavior of the electrical
circuit;

wherein, the variables of the system are representable as a

—> . . —>
vector X and the canonical form of an expression F( x )
1s representable as

F(X) = Wogser + ) Wi X fi(X) X NL;(x)
=0
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“n” being an integer, w, ., being an offset value, w; being

weights, fi(?{}) including at least one of a polynomial function
of the variables and a rational function of the variables, and

Nﬁ;i(?) being a non-linear function of the variables, with

NL,(X)=1;

generating calculated data using the at least one 1nitial
mathematical expression;

calculating an output of a goal function 1n accordance with
the pre-determined data and the calculated data;

determining that the goal function 1s outside a pre-defined

range: and iteratively performing the following steps a-c
until an additional output of the goal function 1s within

the pre-defined range:

a. moditying at least one iput mathematical expression in
accordance with a search algorithm to produce at least
one modified mathematical expression dependent on at
least one of at least one of the variables, at least one of the
at least one pre-determined transient mput waveform
and at least one of the least one pre-determined transient
output waveform, the at least one modified mathemati-
cal expression having the canonical form, the search
algorithm to search at least the pre-defined group of
operators to 1dentity operators with which to modity the
at least one 1input mathematical expression, the at least
one input mathematical expression being the at least one
initial mathematical expression in a {first iteration of
steps a-c, the at least one input mathematical expression
being the at least one modified mathematical expression
in subsequent 1terations of steps a-c;

b. generating additional calculated data using the at least
one modified mathematical expression; and

c. calculating the additional output of the goal function
based on the additional calculated data and the pre-
determined data.

18. The tangible computer-readable medium of claim 17
wherein, the pre-determined data includes at least one of
steady-state electrical circuit data, transient electrical circuit
data and noise electrical circuit data.

19. The tangible computer-readable medium of claim 17
wherein, the electrical circuit 1s nonlinear.

20. The tangible computer-readable medium of claim 17
wherein, the at least one 1initial mathematical expression and
the at least one modified mathematical expression are inde-
pendent of a connectivity topology of the electrical circuit.

21. The tangible computer-readable medium of claim 17
wherein, the at least one 1nitial mathematical expression and
the at least one modified mathematical expression are sym-
bolic models of the electrical circuit.

22. The tangible computer-readable medium of claim 17
wherein, the at least one 1initial mathematical expression and
the at least one modified mathematical expression are behav-
ioral models of the electrical circuait.
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