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SYSTEM, METHOD AND COMPUTER
PROGRAM PRODUCT FOR IDENTIFYING
FUNCTIONS IN COMPUTER CODE THAT
CONTROL A BEHAVIOR THEREOF WHEN

EXECUTED

RELATED APPLICATION

This application 1s a continuation (and claims the benefit of

priority under 35 U.S.C. §120) of U.S. application Ser. No.
11/432,648, filed May 10, 2006, entitled “SYSTEM,
METHOD AND COMPUTER PROGRAM PRODUCT
FOR IDENTIFYING FUNCTIONS IN COMPUTER CODE
THAT CONTROL A BEHAVIOR THEREOF WHEN
EXECUTED,” Inventor(s) Joel Robert Spurlock, etal., 1ssued
as U.S. Pat. No. 8,001,595 on Aug. 16, 2011. The disclosure
of the prior application 1s considered part of (and 1s mncorpo-
rated by reference 1n) the disclosure of this application.

FIELD OF THE INVENTION

The present invention relates to security applications, and
more particularly to identitying undesirable code.

BACKGROUND

Increasingly, computer systems have needed to protect
themselves against undesirable computer code. Such unde-
sirable computer code has generally taken the form of viruses,
worms, Trojan horses, spyware, adware, rootkits, and so
forth. The damage and/or inconvenience capable of being
incurred by these types of undesirable code has ranged from
mild mterference with a program, such as the display of an
unwanted political message 1n a dialog box, to the complete
destruction of contents on a hard drive, and even the thelt of
personal information.

Many mechanisms have been created in order to provide
the much needed protection from such undesirable computer
code and/or the atfects thereof. Such mechanisms generally
include detection applications, such as scanners, which scan
for and clean undesirable computer code, and firewalls, which
block undesirable computer code.

Current detection technology i1s predominantly based on
finding patterns 1n computer code. However, such computer
code 1s vulnerable to structural modifications. Thus, 1n order
to circumvent the aforementioned detection technology,
authors of undesirable computer code need only use tech-
niques such as instruction reordering, junk data insertion,
code obluscation, etc. Such circumventing techniques change
the computer code structurally while preserving any seman-
tics, thus making the undesirable computer code ditficult to
detect.

There 1s thus a need for overcoming these and/or other
problems associated with the prior art.

SUMMARY

A security data structure, method and computer program
product are provided. In use, computer code 1s recerved.

Furthermore, functions in the computer code that control a
behavior of the computer code when executed are statically

1dentified.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a network architecture, in accordance
with one embodiment.
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FIG. 2 shows a representative hardware environment that
may be associated with the server computers and/or client
computers of FIG. 1, 1n accordance with one embodiment.

FIG. 3 shows a method for 1dentifying control functions
within computer code, in accordance with one embodiment.

FIG. 4 shows a method for constructing a control function

tree from computer code, 1n accordance with another embodi-
ment.

FIG. 5 shows exemplary control function trees, 1n accor-
dance with yet another embodiment.

FIG. 6 shows a method for comparing computer code, 1n
accordance with still yet another embodiment.

FIG. 7 shows an exemplary control function vector, in
accordance with another embodiment.

DETAILED DESCRIPTION

FIG. 1 1llustrates a network architecture 100, 1n accordance
with one embodiment. As shown, a plurality of networks 102
1s provided. In the context of the present network architecture
100, the networks 102 may each take any form including, but
not limited to alocal areanetwork (L AN), a wireless network,
a wide area network (WAN) such as the Internet, peer-to-peer
network, etc.

Coupled to the networks 102 are server computers 104
which are capable of communicating over the networks 102.
Also coupled to the networks 102 and the server computers
104 1s a plurality of client computers 106. Such server com-
puters 104 and/or client computers 106 may each include a
desktop computer, lap-top computer, hand-held computer,
mobile phone, personal digital assistant (PDA), peripheral
(e.g. printer, etc.), any component of a computer, and/or any
other type of logic. In order to facilitate communication
among the networks 102, at least one gateway 108 1s option-
ally coupled therebetween.

FIG. 2 shows a representative hardware environment that
may be associated with the server computers 104 and/or client
computers 106 of FIG. 1, in accordance with one embodi-
ment. Such figure illustrates a typical hardware configuration
ol a workstation 1n accordance with one embodiment having
a central processing unit 210, such as a microprocessor, and a
number of other units interconnected via a system bus 212.

The workstation shown 1n FIG. 2 includes a Random
Access Memory (RAM) 214, Read Only Memory (ROM)
216, an I/O adapter 218 for connecting peripheral devices
such as disk storage units 220 to the bus 212, a user interface
adapter 222 for connecting a keyboard 224, a mouse 226, a
speaker 228, a microphone 232, and/or other user interface
devices such as a touch screen (not shown) to the bus 212,
communication adapter 234 for connecting the workstation to
a communication network 235 (e.g., a data processing net-
work) and a display adapter 236 for connecting the bus 212 to
a display device 238.

The workstation may have resident thereon any desired
operating system. It will be appreciated that an embodiment
may also be implemented on platiorms and operating systems
other than those mentioned. One embodiment may be written
using JAVA, C, and/or C++ language, or other programming
languages, along with an object oriented programming meth-
odology. Object ortented programming (OOP) has become
increasingly used to develop complex applications.

Our course, the various embodiments set forth herein may
be implemented utilizing hardware, software, or any desired
combination thereof. For that matter, any type of logic may be
utilized which 1s capable of implementing the various func-
tionality set forth herein.
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FIG. 3 shows a method 300 for identifying control func-
tions within computer code, 1n accordance with one embodi-
ment. As an option, the method 300 may be implemented in
the context of the architecture and environment of FIGS. 1
and/or 2. Of course, however, the method 300 may be carried
out in any desired environment.

As shown 1n operation 302, computer code 1s recetved. In
the context of the present embodiment, the computer code
may include any computer code representative of, at least in
part, a plurality of functions. Specifically, 1n some embodi-
ments, the computer code may include binary computer code
(c.g. computer code capable of being disassembled), uncom-
piled source code, an application, and/or any other type of
computer code that 1s capable, at some point, of being read
and/or executed by a computer. Still yet, mn other embodi-
ments, the computer code may be capable of being uncom-
pressed, compiled, packed, etc. Furthermore, in the context of
still yet other embodiments, the computer code may be read
and/or executed by any of the devices and/or component
thereol described above with respect to FIGS. 1 and/or 2.

In use, functions in the computer code that control a behav-
ior of the computer code when executed are then statically
identified, as shown in operation 304. In the context of the
present description, such static identification may refer to any
identification of the atorementioned functions that does not
necessarily require execution of the computer code. Thus, in
one embodiment, the 1dentification of operation 304 may take
place without execution of the computer code.

In another embodiment, the 1dentification of operation 304
may optionally further take place during emulation of the
computer code (butitis not required). In still another embodi-
ment, the identification of operation 304 may optionally fur-
ther take place during execution of the computer code (but it
1s not required).

The above functions (that control a behavior of the com-
puter code) may include any functionality capable of per-
forming a task (or may take any form, for that matter, capable
of controlling a behavior of the computer code, etc.). For
instance, i some embodiments, the functions may include
commands and/or operations. Furthermore, the functions
may each optionally return a value (the relevancy of which
will be set forth heremnafter in greater detail during descrip-
tion of other embodiments, etc). In use, the functions may be
represented by computer code segments within the computer
code.

In one optional embodiment, the above functions may be
identified by tracing a call flow of the computer code. For
instance, a function may be identified by matching a return
instruction to an associated call instruction. Of course, the
functions may be 1dentified utilizing any desired method
capable of 1dentifying functions within computer code.

Furthermore, the functions may control the behavior of the
computer code in any particular way. Just by way of example,
this may be accomplished by calling other functions, writing,
to memory, and/or by performing and/or initiating any other
tasks within the computer code. Specifically, in one optional

Function Property
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embodiment, the functions may control the behavior of the
computer code by directly affecting the functionality of the
computer code. Thus, 1n some embodiments, functions rel-

evant to the functionality of the computer code may be 1den-
tified.

As an option, the functions 1n the computer code that
control a behavior of the computer code may be 1dentified
according to a complexity threshold. For instance, functions
within the computer code may be assigned a weight accord-
ing to at least one property associated with each function.
Examples of such property(s) will be described in further
detail with respect to FIG. 4. In this way, a subset of functions
within the computer code that exceed a complexity threshold
may be i1dentified as functions that control a behavior of the
computer code.

Still yet, identifying the functions may also include extract-
ing the functions from the computer code. For example, such
functions may be extracted from the computer code utilizing
a disassembler. In another embodiment, the functions may be
extracted by searching through computer code for known
prologue/epilogue sequences, and/or cross references. Of
course, the functions may be extracted from the computer
code 1n any desired manner. In this way, functions that control
a behavior of computer code may be 1dentified.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing technique may or may not be implemented, per the
desires of the user. It should be strongly noted that the fol-
lowing information 1s set forth for illustrative purposes and
should not be construed as limiting 1n any manner. Any of the

following features may be optionally incorporated with or
without the exclusion of other features described.

FIG. 4 shows a method 400 for constructing a control
function tree from computer code, in accordance with another
embodiment. As an option, the method 400 may be 1mple-
mented in the context of the architecture and environment of
FIGS. 1-3. Of course, however, the method 400 may be car-
ried out 1n any desired environment. It should also be noted
that the atorementioned definitions may apply during the
present description.

As shown 1n operation 402, a complexity of each function
1s calculated. Each function may include any function that
resides within computer code. For example, the functions
may include the identified functions described above with
respect to FIG. 3. Specifically, such functions may include a
subset of functions within computer code that control the
behavior of the computer code.

The complexity of each function may then be calculated
based on a value of at least one property associated with each
function. Furthermore, the complexity may also be based on
a number of mstances of the at least one property associated
with the function. Table 1 1llustrates examples of properties
that may be utilized 1n calculating a complexity of a function.
Of course, the complexity of each function may be calculated
in any desired manner.

TABL.

L1

1

Explanation (if applicable)

Far call (e.g. call on a value from a data section; generally
a call to an API comes under this category)

Calls to other functions; the greater number of calls to
various functions, the more active the function

Number of APIs used

Memory Writes

Signifies write access (e.g. number of times data/code
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TABLE 1-continued

Explanation (1f applicable)

section 1s written); it can cover simple mstructions such as
instructions mcluding an “OR” command, or complex
instructions with self modifying code

Far jumps (e.g. jump to a value from a data section).

Represents how many times a function or some part of a
function 1s called from another function(s); 1f the count is
high, this can be a library function or a frequently used
function

These are the jumps within a function; each jump creates a

“label”

Memory Reads Signifies the number of times a data section is read

Data Offset Used Number of times an offset is used instead of a register or a
direct value

Total Number of

Registers Used

Register Used 1n
Memory Reference
memory reference)

Number of registered used in a memory reference (e.g. 1n
instruction “lea edx, [es1 + 1]” register esi 1s used in a

Stack Modification Number of stack modification instructions (e.g. push 1s +1

Instructions and pop 1s —1); If this number i1s >0, it signifies stack
modification

Number of Byte Number of a byte sequence, an assembly instruction, or a

Sequence, Assembly
Instruction or Set of

Instructions

Number of Loops A number of loops in the function

Number of Control

Functions called in a

Loop

Number of Properties A number of properties, such those described herein in
within a Loop Table 1, 1dentified within a loop of the function
Checksum A checksum of the function

Size A size of the function

Thus, for each function, a total complexity may be calcu-
lated based on a sum of property values associated with the
function. Furthermore, each property value, as part of the
sum, may be multiplied by the number of instances of the
property associated with the function.

Table 2 1llustrates an exemplary equation that may be used
to calculate a complexity of a function. Of course, the equa-
tion 1n Table 2 1s set forth for illustrative purposes only. Any

desired equation may be used for calculating the complexity
of a function.

TABLE 2

Function Properties: P1, P2, P3, P2, P4
Function Complexity: ValP1 + (ValP2*2) + ValP3 + ValP4

As another option, each property may be associated with a
specific value. Such values may be predefined or config-
urable. In one embodiment, operations that are commonly
used across all types of computer code (e.g. memory read,
memory erase, etc.) may have a lesser complexity value with
respect to operations that are more likely to affect the func-
tionality of the computer code (e.g. outgoing edge, etc.). Just
by way of example, a value associated with a commonly used
function may be less than a value associated with a function
called by a function within the computer code. In another
embodiment, the value of each property may be based on an
importance of the property and/or the extent to which the
property uniquely 1dentifies the associated function.

Based on the complexity values calculated in operation
402, a subset of control functions are 1dentified, as shown in
operation 403. The control functions may include a subset of
the functions 1n the computer code with the highest total
complexity value. Thus, the control functions may include the
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set of imstructions that can potentially identify a function

functions within the computer code whose operations have
the greatest effect on the behavior (e.g. functionality, etc.) of
the computer code.

The control functions may include any number of func-
tions. As an option, the control functions may be 1dentified
based on a total complexity value threshold, such that only
functions with total complexity values greater than the thresh-
old are 1dentified as control functions. As another option, the
control functions may be identified based on a minimum
number of functions called, such that only functions contain-
ing up to a threshold number of nested functions are identified
as control functions. It should be noted that 1t 1s not required
that the nested functions be control functions. The atoremen-
tioned thresholds may be predefined or configurable. Of
course, 1t should be noted that the control functions may be
identified 1n any desired manner.

In other words, a tree depth may optionally be controlled
for each control function. Further, the number of control
functions that will be captured may also be configured via
runtime parameters.

The control functions are then each utilized to construct a
root level of a control tree data structure. See operation 404.
For example, 1f two control functions are 1dentified 1n opera-
tion 403, two control trees may be generated with each con-
trol function serving as a root to an associated control tree.

For each control tree, it 1s then determined whether another
level of the control tree exists, as shown 1n decision 406. The
decision may be based on whether an associated control func-
tion contains any sub-functions (e.g. outgoing edges, etc.). As
an option, such sub-functions may include sub-functions that
meet a threshold level of complexity, such as 1n the manner
described above with respect to the process of 1dentifying
control functions.
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In this way, for each level of sub-functions, any functions
with a degree of relationship to the control function may be
added to the control tree at an associated level. For instance,
a first level may include all functions that are directly called
by the control functions (1.e. first degree of relationship), a
second level may include all functions that are called by
tunctions located 1n the first level (i.e. second degree of rela-
tionship), and so forth. Thus, each control tree may be con-
structed based on a functional flow of the computer code.
Examples of such control trees will be described in further
detail with respect to FIG. 5.

Once 1t 1s determined 1n decision 406 that no further levels
of sub-functions exist, the control tree may be stored, as
shown 1n operation 408. The control tree may be stored 1n
memory of the device containing the computer code. Of
course, however, the control tree may be stored anywhere
capable of providing access to such control tree. In this way,
functions that have the greatest affect on the behavior of the
computer code may be 1dentified and stored 1n a data structure
along with any sub-functions thereof.

Of course, 1t should be noted that any data structure may be
utilized to store control functions and the sub-functions
thereot, along with any other associated data. For instance,
any data file may be used to store such information. In par-
ticular, an XML file may be used to store functional data
associated with computer code, such as any of the calculated
complexity values and/or control function identified 1n opera-
tions 402 and 403.

Table 3 1llustrates one example of such an XML f{ile.

TABLE 3

<7xml version="1.0" encoding="Windows-1252" standalone="yes” 7>
— <File MD5="45 28 BC 37 65 BA 63 57 8D 9D 83 OF 8C 84 44 93>
+ <FunctionNode Id="4013aa” Type="Control”>
+ <FunctionNode Id="40135¢” Type="“Default’>
+ <FunctionNode Id="401ca6” Type="Default”>
+ <FunctionNode Id="401cc0” Type="Default™>
— <FunctionNode Id="401bba” Type="Control’>
<Complexity>123</Complexity>
<Incoming>1</Incoming>
<QOutgoing>2</Outgoing>
<API_Used>9</API Used>
— <FunctionCallList>
<APIName>RtlInitUnicodeString</APIName>
<FunctionName>4012c4</FunctionName>
<APIName>IoDeleteSymbolicLink</APIName>
<APIName>IoDeleteDevice</APIName>
<FunctionName>401332</FunctionName>
<APTName>IoDeleteSymbolicLink</APIName>
<APIName>IoDeleteDevice</APIName>
</FunctionCallList>

It should be noted that Table 3 1s set forth for illustration only,
and should not be construed as limiting 1n any manner.

As shown, identified control functions, a complexity for
cach control function, and properties associated with each
control function may be provided 1n an XML file associated
with the computer code. Thus, such XML file may be utilized
for identifying functions that control a behavior of the com-
puter code when executed. In addition, the XML file may be
utilized for identifying the extent to which the i1dentified
tunctions control such behavior.

FIG. 5 shows exemplary control function trees 500 and
550, 1n accordance with yet another embodiment. As an
option, the control function trees 500 and 550 may be 1mple-
mented in the context of the architecture and environment of
FIGS. 1-4. Of course, however, the control function trees 500
and 550 may be used in any desired environment. It should
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also be noted that the aforementioned definitions may apply
during the present description.

As shown, the first control function tree 500 includes C1
(control function 1) as a root. In addition, the second control
function tree 550 includes C2 (control function 2) as a root.
Thus, each 1dentified control function associated with com-
puter code 1s 1ncluded in a control tree at a root level. As
further shown, each sub-function of each identified control
function 1s included 1n the control tree at an associated leat/
node level. Specifically, each function path located 1n the
control tree may represent a code path capable of existing
within the computer code.

As shown 1n the first control function tree 500, C1 calls
functions F0, F1 and F2. Thus, F0, F1 and F2 are placed in the
first control tree 500 as nodes located 1n a first level. Next, F3
1s called by F0, and F4 1s called by F1, such that F3 and F4 are
placed in the first control tree 500 as nodes located 1n a second
level. Still yet, C2 1s called by F4, and 1s therefore placed 1n
the first control tree 500 as a node located 1n a third level. The
second control function tree 550 1s created 1n substantially the
same manner as the first control function tree 500.

FIG. 6 shows a method 600 for comparing computer code,
in accordance with still yet another embodiment. As an
option, the method 600 may be implemented 1n the context of
the architecture and environment of FIGS. 1-5. Of course,
however, the method 600 may be carried out 1n any desired
environment. It should also be noted that the atorementioned
definitions may apply during the present description.

As shown 1n operation 602, a function congruency table 1s
constructed. The function congruency table may include all
functions within at least two separate sets of computer code.
As another option, the function congruency table may include
functions located within control trees, such as those described
above with respect to FIGS. 4 and/or 5.

A control tree may overlap computer code with another
control tree 1f they are from the same binary. In one embodi-
ment, the function congruency table does not necessarily
contain the control tree itself, but rather 1t has all the functions
from the binaries that were captured in all the control trees.
Such function congruency table may include any data struc-
ture capable of recording a relationship between at least two
function sets, each from separate sets of computer code.

The function congruency table may be constructed by
matching similar functions between computer codes and cre-
ating a map of such matched functions. For instance, proper-
ties associated with each function may be evaluated to deter-
mine which functions contain similar properties.

A Tunction congruency value (FCV) may then be calcu-
lated for each similar pair of functions based on the percent-
age ol similar properties. Thus, functions that are the most
similar (e.g. have the function congruency value), 1n the con-
text of such properties, may be mapped together 1n the func-
tion congruency table. Of course, such function congruency
value may also be stored 1n the function congruency table in
association with the mapped functions.

As another option, the functions may be mapped according
to complexity and similarity. For instance, 11 two functions
from a first computer code have the same similarity to a
function from a second computer code, the function from the
first computer code with the greatest complexity may be
mapped to the function from the second computer code. In
this way, the function congruency value, and therefore the
mapping, may be more accurate since the complexity
required to create such similarity 1s greater.

As vyet another option, the mapping may be based on a
function congruency threshold, such that functions with func-
tion congruency values meeting the threshold value may be
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mapped 1n the function congruency table. Thus, 1t may be
ensured that the mappings contain at least a predefined func-
tion congruency value. If a function 1s not similar to any other
function, such as, for example, 1n the case where similarities
do not meet the function congruency threshold, the function
may be stored in the function congruency table without a
mapping to any other function.

Once the function congruency table 1s constructed in
operation 602, control trees associated with the first code and
the second code are each converted into vectors. Note opera-
tion 604. Each vector represents the functional paths, and
therefore code paths, capable of being taken by the control
tree (and thus the associated control function).

Each vector may be created by traversing an associated
control tree from left to right and adding function nodes to the
vector at each node. One example of such vectors will be
described in further detail with respect to FIG. 7. Of course,
any data structure may be utilized that 1s capable of indicating
a Tunctional tlow of computer code.

The vectors are then compared, as shown 1n operation 606.
The vectors may be compared by evaluating each node of the
vectors for matching sequences and/or matching functions.
Table 4 illustrates a table of matching functions and exem-
plary vectors, such that the above described comparison may
be further described 1n the context of one specific example.

TABLE 4
Computer Code 01 Computer Code 02
Al A2
Bl B2
C] C2

Unmatched functions: X1, Y1 Unmatched functions: R2, S2

where,

Unmatched functions = X1, Y1, R2, 52
Vectorl = Al-B1-X1-Y1-B1-ClI
Vector 2 = B2-A2-R2-A2-82-B2-C2-B2

Of course, such example 1s set forth only by way of 1llustra-
tion, and 1s not to be construed as limiting 1n any manner

Considering function congruency as shown in Table 4,
Vectorl and Vector2 have matching out-of-order functions,
namely Al, B1, B2 and A2. In addition, both Vectorl and
Vector2 have matching in-order sequences, namely B1, C1,
B2 and C2. Specifically, comparing the vectors 1n operation
606 may include identifying any and/or all of four types of
matches, such as in-order sequences, mn-order functions, out-
of-order sequences, and/or out-of-order functions. Of course,
any desired type of matches may be 1dentified.

Order may be determined according to the location of the
functions 1n the vector being matched 1n association with the
traversal of the vector from beginning to end. For example, 1
a sample Vectorl contains sequence S1 and S2 which each
match to a corresponding X1 and X2 in Vector2, but, in
Vector2, X1 and X2 are 1n opposite order, such sequences
may be considered out-of-order.

The comparison of operation 606 may therefore allow
similarities between two separate computer codes to be evalu-
ated. As an option, order and sequences may be given greater
weight than single function matches. In this way, similarities
between controlling computer code behavior may be given
the greatest weight in determining whether two separate com-
puter codes are, 1n fact, similar, and potentially a part of the
same class of computer code.

In one embodiment, each different match type may be
assigned a value, such as 1n the manner described above. Of
course, the values may be defined 1n any desired manner. In
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addition, by moditying the values of the different match
types, different types of similarities may be emphasized. For
example, 1f all of the values are of the same value, the empha-

s1s may be on computer code similarity 1rrespective of logic.

Once the vectors have been compared 1n operation 606, a
code similarity value may be output, as shown in operation
608. The code similarity value may represent the amount of
matching logic and/or code between two computer codes. In
particular, the code similarity value may be calculated using,
a Tunction congruency value from the function congruency
table as a multiplier to the associated vector match values. In
this way, the function congruency value may be utilized to
normalize any match values, such that the code similarity
value may represent the percentage of a total match between
any functions and/or function sequences. In one embodiment,
the code stmilarity value may be calculated as a percentage.

Just by way of example, referring to the exemplary vectors
in Table 4, 11 functions B1 and C1 had a function congruency
value o1 75% to B2 and C2 respectively, the total score for the
matching in-order sequence value may be adjusted by 75%
(e.g. assuming the matching in-order sequence value was 1,
the total score for the matching sequence order may be equal
to: 1x0.75+1x0.73). The code similarity value may then be
calculated based on the fraction of the total value and a
maximum possible value. Of course, it should be noted that
the code similarity value could be calculated 1n any desired
manner. As an option, the code similarity value may be stored
in a table with the associated matching functions and/or
sequences.

Thus, a method 1s provided for comparing computer codes
utilizing the functions within the computer codes and their
associated properties. Furthermore, the method 1s capable of
making comparisons based on a percentage of similarities
between the functions within the computer codes. Still yet,
the method outputs matching results, where the matching
results take mto account such function congruency values,
such that a match percentage reflects the actual similarity of
the functions, and therefore the actual similarity of the com-
puter code.

In one optional embodiment, computer code may be com-
pared against computer code known to contain undesirable
code (e.g. viruses, malware, Trojans, worms, spyware,
adware, etc.), and such computer code may be 1dentified as
containing undesirable code based on a percentage match
associated therewith. Specifically, the 1dentification may be
based on the functionality and/or behavior of the computer
code. In this way, structural modifications made to the com-
puter code may not necessarily interfere with determiming,
whether the computer code contains undesirable code. Still
yet, specific functions within the computer code may be
matched to functions known to contain undesirable code, thus
allowing a specific identification of the undesirable code
within the computer code.

In another optional embodiment, this may be used to 1den-
tify specific pieces of computer code, functions, and function
sequences which represent a family or classification of unde-
sirable code. Furthermore, this computer code can be used to
identify heuristically that the code being evaluated 1s, 1n fact,
undesirable and of a particular same classification/famaily:.

In one example, an 1dentification that computer code con-
tains undesirable code may be based on a threshold match
percentage, such that only matches of a predetermined thresh-
old may be considered to be actual matches. In another
optional embodiment, computer code may be compared
against computer code of a known class, such that a class of
the computer code may be determined.
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FIG. 7 shows an exemplary control function vector 700, in
accordance with another embodiment. As an option, the con-
trol function vector 700 may be implemented 1n the context of
the architecture and environment of FIGS. 1-6. Of course,
however, the control function vector 700 may be used 1n any
desired environment. It should also be noted that the afore-
mentioned definitions may apply during the present descrip-
tion.

As shown, the control function vector 700 1s a data struc-
ture that contains data associated with functions within com-
puter code. Specifically, the control function vector 700
includes all functional flow paths capable of being taken by
identified control functions. In the present example, the con-
trol function vector 700 may be associated with control func-
tion trees.

For 1llustration purposes only, the control function vector
700 may correspond to the control function trees described
above with respect to FIG. 5. Of course, the control function
vector 700 may be associated with any data structure that
includes mformation associated with functions in the com-
puter code.

The control function vector 700 contains a first element
which 1s a first control function 1dentified from the computer
(1.e. a root of a first control function tree). Function tlows are
inserted ito the control function vector 700 such that the
control function vector 700 contains sub-functions of the first
control function. As shown, a first function flow inserted into
the control function vector 700 1s C1-F0-F3. Such first func-
tion flow may correspond to a path located 1n the first control
function tree. In substantially the same manner, subsequent
function flows associated with the control function are
inserted into the control vector function. The process then
repeats for each control function.

In one embodiment, terrorism may be countered utilizing
the atorementioned technology. According to the U.S. Fed-
cral Bureau of Investigation, cyber-terrorism 1s any “pre-
meditated, politically motivated attack against information,
computer systems, computer programs, and data which
results 1 violence against non-combatant targets by sub-
national groups or clandestine agents.” A cyber-terrorist
attack 1s designed to cause physical violence or extreme
financial harm. According to the U.S. Commission of Critical
Infrastructure Protection, possible cyber-terrorist targets
include the banking industry, military installations, power
plants, air traffic control centers, and water systems. Thus, by
optionally incorporating the present technology into comput-
ing/networking systems of the foregoing potential targets,
terrorism may be countered by classitying computer code
and/or 1dentitying computer code as including malware, etc.,
which may be used to combat cyber-terrorism.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. For example, any of the
network elements may employ any of the desired functional-
ity set forth heremnabove. Thus, the breadth and scope of a
preferred embodiment should not be limited by any of the
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What 1s claimed 1s:

1. A method, comprising;:

identifying, 1n a first computer code, control functions that
control behavior, wherein the identifying 1s performed
in conjunction with a processor configured to 1dentity
particular functions 1n the first computer code that
exceed a complexity threshold;
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creating a first vector associated with at least one of the
control functions;

comparing the first vector and a second vector associated
with a second computer code, which 1s associated with
undesirable code; and

identifying a similarity between the first computer code

and the second computer code based on the comparing
of the first vector and the second vector.

2. The method of claim 1, further comprising:

generating a code similarity value associated with compar-

ing the first computer code and the second computer
code.

3. The method of claim 2, wherein a metric that 1s associ-
ated with a function congruency table, which reflects simi-
larities between the first and the second computer code,
serves as a multiplier to the code similarity value for gener-
ating an output.

4. The method of claim 1, wherein 1dentifying the control
functions comprises:

calculating a complexity value for each function 1n the first

computer code based on a value of at least one property
associated with each function; and

identifying each function having a complexity value that

exceeds the complexity threshold.

5. The method of claim 1, wherein 1dentifying the control
functions comprises:

calculating a complexity value for each function 1n the first

computer code based on a number of instances of at least

one property associated with each function; and
identifying each function as one of the control functions 1f

the complexity value exceeds the complexity threshold.

6. The method of claim 1, wherein identifying the control
functions comprises:

calculating a complexity value for each function in the first

computer code based on a sum of property values asso-
ciated with each function; and

identifying each function having a complexity value that

exceeds the complexity threshold.

7. The method of claim 1, wherein 1dentifying the control
functions comprises:

calculating a complexity value for each function 1n the first

computer code based on a sum of property values asso-
ciated with each function, wherein the property values
are based on the extent to which the property values
uniquely identify each function; and

identifying each function having a complexity value that

exceeds the complexity threshold.

8. The method of claim 1, wherein 1dentitying the control
functions 1s based on a number of functions called by seg-
ments of the first computer code.

9. The method of claim 1, further comprising:

creating a tree data structure having at least one of the

control functions; and

converting the tree data structure mto a plurality of vectors.

10. The method claim 1, wherein 1dentifying the control
functions comprises tracing a call flow of the first computer
code.

11. The method of claim 1, wherein comparing the first
vector to the second vector comprises 1dentifying a percent-
age of similar properties between the first computer code and
the second computer code.

12. The method of claim 1, turther comprising:

identifying a complexity characteristic associated with the

control functions; and

identifying a subset of the control functions having a high-

est total complexity value.
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13. The method of claim 1, wherein comparing the first

vector to the second vector comprises mapping at least one of

the control functions based on a function congruency value
that exceeds a function congruency threshold.

14. The method of claim 1, wherein comparing the first
vector to the second vector comprises mapping the control
functions based on a complexity characteristic and a similar-
ity characteristic of the control functions.

15. The method of claim 1, wherein comparing the first
vector to the second vector comprises comparing in-order
sequences, 1n-order functions, out-of-order sequences, and
out-of-order functions.

14

16. The method of claim 1, wherein the first vector 1s part

ol a control tree generated for each of the control functions.
17. The method of claim 1, turther comprising:

generating a function congruency table retlective of a com-

5 parison between the first computer code and the second

computer code.

18. The method of claim 1, wherein the control functions
are 1dentified during emulation of the first computer code.
19. The method of claim 1, wherein the first computer code

10 1s received as part of network tra:
environment.

fic propagating in a network
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