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SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR CONVERTING A
REDUCTION ALGORITHM TO A
SEGMENTED REDUCTION ALGORITHM

FIELD OF THE INVENTION

The present invention relates to reduction algorithms, and
more particularly to converting reduction algorithms to seg-
mented reduction algorithms.

BACKGROUND

A sparse matrix 1s a matrix populated primarily with zeros.
Sparse matrix multiplication 1s a usetul tool in many comput-
ing applications. For example, 1n the context of graphics
processing, it 1s often usetul to multiply a sparse matrix by a
dense vector, such as when implementing iterative solvers for
systems of linear equations. In these cases, reduction opera-
tions are useful for performing such multiplications.

Applications such as sparse matrix-vector multiplication
implemented using reduction operations are often difficult to
map to data-parallel machines (e.g. graphics processing units,
etc.) because of the unequal workload distribution caused
when mapping rows of the matrix onto processing elements.
There 1s thus a need for addressing these and/or other 1ssues
associated with the prior art.

SUMMARY

A system, method, and computer program product are
provided for converting a reduction algorithm to a segmented
reduction algorithm. In operation, a reduction algorithm 1s
identified. Additionally, the reduction algorithm 1s converted
to a segmented reduction algorithm. Furthermore, the seg-
mented reduction algorithm 1s performed to produce an out-
put.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a method for converting a reduction algo-
rithm to a segmented reduction algorithm, 1n accordance with
one embodiment.

FI1G. 2 shows a system for converting a reduction algorithm
to a segmented reduction algorithm, in accordance with one
embodiment.

FIG. 3 shows a method for converting a reduction algo-
rithm to a segmented reduction algorithm, 1n accordance with
another embodiment.

FIG. 4 shows a method for converting a reduction algo-
rithm to a segmented reduction algorithm, 1n accordance with
another embodiment.

FIG. SA shows a data flow for performing a forward seg-
mented reduction algorithm, in accordance with another
embodiment.

FIG. 5B shows a data flow for performing a backward
segmented reduction algorithm, in accordance with one
embodiment.

FIG. 6 1llustrates an exemplary system 1n which the various
architecture and/or functionality of the various previous
embodiments may be implemented.

DETAILED DESCRIPTION

FIG. 1 shows a method 100 for converting a reduction
algorithm to a segmented reduction algorithm, in accordance
with one embodiment. As shown, a reduction algorithm 1s
identified. See operation 102.
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In the context of the present description, a reduction algo-
rithm refers to any algorithm capable of reducing an array or
iput vector by repeated application of an operation that
produces a single result from two 1nput values. For example,
in one embodiment, the reduce algorithm may include an
algorithm that collects data from elements 1n an array or
vector and performs an operation such as a sum operation, a
min operation, or a max operation, etc. on the collected data.

Additionally, the reduction algorithm may include a for-
ward reduction algorithm or a backward reduction algorithm.
In this case, a forward reduction algorithm refers to any
reduction algorithm that operates from left to right across an
array or sequence of values. A backward reduction algorithm
refers to any reduction algorithm that operates from right to
left across an array or sequence of values.

Furthermore, the reduction algorithm 1s converted to a
segmented reduction algorithm. See operation 104. In the
context of the present description, a segmented reduction
algorithm refers to any reduction algorithm capable of per-
forming reductions on arbitrary partitions (e.g. segments,
etc.) of an mput vector, array, or other data structure.

The segmented reduction algorithm may include a forward
segmented reduction algorithm or a backward segmented
reduction algorithm. Furthermore, 1n various embodiments,
the reduction algorithm may be converted to a segmented
reduction algorithm utilizing different techmiques. For
example, 1n one embodiment, the conversion may be per-
formed utilizing computer code embodied on a computer
readable medium (e.g. a software driver, etc.).

In another embodiment, the conversion may be performed
utilizing hardware. In this case, the hardware may include a
parallel architecture. For example, the hardware may include
a graphics processor and/or a central processing unit (CPU)
capable of parallel processing.

Still yet, the segmented reduction algorithm 1s performed
to produce an output. See operation 106. It should be noted
that the segmented reduction algorithm may be performed on
a plurality of elements of an array in parallel. Furthermore,
the segmented reduction algorithm may be performed for
avoiding a full segmented scan.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing framework may or may not be implemented, per
the desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes and
should not be construed as limiting 1n any manner. Any of the
following features may be optionally incorporated with or
without the exclusion of other features described.

FIG. 2 shows a system 200 for converting a reduction
algorithm to a segmented reduction algorithm, in accordance
with one embodiment. As an option, the present system 200
may be implemented to carry out the method 100 of FIG. 1.
Of course, however, the present system 200 may be 1mple-
mented 1n any desired environment. It should also be noted
that the atorementioned definitions may apply during the
present description.

As shown, a parallel processing architecture 202 1s pro-
vided. Such parallel processing architecture 202 includes a
plurality of parallel processors 204. While not shown, such
parallel processors 204 may be capable of operating on a
predetermined number of threads. To this end, each of the
parallel processors 204 may operate 1n parallel, while the
corresponding threads may also operate 1n parallel.

In one embodiment, the parallel processing architecture
202 may include a SIMD architecture. In such a system, the
threads being executed by the processor are collected nto
groups such that at any instant 1n time all threads within a
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single group are executing precisely the same nstruction but
on potentially different data. In one embodiment, this group
of threads operating in such fashion may be referred to as a
“warp.” Further, the predetermined number of threads may
refer to the “warp s1ze” of the corresponding processor.

In another embodiment, the foregoing parallel processing
architecture 202 may include a graphics processor or any
other integrated circuit equipped with graphics processing
capabilities [e.g. in the form of a chipset, system-on-chip
(SOC), core integrated with a CPU, discrete processor, etc.].
In still another embodiment, the foregoing parallel processing
architecture 202 may include a processor with one or more
vector processing elements such as the STI Cell Broadband
Engine microprocessor architecture.

With continuing reference to FIG. 2, the parallel process-
ing architecture 202 includes local shared memory 206. Each
of the parallel processors 204 of the parallel processing archi-
tecture 202 may read and/or write to its own local shared
memory 206. This shared memory 206 may consist of physi-
cally separate memories associated with each processor 204
or it may consist ol separately allocated regions of one or
more memories shared amongst the processors 204. Further,
in the illustrated embodiment, the shared memory 206 may be
embodied on an integrated circuit on which the processors
204 of the parallel processing architecture 202 are embodied.

Still yet, global memory 208 1s shown to be included. In
use, such global memory 208 1s accessible to all the proces-
sors 204 of the parallel processing architecture 202. As
shown, such global memory 208 may be embodied on an
integrated circuit that 1s separate from the integrated circuit
on which the processors 204 of the aforementioned parallel
processing archutecture 202 are embodied. While the parallel
processing architecture 202 1s shown to be embodied on the
various integrated circuits of FIG. 2 1n a specific manner, it
should be noted that the system components may or may not
be embodied on the same mtegrated circuit, as desired.

Still yet, the present system 200 of FIG. 2 may further
include a driver 210 for controlling the parallel processing
architecture 202, as desired. In one embodiment, the driver
210 may include a library, for facilitating such control. For
example, such library may include a library call that may
instantiate the functionality set forth herein. Further, in
another embodiment, the driver 210 may be capable of pro-
viding general computational capabilities utilizing the paral-
lel processing architecture 202 (e.g. a graphics processor,
etc.). An example of such a driver 210 may be provided 1n
conjunction with the CUDA™ framework provided by
NVIDIA Corporation. In operation, the driver 210 may be
used for converting, or to control the system 200 to convert, a
reduction algorithm to a segmented reduction algorithm.

Segmented reduction generalizes the reduction primitive
by allowing reductions on arbitrary partitions (e.g. segments,
etc.) of an put vector. Segments may be demarcated by
flags, where a set tlag marks the first element of a segment.
Segmented reduce 1s usetul as a building block for multiply-
ing a sparse matrix by a dense vector, which 1s a core opera-
t1ion 1n most sparse solvers. Accordingly, in one embodiment,
the segmented reduction algorithm may be performed 1n con-
nection with a sparse matrix-dense vector multiplication
operation.

In some cases, applications such as sparse matrix-vector
multiplication are difficult to map to data-parallel machines
(e.g. GPUs, etc.) because of unequal workloads. In these
applications, processing may be performed in parallel on
multiple segments of unequal length. If each thread of a
parallel processing architecture processes one such segment,
a work imbalance between threads may occur.
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A segmented reduction operation allows the reduction of
segments to be performed by potentially many processing
clements in parallel, thus avoiding the work imbalance of
assigning each segment to a single processing element. More-
over, the running time of such operation 1s dependent on the
length of the input vector and not on the number of segments
or their length.

In some cases, sparse matrix-vector multiplication may
also be implemented by using a segmented scan. In contrastto
segmented reduction, which computes the sum of all ele-
ments for each segment, a segmented scan produces the set of
all partial sums across each segment.

Computing the sum of all elements for each segment 1s
suificient for computations such as sparse matrix-vector mul-
tiplication. In other words, the last element (or beginning
clement, depending on the direction of data movement) pro-
duced by the segmented scan 1n each segment 1s all that 1s
needed for such computations. Thus, a segmented reduce that
only computes the required values may be utilized, and may
be more efficient since it performs less work.

To implement the segmented reduce operation, an array
may be divided mnto groups of elements that may each be
reduced by a single thread block (e.g. one or more threads,
etc.). For example, 11 an input array of N elements 1s provided,
the array may be divided into N/B blocks of B/2 threads each,
where B 1s the total number of blocks. In this example, it 1s
assumed that N 1s a multiple of B.

A segmented reduce 1s then performed on each of these
N/B blocks 1n parallel. The last data element of each block
may then be written to an auxiliary array “SUMS.” Similarly,
the last flag element for the block may be written to another
auxiliary array “FLAGS.” In this case, the last flag element 1s
the logical OR of all the flags 1n that block.

Finally, the index of the leftmost flag 1n that block may be
written to a minimum limit index data structure “MIN_INDI-
CES” In order to create this limit index data structure, a
vector of data and a vector of flags the same length as the data
vector may be provided to each block. In this case, a block
refers to a group of threads or processing elements.

In the vector of tlags, a flag 1s setto “1” for an element 11 an
clement 1n the corresponding data vector 1s a segment head.
Alternatively, the tlag vector element 1s set to “0” 11 an ele-
ment 1n the corresponding data vector 1s not a segment head.

Thus, the segmented reduction algorithm may be per-
formed utilizing an index data structure, where the index data
structure may mclude an index of a last element 1n a subset of
an array, or an index of a first element 1n a subset of an array,
depending on a direction of the reduction operation. Further-
more, the segmented reduction algorithm may be performed
utilizing at least one head flag capable of indicating the start
ol segments.

As an example, 1 a sequence “a” 1s segmented mnto sub-
sequences, where a=[[3 1] [7 0 4] [1 6 3]], “a” may be
represented as an array of values and an array of head flags. In
this case, a head flag of “1” may be used to indicate the start
of anew subsequence. Table 1 shows an array of values and an
array of head flags, 1n accordance with this example.

TABLE 1
a. values [31704163]
a. tlags [10100100]

It should be noted that other representations of the segmen-
tation may also be utilized. For instance, 1n one embodiment,
a corresponding subsequence count may be recorded for each
clement.
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Using this flag vector (e.g. a.flags, etc.) an index vector
may be constructed, where an element 1s set to an index of the
clement-1 11 the head flag to the right of that element is set, or
to a default value (e.g. UINT_MAX, etc.) if otherwise. An
inclusive backward minimum scan may then be performed on
this vector.

Thus, for each element 1in the mput, the corresponding
clement in the mdex vector 1s the index of the last element of
that segment. From this index vector, “index,” a value may be
generated for the limit data structure for the i”” block,
MIN_INDICES[1]. In this case, MIN_INDICES[1] 1s equal to
index|[0]+1, where 1ndex|[0] 1s the first element of the index
vector of that block.

For the i’ block, three values are written to SUMSJ1],
FLAGSJ1], and MIN_INDICES[1] respectively. Thus, the
arrays SUMS, FLAGS, and MIN_INDICES have N/B ele-
ments. An inclusive segmented scan 1s then performed on the
SUMS array with the flags in the FLAGS array. More infor-
mation regarding the performance of the inclusive segmented
scan may be found 1n U.S. patent Ser. No. 11/950,245, filed
Dec. 4, 2007, under the title “SYSTEM, METHOD, AND
COMPUTER PROGRAM PRODUCT FOR CONSTRUCT-
ING A PROCEDURE CAPABLE OF PERFORMING A
SEGMENTED SCAN OPERATION ON A S JQUENCE OF
ELEMENTS OF ARBITRARY LENGTH,” which 1s incor-
porated herein by reference in its entirety.

Once the inclusive segmented scan 1s performed, an add
kernel may be invoked to add the elements of the SUMS array
to the N/B blocks on which the segmented scan was per-
formed 1n parallel. In this case, a umiform add may be imple-
mented. Information regarding the uniform add may be found
in U.S. patent application Ser. No. 11/862,938, filed Sep. 27,
2007, under the title “SYSTEM, METHOD AND COM-
PUTER PROGRAM PRODUCT FOR PERFORMING A
SCAN OPERATION,” which 1s incorporated herein by reif-
erence 1n 1ts entirety.

As aresult of the uniform add, SUMSJ1] 1s added to all the
elements of the first segment in the (i+1)” block, ranging
from the second block to the last block. In the case of an
un-segmented scan, this add may occur on all the elements of
the block, as the segment may be viewed as spanning an entire
block. To determine the extent of the first segment 1n each
block, the MIN_INDICES array may be utilized.

The MIN_INDICES array has, for each block, the index of
the leftmost flag in that block. Thus, the uniform add kernel
only adds SUMSJi] to those elements of the (i+1)” block
whose 1ndices are less than that in MIN_INDICES/1].

In this way, a segmented reduce may be performed on all
blocks 1n parallel. A second level inclusive segmented scan
with a block level reduce of data and flags may then be
performed. Furthermore, the results of the segmented scan
may be added back into the corresponding blocks output from
the reduce that was performed in parallel. It should be noted
that the addition 1s only performed to the first or last segment
in that block, depending on the direction of the scan.

A second level inclusive segmented scan with a block level
reduce of data and flags may then be performed and the results
of the segmented scan may be added back into the corre-
sponding blocks output from the reduce that was performed in

parallel. More information regarding this data flow may be
found 1 U.S. patent Ser. No. 11/950,245, filed Dec. 4, 2007,

under the title “SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR CONSTRUCTING A PRO-
CEDURE CAPABLE OF PERFORMING A SEGMENTED
SCAN OPERATION ON A SEQUENCE OF ELEMENTS
OF ARBITRARY LENGTH,” which has been incorporated

by reference 1n 1ts entirety.
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It should be noted that a further down-sweep may be
needed to obtain the correct value at every position. In this
case, the down-sweep may include any computation that uses
results (e.g. partial sums, etc.) computed by the reduction
operation to build a final scan result 1n place on the array.
Table 2 shows code for performing a forward segmented
reduction, 1n accordance with one embodiment.

TABLE 2
if (index[ai] == index[bi])
{
data[bi] = data[b1] + data[a1]);
h
else
{
int seg last 1dx = index[ai];
if (seg_last_1dx ! = ai)
{
data[seg last 1dx] = data[seg last 1dx] + data[ai];
h
1
// OR-reduce of flags
flags[bi] = flags[bi] | lags[ai];

With respect to the code shown 1n Table 2, since index|i]
has the index of the last element of each segment, 1t 1s deter-
mined whether index[a1] and index|[bi] are the same. It they
are the same, dataJai] and data[bi] are in the same segment
and these values are added. If index|[a1] and index|b1] are not
the same, data[a1] 1s added to the last element 1n 1ts segment
whose 1ndex 1s index|ai]. It 1s also verified that ““a1” 1s not the
index of the last element of its own segment. It should be
noted that, in this case, there 1s not a need for a min-reduce
since MIN_INDICES[i] may be calculated for each i block
from the 1ndex vector.

In another embodiment, a backward segmented reduction
algorithm may be implemented. In other words, the seg-
mented reduce may be implemented utilizing an “add-to-the-
left” addition pattern rather than an “add-to-the-right™ addi-
tion pattern shown in the reduce step. This may be
accomplished by setting “a1” to a thread Id value and “b1” to
the thread Id value+1 before the start of the log n steps of the
reduce operation.

At the end of each reduce step, “ar”” and “b1”” are multiplied
by 2. The index vector calculatlon for the backward seg-
mented reduction 1s implemented differently than the forward
segmented reduction. From the flag vector, an index vector
may be constructed that 1s set to the index of the element, 1
the head flag for that element 1s set or 0. An inclusive maxi-
mum scan may be performed on this vector. Thus, for each
clement 1n the input, the corresponding element 1n the index
vector 1s the mdex of the first element of that segment.

Instead of using the mimimum limit data structure
MIN_INDICES, as 1n the forward segmented reduction, a
maximum limit data structure such as a MAX INDICES
vector, may be utilized, where MAX_INDICES[1] includes
the index of the starting position of the last segment for the 1”*
block. In this case, MAX_ INDICES[1] 1s equal to index|las-
tIdx], where index[lastldx] 1s the last element of the mdex
vector of that block.

For the i” block, three values are written to SUMSJ1],
FLAGS[1], and MAX_INDICES[1] respectively. In this case,
the arrays SUMS, FLAGS, and MAX_INDICES have N/B
clements. An inclusive backward segmented scan 1s then per-
formed on the SUMS array with the tlags in the FLAGS array.
Furthermore, an add kernel 1s invoked to add the elements of
SUMS to the N/B blocks on which the segmented scan had

been performed in parallel.

EC 3‘3‘
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Similar to the forward segmented reduce operation, this 1s
a umform add. In this case, SUMS[1+1] 1s added to all the
elements of the last segment in the (1)” block, ranging from
the first block to the second last block. In the case of un-
segmented scan, this may occur to all the elements of the
block since the segment may be viewed as spanning an entire
block. To find out the extent of the last segment 1n each block,
the MAX_INDICES array may be utilized. The MAX_INDI-
CES array has, for each block, the index of the rightmost flag
in that block. Thus, the uniform add kernel only adds SUMS
[i] to those elements of the (i+1)” block whose indices are

greater than or equal to that in MAX_INDICES]1].

Table 3 shows code for performing a backward segmented
reduction, 1n accordance with one embodiment.

TABLE 3
if (index[ai] == index[bi])
{
data[ai] = data[ai] + data[bi]);
h
else
{
int seg_first_1dx = index|[bi];
if (seg first 1dx != bi)
{
data[seg first 1dx] = data[seg_first i1dx] + data[bi];
h
h
// OR-reduce of flags

flags[ai] = flags[a1] | flags[bi];

With respect to the code shown 1n Table 3, since index|[i]
has the index of the first element of each segment, it 1s deter-
mined whether index[a1] and index[bi1] are the same. If they
are the same, dataJai] and data[bi] are in the same segment
and these values are added. If index|a1] and index|b1] are not
the same, data[bi1] 1s added to the first element in 1ts segment
whose 1ndex 1s index|[bi1]. It 1s also verified that “b1”” 1s not the
index of the first element of its own segment. Using these
techniques, the correct reduce values may be located at the
last indices or the first indices, depending on the direction of
the segmented reduce, of each segment without the need for
any down-sweep.

FIG. 3 shows a method 300 for converting a reduction
algorithm to a segmented reduction algorithm, 1n accordance
with another embodiment. As an option, the present method
300 may be implemented in the context of the functionality
and architecture of FIGS. 1-2. Of course, however, the
method 300 may be carried out 1n any desired environment.
Again, the atforementioned definitions may apply during the
present description.

As shown, a segmented reduction algorithm 1s performed
on a plurality of blocks 1n parallel. See operation 302. In the
context of the present description, a block refers to any con-
tiguous group of elements 1n an array. Thus, the segmented
reduction algorithm may be performed on a plurality of ele-
ments of an array, 1n parallel.

A second level inclusive segmented scan with block level
reduce of data and flags 1s then performed. See operation 304.
It 1s then determined whether a segment 1s a first or last
segment 1n a block. See operation 306.

If the segment 1s the first segment 1n a block and a forward
segmented reduce of the data i1s being performed, the results
of the segmented scan in operation 302 are added back into to
the corresponding blocks of the output from operation 304.
See operation 308. Similarly, 1f the segment 1s the last seg-
ment 1n a block and a backward segmented reduce of the data
1s being performed, the results of the segmented scan 1n
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operation 302 are added back into to the corresponding
blocks of the output from operation 304. It should be noted
that the addition only happens to the first or last segment in
that block.

FIG. 4 shows a method 400 for converting a reduction
algorithm to a segmented reduction algorithm, in accordance
with another embodiment. As an option, the present method
400 may be implemented in the context of the functionality
and architecture of FIGS. 1-3. Of course, however, the
method 400 may be carried out 1n any desired environment.
Furthermore, the alorementioned definitions may apply dur-
ing the present description.

As shown, an input 1s received. See operation 402. The
input may include an array of values “A” and “B” and 1index
data structures corresponding with the array of values, “I(A)”
and “I(B)” respectively. In this case, the index data structure
I{A) and I(B) include the index of the last elements in the
subsequence of the array of values A and B respectively.

Once the input 1s recerved, it 1s determined whether I(A) 1s
equal to I(B). See operation 404. I1 1t 1s determined that I{A)
1s equal to I(B), then the array of values B 1s set to be equal to
the sum of A and B. See operation 406.

If I{A) 1s determined to be equal to I(B), then 1t 1s further
determined whether I(A) 1s equal to the index of A. See
operation 408. IT1t 1s determined that I{ A) 1s equal to the index
of A, then the reduction process 1s stopped.

IT 1t 1s determined that I(A) 1s not equal to the index of A,
then a data array DATA 1s configured such that DATA[I(A)] 1s
equal to DATA[I(A)]+A. See operation 410. DATA[I(A)] 1s
then added to the last element 1n 1ts segment. See operation
412.

In this way, a segmented reduction may be performed on a
fixed byte sequence. This result may then be utilized 1n con-
junction with a segmented scan. More information regarding
utilizing the segmented reduction in conjunction with the

segmented scan may be found 1n U.S. patent Ser. No. 11/950,
245, filed Dec. 4, 2007, under the title “SYSTEM, METHOD,

AND COMPUTER PROGRAM PRODUCT FOR CON-
STRUCTING A PROCEDURE CAPABLE OF PERFORM-
ING A SEGMENTED SCAN OPERATION ON A
SEQUENCE OF ELEMENTS OF ARBITRARY

ENGTH,” which has been incorporated by reference 1n its
entirety.

FIG. 5A shows a data flow 520 for performing a forward
segmented reduction algorithm, 1n accordance with another
embodiment. As an option, the present data flow 520 may be
viewed 1n the context of the details of FIGS. 1-4. Of course,
however, the data tlow 520 may be implemented 1n any
desired environment. The atorementioned definitions may
apply during the present description.

As shown, a plurality of segment boundaries 522 are pro-
vided. Each segment defined by the segment boundary 522
includes one or more elements 524. In this case, the solid
arrows 1ndicate data movement from the elements 524 1n the
segments when performing a segmented reduce. The dotted
arrows show data movement in absence of any segments. The
array of numbers 526 indicates an index of the last element of
the segment. The array of numbers 526 may correspond to the
index vector, for example.

FIG. 5B shows a data tlow 540 for performing a backward
segmented reduction algorithm, in accordance with one
embodiment. As an option, the present data flow 540 may be
viewed 1n the context of the details of FIGS. 1-5A. Of course,
however, the data tlow 540 may be implemented 1n any
desired environment. Furthermore, the atorementioned defi-
nitions may apply during the present description.
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As shown, a plurality of segment boundaries 542 are pro-
vided. Each segment defined by the segment boundary 542
includes one or more elements 544. In this case, the solid
arrows 1ndicate data movement from the elements 544 1n the
segments when performing a segmented reduce. The dotted
arrows show data movement in absence of any segments. The
array of numbers 546 indicates an index of the segment head.
The array of numbers 546 may correspond to the index vector,
for example.

FIG. 6 illustrates an exemplary system 600 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a sys-
tem 600 1s provided including at least one host processor 601
which 1s connected to a communication bus 602. The system
600 also 1includes a main memory 604. Control logic (soft-
ware) and data are stored in the main memory 604 which may
take the form of random access memory (RAM).

The system 600 also includes a graphics processor 606 and
a display 608, 1.¢. a computer monitor. In one embodiment,
the graphics processor 606 may include a plurality of shader
modules, a rasterization module, etc. Each of the foregoing
modules may even be situated on a single semiconductor
platform to form a graphics processing unit (GPU).

In the present description, a single semiconductor platform
may refer to a sole unitary semiconductor-based integrated
circuit or chip. It should be noted that the term single semi-
conductor platiorm may also refer to multi-chip modules with
increased connectivity which simulate on-chip operation, and
make substantial improvements over utilizing a conventional
central processing unit (CPU) and bus implementation. Of
course, the various modules may also be situated separately
or 1n various combinations of semiconductor platforms per
the desires of the user.

The system 600 may also include a secondary storage 610.
The secondary storage 610 includes, for example, a hard disk
drive and/or a removable storage drive, representing a floppy
disk drive, a magnetic tape drive, a compact disk drive, etc.
The removable storage drive reads from and/or writes to a
removable storage unit 1n a well known manner.

Computer programs, or computer control logic algorithms,
may be stored 1in the main memory 604 and/or the secondary
storage 610. Such computer programs, when executed,
enable the system 600 to perform various functions. Memory
604, storage 610 and/or any other storage are possible
examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented 1n the
context of the host processor 601, graphics processor 606, an
integrated circuit (not shown) that is capable of at least a
portion of the capabilities of both the host processor 601 and
the graphics processor 606, a chipset (i.e. a group of inte-
grated circuits designed to work and sold as a unit for per-
tforming related functions, etc.), and/or any other integrated
circuit for that matter.

Still yet, the architecture and/or functionality of the various
previous figures may be implemented 1n the context of a
general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 600 may take the form of a desktop
computer, lap-top computer, and/or any other type of logic.
Still yet, the system 600 may take the form of various other
devices including, but not limited to, a personal digital assis-
tant (PDA) device, a mobile phone device, a television, eftc.

Further, while not shown, the system 600 may be coupled
to a network [e.g. a telecommunications network, local area
network (LAN), wireless network, wide area network (WAN)
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such as the Internet, peer-to-peer network, cable network,
etc.) for communication purposes.

While various embodiments have been described above, 1t
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of a preferred embodiment should notbe limited by any of the
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What 1s claimed 1s:

1. A method, comprising:

identitying a reduction algorithm;

converting the reduction algorithm to a segmented reduc-

tion algorithm utilizing computer code embodied on a
computer readable medium, wherein the segmented
reduction algorithm includes a forward segmented
reduction algorithm or a backward segmented reduction
algorithm; and

performing the segmented reduction algorithm, utilizing a

processor, to produce an output;

wherein the segmented reduction algorithm 1s performed

in connection with a sparse matrix-dense vector multi-
plication operation.

2. The method of claim 1, wherein the converting 1s per-
formed utilizing hardware.

3. The method of claim 2, wherein the hardware includes a
parallel architecture.

4. The method of claim 2, wherein the hardware includes a
graphics processor.

5. The method of claim 1, wherein the segmented reduction
algorithm 1s performed for avoiding a full segmented scan.

6. The method of claim 1, wherein the segmented reduction
algorithm 1s performed on a plurality of elements of an array,
in parallel.

7. The method of claim 1, wherein the segmented reduction
algorithm 1s performed utilizing an index data structure.

8. The method of claim 7, wherein the index data structure
includes an mdex of a last element 1n a subset of an array.

9. The method of claim 7, wherein the index data structure
includes an idex of a first element 1n a subset of an array.

10. The method of claim 7, wherein the segmented reduc-
tion algorithm 1s performed utilizing at least one head flag.

11. The method of claim 1, and further comprising per-
forming a segmented scan algorithm on the output to generate
an additional output.

12. The method of claim 11, and further comprising adding
the additional output to the output of the segmented scan
algorithm.

13. The method of claim 12, wherein the additional output
1s added to only a first and last element of the output of the
segmented scan algorithm.

14. A computer program product embodied on a non-tran-
sitory computer readable medium, comprising:

computer code for identifying a reduction algorithm;

computer code for converting the reduction algorithm to a

segmented reduction algorithm, wherein the segmented
reduction algorithm includes a forward segmented
reduction algorithm or a backward segmented reduction
algorithm; and

computer code for performing the segmented reduction

algorithm to produce an output;

wherein the segmented reduction algorithm 1s performed

in connection with a sparse matrix-dense vector multi-
plication operation.
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15. An apparatus, comprising: wherein the segmented reduction algorithm 1s performed
a processor for identitying a reduction algorithm, convert- in connection with a sparse matrix-dense vector multi-
ing the reduction algorithm to a segmented reduction plication operation.
algorithm utilizing computer code embodied on a com- 16. The apparatus of claim 15, wherein the processor
puter readable medium, wherein the segmented reduc- 5 remains in communication with memory and a display via a
tion algorithm includes a forward segmented reduction bus.

algorithm or a backward segmented reduction algo-
rithm, and performing the segmented reduction algo-
rithm to produce an output; I I
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