United States Patent

US008316156B2

(12) (10) Patent No.: US 8.316,156 B2
Rucker 45) Date of Patent: Nov. 20, 2012
(54) METHOD AND APPARATUS FOR 6,427,171 Bl 7/2002 Craft et al.
INTERFACING DEVICE DRIVERS TO gggg ; ?g g; 1%%88% Elackfr . al.
] 535, 1 u et al.
SINGLE MULTI-FUNCTION ADAPTER 6,591,302 B2 7/2003 Boucher et al.
6,591,310 Bl 7/2003 John
(75) Inventor: James Dean Rucker, Austin, TX (US) 6,594,329 Bl 7/2003 S?lsni?::
6,594,712 Bl 7/2003 Pettey et al.
(73) Assignee: Intel-Ne, Inc., Wilmington, DE (US) 6,601,126 B1 ~ 7/2003 Zaidi et al.
6,025,157 B_2 9/2003 N_iu et al.
(*) Notice: Subject to any disclaimer, the term of this g’gg?’g% E nggg IB);?;EIB;{ .
patent 1s extended or adjusted under 35 6:675:200 R1 1/2004 Cheriton of al
U.8.C. 154(b) by 1398 days. 6,690,757 Bl 2/2004 Bunton et al.
(21) Appl. No.: 11/356,500 (Continued)
(22) Filed: Feb. 17, 2006 OTHER PUBLICATIONS
Office Actionreceived forU.S. Appl. No. 11/315,685, mailed on May
(65) Prior Publication Data 14, 2010, 34 Pages.
US 2007/0198720 Al Aug. 23, 2007 (Continued)
(51) 21(;;51(*;155/16 (2006.01) Primary Examiner — Barbara Burgess
' (74) Attorney, Agent, or Firm — Christopher K. Gagne
(52) US.CL ..., 709/250; 709/217; 709/224
(58) Field of Classification Search 709/203, (57) ABRSTRACT
709/250, 223, 224 | > _
See application file for complete search history. Systems which utilize a series of managers to handle resource
management. Three types of managers are preferably used,
(56) References Cited with each manager being 1n one of two states, active or avail-

U.S. PATENT DOCUMENTS

5,400,326 A 3/1995 Smith
5,434,976 A 7/1995 Tan et al.
5,758,075 A 5/1998 (Graziano et al.
5,832,216 A 11/1998 Szczepanek
5,953,511 A 9/1999 Sescila, III et al.
6,052,751 A 4/2000 Runaldue et al.
6,067,300 A 5/2000 Baumert et al.
6,145,045 A 11/2000 Falik et al.
6,199,137 Bl 3/2001 Aguilar et al.
6,243,787 Bl 6/2001 Kagan et al.
6,389,479 Bl 5/2002 Boucher et al.
6,400,730 Bl 6/2002 Latif et al.
6,408,347 Bl 6/2002 Smith et al.
6,418,201 Bl 7/2002 Holland et al.

able. The types of managers are Global Interface Manager
(GIM), Resource Manager (RM) and Access Manager (AM).
Associated with each device driver for a given function 1s a
GIM. The device driver may be associated with one or more
RMs and/or AMs. Among managers of a given type, one 1s the
active manager and all other managers of that specific type are
availlable and work with the active manager to handle
resource requests. As there can be RMs for different
resources, the active manager concept 1s applied to the RMs
associated with each resource. Mechanisms are present to
allow the active manager and related information to be trans-
ferred to an available manager 11 necessary.

21 Claims, 9 Drawing Sheets

300 Server
200 ~,
\
Operating system
F A A
1 J16 I 200
ROMA . 406
v OS/driver shv Block Storage NetworkingOS/
mTCF’ (WSD, DAPL VI, MP)}| OSidriver shw driver shw
Imney
X T |SERT TlSCSI
! 404~ | Il e |
400 Exposed |’ WARP scsl [NG
\ TOE L
418~ I

US 8,316,156 B2

Page 2
U.S. PATENT DOCUMENTS 2005/0080982 Al 4/2005 Vasilevsky et al.
2005/0102682 Al 5/2005 Shah et al.
6,693,901 Bl 2/2004 Byers et al 2005/0149623 Al 7/2005 Biran et al.
6,694,394 Bl 2§2004 BﬂCEIaChl 2005/0220128 Al 10/2005 Tucker et al.
g,gg}gg? Ef géggj iﬁi etal. 2005/0223118 AL* 10/2005 Tucker et al. 709/250
» [Iy 2005/0265352 Al 12/2005 Biran et al.
2%}*32‘2 E% ggggj El?sfoiial 2006/0039374 Al 2/2006 Belz et al.
6,760,307 B2 7/2004 Dunning et al. ggggfg?ggg?g it",k ggggg gause
1 assetal. 455/41.2
2*223*23 Ef ;gggj gﬁftiene;ta;i 2006/0126619 Al 6/2006 Teisberg et al.
£213553 B2 119004 Ave * 2006/0136570 Al* 6/2006 Pandyacccoooeveene.... 709/217
750893326 By 2006 Bougleretal 2006/0146814 Al 7/2006 Shah et al
' 2006/0193327 Al 82006 Arndt et al.
2033 g%;‘ Eg 1%882 g;?lfi?fik et al. 2006/0195617 Al 8/2006 Arndt et al.
7"i49 217 B 12/7006 Pette 2006/0230119 Al 10/2006 Hausauey et al.
) | ey 2006/0235977 Al 10/2006 Wunderlich et al.
7,149,819 B2 12§2006 Pettey " 2006/0236063 Al 10/2006 Hausauer et al.
%Q g;‘j Eg 2/388; E};%“Mffe o 2006/0248047 Al 11/2006 Grier et al.
7937510 B2 7/2007 White * 2006/0251109 Al 11/2006 Muller et al
5007 Bovd of al 2006/0259644 Al* 11/2006 Boydetal.ccccceee...... 709/250
%gg%gg D oo poyeeial 2006/0274787 AL* 12/2006 PONZ ...oooorerrrrrvenn 370/469
308551 By 129007 Araﬁt al 2007/0083638 Al* 4/2007 Pinkerton et al. 709/224
VS, * 2007/0136554 Al* 6/2007 Biranetal. ..ocoocoviviii... 711/203
gggg;gg Eg ggggg Ez“ndﬁ o 2007/0150676 Al 6/2007 Arimilli et al.
SO 8 * 2007/0165672 Al 7/2007 Keels et al.
[Il B %882 éiffa‘g:ttjll* 2007/0168567 Al 7/2007 Boyd etal.
289, 5008 Biran ot al 2007/0168693 Al* 7/2007 PLENAN ovvoeeeeeeeeereereoe, 714/4
?iﬁ%;‘ﬁé Eg 2/2008 piran et al 2007/0208820 Al 9/2007 Makhervaks et al.
30017 Ry 69008 Roctamn 2007/0226386 Al 9/2007 Sharp et al.
7L / Olfk?POUII 2007/0226750 Al 9/2007 Sharp et al.
}jgé%%g g% ;éggg ii aaetal 2008/0028401 Al 1/2008 Geisinger
3L, ' 2008/0043750 Al 2/2008 Keels et al.
;jgg%é g% 13//%882 g}lza“hfetal 2008/0147822 Al 6/2008 Benhase et al.
33/, 5008 Daic of o] 2008/0244577 Al 10/2008 Le et al.
g;‘gééﬁ’g Eg l;/2009 oavis et al 2009/0254647 Al 10/2009 FElzur et al.
7.543.087 B2 6/2009 Philbrick et al. ggi?fgggégig if‘ 1%8}? Iiléae"‘};:tt;l
7,551,614 B2 6/2009 Teisberg et al. i ’
7,565,504 B2 7/2009 Garcia et al. OTHER PURI ICATIONS
7.688.838 Bl 3/2010 Aloni et al.
7,782,869 Bl 8/2010 Chitlur Srinivasa Office Action received for U.S. Appl. No. 11/624,849, mailed on May
7,782,905 B2 8/2010 Keels et al. 24,2010, 11 Pages.
7.843.906 Bl 11/2010 Chidambaram et al.
7,849,232 B2 12/2010 Sharp et al. Response to Office Action recerved for U.S. Appl. No. 11/356,501,
7.889.762 B2 2/2011 Keels et al. filed May 28, 2010, 14 Pages.
8,032,664 B2 10/2011 Sharp et al. Notice of Allowance recerved for U.S. Appl. No. 11/357,449, mailed
2001/0049740 Al 12/2001 Karpoff on Jun. 8, 2010, 13 Pages.
%883;88;2%23 i gggg% Eleuil(erclllatetlal‘ Final Office Action recerved for U.S. Appl. No. 11/315,685 mailed on
1 Uiicra ¢l 4l.
2002/0147839 Al 10/2002 Boucher et al. Aug. 11, 2009, 34 Pages. |
5002/0161919 Al 10/2007 BRoucher of al Notice of Allowance recerved for U.S. Appl. No. 11/356,501, mailed
2002/0172195 A1 11/2002 Pekkala et al. on Aug. 7, 2009, 22 Pages.
2002/0191627 Al* 12/2002 Subbiah et al ... 370/428 Response to Non-Final Office Action received for U.S. Appl. No.
2003/0031172 Al 2/2003 Grinfeld 11/357,445, filed Jul. 8, 2009, 21 Pages.
2003/0050990 Al 3/2003 Craddock et al. Response to Non-Final Office Action received for U.S. Appl. No.
2003/0097428 Al 5/2003 Afkhami et al. 11/357,449, filed Aug. 17, 2009, 19 Pages.
2003/0165160 Al 9/2003 Minamu et al. Response to Final Office Action received for U.S. Appl. No.
2003/0169775 Al 972003 Tan et al. 11/315,685, filed Sep. 17, 2009, 22 Pages.
ggg;;gg?gfgg i }%ggg gﬁﬁgl;ﬂ;egla‘l‘ Final Office Action recerved for U.S. Appl. No. 11/357,445, mailed
2003/0237016 Al 12/2003 Johnson et al. on Sep. 10, 2009, 43 Pages.
5004/0010545 A1 1/2004 Pandya Nop-Fmal Office Action received for U.S. Appl. No. 11/356,493,
2004/0010594 Al 1/2004 Boyd et al. mailed on Sep. 21, 2009, 26 Pages. |
2004/0015622 Al 1/2004 Avery Amendment after Notice of Allowance recerved for U.S. Appl. No.
2004/0030770 Al 2/2004 Pandya 11/356,501, filed Oct. 8, 2009, 11 Pages.
2004/0037319 Al 2/2004 Pandya Response to Final Office Action received for U.S. Appl. No.
2004/0049600 Al* 3/2004 Boydetal. ...ccccc........ 709/250 11/357,445, filed Nov. 10, 2009, 17 Pages.
2004/0049774 Al 3/2004 Boyd et al. Response to Non-Final Office Action received for U.S. Appl. No.
2004/0062267 Al 4/2004 Minami et al. 11/356,493, filed Nov. 17, 2009, 13 Pages.
%883;8822323 i ggggj E{hlte Notice of Allowance received for U.S. Appl. No. 11/356,501, mailed
1 ZUT
2004/0093389 Al 5/2004 Mohamed et al. ;P 1\105.;4, 2099, 12 Pa.gesc‘lf | / y
5004/0093411 Al* 52004 Elouretal 700/274 inal Otfhice Action recerved for U.S. Appl. No. 11/357,449, maile
2004/0098369 Al 5/2004 Elzur on Nov. 18, 2009, 17 Pages.
2004/0100924 A1 5/2004 Yam Non-Final Office Action received for U.S. Appl. No. 11/624,849,
2004/0153578 Al 82004 Elzur mailed on Nov. 23, 2009, 34 Pages.
2004/0193908 Al 0/2004 Garcia et al. Response to Fmal Office Action recerved for U.S. Appl. No.
2004/0221276 Al 11/2004 Ra; 11/357,449, filed Dec. 8, 2009, 13 Pages.
2004/0236877 Al1* 11/2004 Burton 710/22 Non-Final Ofice Action received for U.S. Appl. No. 11/357,449,
2005/0044264 Al 2/2005 Grimminger et al. mailed on Dec. 21, 2009, 8 Pages.

US 8,316,156 B2
Page 3

Non Final Office Action received for U.S. Appl. No. 11/315,685,

mailed on Jan. 4, 2010. 26 Pages.
Response to Final Offl

ice Action receiwved for U.S. Appl. No.
11/315,685, filed Jul. 8, 2010, 23 Pages.

Final Office Action recewed for U.S. Appl. No. 11/356,493, mailed
on Jul. 8, 2010, 17 Pages.

Response to the Non Final Office Action recerved for U.S. Appl. No.
11/624,849, filed Jul. 29, 2010, 12 Pages.

Notice of Allowance recerved for U.S. Appl. No. 11/356,501, mailed
on Aug. 19, 2010, 15 Pages.

Response to Final Office Action received for U.S. Appl. No.
11/356,500, filed Sep. 9, 2010, 9 Pages.

Response to Non-Final Office Action received for U.S. Appl. No.
11/356,501, filed Mar. 26, 2008, 16 pages.

Non-Final Office Action received for U.S. Appl. No. 11/356,501,
mailed on Jul. 7, 2008, 10 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
11/356,501, filed Nov. 6, 2008, 16 pages.

Final Office Action recewed for U.S. Appl. No. 11/356,501, mailed
on Jan. 22, 2009, 12 pages.

Response to Final Office Action received for U.S. Appl. No.
11/356,501, filed Apr. 2, 2009, 15 pages.

Notice ofAllowance received for U.S. Appl. No. 11/356,501, mailed
on Jun. 11, 2009, 8 pages.

Response to Office Action recerved for U.S. Appl. No. 11/624,849,
filed Jan. 22, 2010, 15 Pages.

Office Action recerved for U.S. Appl. No. 11/356,493, mailed on Feb.
3,2010, 15 Pages

Response to Office Action recerved for U.S. Appl. No. 11/357,449,
filed on Mar. 4, 2010, 12 Pages.

Response to Office Action recerved for U.S. Appl. No. 11/315,685,
filed on Mar. 5, 2010, 24 Pages.

Shah, et al., “Direct Data Placement over Reliable Transports (Ver-
sion 1.0)”, RDMA Consortium document, Oct. 2002, pp. 1-35.
“Intel Virtual Interface (VI) Architecture Performance Suite User’s
Guide”, Preliminary Version V0.3, Intel Corporation, Dec. 16, 1998,
28 pages.

Jinzanki, “Construction of Virtual Private Distributed System of
Comet”, RWC 2000 Symposium, Japan, XP002243009, Jan. 2000,
pp. 1-3.

Pathikonda, et al., “Virtual Interface (VI) Architecture Overview”,
Enterprise Server Group, Intel Corporation, Apr. 1998, pp. 1-33.
Speight, et al., “Realizing the Performance Potential of the Virtual
Interface Architecture”, Proceedings of the 13th international con-
ference on Supercomputing, Rhodes, Greece, 1999, pp. 184-192.
Response to Non-Final Office Action received for U.S. Appl. No.
09/784,761, filed Jul. 12, 2006, 35 pages.

Non-Final O 1ce Action recewed for U.S. Appl. No. 09/784,761,
mailed on Feb. 14, 2006, 19 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
09/784,761, filed Nov. 26, 2005, 34 pages.

Final Office Action recerved for U.S. Appl. No. 09/784,761, mailed
on Jul. 29, 2005, 25 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
09/784,761, filed Apr. 19, 2005, 34 pages.

Non-Final O 1ce Action recewed for U.S. Appl. No. 09/784,761,
mailed on Feb. 14, 2005, 24 pages.

Response to Non-Final Ofﬁce Action received for U.S. Appl. No.
09/784,761, filed Sep. 29, 2004, 15 pages.

Non-Final O ice Action recerved for U.S. Appl. No. 09/784,761,
mailed on Jul. 12, 2004, 12 pages.

Non-Final Office Action received for U.S. Appl. No. 09/817,008,
mailed on Jul. 9, 2004, 19 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
09/817,008, filed Nov. 4, 2004, 19 pages.

Non-Final Office Action received for U.S. Appl. No. 09/817,008,
mailed on Nov. 18, 2005, 23 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
09/817,008, filed Apr. 18, 2006, 33 pages.

Final Office Action recerved for U.S. Appl. No. 09/817,008, mailed
on Jul. 14, 2006, 7 pages.

Response to Final Office Action received for U.S. Appl. No.
09/817,008, filed Nov. 14, 2006, 40 pages.

Non-Final Office Action received for U.S. Appl. No. 09/817,008,
mailed on Feb. 9, 2007, 17 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
09/817,008, filed May 9, 2007, 5 pages.

Non-Final Office Action received for U.S. Appl. No. 09/817,008,
mailed on Jul. 25, 2007, 19 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
09/817,008, filed Nov. 26, 2007, 21 pages.

Notice of Allowance recerved for U.S. Appl. No. 09/817,008, mailed
on Mar. 28, 2008, 23 pages.

Amendment after Notice of Allowance received for U.S. Appl. No.
09/817,008, filed Apr. 2, 2008, 20 pages.

Non-Final Office Action received for U.S. Appl. No. 11/357,446,
mailed on Jun. 3, 2008, 24 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
11/357,446, filed Nov. 10, 2008, 26 pages.

Final Office Action recerved for U.S. Appl. No. 11/357,446, mailed
on Dec. 31, 2008, 22 pages.

Non-Final Office Action received for U.S. Appl. No. 11/315,685,
mailed on Feb. 18, 2009, 25 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
11/315,685, filed Apr. 30, 2009, 22 pages.

Non-Final Office Action received for U.S. Appl. No. 11/357,445,
mailed on Aug. 4, 2008, 18 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
11/357,445, filed Nov. 7, 2008, 19 pages.

Final Office Action recerved for U.S. Appl. No. 11/357,445, mailed
on Dec. 24, 2008, 19 pages.

Response to Final Office Action received for U.S. Appl. No.

11/357,445, filed Mar. 4, 2009, 18 pages.

Non-Final Office Action received for U.S. Appl. No. 11/357,445,
mailed on Apr. 24, 2009, 21 pages.

Non-Final Office Action received for U.S. Appl. No. 11/357,449,
mailed on Jun. 4, 2009, 13 pages.

Non-Final Office Action received for U.S. Appl. No. 10/737,556,
mailed on Jul. 6, 2004, 10 pages.

Supplemental Non-Final Office Action received for U.S. Appl. No.
10/737,556, mailed on Sep. 21, 2004, 8 pages.

Response to Supplemental Non-Final Office Action recerved for U.S.

Appl. No. 10/737,556, filed Oct. 12, 2004, 4 pages.

Non-Final Office Action received for U.S. Appl. No. 10/737,556,
mailed on Jan. 26, 2005, 11 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
10/737,556, filed Apr. 19, 2005, 24 pages.

Final Office Action recerved for U.S. Appl. No. 10/737,556, mailed
on Jul. 28, 2005, 19 pages.

Response to Final Office Action received for U.S. Appl. No.

10/737,556, filed Nov. 26, 2005, 27 pages.

Non-Final Office Action received for U.S. Appl. No. 10/737,556,
mailed on Feb. 14, 2006, 14 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
10/737,556, filed Jul. 12, 2006, 31 pages.

Notice of Allowance recerved for U.S. Appl. No. 10/737,556, mailed
on Oct. 3, 2006, 12 pages.

Notice of Allowance recerved for U.S. Appl. No. 09/784,761, mailed
on Oct. 6, 2000, 14 pages.

Mayo, John S., “The role of microelectronics in communication™,
Scientific American, Sep. 1977, pp. 192-209.

Warmke, Doug, “Building Up Chips Using VHDL and Synthesis”,
System Design, Dec. 1994/Jan. 1995, 7 pages.

Non-Final Office Action received for U.S. Appl. No. 11/356,501,
mailed on Dec. 26, 2007, 12 pages.

Office Action recerved for U.S. Appl. No. 11/624,849, mailed on Mar.
10, 2010, 15 pages.

Amendment after Notice of Allowance received for U.S. Appl. No.
11/356,501, filed Jan. 29, 2010, 10 pages.

Response to Office Action recerved for U.S. Appl. No. 11/624,849,

filed Mar. 31, 2010, 14 pages.

Response to O ice Action received for U.S. Appl. No. 11/356,493,

filed Apr. 2, 2010, 13 pages.

Office Actionrecerved for U.S. Appl. No. 11/356,501, mailed on Apr.
13, 2010, 16 pages.

US 8,316,156 B2
Page 4

Non Final Office Action recerved for the U.S. Appl. No. 11/356,493,
mailed on Oct. 13, 2010, 17 pages.

Final Office Action recerved for U.S. Appl. No. 11/624,849, mailed
on Oct. 14, 2010, 11 pages.

Response to Final Office Action received for U.S. Appl. No.

11/624,849, filed Dec. 8, 2010, 9 pages.

Non-Final Office Action received for the U.S. Appl. No. 11/315,685,
mailed on Dec. 20, 2010, 32 pages.

Notice of Allowance received for the U.S. Appl. No. 11/624,849,
mailed on Dec. 20, 2010, 6 pages.

Response to Non-Final Office Action recerved for the U.S. Appl. No.

11/356,493, filed Jan. 3, 2011, 10 pages.

Final Office Action recerved for U.S. Appl. No. 12/874,739, mailed
on Jan. 19, 2011, 12 pages.

Final Office Action recerved for U.S. Appl. No. 11/356,493, mailed
on Feb. 15, 2011, 17 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
11/356,493, filed Jan. 3, 2011, 10 pages.

Response to Non-Final Office Action recerved for the U.S. Appl. No.
11/315,685, filed Feb. 25, 2011, 20 pages.

Final Office Action received for the U.S. Appl. No. 11/315,685,

mailed on Mar. 7, 2011, 31 pages.
Response to Non-Final Office Action received for U.S. Appl. No.

12/874,739, filed Mar. 3, 2011, 10 pages.

Office Action Recerved for U.S. Appl. No. 11/315,685, mailed on
May 9, 2011, 39 pages.

Response to Office Action Received for U.S. Appl. No. 11/315,685,
filed Apr. 20, 2011, 23 pages.

Office Action Recerved for U.S. Appl. No. 11/356,493, mailed on
May 24, 2011, 18 pages.

Response to Non-Final Office Action Received for U.S. Appl. No.
11/356,493, filed Apr. 15, 2011, 10 pages.

Response to Non-Final O 1ce Actlon Recerved for U.S. Appl. No.
11/315,685, filed Jun. 14, 2011; 26 pages.

Notice of Allowance Received for U.S. Appl. No. 12/874,739, mailed
on Jun. 1, 2011; 115 pages.

Non Fmal Office Action Recerved for U.S. Appl. No. 11/356,493,
mailed on May 24, 2011, 18 pages.
Response to Non-Final O ice Action Recerved for U.S. Appl. No.

11/356,493, filed Jul. 13, 2011; 10 pages.

™

* cited by examiner

U.S. Patent Nov. 20, 2012 Sheet 1 of 9 US 8,316,156 B2

Ethernet Infiniband
fabric
108 102

Channel
fabric

104

106 106

Fig. 1

(Prior Art)

U.S. Patent Nov. 20, 2012 Sheet 2 of 9 US 8,316,156 B2

Server
200 100
Operating system
Clusternng Block Storage
OS/driver shw OS/dnver shw
202 206 210
IBHCA I FC HBA I NIC I
204 208 212

Infinbband ibre Channel

102 104 106

U.S. Patent Nov. 20, 2012 Sheet 3 of 9 US 8,316,156 B2

Ethernet fabric

310

306 306

US 8,316,156 B2

Sheet 4 of 9

Nov. 20, 2012

U.S. Patent

OLE

(S)ougey jewsLy3

(IdWN I\ dva ‘asmw
MS JBAUP/SO

AE

007

00t

U.S. Patent Nov. 20, 2012 Sheet 5 of 9 US 8,316,156 B2

500 Server
Host CPUs 300
502
514 -
Chi
pset 504
PCIl bus 516 PCIl bus 518
4OOA\ 400B

506 512

1 Gbmode 10 Gb mode
.

W] Q] o] [oH
50866 3| 508 /‘jllﬂ\
605
602 PCl \ 604
616 PCIX Cortg Exoress
64/133 R@ES X8
400
606
PFP
A
m' 608 128(data) 64(PBL) 610
P . .
(PE) s Transacation Switch ” ocal
(TSW) Memory
128 F F ——F Interface
6612 6

IP Address HMF’F’\ MPF' MPP loopback] 618
Table -

012 Se1a G 61461612 O

620" {106] 106 10(3 1OG Fig. 6
814 | MAC MAC 614

xgmilO xgmi 1 xgm||2 xgm||3
v v v h 4

U.S. Patent

Nov. 20, 2012 Sheet 6 of 9

712

US 8,316,156 B2

720~ 122
it I

730 | 3
% F‘;eTszza Sw m
pea
724 o
i TOE '
o] NG —
41 746 718 (ARP
T 732
S mi
", ¢ N,
pea wm sw i pea
— — pea
PEA-TSWif I Protocol Engre PEALMIiF
- Abier (PEA) \—
Wi I 202" plabeif
W !

LM

US 8,316,156 B2

Sheet 7 0of 9

Nov. 20, 2012

U.S. Patent

8 ‘b4 — -
!
30, 0
on | || |on d
]SOH 1S0H 301

—I-'I

aones || ames bl (218 A8 | €I e oL —— 60|80
ol o E_mo@ | OIN o_z JIN [DIN nm_(ws N [ON

wovan | [uomen m_z SaN [SIN| 1SAN|SaN GaN [SaN
9

4 aones (O 8bes yood SNBSS O] WA PIRSSIEa0Y | (800BS (O SEPOS PEIRISO0Y
N4 {0d | 1oun4 10d 9oUN4[0d Gound [10d

908 0i8

US 8,316,156 B2

Sheet 8 0f 9

Nov. 20, 2012

U.S. Patent

906

N 06

AIOW3|A 1SOH

6 ‘b4
9|qe | uoibay Aowa sJ9)sIbay s19)s1b9y Ja)sIbay %907 pedyoiesns
| §5920V 0| 1ouiay)3 pedyolesds aJemyos N
| V04 00t
¢ uonoun4 |Jd | uonoung |0d 0 uoljound |0d
aseqele (8)qe]ieAy) Seqeleq> (51qe)IeAY) “eseqeleq> (aAY)
WV/NY JoBeur ANV/NY | NV/WY
W9 | et ||| WD | gt
S _ —S aoepa)u) [EQOD |
~—016 ~—116 ~21l6
230 —_
aseqejeQ (21qeieAy) _Iaulm_._.m_zl seqeleq | (AnaY) | (8An0Y)
JLHN | Jobeuel JLHN 0 Jobeuep
0 Jabeue

80Jn0s8y J 1 M S 01059y JLMN g $S920Y HOd >
~—0€6 PE6 — N 7 =

\w.. —_— \bwyl AL A4 € _
m. (3|qEjIBAY) = (3|gejieAy) ps
7y 7 jobeuepy Py | Jabeuepy m

% SS90y Uo4 M SS3IYY HOd NM @ |
-
D —{ (D — —— = = O
6 = N Q ..um_ 0 06 —
ulwu_ 9¢ 5 ¥Z6 m_l.. m .m: v m

| JoAL(] S31A3(JOAU(] 321N 19ALI(] 33IAR(]

006

US 8,316,156 B2

Sheet 9 of 9

Nov. 20, 2012

U.S. Patent

9|qEL

uoibay AJowasiy

$J9]SI69Y SS920Y
OId isulayld

sJa)sibay
pedyole.ios

9JEM]|0G

1915169y
%007 pedydjesos

¢ uoiouny [0d

vO4d

| uoioung _om_li

_ @m&; (3iqe|ieAy) * | (oSegEeq” ELEE)
NN |z 1ebBeuep VN B
19, BB P2, ﬂ%mm%_m__z
S R 5 eqoe
T /o6 |, 7.6 -
— — —40IH
(aAnoY) peosmmn RN CRETEAY ERL o (3An0Y)
={E%, 0 Jobeuep LN | Jobeuey AN 0 Jabeuepy
32Jn0s8Y J14d m w 934N0Say 31 HIN 80In0SaY J | MW
-
N I/ N RN 7 NS e
s 8 e
c| = (o1qe)12AY) = (ageyeay)
i o Z JoBeue)y & | Jobeuen
a S $5800Y LOd m >3990¥ HOd
% —awnt 3 = .,
d 920l |= = 6 gsi
= - M 223
1 Zzuopoung Luogouny | —
49Al(J 30IAS(] JBALQ 891N
B 900! N 06

00V

T 0 UofouN4 |0d

oeeed) (emnoy)
NS | g 1aBeuepy
A, aoepa)u|
F— S Rqo
AT
_ (oAl1oV)
0 Jobeuey
$S300Y Jod A
>
O
¢Co — .MF
o©
o]
&
&
c06 S|
P A
_ 2
| 0 uonaun4
19ALIQ 821A8(]

Aows|\ 1SOH

006

US 8,316,156 B2

1

METHOD AND APPARATUS FOR
INTERFACING DEVICE DRIVERS TO
SINGLE MULTI-FUNCTION ADAPTER

BACKGROUND OF THE INVENTION

1. Field of the Invention

2. Description of the Related Art

In complex computer systems, particularly those 1n large
transaction processing environments as shown in FIG. 1, the
available servers 100 are often clustered together to improve
overall system performance. Second, these clustered servers
100 are then connected by a storage area network (SAN) to
storage units 106, so that all have high performance access to
storage. Further, the servers 100 are also connected to an
Ethernet network to allow the various user computers 110 to
interact with the servers 100. Thus, the servers 100 use a first
tabric 102 for clustering, a second fabric 104 for the SAN and
a third fabric 108 to communicate with the users. In normal
use the cluster fabric 102 1s one such as InfinitBand, the SAN
tabric 104 1s one such as Fibre Channel and the user fabric 108
1s one such as Ethernet. Therefore, in this configuration each
of the servers 100 must have three different adapters to com-
municate with the three fabrics. Further, the three adaptors
take up physical space, consume more power and produce
more heat 1n a particular server, thus limiting the density of
available servers 1n a high processor count environment. This
increases cost and complexity of the servers themselves.
Additionally three separate networks and fabrics must be
maintained.

This 1s shown additionally 1n FIG. 2 where the software
components are shown. An operating system 200 1s present 1n
the server 100. Connected to the operating system 200 1s a
clustering driver 202 which connects with an InfiniBand host
channel adapter (HCA) 204 in the 1llustrated embodiment.
The InfiniBand HCA 204 is then connected to the InfiniBand
tabric 102 for clustering. A block storage driver 206 1s con-
nected to the operating system 200 and interacts with a Fibre
Channel host bus adapter (HBA) 208. The Fibre Channel
HBA 208 1s connected to the Fibre Channel fabric 104 to
provide the SAN capability. Finally, a networking driver 210
1s also connected to the operating system 200 to provide the
third parallel link and 1s connected to a series of network
interface cards (NICs) 212 which are connected to the Ether-
net fabric 108.

Legacy operating systems such as Linux 2.4 or Microsoft
NT4 were archutected assuming that each “I/O Service” 1s
provided by an independent adapter. An “I/O Service” 1s
defined as the portion of adapter functionality that connects a
server onto one of the network fabrics. Referring to FIG. 2,
the NIC 212 provides the Networking I/0O Service, the HCA
204 provides the Clustering I/0O Service, and the HBA 208
provides the Block Storage 1/0 Service. It would be desirable
to allow a single ECA or Ethernet Channel Adapter to provide
all three of these I/O Services. Since most traditional high
performance networking storage and cluster adapters are PCI
based and enumerated as independent adapters by the Plug
and Play (PnP) component of the operating system, the sofit-
ware stacks for each fabrics have evolved independently. In
order for an ECA to be deployed on such legacy operating
systems, 1ts I/O Services must be exported using independent
PCI functions. While this type of design fits nicely into the
PnP environment, 1t exposes issues related to shared
resources between the PCI functions.

Consider an ECA having networking and storage I/O Ser-
vices. A first 1ssue 1s 1mnitialization of a specific Ethernet port
that 1s shared between the I/O Services. The independent

10

15

20

25

30

35

40

45

50

55

60

65

2

drivers that are exporting networking and storage concur-
rently from separate PCI functions may want to utilize a
common ECA port. In this case a single Ethernet PHY may
need to be initialized by writing to MDIO registers in order to
bring the FEthernet link to an active state. Access to the PHY
must be coordinated or the drivers may never be able to bring
the link to an active state. If the access 1s not coordinated, a
scenario where one driver resets the PHY and then starts
initializing various PHY registers when the other driver has
already gotten to the point of mitializing the same PHY reg-
isters can occur. The content of the PHY registers atthe end of
concurrent mnitialization performed by both drivers 1s 1inde-
terminate. This could lead to software errors as well as diifi-
culties bringing up the Ethernet link.

A second example 1s link state change on an Ethernet port
that 1s shared between the 1/O Services. Without coordina-
tion, a link state change event may be fielded by one of the
drivers, which clears the event as part of the normal process-
ing for a link state change. It 1s highly likely that the second
driver will not see the link state change event and therefore
not behave properly.

External ports, accelerated connections, and memory reg-
1stration resources are all examples of resources that must be
managed 1n a way that 1s intuitive and in a way that takes the
best advantage of the functionality provided by an ECA.
(Given that the services exported by the ECA can be loaded 1n
any order by a PnP enabled operating system and that users
can dynamically (or permanently) disable one or more of the
services, an FCA should have a flexible mechanism to
robustly and transparently transfer resource management
responsibility between the various drivers that provide ECA
SErvices.

SUMMARY OF THE INVENTION

Systems according to the present invention utilize a series
of managers to handle resource management. Three types of
managers are preferably used, with each manager being in
one of two states, active or available. The types of managers
are Global Interface Manager (GIM), Resource Manager
(RM) and Access Manager (AM). Associated with each
device driver for a given function 1s a GIM. The device driver
may be associated with one or more RMs and/or AMs.
Among managers of a given type, one 1s the active manager
and all other managers of that specific type are available and
work with the active manager to handle resource requests. As
there can be RMs for different resources, the active manager
concept 1s applied to the RMs associated with each resource.

Mechanisms are present to allow the active manager and
related information to be transierred to an available manager
if necessary.

In this manner device drivers may independently load or

unload without concerns for resource management issues of
the ECA.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram of a computer system including,
clustering, user access and storage area networking according
to the prior art.

FIG. 2 15 a block diagram showing the logical arrangement
of a server 1n the system according to FIG. 1.

FIG. 3 1s a block diagram of a computer system including,
servers, a user and storage connected by a single fabric
according to the present invention.

FIG. 4 1s a logical block diagram of a server according to

FIG. 3.

US 8,316,156 B2

3

FIG. 5 15 a block diagram of the various components of a
server of FIG. 3.

FI1G. 6 1s a hugh level block diagram of an Ethernet channel
adapter (ECA) of FIG. 5 according to the preferred embodi-
ment.

FI1G. 7 1s ablock diagram of the protocol engine of the ECA
of FIG. 6.

FIG. 8 1s a block diagram o1 9 logical model of an embodi-
ment according to the present invention.

FIGS. 9 and 10 are block diagrams that illustrate a global
interface managers, resource managers and access managers
for managing shared resources of I/O services according to
the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

In the preferred embodiment as shown in FIG. 3, three
servers 300 are connected to an Ethernet fabric 310. Prefer-
ably this 1s a higher performance Ethernet fabric 310 than the
Ethernet fabric 108 as 1t 1s also used for storage area network-
ing and clustering capabilities. As can be seen, there 15 logi-
cally only a single link to a single fabric 1n the system accord-
ing to the preferred embodiment, though this may be any
number of actual physical links. Storage units 306 are also
directly connected to the Ethernet fabric 310. Further, a con-
ventional user 110 1s connected to the Ethernet fabric 310.
Because only a single fabric 310 1s utilized 1n the designs
according to the preferred embodiment, significantly less
maintenance and management 1s required than as 1n the prior
art as shown in FIG. 1. To handle the three varying tasks,
clustering, storage and user interface, the server 300 includes
an Ethernet channel adapter (ECA) 400 (FI1G. 4). Thus ECA

400 1ncludes builtin capabilities to provide enhanced capa-
bilities over current Ethernet fabrics. These enhancements
include RDMA capability, particularly according to the
1WARP standard, and 1SCSI. iWARP 1s utilized 1n the clus-
tering environment, whereas 1SCSI 1s the standard for doing,
SANSs using Ethernet.

Referring to FIG. 4, the server 300 according to the pre-
terred embodiment includes an operating system 200 as in the
prior art. It similarly contains a networking driver 210, which
1s connected to a NIC 412. A block storage driver 406 1s also
connected to the operating system. It differs slightly from that
used 1n FIG. 2 because 1n this case 1t 1s an 1SCSI driver, as
opposed to the Fibre Channel driver utilized in FIG. 2. The
driver 406 communicates with 1ISCSI hardware 408 present 1n

the ECA 400. A clustering driver 402 1s also slightly different
in that i1t utilizes RDMA capabilities and complies with the

1WARP standard. To that end 1t 1s connected to an 1WARP
module 404 1n the ECA 400. An RDMA chimney 416 accord-
ing to the Microsoit Scalable Networking Initiative 1s present
for appropriate Microsolt operating systems to interact with
the 1WARP module 404 and the operating system 200 to
provide improved RDMA capabilities. Because both the
1SCSI storage function and the clustering iWARP function
need to be very high performance, a TCP oilload engine
(TOE) 418 1s provided to connect to the 1IWARP module 404
and the 1ISCSI module 408. Further, a TCP chimney 420, also
according to the Microsoit Scalable Networking Initiative, 1s
present for appropriate Microsolt operating systems and 1s
connected to the TOE 418. Both the TOE 418 and the NIC 412
are connected to an Ethernet crossbar switch 422 contained 1n
the ECA 400 to allow tlexibility of the various connections to
the Ethernet fabric 310.

Referring thento FIG. 5, a simple block diagram of a server
300 1s shown. The various host CPUs 500 are connected to a

10

15

20

25

30

35

40

45

50

55

60

65

4

server chipset 502, which 1s also connected to server or host
memory 504. An optional hard drive 514 1s coupled to the
server chipset 502 to provide storage of the operating system,
device drivers and relevant programs. In the illustrated
embodiment further connected to the server chipset 502 using
a PCI bus 512, such as a PCI-X bus, 1s a first ECA 400A,
which 1s shown to be operating 1n one Gb Ethernet mode.
RAM 506 1s connected to the ECA 400A to form temporary
butlter storage. Four one Gb Ethernet ports 308 are connected
to the ECA 400A to provide the actual output capability. In
the 1llustrated embodiment a second ECA, 1n this case ECA
400B, 1s connected to the server chipset 502 using a PCI bus
514, such as a PCI-Express bus, and 1s operating in ten Gb
Ethernet mode and includes a pair of ten Gb Ethernet ports
510. RAM 512 1s also connected to ECA 400B to provide
butlers for its various functions.

Referring then to FIG. 6, a block diagram of the ECA 400
according to the preferred embodiment 1s shown. Various
server bus interfaces 602 and 604, such as PCI-X or PCI-
Express, are shown to provide connections to the server chip
set 502. A set of configuration registers 605 1s connected to
the server bus interfaces 602 and 604 to present the ECA 400
to the appropriate bus as more fully described below. The
server bus interfaces 602 and 604 are connected to a PCI
frame parser (PFP) 606. The PFP 606 interfaces the host
CPUs 500 into a transaction switch 608. In the preferred
embodiment the internal architecture of the ECA 400 1s based
on serial data packet flows and the transaction switch 608 1s
used to connect the various internal blocks of the ECA 400 as
well as providing the crossbar 422 Function. For example,
one of these blocks 15 a local memory interface 610. This 1s
where the RAM 506 or 512 1s connected to allow storage of
data being recerved and transmitted. A series of MAC packet
parsers (MPP) 612 are provided to parse data being received
from the Ethernet fabric 310. These are also connected to the
transaction switch 608 to allow them to provide data to or
retrieve data from the local memory interface 610 or the
transaction switch 608. The various MPPs 612 are connected
to the relevant Ethernet MACs 614 to provide the actual
interface to the Ethernet fabric 310. A protocol engine (PE)
616 1s connected to the transaction switch 608 and also has a
direct connection to the local memory interface 610 to allow
higher speed operation. The protocol engine 616 performs all
the processing relating to the NIC, TOE, 1SCSI and 1WARP
modules shown in the prior logical block diagram. A special
loop-back MPP 618 1s provided to allow improved switching
capabilities mside the ECA 400. Finally, an IP address table
620 1s present to provide the IP addresses utilized by the ECA
400 1n 1ts communications over the Ethernet fabric 310.

FIG. 7 illustrates the block diagram of the protocol engine
616 of the preferred embodiment. A protocol engine arbiter
(PEA) 702 1s connected to the transaction switch 608 and the
local memory interface 610 to provide a point of contact
between the protocol engine 616 and those devices. Various
subcomponents of the protocol engine 616 have their access
to those two devices arbitrated by the protocol engine arbiter
702 as indicated by arrows captioned by the relevant portions
(tsw or Imi) of the protocol engine arbiter 702 adjacent a
bracket labeled pea.

In basic operations, a series of tasks are performed by the
various modules or sub-modules 1n the protocol engine 616 to
handle the various iIWARP, 1ISCSI and regular Ethernet traflic.
A context manager 704 1s provided with a dedicated datapath
to the local memory interface 610. As each connection which
1s utilized by the ECA 400 must have a context, various
subcomponents or submodules are connected to the context
manager 704 as indicated by the arrows captioned by cm.

US 8,316,156 B2

S

Thus all of the relevant submodules can determine context of
the various packets as needed. The context manager 704
contains a context cache 706, which caches the context values
from the local memory, and a work available memory region
cache 708, which contains memory used to store transmit
scheduling information to determine which operations
should be performed next in the protocol engine 616. The
schedules are effectively developed 1n a work queue manager
(WOQM) 710. The WOQM 710 handles scheduling for all trans-
missions of all protocols 1n the protocol engine 616. One of
the main activities of the WQM 710 1s to determine when data
needs to be retrieved from the external memory 506 or 512 or
from host memory 504 for operation by one of the various
modules. The WQM 710 handles this operation by requesting,
a time slice from the protocol engine arbiter 702 to allow the
WOQM 710 to retrieve the desired information and place 1t 1n
on-chip storage. A completion queue manager (CQM) 712
acts to provide task completion indications to the CPUs 500.
The CQM 712 handles this task for various submodules with
connections to those submodules indicated by arrows cap-
tioned by cqm. A doorbell submodule 713 receirves com-
mands from the host, such as “a new work i1tem has been
posted to SQ x,” and converts these commands 1nto the appro-
priate context updates.

ATCP oft-load engine (TOE) 714 includes submodules of
transmit logic 716 and receive logic 718 to handle processing,
tor accelerated TCP/IP connections. The receive logic 716
parses the TCP/IP headers, checks for errors, validates the
segment, processes received data, processes acknowledges,
updates RTT estimates and updates congestion windows. The
transmit logic 716 builds the TCP/IP headers for outgoing
packets, performs ARP table look-ups, and submits the
packet to the transaction switch 608. An 1IWARP module 719
includes a transmit logic portion 720 and a receive logic
portion 722. The 1tWARP module 719 implements various
layers of the 1IWARP specification, including the MPA, DDP
and RDMAP layers. The receive logic 722 accepts inbound
RDMA messages from the TOE 714 for processing. The
transmit logic 720 creates outbound RDMA segments from
PCI data recerved from the host CPUs 500.

A NIC module 724 1s present and connected to the appro-
priate items, such as the work queue manager 710 and the
protocol engine arbiter 702. An 1SCSI module 726 1s present
to provide hardware acceleration to the 1SCSI protocol as
necessary.

Typically the host operating system provides the ECA 400
with a set of restrictions defining which user-level software
processes are allowed to use which host memory address
ranges 1n work requests posted to the ECA 400. Enforcement
of these restrictions 1s handled by an accelerated memory
protection (AMP) module 728. The AMP module 728 vali-
dates the 1IWARP STag using the memory region table (MRT)
and returns the associated physical butfer list (PBL) informa-
tion. An HDMA block 730 1s provided to carry out the DMA
transier of information between host memory 504,via one of
the bus 1nterfaces 602 or 604, and the transaction switch 608
on behalfl of the WQM 710 or the iWARP module 719. An
ARP module 732 1s provided to retrieve MAC destination
addresses from an on-chip memory. A free list manager
(FLM) 734 1s provided to work with various other modules to
determine the various memory blocks which are available.
Because the data, be 1t data packets or control structures, 1s all
contained 1n packets, a list of the available data blocks 1is
required and the FLLM 734 handles this function.

The protocol engine 616 of the preferred embodiment also
contains a series processors to perform required operations,
cach processor including the appropriate firmware for the

10

15

20

25

30

35

40

45

50

55

60

65

6

function of the processor. The first processor 1s a control
queue processor (CQP) 738. The control queue processor 738
performs commands submitted by the various host drivers via
control queue pairs. This 1s relevant as queue pairs are utilized
to perform RDMA operations. The processor 738 has the
capability to imtialize and destroy queue pairs and memory
regions or windows. A second processor 1s the out-of-order
processor (OOP) 740. The out-of-order processor 740 1s used
to handle the problem of TCP/IP packets being received out-
of-order and 1s responsible for determining and tracking the
holes and properly placing new segments as they are
obtained. A transmit error processor (1EP) 742 1s provided
for exception handling and error handling for the TCP/IP and
1WARP protocols. The final processor 1s an MPA reassembly
processor 744. This processor 744 1s responsible for manag-
ing the receive window buller for iWARP and processing
packets that have MPA FPDU alignment or ordering 1ssues.

Prior to proceeding with the description, following are
definitions of various terms.

Virtual Device: Generic term for the “1I/O adapters™ nside
ECA 400. The ECA 400 of the preferred embodiments imple-
ments these virtual devices: four host NICs, which are con-
nected to the operating system; 12 internal NICs, which are
private or mnternal NICs that are not exposed to the operating
system directly; four management NICs; one TCP Oftload
Engine (TOE); one 1SCSI acceleration engine; and one
1WARP acceleration engine.

Service: One or more virtual devices are used 1n concert to
provide the IO Services implemented by ECA 400. The four
major ECA 400 1/0 Services are: Network, Accelerated Sock-
ets, Accelerated RDMA, and Block Storage. A given 1/0
Service may be provided by different underlying virtual
devices, depending on the software environment that ECA
400 1s operating in. For example, the Accelerated Sockets I/O
Service 1s provided using TOE and Host NIC(s) 1n one sce-
nario, but 1s provided using TOE and Internal NIC(s) in
another scenario. Virtual devices are often not exclusively
owned by the I/O Services they help provide. For example,
both the Accelerated Sockets and Accelerated RDMA 1/O
Services are partly provided using the TOE virtual device.
The only virtual device exclusively owned 1s 1ISCSI, which 1s
owned by Block Storage.

PCI Function: ECA 400 1s a PCI multi-function device as
defined 1n the PCI Local Bus Specification, rev 2.3. ECA 400
implements from one to eight PCI Functions, depending on
configuration. Each PCI Function exports a group of I/O
Services that 1s programmed by the same device driver. A PCI
Function usually has at least one unique IP address and
always has at least one unique MAC address.

Endnode: A virtual device or set of virtual devices with a
unique Ethernet MAC address.

ECA Logical Model: The ECA Logical Model describes
how ECA 400 functionality (e.g. Ethernet ports, virtual
devices, I/O Services, etc) will be presented to end users. It 1s
to be understood that certain aspects of the ECA Logical
Model do not map directly and simply to the physical ECA
400 1mplementation. For example, there are no
microswitches 1n the ECA 400 implementation.
Microswitches are virtual, and the transaction switch 608

implements their functionality. Management and configura-
tion software saves information in NVRAM that defines the
Logical Model.

Each microswitch basically has the functionality of a layer
2 Ethernet switch. Each arrow connecting to a microswitch
represents a unique endnode. The ECA 400 preferably com-
prises at least 20 unique Ethernet unicast MAC addresses as
shown.

US 8,316,156 B2

7

A microswitch 1s only allowed to connect between one
active Ethernet port or link aggregated port group and a set of
ECA 400 endnodes. This keeps the microswitch from requir-
ing a large forwarding table, resulting 1n a microswitch being
like a leaf switch with a single default uplink port. Inbound
packets always terminate at one or more ECA 400 endnodes
so that there 1s no possibility of switching from one external
port to another. Outbound packets sent from one ECA 400
endnode may be internally switched to another ECA 400
endnode connected to the same microswitch. If internal
switching 1s not required, the packet always gets forwarded
out the Ethernet or uplink port.

Each FEthernet port has its own unique unicast MAC
address, termed an ECA 400 “management MAC address”.
Packets using one of these management MAC addresses are
always associated with a management NIC virtual device.
Packets sent to these addresses will often be of the fabric
management variety.

A box labeled “mgmt filter” within the microswitch repre-
sents special filtering rules that apply only to packets to/from
the management NIC virtual devices. An example rule: Pre-
vent multicast packets transmitted from a management NIC
from internally switching.

If there 1s a “mux” or multiplexer in an ECA Logical
Model, this signifies packet classification. In FIG. 8, for
example, the muxes associated with Block Storage, Acceler-
ated Sockets, and Accelerated RDMA 1/0O Services represent
the quad hash from the TCP and IP values. The quad hash 1s
used to determine whether a given packet 1s accelerated or
not, so that non-accelerated packets go to the connected NIC
and the accelerated packets go to the connected TOE.

Each I/O Service 1s associated with an “affiliated NIC
group”’. An “afliliated NIC group™ always contains four NIC
virtual devices. The number of active NIC virtual devices
within an “affiliated NIC group” 1s always equal to the num-
ber of ECA 400 Ethernet ports 1n use. Organizing ECA 400
NIC virtual devices mto “affiliated NIC groups” 1s usetul
because 1t helps determine which NIC should receive an
inbound packet when link aggregation 1s active and because 1t
helps prevent outbound packets from being internally
switched 1in some cases.

Each accelerated I/O Service (Accelerated Sockets, Accel-
crated RDMA, and Block Storage) 1s associated with an
“atfiliated NIC group™ because 1t provides a portion of 1ts
services using an “afliliated” TCP/IP stack running on the
host or server. The “afliliated” TCP/IP stack transmits and
receives packets on ECA 400 Ethernet ports via these affili-
ated NICs. There may be multiple TCP/IP stacks simulta-
neously running on the host to provide all of the ECA 400 I/O
Services. The portion of services provided by an “affiliated”
TCP/IP stack are:

Inttiates TCP/IP connection: An affiliated TCP/IP stack 1s
responsible for imtiating each TCP/IP connection, and then
notifying the ECA 400. Once notified, the ECA 400 will
perform the steps required to transter the connection from the
host to the corresponding Accelerated 1/0 Service, and will
then inform the host of the success or failure of the transier in
an asynchronous status message.

Performs IP fragment reassembly: the ECA 400 does not
process inbound IP fragmented packets. Fragmented packets
are recerved by their affiliated TCP/IP stack for reassembly,
and are then returned to the ECA 400 for higher layer pro-
cessing.

Processes fabric management, e.g. ARP or ICMP, mes-
sages.

All /0O Services transier data betweenthe ECA 400 and the
host using the Queue Pair (QP) concept from 1WARP verbs.

10

15

20

25

30

35

40

45

50

55

60

65

8

While the specific policy called out 1n the 1WARP verbs
specification may not be enforced on every I/0O Service, the
concepts of submitting work and completion processing are
consistent with 1IWARP verbs. This allows a common method
for submitting and completing work across all I/O Services.

The WQE and CQE format used on QPs and CQs across QPs

on different I/O Services vary significantly, but the mecha-
nisms for managing WQs (work queues) and CQs (comple-
tion queues) are consistent across all I/O Services.

The ECA 400 preferably uses a tlexible mterrupt scheme
that allows mapping of any interrupt to any PCI Function. The
common elements of interrupt processing are the Interrupt
Status Register, Interrupt Mask Register, CQ, and the
Completion Event Queue (CEQ). ECA 400 has sixteen CEQs
that can be distributed across the eight PCI Functions. CEQs
may be utilized to support quality of service (QOS) and work
distribution across multiple processors. CQs are individually
assigned to one of the sixteen CEQs under software control.
Each WQ within each QP can be mapped to any CQ under
soltware control. This model allows maximum flexibility for

work distribution.

The ECA 400 has 16 special QPs that are utilized for
resource assignment operations and contentious control func-
tions. These Control QPs (CQPs) are assigned to specific PCI
Functions. Access to CQPs 1s only allowed to privileged
entities. This allows overlapped operation between verbs
applications and time consuming operations, such as memory
registration.

System soltware controls how the ECA 400 resources are
allocated among the active I/O Services. Many ECA 400
resources can be allocated or reallocated during run time,
including Memory Regions, PBL resources, and QPs/CQs
associated with Accelerated 1/0 Services. Other ECA 400
resources, such as protection domains, must be allocated once
upon reset. By allowing most ECA 400 resources to be allo-
cated or reallocated during run time, the number of reboots
and driver restarts required when performing ECA 400 recon-
figuration 1s minimized.

There are two major operating system types, unaware oper-
ating systems and aware operating systems. In the context of
this description, unaware operating systems are those that do
not include a TCP/IP stack that can perform connection
upload/download to an Accelerated Sockets, Accelerated
RDMA, or Block Storage I/O Service. The TCP/IP stack 1s
unaware of these various ECA 400 I/O Services. With such
operating systems, the host TCP/IP stack 1s only used for
unaccelerated connections, and one or more additional TCP/
IP stacks, referred to throughout this description as internal
stacks exist to perform connection setup and fabric manage-
ment for connections that will use Accelerated 1I/O Services.
For example, any application that wishes to use an Acceler-
ated RDMA connection will establish and manage the con-
nection through an internal stack, not through the host stack.

In the context of this description, aware operating systems
are those that include a TCP/IP stack that can perform con-
nection upload/download to one or more of: Accelerated
Sockets, Accelerated RDMA, or Block Storage 1/0O Service,
1.e. the TCP/IP stack 1s aware of these various I/0 Services.
Currently those operating systems are only from Microsoft.
Future Microsolt operating systems will incorporate a TOE
chimney or TOE/RDMA chimney, enabling connection
transier between the host TCP/IP stack and the Accelerated
Sockets or Accelerated RDMA 1/O Services. Typically the
host TCP/IP stack 1s used to establish a connection and then
the ECA 400 performs connection transier to the Accelerated

Sockets or Accelerated RDMA 1/0 Service. The advantage of

US 8,316,156 B2

9

this cooperation between the host stack and the ECA 400 1s to
climinate the need for many or all of the internal stacks.

In addition to the characteristics described above, for
operation of the preferred embodiment each of the operating
system types described above utilizes an independent driver
model. Legacy operating systems such as Windows N'14 typi-
cally support only this model. These operating systems
require a separate, independent driver to load for each /O
Service. With this model, the I/O Service to PCI Function
ratio 1s always 1:1.

The primary example 1s unaware operating system and 1s

shown 1 FIG. 8. This Logical Model uses at least 16 IP

addresses when all ports 802 are active, with one IP address
per I/O Service per active port. This programming model uses
at least 20 MAC addresses, with five per active microswitch
800. There are four independent TCP/IP stacks running on the
host 1n this environment: the host stack connected to the
Network I/O Service 804, an internal stack connected to the
Block Storage 1/0 Service 806, an internal stack connected to
the Accelerated Sockets I/O Service 808, and an internal stack
connected to the Accelerated RDMA 1/0 Service 810.

The Block Storage 1/0 Service 806 has access to both the
1SCSI 812 and 1WARP virtual devices 814, which allows 1t to
support both 1ISCSI and 1SER transfers.

If the host supports the simultaneous use of more than one
RDMA API, VI and DAPL, then these APIs connect to the

ECA 400 through a single shared PCI Function.

This model uses this fixed mapping between I/O Services
and PCI Functions:

PCI Function 0, 1, 2, 3 = Network I/O Service 804

PCI Function 4 = Accelerated Sockets I/O Service 808
PCI Function 5 = Accelerated RDMA I/O Service 810
PCI Function 6 = Block Storage /O Service 806

PCI Function 7 = Management NIC 816

It 1s understood that administration of a machine with
multiple active TCP/IP stacks 1s more complicated than
administration of a machine with a single active TCP/IP stack
and that attempts to interact between stacks, such as to coor-
dinate TCP port space usage, must use unconventional means
to provide a robust implementation since no OS-architected
method for mteraction is available.

Thus the Logical Model according to FIG. 8 presents four
virtual host NICs 828, a virtual TOE 830, a virtual 1SCSI
engine 812, a virtual iWARP unit 814 and a virtual manage-
ment device 816. Each of the virtual devices 1s then connected
to the virtual microswitches 800, which 1n turn are connected
to ports 802. The devices are virtual because, as shown in
FIGS. 6 and 7, no such devices actually exist, only the devices
shown 1n those Figures. However, the ECA 400 presents these
virtual devices to conform to the requirements of the unaware
operating system, mndependent driver deployment situation.
These virtual devices are configured as appropriate to provide
the desired I/O service or function, such as Network [/O
Services 804, Block Storage I/O Services 806, RDMA 1/0
Service 810 and Accelerated Sockets I/O Service 808.

In the preferred embodiment the ECA 400 supports the
programming of any I/O Service and any Virtual Device from
any PCI Function. When drivers load, they learn through
configuration parameters which 1/0O Services and Virtual
Devices are configured as active on their PCI function and
restrict themselves to programming only these I/O Services
and Virtual Devices. Alternatively, I/O Services and Virtual
Devices may be determined by operating system needs and

10

15

20

25

30

35

40

45

50

55

60

65

10

the appropriate drivers are loaded. When a driver posts a new
command to the adapter, mapping values inside the protocol
engine 616 are used to associate each command with the
appropriate I/O Service, Virtual Device(s) and an Ethernet
port.

In the preferred embodiment the manager system allows
NIC, clustering, and storage drivers to load or unload in any
order on any combination of PCI functions without interfer-
ing with the operation of drivers that remain 1n the running
state during the transition of the etlected driver. Any requests
to a software component that 1s 1n the process of unloading
will be stalled until a handotl to another capable manager has
occurred.

There are some basic concepts that this manager architec-
ture preferably employs. First, the hardware portion of the
interface 1s only used when necessary due to the impact to the
system of accessing the hardware when compared to local
soltware mechanisms. Second, each type of manager has one
manager designated as the active manager which will be
responsible for performing the functions for that manager
type. All other managers of that type are required to call their
respective active manager using a provided safe mechanism.
Third, each manager provides two sets of interfaces: 1) one
that 1s provided to the user of the manager, and 2) another that
1s used by other managers of the same type. The types of
managers include, but are not limited to, the Global Interface
Manager (GIM), various Resource Managers (RMs) and vari-
ous Access Managers (AMs). The GIM uses the hardware of
the ECA 400 to insure that only one GIM 1s active. All other
managers can use the GIM to insure that only one active
manager exists for each type of manager.

The GIM 1s used as a central repository for the lists of RMs
and AMs. Whenever access to an RM or AM 1s needed, the
(GIM 1s consulted to find the correct manager. RMs are used to
manage lists of software or hardware resources. A few
examples of RMs are Memory Region Table Entry (MRTE)
Manager, Perfect Filter Table Entry Manager, and the Multi-
cast Hash Entry Manager. These resource managers control
resources that are implemented globally by the ECA 400, but
need to be managed per driver or PCI function in order to

1solate failures and prevent resource over-usage. A driver

might request a block of MRTEs from the MRTE RM. The
active MRTE RM owns all MRTEs implemented by the ECA
400 and “loans™ them to drivers as they request them.

AMs are used to manage access to particular hardware
resources. Two example AMs are the EEPROM Manager and
the Flash Manager. In this case only one driver 1s able to

— -

access the EEPROM and/or Flash at a time due to the nature
of the interface to the EEPROM and Flash. A driver would
first obtain access to the hardware resource from the AM, then
access the resource through ECA 400 registers once granted
access, and the notify the AM that access 1s no longer needed.

FIG. 9 shows a system with an ECA 400 that has exposed
three PCI functions. Each function has a device driver that 1s
responsible for exporting ECA 400 functionality to the host
operating system. Host memory 900 thus includes device
driver 902 for PCI Function 0, device driver 904 for PCI
Function 1 and device driver 906 for PCI Function 2. Each
PCI function has a GIM and Port Access Manager loaded,
GIM 0912 and Port AM 0922 for PCI Function 0, GIM 1 914
and Port AM 1 924 for PCI Function 1 and GIM 2 916 and
Port AM 2 926 for PCI Function 2, PCI Functions 1 and 2 also
load MRTE Resource Managers, MRTE RM 1 924 and
MRTE RM 2 934, since they are exporting iWARP function-
ality. This 1s not required for PCI Function 0 as it does not
include 1WARP functionality 1in the example. Basically each
GIM 912, 914 or 916 contains an Fxclusion Interface and a

US 8,316,156 B2

11

GIM interface described below. The GIM 912, 914 or 916 for
cach function uses an algorithm described below to determine
it 1t 1s the active GIM. Each GIM 912, 914 and 916 also
contains a database of the various managers that it 1s aware of
in the system. If or when a GIM hands off 1ts responsibilities
to another available GIM, the database that 1t has built up 1s
also handed to the new active GIM. RMs also hand the data-
base associated with the resources they manage to a new
acttve RM when a handoil operation occurs. The algorithm
for determining what RM 1s active 1s below. AMs do not have
a database associated with them since they do not manage
resources, but only control access to directly accessed chip
registers.

In the simplified example of FI1G. 9, each MRTE RM 934
and 936 has two entry points exported. The first one 1s
Acquire/Release MRTE, which 1s called by a consumer of the
MRTE RM interface, typically the related device driver. The
second entry point 1s Get MRTE, which 1s used by an inactive
or available MRTE RM, to get a block of MRTEs from the
acttive MRTE RM that 1t can use to satisty calls to Acquire/
Release MRTEs without constantly calling the active MRTE
RM. Fach Port AM 922, 924 and 926 has a single 1llustrated
entry point named Acquire/Release Port Lock which 1s used
by the device driver to acquire/release permission to program
ECA 400 registers that provide access to Ethernet PHY
MDIO registers used to manage the Ethernet link state. Much
more elaborate interfaces are actually needed to manage the
ECA 400, but are not detailed for purposes of simplitying this
description.

Prior to describing examples of manager operations, a few
more background descriptions are considered helptul. The
first relates to hardware assistance. The hardware portion of a
GIM 1s implemented with several registers. The first register
1s a Scratchpad Lock register. The Scratchpad Lock Register
provides a locking mechanism for software to use to synchro-
nize access to the Scratchpad registers. The mechamism
requires that each driver contending for this lock must use a
unique lock_requester_id. To obtain the lock a driver writes a
value including 1ts lock_requester_i1d and a lock request to the
Scratchpad Lock Register. The driver then reads the Scratch-
pad Lock Register. If the read result indicates a locked and the
lock_owner_id 1s equal to the driver’s lock_requester_id,
then lock 1s owned by the driver. This operation 1s repeated
until the driver acquires lock.

A set of the Software Scratchpad registers are for use by
ECA 400 software and drivers as needed. Preferably there are
twelve 32-bit registers that store the last value written to them.
All of these individual registers are accessible from all of the
ECA 400 PCI functions. This allows host software to distrib-
ute soltware that must access any lock maintained by the
hardware across the independent drivers loaded for different
PCI functions exposed by the ECA 400. While the Software

Scratchpad registers have no specific meaning to the ECA
400 hardware, the host software pretferably uses the first two
ol these software scratchpad values as a single 64-bit value
that 1s the host address of the currently active GIM. The way
the software uses this scratchpad locator and associated lock
to atomically obtain the currently active GIM 1s defined in the
following pseudocode.

Obtain the lock from the Scratchpad Lock register
read Software Scratchpad 0,1 into a 64-bit pointer (pGIM)

5

10

15

20

25

30

35

40

45

50

55

60

65

12

-continued

if (NULL ==

1

pGIM)

pGIM = this driver GIM
write pGIM back to Software Scratchpad 0,1

h

Release the lock from the Scratchpad Lock register

The core base class that 1s used by all managers to interface
with other managers of the same type 1s the Exclusion Inter-
tace (EIF). The entry points defined by the EIF are Handoft,
Hold for New Owner, New Owner, Register and Deregister.
Additionally the EIF class has a software lock, a pointer to the
active manager of that type, and a table of other EIFs that have
been registered.

The Handoil entry point 1s used to pass active manager
designation and resources from one manager to another of the
same type. HoldForNewOwner 1s used to acquire the soft-
ware lock for a manager before performing a handoif opera-

tion. After performing the handoil operation, the NewOwner

entry point 1s called to inform the managers of the new active
manager and to release the soitware lock within the manag-
ers. The Register entry point 1s used to notily the currently
active manager that another manager of the same type 1s

available. The newly registered manager may be able to take

over active manager duties and would need to be told of any
handoifs that are performed. The Deregister entry point 1s
used to notily the currently active manager that a previously

available manager 1s no longer available.

In addition to the EIF entry points described above, each
GIM supports additional interfaces to allow registration of
other managers (RMs/AMs). These interfaces are Lock,
Release, Get Interface, Register Interface, Deregister Inter-
face, and Deregister Interface.

A manager uses the Lock and Release entry points to
ensure that the active manager completes 1ts requested opera-
tion before attempting a handoif operation. The operations to
register different types of services are Get, Register, Rereg-
ister and Deregister Interface. The operations are used mainly

to register new RMs or AMs with a GIM. The GIM must be
aware of all RMs and AMs, not just active RMs and AMs, so
that 11 1t hands off active manager designation to another
GIM, all of the RMs and AMs can be properly notified. Other
entry points and data elements may be defined for GIMs, RMs
and AMs but are not relevant to this description.

With that background, description of the operations of the
some usage scenarios of the GIMs, RMs and AMs 1s appro-
priate. This 1s not an exhaustive list of the scenarios but should
be representative and allow derivation of other scenarios to
readily be done by one skilled 1n the art.

At driver initialization, each ECA 400 driver must look to
see 1f there 1s already a GIM running. It must either register
with that active GIM or assert 1tself as the active GIM. Addi-
tionally, the driver must do the same for each RM or AM that
it intends to use. Remember that a driver must be prepared to
be a RM or AM for other drivers if it needs to use a given RM
or AM. The following pseudocode demonstrates the process
for driver startup and GIM registration:

US 8,316,156 B2

13

Obtain the lock from the Scratchpad Lock register
read Software Scratchpad 0,1 into a 64 bit pointer (pGIM)
if (NULL == pGIM)
{
pGIM = this driver GIM
write pGIM back to Software Scratchpad 0,1

h

Call pGIM->Register to notify active GIM of the new driver
Release the lock from the Scratchpad Lock register

Note that the Register must take place with the hardware
lock held or else a window opens up where the GIM pointer
acquired from the hardware might no longer be valid.

The registration of the RMs and AMs must take place after
GIM Registration because each RM/AM needs to use a GIM.
The following pseudocode demonstrates the process for a
RM/AM to startup and register itself with the GIM. The
AM/RM type i1dentifies the manager, such as qp resource
manager vs memory region resource manager, etc.

Call GIM->Lock

Call GIM->Getlnterface (pGIM, AM/RM type) to get a pointer
(p-AM/RM)
if (NULL =

{

= p-AM/RM)

p—>AM/RM = this driver AM/RM
Call pGIM->RegisterInterface (this driver AM/RM)

)

Call pGIM->Register to notify active AM/RM of the new driver
Call GIM->Release

Note that GIM—Lock obtains the lock 1n the local GIM
before calling the active GIM. This allows a GIM to safely do
a handoll operation without causing a fault.

The allocation/deallocation of a resource or access to a
resource 1s performed by a driver through the use of its
AM/RM. The driver will perform the appropriate function
call that the AM/RM provides, for instance AllocateQueue-
Pair(), and passes to the function the AM RM’s handle. This
function provided by the AM/RM 1s actually a pass-through
tfunction that will lock the AM/RM so that the active AM/RM
cannot be handed off while this function call i1s 1n progress.
After obtaining this lock, the pass-though function waill call
the active AM/RM’s process version of this function. What-
ever logic needed for this function will be implemented 1n the
acttive AM/RM and the results are returned to the pass-
through function. The pass-though version then frees its lock
and returns. In certain instances, such as the MRTERM 1936
of FIG. 9, at the first Acquire MRTE request from the device
driver function 2 906, the MRTE RM 1 936 requests an
MRTE block from the active MRTE RM 0 954. After receiv-
ing the MRTE block, the MRTE RM 1 936 can reply directly
without interacting with the active MRTE RM 0 934 until all
of the MRTE:s 1n the block are utilized. then the MRTE RM 1
936 must request another MRTE block.

The GIM handoil operation makes use of the hardware
lock and each GIM’s local lock 1n order to ensure a robust
handoil 1s possible. The following psuedocode illustrates the
operation

10

15

20

25

30

35

40

45

50

55

60

65

14

Obtain the lock from the Scratchpad Lock register
for each pGIM registered with the GIM

1
h

pick a new active GIM from the list of registered GIMs (pNewGIM)

call pNewGIM->Handoff. If it returns a failure code, pick another GIM to
hand off to and try again.

for each pGIM registered with the GIM

1
h

write pNewGIM 1nto Software Scratchpad 0,1
Release the locks from the Scratchpad Lock register

call pGIM->HoldForNewOwner

call pGIM—->NewOwner

During operations it may be appropnate to shutdown and
unload a driver. Illustrative psuedocode 1s shown below.

for each RM/AM the driver owns

{
call pGIM->DeregisterInterface
h
for each RM/AM the driver owns
1
if pLocalMGR.Active
i
for each pMGR registered with the local active manager
{
call pMGR->HoldForNewOwner
h
pick a new active MGR from the list of registered MGRs
(pNewActiveMGR)
call pNewActiveMGR—->Handofi.
If 1t returns a failure code,
pick someone else to hand off to and try again.
for each pMGR registered with the local manager
{
call pMGR->NewOwner
h
h
h
read Software Scratchpad 0,1 into a 64 bit pointer (pGIM)
if (ourGIM = = pGIM)
1
perform GIM Handoif
h

Therefore 1n F1G. 9 device driver 902 loads originally. With
this ‘Port Access Manager 0° 922 loads, as does ‘Global
Interface Manager 0° 912. As 1n this example driver function
0 902 1s the first to load. Its GIM 0 912 and Port AM 0 922
become active 1n the process described above. In the illus-
trated example, device driver 904 loads next. As a result, its
Port AM 1924, 1ts MRTE RM 0 934 and 1ts GIM 1 914 load.
As described above, the GIM 1 914 determines 1t 1s not active,
the MRTE RM 0 934 determines it 1s active and the Port AM
1 924 determines 1t 1s not active, just available. Then device
driver Function 2 906 loads with 1ts Port AM 2 926, MRTFE

RM 1 936 and GIM 2 916. All of its managers become

available as a prior manager in each type 1s previously regis-
tered and active. When any of the device drnivers wish to
release or acquire a port lock they access the relevant port
access manager, which 1n the case of device driver Function 1
904 or device driver Function 2 906 pass this through to the
relevant resource manager. The Port AM 0 922 1s active so 1t
can immediately respond to the device driver Function 0 902.
The Port AM 1924 1s not active and so it must acquire the port

lock from the active manager Port AM 0 922. In the cases of
device driver function 1 904 requesting an MRTE entry, the

request 1s transierred through the Port AM 1 924 to the MRTE

US 8,316,156 B2

15

RM 0 934. As this 1s the active RM for this type, the value 1s
simply returned to the device driver. When device driver
function 2 906 requests an MRTE the request 1s passed to the
MRTE RM 1 936. As this 1s not the active RM, a request 1s
made to the active RM to obtain an MRTE block and when
this block 1s returned then the MRTE RM 1 936 can return a
MRTE value to the device driver 906. As can be seen, this 1s
a hlghly structured techmque to allow close control of the
various resources that are in the ECA 400 without being
overly complicated and yet 1t 1s extensible.

For example, 1n FIG. 10 the device driver Function 2 1006
1s slightly different in that i1t also requires a second set of
resources, the PFTE resources, so that PFTE RM 0 1038 1s
present and active as 1t 1s the only one for that resource.
Should i1t require a PF'TE value, this device driver Function 2
1006 does this through the PFTE RM 0 1038. Thus FIG. 10
shows multiple resource managers of different resources
available for one particular device driver.

It will be understood from the foregoing description that
modifications and changes may be made 1n various embodi-
ments of the present invention without departing from 1ts true
spirit. The descriptions 1n this specification are for purposes
of illustration only and are not to be construed 1n a limiting
sense. The scope of the present mvention 1s limited only by
the language of the following claims.

The mvention claimed 1s:

1. An apparatus comprising:

an adapter to be comprised 1n a server and being capable of
providing a plurality input/output (I/O) services, the
server including a plurality of central processing units
and host memory, the adapter to be coupled to the plu-
rality of central processing units via an interface, the
server including a certain operating system that 1s one of
a plurality of different operating systems to access the
I/0 services via drivers and an interface manager coms-
prised 1n the server, the adapter including modules to
implement the I/O services, the adapter also including
ports to be coupled to a network, the modules being to
implement TCP offload, 1ISCSI protocol, and 1WARP
RDMA protocol-related functions, the drivers being to
export adapter functionalities to the certain operating
system, the adapter functionalities being associated in
accordance with a mapping with peripheral component
interconnect (PCI) functions, the mapping being to map
the I/0 services that are implemented by the modules to
one or more respective ones of the PCI functions, the
manager to allow the drivers to load and unload 1n any
order on any combination of the PCI functions while
permitting operation of remaining running drivers to
continue during driver transitions, a request to an
unloading component to be stalled until handoif to
another capable component has occurred, the interface
manager to be used to manage which other managers 1n
the server are actively controlling adapter resources on a
per PCI function basis to permit failure 1solation and to
prevent resource over-usage, and when a handoif opera-
tion from one manager to another manager 1s to occur,
information related to resources managed by the one
manager 1s to be provided to the another manager.

2. The apparatus of claim 1, wherein:

the different operating systems have different techniques to
establish an accelerated connection, the different tech-
niques mmvolving use of one of a host stack and an inter-
nal stack, respectively, the internal stack being in addi-
tion to the host stack, the host stack being comprised in
the certain operating system.

10

15

20

25

30

35

40

45

50

55

60

65

16

3. The apparatus of claim 1, wherein:
the adapter includes a transaction switch to selectively
couple the modules to the ports, the interface, and a local
memory 1nterface, the local memory interface being
comprised in the adapter and to be coupled to temporary
buffer memory.
4. The apparatus of claim 1, wherein:
11 the handoil occurs, a database associated with managed
resources 1s to be handed off;
the drivers comprise block storage, RDMA, and TCP driv-
ers; and
the adapter comprises packet parsers coupled to the ports.
5. The apparatus of claim 1, wherein:
the adapter 1s capable of managing adapter resource utili-
zation by the drivers, and the managing of the adapter
resource utilization comprises:
loading, with each device driver, a first type manager, the
first type manager controlling a lock function;
establishing the first loaded first type manager as active
manager and any later loaded first type managers as
available managers; and
the available first type managers cooperating with the
active first type manager to manage resources of the
adapter.
6. The apparatus of claim 5, wherein:
the managing of the adapter resource utilization also com-
prises:
loading a second type manager with each device driver,
the second type manager being a port access manager;
establishing the first loaded second type manager as
active manager and any later loaded second type man-
agers as available managers;
the active second type manager cooperating with the
active first type manager to manage resources of the
adapter; and
the available second type managers cooperating with the
active second type manager to manage resources of
the adapter.
7. The apparatus of claim 6, wherein:
the managing of the adapter resource utilization also com-
prises:
transierring active state from an active manager to an
available manager when a device driver associated
with the active manager 1s unloaded.
8. The apparatus of claim 7, wherein:
the managing of the adapter resource utilization also com-
Prises:
informing all relevant managers of a new active man-
ager.
9. A method comprising:
providing by an adapter a plurality input/output (I/O) ser-
vices, the adapter to be comprised 1n a server, the server
including a plurality of central processing units and host
memory, the adapter to be coupled to the plurality of
central processing units via an interface, the server
including a certain operating system that 1s one of a
plurality of different operating systems to access the I/0O
services via drivers and an interface manager comprised
in the server, the adapter including modules to 1mple-
ment the I/O services, the adapter also including ports to
be coupled to a network, the modules being to 1mple-
ment TCP offload, 1SCSI protocol, and iIWARP RDMA
protocol-related functions, the drivers being to export
adapter functionalities to the certain operating system,
the adapter functionalities being associated i accor-
dance with a mapping with peripheral component inter-
connect (PCI) functions, the mapping being to map the

US 8,316,156 B2

17

I/O services that are implemented by the modules to one
or more respective ones of the PCI functions, the man-
ager to allow the drivers to load and unload 1n any order
on any combination of the PCI functions while permit-
ting operation of remaining drivers to continue during
driver transitions, a request to an unloading component
to be stalled until handoil to another capable component
has occurred, the interface manager to be used to man-
age which other managers in the server are actively
controlling adapter resources on a per PCI function basis
to permit failure 1solation and to prevent resource over-
usage, and when a handoif operation from one manager
to another manager 1s to occur, information related to
resources managed by the one manager 1s to be provided
to the another manager.
10. The method of claim 9, wherein:
the different operating systems have different techniques to
establish an accelerated connection, the different tech-
niques mvolving use of one of a host stack and an 1nter-
nal stack, respectively, the internal stack being 1n addi-
tion to the host stack, the host stack being comprised in
the certain operating system.
11. The method of claim 9, wherein:
the adapter includes a transaction switch to selectively
couple the modules to the ports, the intertace, and a local
memory interface, the local memory iterface being
comprised 1n the adapter and to be coupled to temporary
builer memory.
12. The method of claim 9, wherein:
if the handoil occurs, a database associated with managed
resources 1s to be handed off;
the drivers comprise block storage, RDMA, and TCP driv-
ers; and
the adapter comprises packet parsers coupled to the ports.
13. The method of claim 9, wherein:
the adapter 1s capable of managing adapter resource utili-
zation by the drivers, and the managing of the adapter
resource utilization comprises:
loading, with each device driver, a first type manager, the
first type manager controlling a lock function;
establishing the first loaded first type manager as active
manager and any later loaded first type managers as
available managers; and
the available first type managers cooperating with the
active first type manager to manage resources of the
adapter.
14. The method of claim 13, wherein:
the managing of the adapter resource utilization also com-
Prises:
loading a second type manager with each device driver,
the second type manager being a port access manager;
establishing the first loaded second type manager as
active manager and any later loaded second type man-
agers as available managers;
the active second type manager cooperating with the
active first type manager to manage resources of the
adapter; and
the available second type managers cooperating with the
active second type manager to manage resources of
the adapter.
15. The method of claim 14, wherein:
the managing of the adapter resource utilization also com-
Prises:
transierring active state from an active manager to an
available manager when a device driver associated
with the active manager 1s unloaded.

10

15

20

25

30

35

40

45

50

55

60

65

18

16. The method of claim 15, wherein:

the managing of the adapter resource utilization also com-
Prises:

informing all relevant managers of a new active man-
ager.

17. Computer-readable memory having machine-execut-

able 1nstructions that when executed by a machine result 1n
performance of operations comprising;:

providing by an adapter a plurality input/output (I/O) ser-
vices, the adapter to be comprised 1n a server, the server
including a plurality of central processing units and host
memory, the adapter to be coupled to the plurality of
central processing units via an interface, the server
including a certain operating system that 1s one of a
plurality of different operating systems to access the I/O
services via drivers and an interface manager comprised
in the server, the adapter including modules to 1mple-
ment the I/O services, the adapter also including ports to
be coupled to a network, the modules being to 1mple-
ment TCP oftload, 1ISCSI protocol, and iWARP RDMA
protocol-related tunctions, the drivers being to export
adapter functionalities to the certain operating system,

the adapter functionalities being associated 1n accor-
dance with a mapping with peripheral component inter-

connect (PCI) functions, the mapping being to map the
I/0 services that are implemented by the modules to one
or more respective ones of the PCI functions, the man-
ager to allow the drivers to load and unload 1n any order
on any combination of the PCI functions while permut-
ting operation of remaining drivers to continue during
driver transitions, a request to an unloading component
to be stalled until handotl to another capable component
has occurred, the interface manager to be used to man-
age which other managers in the server are actively
controlling adapter resources on a per PCI function basis
to permit failure 1solation and to prevent resource over-
usage, and when a handoil operation from one manager
to another manager 1s to occur, information related to
resources managed by the one manager 1s to be provided
to the another manager.

18. The computer-readable memory of claim 17, wherein:

the different operating systems have different techniques to
establish an accelerated connection, the different tech-
niques mvolving use of one of a host stack and an inter-
nal stack, respectively, the internal stack being in addi-
tion to the host stack, the host stack being comprised in
the certain operating system.

19. The computer-readable memory of claim 17, wherein:

the adapter includes a transaction switch to selectively
couple the modules to the ports, the interface, and a local
memory interface, the local memory interface being
comprised in the adapter and to be coupled to temporary
butfer memory.

20. The computer-readable memory of claim 17, wherein:

11 the handoil occurs, a database associated with managed
resources 1s to be handed off;

the drivers comprise block storage, RDMA, and TCP driv-
ers; and

the adapter comprises packet parsers coupled to the ports.

US 8,316,156 B2

19

21. The computer-readable memory of claim 17, wherein:

the adapter 1s capable of managing adapter resource utili-

zation by the drivers, and the managing of the adapter
resource utilization comprises:

loading, with each device driver, a first type manager, the
first type manager controlling a lock function;

20

establishing the first loaded first type manager as active
manager and any later loaded first type managers as

available managers; and
the available first type managers cooperating with t.

1C

active first type manager to manage resources of t
adapter.

1C

	Front Page
	Drawings
	Specification
	Claims

