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1

SYSTEMS AND METHODS FOR TESTING
INTRAOCULAR LENSES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/951,441, filed Jul. 23, 2007, which 1s
hereby incorporated by reference as 1f fully set forth herein.

BACKGROUND OF THE INVENTION

Cataracts are a major cause of blindness in the world and
the most prevalent ocular disease. When the disability from
cataracts affects or alters an individual’s activities of daily
living, surgical lens removal with intraocular lens (“IOL”)
implantation is the preferred method of treating the functional
limitations.

A cataract 1s any opacity of a patient’s lens, whetheritis a
localized opacity or a diffuse general loss of transparency. To
be clinically significant, however, the cataract must cause a
significant reduction 1n visual acuity or a functional 1mpair-
ment. A cataract occurs as a result of aging or secondary to
hereditary factors, trauma, inflammation, metabolic or nutri-
tional disorders, or radiation. Age related cataract conditions
are the most common.

In treating a cataract, the surgeon removes the crystalline
lens matrix from the lens capsule and replaces 1t with an IOL.
The typical IOL provides a selected focal length that allows
the patient to have fairly good distance vision. Since the lens
can no longer accommodate, however, the patient typically
needs glasses for reading.

More specifically, the imaging properties of the human eye
are facilitated by several optical interfaces. A healthy youth-
tul human eye has a total power of approximately 59 diopters,
with the anterior surface of the cornea (e.g. the exterior sur-
face, including the tear layer) providing about 48 diopters of
power, while the posterior surface provides about —4 diopters.
The crystalline lens, which is situated posterior of the pupil in
a transparent elastic capsule, also referred to herein as “cap-
sular sac,” supported by the ciliary muscles via zonules, pro-
vides about 15 diopters of power, and also performs the
critical function of focusing images upon the retina. This
focusing ability, referred to as “accommodation,” enables
imaging of objects at various distances.

The power of the lens 1n a youthiul eye can be adjusted
from 135 diopters to about 29 diopters by adjusting the shape
of the lens from a moderately convex shape to a highly convex
shape. The mechanism generally accepted to cause this
adjustment 1s that ciliary muscles supporting the capsule (and
the lens contained therein) move between a relaxed state
(corresponding to the moderately convex shape) and a con-
tracted state (corresponding to the highly convex shape).
Because the lens itself 1s composed of viscous, gelatinous
transparent fibers, arranged 1n an “onion-like” layered struc-
ture, forces applied to the capsule by the cihiary muscles via
the zonules cause the lens to change shape.

Isolated from the eye, the relaxed capsule and lens take on
a more spherical shape. Within the eye, however, the capsule
1s connected around 1ts circumierence by approximately 70
tiny ligament fibers to the ciliary muscles, which in turn are
attached to an 1inner surface of the eyeball. The ciliary muscles
that support the lens and capsule therefore are believed to act
in a sphincter-muscular mode. Accordingly, when the ciliary
muscles are relaxed, the capsule and lens are pulled about the
circumierence to a larger diameter, thereby flattening the
lens, whereas when the ciliary muscles are contracted the lens
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and capsule relax somewhat and assume a smaller diameter
that approaches a more spherical shape.

As noted above, the youthiul eye has approximately 14
diopters of accommodation. As a person ages, the lens hard-
ens and becomes less elastic, so that by about age 45-30,
accommodation 1s reduced to about 2 diopters. At a later age
the lens may be considered to be non-accommodating, a
condition known as “presbyopia”. Because the imaging dis-
tance 1s fixed, presbyopia typically entails the need for bi-
focals to facilitate near and far vision.

Apart from age-related loss of accommodation ability,
such loss 1s mnate to the placement of I0Ls for the treatment
of cataracts. IOLs can be single element lenses made from a
suitable polymer material, such as acrylics or silicones. After
placement, accommodation 1s no longer possible, although
this ability 1s typically already lost for persons receiving an
IOL. There 1s significant need to provide for accommodation
in IOL products so that IOL recipients will have accommo-
dating ability. In addition, although efforts have been made
with accommodating 10Ls, there 1s a need for an accommo-
dating IOL that can restore as much accommodation to the
eye as possible.

What 1s needed 1s a device to test an accommodative
intraocular lens to measure the intraocular lens’s accommo-
dative response to a force that 1s applied to 1t. It may also be
desirable that the device be able to measure the 1ntraocular
lens’s accommodative response to a simulated external actua-
tion of the lens.

SUMMARY OF THE INVENTION

One aspect of the mvention 1s a method of testing an
accommodative response of an intraocular lens. The method
includes applying a force to the intraocular lens when the
intraocular lens 1s outside of a lens capsule and measuring an
accommodative response of the intraocular lens based on the
applied force.

In some embodiments wherein applying a force to the
intraocular lens comprises applying a force to a peripheral
portion of the intraocular lens.

In some embodiments applying a force to the intraocular
lens comprises applying a compressive force to the intraocus-
lar lens. Applying a compressive force can comprises apply-
ing a radially compressive force to the intraocular lens.

In some embodiments applying a force to the intraocular
lens comprises displacing a flowable media within the
intraocular lens from a peripheral portion of the intraocular
lens to an optic portion of the intraocular lens.

In some embodiments measuring an accommodating
response ol the intraocular lens comprises measuring the
deflection of a surface of the intraocular lens.

In some embodiments measuring the deflection of a sur-
face of the intraocular lens comprises measuring the detlec-
tion of an anterior surface of the itraocular lens.

In some embodiments measuring an accommodative
response of the intraocular lens comprises optically measur-
ing an accommodative response of the intraocular lens.

In some embodiments the method also 1ncludes measuring,
the force applied to the intraocular lens and relating 1t to the
measured accommodative response.

In some embodiments measuring an accommodative
response of the intraocular lens comprises measuring a
change of configuration of the lens or a portion of the lens.

One aspect of the invention 1s a system for measuring an
accommodative response ol an 1ntraocular lens outside of a
lens capsule. The system comprises a force effector adapted
to apply a force on an intraocular lens and an accommodative
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response measuring element adapted to measure an accom-
modative response of the intraocular lens based on the force
applied by the force effectors.

In some embodiments the force effector 1s adapted to apply
a radially compressive force on the intraocular lens.

In some embodiments the force effector i1s a first force
clfector and the system further comprises a second force
elfector, wherein the first force effector 1s disposed substan-
tially opposite the second force effector around the periphery
of the mtraocular lens.

In some embodiments the force effector i1s a first force
elfector and the system further comprises a second force
cifector, wherein the first force efiector 1s adapted to be actu-
ated with a first compression actuator to apply a force to
intraocular lens and the second force effector 1s adapted to be
actuated with a second compression actuator to apply a sec-
ond force to the intraocular lens.

In some embodiments the system further comprises a force
measuring element adapted to measure the force applied to
the intraocular lens. In some embodiments the force measur-
ing element 1s a load cell.

In some embodiments the accommodative response mea-
suring element 1s adapted to measure deflection of a surface of
the itraocular lens. The accommodative response measuring,
clement comprises can be a microscope adapted to sense a
focus plane on a surface of the intraocular lens.

INCORPORATION BY REFERENC.

(Ll

All publications and patent applications mentioned 1n this
specification are herein incorporated by reference to the same
extent as 11 each individual publication or patent application
was specifically and individually indicated to be incorporated
by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with par-
ticularity in the appended claims. A better understanding of
the features and advantages of the present invention will be
obtained by reference to the following detailed description
that sets forth illustrative embodiments, in which the prin-
ciples of the mmvention are utilized, and the accompanying
drawings of which:

FIGS. 1, 2A, and 2B illustrate the structure and operation
of a human eye.

FIGS. 3-5 show an exemplary embodiment of an 1intraocu-
lar lens.

FIG. 6 shows a portion of an exemplary intraocular lens in
disaccommodative and accommodative configurations.

FIGS. 7A and 7B illustrate an exemplary intraocular lens
testing device.

FIGS. 8A-8D show an exemplary intraocular lens testing,
system.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates generally to systems and devices for
testing an intraocular lens (“I10L”) and 1n some embodiments
systems for testing accommodating IOLs. The devices are
adapted to test the intraocular lens outside of the lens capsule.
In some embodiments the IOL includes a flowable media
(such as a fluid, gelatinous matenal, etc.) that 1s moved within
the IOL, in response to ciliary muscle movement, to change
the power of the IOL.

FIGS. 1, 2A and 2B illustrate the structure and operation of
a human eye. Eye 100 includes cornea 1, iris 2, ciliary
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muscles 3, ligament fibers or zonules 4, capsule 5, lens 6 and
retina 7. Natural lens 6 1s composed of viscous, gelatinous
transparent fibers, arranged in an “onion-like” layered struc-
ture, and 1s disposed 1n transparent elastic capsule 5. Capsule
5 1s joined by zonules 4 around 1ts circumierence to ciliary
muscles 3, which are 1n turn attached to the inner surface of
eye 0. Vitreous 8 1s a highly viscous, transparent fluid that fills
the center of eye 100.

Isolated from the eye, the relaxed capsule and lens take on
a convex shape. However, when suspended within the eye by
zonules 4, capsule 5 moves between a moderately convex
shape (when the ciliary muscles are relaxed) and a highly
convex shape (when the ciliary muscles are contracted). As
shown 1in FI1G. 2A, when ciliary muscles 3 relax, capsule 5 and
lens 6 are pulled about the circumierence, thereby flattening
the lens. As shown 1n FIG. 2B, when ciliary muscles 3 con-
tract, capsule 5 and lens 6 relax and become thicker. This
allows the lens and capsule to assume a more convex shape,
thus increasing the diopter power of the lens.

Additionally, various natural mechanisms aifect the design
requirements ol the present invention. For example, during
accommodation the pupil naturally stops down (i.e., reduces
in diameter) which reduces the area of the natural lens that
transmuits light. In addition, the eye will experience the Stiles-
Crawiord Effect which also reduces the effective area of the
natural lens. In particular, the brightness of light rays incident
on cones 1n the eye 1s dependent on the angle at which those
rays are incident on the cones. In particular, light rays that
strike the cones perpendicular to their surface appear brighter
than those that do not. As a result, the light rays passing
through the periphery of the lens are less significant for proper
V1S101.

FIGS. 3-5 show a first embodiment of accommodating I0L
10 that can be tested using the system described herein. 10L
10 includes a peripheral non-optic portion comprising haptics
12 and 14. The IOL also includes an optic portion including
anterior lens element 16, intermediate layer 18 which com-
prises actuator 20, and substrate, or posterior element, 22.
Anterior element 16 1s bonded to intermediate layer 18 at its
periphery. In some embodiments the anterior element may
also be bonded to actuator 20. The intermediate layer 1s also
bonded to posterior element 22. The 1inner surface of haptics
12 and 14 define interior volumes 24 which are 1n fluid com-
munication with active channel 26 defined by posterior ele-
ment 22 and mtermediate layer 18. As shown, actuator 20 1s
integral with intermediate layer 18. Posterior element 22 1s
molded with buttresses 11 which include a buttress bore 13
therethrough. The haptics have a haptic attachment element
15 (which can be stiil or tlexible) which 1s s1zed and shaped to
{1t within buttress bore 13. An adhesive layer can be applied to
the outer surfaces of the haptic attachment elements and/or
the 1nner surface of the buttress bore to facilitate attachment
of the haptics to the optic portion. The IOL contains a tlow-
able media within the haptics and the active channel. The IOL
also includes passive chamber 21 that 1s defined by the ante-
rior element and the intermediate layer. The passive chamber
contains a second flowable media (e.g., a fluid, elastomer,
etc.), which may be the same as the fluid within the haptics
and active channel, or 1t may be a different flowable media.
The active channel and the passive chamber are not 1n fluid
communication.

Deformation of haptics 12 and 14 in response to contrac-
tion of ciliary muscles movement transiers the flowable
media (such as a tluid) between interior volume 24 and active
channel 26. When the flowable media 1s transferred into the
active channel from the haptics, the pressure 1n the active
channel increases, causing actuator 20 to deflect 1n the ante-
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rior direction. This causes anterior element 16 to detlectin the
anterior direction, increasing the IOL power 1n this accom-
modated configuration.

FIG. 6 1s a cross sectional view of a portion of an exemplary
IOL showing the IOL 1n a disaccommodated state (dashed
lines) and an accommodated state (solid lines). The 10L
includes anterior element 74, intermediate layer 78 which
includes actuator 73, and posterior element 75. Actuator 73 1s
comprised of detlection element 71 and bellows 70. When the
pressure 1s increased 1n active channel 72, bellows 70 change
configuration from the generally conical shape of the disac-
commodated state to a curvilinear configuration of the
accommodated state. Detlection element 71 1s forced in the
anterior direction due to the increase 1n pressure. This causes
anterior element 74 to deflect 1n the anterior direction as well,
steepening the curvature of the anterior element and thereby
increasing the power of the lens.

Additional exemplary IOLs that can be tested using the
systems described herein are described 1n U.S. Provisional
Application No. 60/433,046, filed Dec. 12, 2002; U.S. Pat.
Nos. 7,122,053; 7,261,737, 7,247,168; and 7,217,288; U.S.
patent application Ser. No. 11/642,388, filed Dec. 19, 2006,
and U.S. patent application Ser. No. 11/646,913, filed Dec.
2’7, 2006, the disclosures of which are hereby incorporated
herein by reference.

The systems described herein can also be used to test any
other suitable accommodating 10OL which 1s adapted to
change power 1n response to ciliary muscle movement. For
example, an accommodating IOL comprised entirely of a
polymeric material can be tested i1n the systems described
herein.

The systems and devices described herein are generally
used to test and analyze an I0OL’s accommodative response to
a force applied to the lens. The accommodative response can
be any detectable change in the IOL. Exemplary detectable
responses include, without limitation, a change 1n dimension
of the lens or a portion of the lens, a change 1n configuration
of the lens or a portion of the lens, a change in shape from a
first shape to a second shape, etc.

The change can be measured by almost any means, includ-
ing optical, mechanical, electrical, etc. In some cases the
change may also be detected by the human eye. This may not,
however, be as reliable.

The systems and devices can also be used generally to test
the strength of an IOL. That 1s, 1n response to a force applied
to the IOL, the devices can test how well the IOL responds to
those forces, and at what point the IOL begins to, for example,
fatigue, fracture, etc.

The force can be applied to any portion of the I0OL, but in
some embodiments 1t 1s applied to a peripheral portion of the
an I0OL that 1s adapted to contact the lens capsule when
implanted in the eye. The direction of the force can be applied
in almost any direction, but 1n some embodiments the force 1s
applied radially inward and 1s applied to a peripheral portion
of the IOL.

FIGS. 7A and 7B show an exemplary embodiment of a
testing device used to test and analyze the radial compression
and/or strength of IOL 10, which 1s also shown 1n FIGS. 3-5.
The testing device includes arms 28 and 30 which pivot about
pivot points 34 and 32, respectively. From the position shown
in FIG. 7A, the arms are actuated 1n a counter-clockwise
direction “D” which decreases the space between the two
semi-circular portions 36 and 38 of arms 28 and 30, thus
engaging haptics 12 and 14 and radially compressing the lens.
The testing device can be used to measure and relate a com-
pressive force applied to the haptics to the responsive change
in the anterior element of the IOL. In reference to FIG. 6, the
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compressive force 1s measured and related to the change 1n
the height of anterior element along a center point of the optic
portion. That 1s, the change in height 1s the distance from the
anterior surface of anterior element 74 1n the disaccommo-
dated state (dashed lines) to the anterior surface of anterior
clement 74 1n the accommodated state (solid lines), along the
center of the optic portion.

The change can be measured 1n almost way. For example,
at substantially the center of the lens the thickness of the
assembly can be measured from the posterior side of the
posterior lens element to the anterior side of the anterior lens
clement. Alternatively, the thickness can be assessed by mea-
suring the central height of the lens relative to a reference
measurement such an outer edge of the optic.

As the arms are rotated, they compress the lens 1n a radial
direction, causing a decrease 1n lens diameter and an increase
in optic portion height. The height 1s 1increased as fluid 1s
squeezed from the haptics and 1nto the optic portion, causing
anterior detlection of the anterior element of the lens.

FIGS. 8A-8D 1llustrate an exemplary embodiment of radial
compression system 40. System 40 includes IOL placement
location 42 (shown 1n more detail in FIGS. 8C and 8D), radial
compression actuators 44 and 43, microscope 46, force read-
outs 48 and 50, and lens surface indicator 52. As shown 1n
FIG. 8B, the system also includes microscope course z-axis
adjustor 56 and microscope fine z-axis adjustor 54. System 40
also includes X and Y positioners 58 and 60 for centering IOL
80 1n IOL placement location 42. As shown 1n more detail 1n
the perspective view and the top view of FIG. 8C and FIG. 8D,
respectively, the system includes radial compression actua-
tors 44 and 45 which are coupled to and adapted to actuate
arms 62 and 64, respectively (In FI1G. 8C, a portion of arm 64
1s not shown for clarity). Arms 62 and 64 pivot around pivot
81 and 79, respectively, when actuated by radial compression
actuators 44 and 45. Arms 62 and 64 are coupled to load cells
66 and 68, respectively. Load cells 66 and 68 are coupled to
lens compression elfectors 77 and 76, respectively. The com-
pression effectors as shown are disposed substantially oppo-
site each other around the periphery of the intraocular lens.

When the radial compression actuators actuate the arms,
the lens compression eflectors radially compress IOL 80 in
the IOL placement location.

In use, IOL 80 1s placed 1n IOL placement location 42 and
X and Y positioners 58 and 60 are adjusted to center the IOL.
Radial compression actuators 44 and 45 are then actuated
(manually or automatically) to cause eflectors 77 and 81 to
radially compress IOL 80. In some embodiments the radial
compression actuators are adjusted symmetrically during a
test cycle. A surface of the effectors adjacent the IOL 1s
curved to correspond to the curve of the periphery of the IOL.

The radial compression forces can be adapted to mimic
forces that will be applied to the IOL (and particularly the
torces applied to the periphery of the IOL) by the lens capsule
in order to measure how the IOL responds to in-the-capsule
conditions.

The load cells of the system can detect the amount of force
(e.g., compressive force) applied to the IOL at each of the
elfectors. Force readouts 48 and 50 are adapted to display the
amount of force applied to the IOL. The raw or analyzed data
can of course by stored on any kind of computer system. As
the amount of force that 1s applied the IOL 1s adjusted, a user
actuates (or they are automatically actuated) the course and
fine microscope z-position adjustors so microscope 46 senses
the focus plane on the top (e.g., anterior) surface of the IOL.
The microscope can focus on the top surface of the IOL and
therefore detect the highest point on the anterior surface of the
IOL for any given amount of force applied by the effectors. In




US 8,314,927 B2

7

this way the systems knows, for a given amount of force(s)
applied to the IOL, how much the anterior element 1s deflect-
ing. Lens surface indicator 52 1s adapted to give a readout of
the location of the lens surface. Raw or analyzed data can of
course be stored 1n a computer system.

The testing device can be used to test alternative IOL
designs or 1t can be used to test an IOL to make sure 1t 1s within
tolerances.

Some 1ntraocular lenses are adapted to be adjusted after
being implanted 1n the lens capsule. Exemplary IOLs that can
be adjusted post-implant are described 1n co-pending U.S.

application Ser. No. 12/178,304, filed Jul. 23, 2008, the dis-

closure of which 1s incorporated by reference herein. For
example, some IOLs can be actuated by an external energy
source to alter the volume and/or pressure within the IOL, or
to displace a flowable media from a first portion of the IOL to
a second portion. The testing systems described herein can be
adapted to test the IOL’s accommodative response based on
the application of energy from an external energy source.

For example, an IOL adapted to be adjusted post-implant
can be placed 1n the IOL placement location and the effectors
can be actuated (via the radial compression actuators) to
cause the effectors to contact (1.e., engage) the IOL. The
cifectors can be further actuated to compress the peripheral
haptics to mimic, for example, a capsule that has contracted,
or shrunk, around the peripheral portion of the IOL after the
IOL has been implanted in the capsule (which can be anatural
response to an IOL implantation procedure). The microscope
can be used to sense a {irst focus plane with the haptics in the
compressed configuration. The IOL 1s then actuated with an
external energy source (e.g., alaser) to actuate a portion of the
lens to adjust the pressure and/or volume of the 1I0L, to
displace fluid from a first portion of the lens to a second
portion of the lens, or any other post-implant adjustment that
may be needed to be made. The microscope 1s then used to
sense the focus plane after the IOL has been adjusted. In this
manner 1n can be determined how much the lens has disac-
commodated or accommodated in response to the simulated
post-implant adjustment.

While preferred embodiments of the present invention
have been shown and described herein, 1t will be obvious to
those skilled 1n the art that such embodiments are provided by
way ol example only. Numerous variations, changes, and
substitutions will now occur to those skilled in the art without
departing from the mvention. It should be understood that
various alternatives to the embodiments of the invention
described herein may be employed 1n practicing the mven-
tion. It 1s intended that the following claims define the scope
of the invention and that methods and structures within the
scope ol these claims and their equivalents be covered
thereby.

What 1s claimed 1s:
1. A method of testing an accommodative response of an
accommodating intraocular lens, comprising:
applying a force to an accommodating intraocular lens
when the accommodating intraocular lens 1s outside of a
lens capsule; and
measuring an accommodative response of the accommo-
dating intraocular lens to the applied force, wherein
applying a force to the accommodating intraocular lens
comprises applying a compressive force to the accom-
modating intraocular lens.
2. The method of claim 1 wherein applying a force to the
accommodating intraocular lens comprises applying a force
to a peripheral portion of the accommodating intraocular lens.
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3. The method of claim 1 wherein applying a compressive
force comprises applying a radially compressive force to the
accommodating intraocular lens.

4. The method of claim 1 wherein applying a force to the
accommodating intraocular lens comprises displacing a tflow-
able media within the accommodating intraocular lens from a
peripheral portion of the accommodating intraocular lens to
an optic portion of the accommodating intraocular lens.

5. The method of claim 1 wherein measuring an accom-
modating response of the accommodating intraocular lens
comprises measuring the deflection of a surface of the accom-
modating intraocular lens.

6. The method of claim 1 wherein measuring the deflection
of a surface of the accommodating intraocular lens comprises
measuring the detlection of an anterior surface of the accom-
modating intraocular lens.

7. The method of claim 1 wherein measuring an accom-
modative response of the accommodating intraocular lens
comprises optically measuring an accommodative response
of the accommodating intraocular lens.

8. The method of claim 1 further comprising measuring the
force applied to the accommodating intraocular lens and
relating it to the measured accommodative response.

9. The method of claim 1 wherein measuring an accom-
modative response of the accommodating intraocular lens
comprises measuring a change of configuration of the lens or
a portion of the lens.

10. The method of claim 1 wherein measuring an accom-
modative response of the accommodating intraocular lens to
the applied force comprises measuring an accommodative
response of an optic portion of the accommodating 1ntraocu-
lar lens to the applied force.

11. The method of claim 1 wherein applying a force to the
accommodating intraocular lens simulates a force applied to
the accommodating intraocular lens from a native capsular
bag.

12. The method of claim 1 wherein measuring an accom-
modative response comprises measuring a change 1n optical
power ol the accommodating intraocular lens in response to
the applied force.

13. A system for measuring an accommodative response of
an accommodating intraocular lens outside of a lens capsule,
comprising;

a force effector adapted to apply a compressive force on an

accommodating 1ntraocular lens; and

an accommodative response measuring element adapted to

measure an accommodative response ol the accommo-
dating intraocular lens to the compressive force applied
by the force effector.

14. The system of claim 13 wherein the force effector 1s
adapted to apply a radially compressive force on the accom-
modating intraocular lens.

15. The system of claim 13 wherein the force effector 1s a
first force effector and the system further comprises a second
force effector, wherein the first force effector 1s disposed
substantially opposite the second force effector around the
periphery of the accommodating intraocular lens.

16. The system of claim 13 wherein the force effector 1s a
first force effector and the system further comprises a second
force effector, wherein the first force effector 1s adapted to be
actuated with a first compression actuator to apply a force to
the accommodating intraocular lens and the second force
elfector 1s adapted to be actuated with a second compression
actuator to apply a second force to the accommodating
intraocular lens.
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17. The system of claim 13 wherein the system further
comprises a force measuring element adapted to measure the
torce applied to the accommodating intraocular lens.

18. The system of claim 17 wherein the force measuring
clement 1s a load cell.

19. The system of claim 13 wherein the accommodative
response measuring element 1s adapted to measure detlection
ol a surface of the accommodating intraocular lens.

10

20. The system of claim 19 wherein the accommodative
response measuring element comprises a microscope adapted
to sense a focus plane on a surface of the accommodating

intraocular lens.
21. The system of claim 13 further comprising the accom-

modating intraocular lens.
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