US008307101B1
12 United States Patent (10) Patent No.: US 8.307,101 B1
Mui et al. 45) Date of Patent: Nov. 6, 2012

(54) GENERIC FORMAT FOR STORAGE AND (56) References Cited

QUERY OF WEB ANALYTICS DATA
U.S. PATENT DOCUMENTS

(75) Inventors: Lik Mui, Hayward, CA (US); Sagnik 5,752,245 A * 5/1998 Parrishetal.cc.ooevvnn..n, 1/1
Nandy, Sunnyvale, CA (US); David 5,946,702 A 8/1999 Miyazaki
White, Sunnyvale, CA (US) 6,397,263 B1* 5/2002 Hancocketal. 719/322

0,751,624 B2 6/2004 Christal et al.

_ _ _ 7,047,525 B2 5/2006 Prunty et al.
(73) Assignee: Google Inc., Mountain View, CA (US) 7.103,596 B2 0/2006 Abe et al.

7,523,191 Bl 4/2009 Thomas et al.
2001/0012007 Al 82001 Breuer
- — - s - 2001/0037266 Al 11/2001 Schroeder
(%) Notice: Subject to any disclaimer, the term of this 2004/0015891 Al* 1/2004 Arellano-Payne et al. ... 717/137
patent 1s extended or adjusted under 35 2007/0016672 Al 1/2007 Wilson et al.
U.S.C. 154(b) by 650 days. 2007/0067157 Al 3/2007 Kaku et al.
2007/0250618 Al 10/2007 Hammond
2008/0104224 Al 5/2008 Litofsky et al.
2009/0248494 Al 10/2009 Hueter et al.
(21) Appl. No.: 12/334,335 2010/0299434 Al 11/2010 Hanson et al.
(22) Filed: Dec. 12, 2008 FOREIGN PATENT DOCUMENTS
TP 2002259370 A 9/2002
Related U.S. Application Data * cited by examiner

(60) Provisional application No. 61/013,572, filed on Dec. Primary Examiner — Rehana Perveen

13, 2007. Assistant Examiner — Muluemebet Gurmu
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(51) Int.Cl a8

GOGF 15/16 (2006.01) (57) ABSTRACT

GO6F 17/30 (2006.01) Methods, systems and apparatus, including computer pro-

GO6F 7/00 (2006.01) gram products, for storing web analytics data 1n a generic
(52) US.CL ..., 709/229; 7077/709; 707/812 format. Multiple data elements are stored in a database in
(58) Field of Classification Search j j709 1790 association with project identifiers, data type 1dentifiers, and

............. 5(.)“7/7()9 812,, ex nmbers.
See application file for complete search history. 29 Claims, 5 Drawing Sheets
100 ~
102

108 —\

FORMATTED
DATA

110
N

WEB ANALYTICS SYSTEM
e 112

» PARSER

T PROJECT _1
104 — STORAGE : } 16

N

PUBLISHER PROJECT N
WEB SERVER

US 8,307,101 B1

Sheet 1 of S

Nov. 6, 2012

U.S. Patent

U 103roMd

/

el

vl w

~ TN

b} M ” JOVHOLS

| 103r0Yd

d454vd

*

chl —/
N3LSAS SOILATYNY §aM

/Io:

L Ol

d3IAEIS §IM
d-4HSI1ENg

Ny

v1v({
04LLVINSOJ
801

U.S. Patent

Nov. 6, 2012

Visit
1D

Hit ID

Project
D 1

Data Type 1 index 1

Data Type 1 index 2

Data Type 1 index n

Data Type 2 index 1

Data Type 2 index 2

Data Type 2 index n |

Data Type nindex 1

Data Type n index 2

—t

Data Type nindex n |

Project
ID 2

Data Type 1 Index 1

Data Type 1 index 2

| Data Type 1 indexn

Data Type 2 index 1

Data Type 2 index 2

Data Type 2 index n

Data Type n index 1

Data Type nindex 2

| Data Type nindex n

Project
D n

Data Type 1 index 1

Data Type 1 index 2

Data TypE 1 index n

Data Type 2 index 1

Data Type 2 index 2

Data Type 2 index n

Data Type n index 1

Data Type n index 2

Data Type n indexn |

FIG. 2

Sheet 2 of S

US 8,307,101 B1

Visit
1D

Hit 1D

Project
D1

Data Type 1 index 1

Data Type 1 index 2

Data Type 1 index n

Data Type 2 index 1

Data Type 2 index 2

Data Type 2 index n

Data Type n index 1

Data Type n index 2

Data Type n index n

Project
1D 2

Data Type 1 index 1

Data Type 1 index 2

| Data Type 1 index n

Data Type 2 index 1

Data Type 2 index 2

Data Type 2 index n

Data Type n index 1

Data Type n index Z

Data Type n index n

Project
ID n

Data Type 1 index 1

Data Type 1 index 2

Data Type 1 index n

Data Type 2 index 1

Data Type 2 index 2

Data Type 2 index n

Data Type n index 1

Data Type n Index 2

Data Type nindex n

US 8,307,101 B1

Sheet 3 of 5

Nov. 6, 2012

U.S. Patent

UINIVA
0y —~ |

UINTVA
80y —~

U3NTVA
90y — |

AD]E
L3NIVA | UATY A | UTLO3r0dd [
3NVA | UADY AD | TL03r0Nd [+
3NIVA | UATY A | 1TLOFrONd 1+
|
HISHV
— 200
€ Ol
| y anjeA 2| eers | #Eglo
eleq | JoquinN xapuj | odAleleq | Q|loefoid | QIWH | QlYsIA

vivd
(3L1YINSOS

US 8,307,101 B1

G Ol
808

b 2le(] an[eA
S LS
3 ql edA| eleQ 705
2 al 108loid

v ,, i
N (yLIBAL LIBAZLIBAIZLIAZ(SIBAIG ZIRAL L IBA)(L LASN, 0L ASNi0] " ZAoY, | ABY) | =8win -e— (S
S ¥ | | X
K bLS ﬁ 9
E 908 203

S0 SNEA 015 e1eq] Aoy Ia)swele [eqo
ql 1slosd _ d [eqo|9

U.S. Patent

J Ol

US 8,307,101 B1

| BBl] TSTRRIJOIPPY SJIOREI SYEp BIEUS)

(d De—te[60:00] os [IN
| - 109

ABPO| BAlC
159 001X UE 3[NPByos

(483u3 0} BIBH %0IID)
i00] X UB UIM pue auads

aseyo ay) Ul sebueyo Jeab jo
Jaguinu ay) ssenb Ajjoanion

00LX
9} JO SiodelN Sie]) JNIV

g nok 0} JyBnoig N 700 |
asey)) 1en .

Sheet 5 of 5
111

(M 'n
]
I'\;:I-
lulr

809 2

SOSPIA

Nov. 6, 2012

W .
ﬁ» <TdN m_amemL SS3IPPY |

digy S|00L S8juoABRd MBIA P38l |

T s R
I PRty .. _.....m”"um_.._,.m..__mw..

U.S. Patent

US 8,307,101 B1

1

GENERIC FORMAT FOR STORAGE AND
QUERY OF WEB ANALYTICS DATA

RELATED APPLICATION

This application claims a benefit of prionity from U.S.
Provisional Patent Application No. 61/013,572, filed Dec. 13,
2007, which 1s incorporated herein by reference 1n its entirety.

BACKGROUND

This specification relates to storage and query of web ana-
lytics data.

The Internet has evolved from a network of interconnected
defense computers, to arelatively sparse network of academic
institutions, to the current commercialized worldwide net-
work that it 1s today. The Internet has developed into a major
new medium for not just distributing information, but also for
selling and advertising goods and services.

Publishers of web pages, in order to present their content in
a manner that 1s conducive to achieving a website goal (e.g.,
educating visitors about a given topic, directing visitors to a
specific subset of the immformation on the website, selling
goods or services, and/or directing a visitor’s attention to one
or more included advertisements) often desire specific data
regarding how visitors interact with a website. One source of
this data 1s the server logs of a web server hosting a given
website. Unfortunately, the information provided by basic
server logs 1s generally limited.

Web analytics systems provide a way for publishers to
obtain more detailed information regarding visitor interac-
tions with their site. For example, an analytics provider can
supply a website publisher with script code for imsertion 1nto
one or more web pages for which analytics information 1s
desired. The scripts can direct a visitor’s web browser to
transmit information to the analytics provider to supply a
more complete picture of visitor interactions with the one or
more pages than 1s possible using server logs alone. An ana-
lytics provider generally offers a user interface for participat-
ing web publishers to access the collected analytics data.

SUMMARY

In general, one aspect of the subject matter described 1n this
specification can be embodied 1n methods that include the
actions of recewving a string including webpage event data
from a client device, wherein the event data comprises a
plurality of data elements, each data element having a project
identifier, a data type, and an index number according to a
format of the string, processing the string to extract the data
clements, and storing each data element at 1ts indicated index
number within its indicated data type 1n association with its
indicated project 1identifier 1n a datastore.

In particular implementations the project identifier, the
data type, and the index number of a given data element
together 1dentily a variable to which that data element corre-
sponds. The datastore can include data for a plurality of
project 1dentifiers. The string can include data elements and
formatting characters and not include any variable names
corresponding to the data elements. The string can be
received in an HT'TP request. The data types supported by the
format of the string can include key data consisting of char-
acters; and value data consisting of integers. The index num-
ber of a given data element can determined according to an
enumeration order of the format of the string and the location
of the given data element in the string. The datatypeofa given
data element can be determined according to an enumeration

10

15

20

25

30

35

40

45

50

55

60

65

2

order of the format of the string and the location of the given
data element 1n the string. The string can not include any
characters that require a URL escape code. The webpage
event data can include information corresponding to a video
displayed on the webpage. The webpage event data can
include latency information corresponding to a load time
associated with an 1tem displayed on the webpage. The
webpage event data can include information corresponding to
user mouse movements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an example environment in which a generic
storage and query format can be used in conjunction with a
web analytics system.

FIG. 2 1s a table showing a logical representation of an
example web analytics storage format.

FIG. 3 15 a table showing an example of a data element
stored 1n association with a number of identifiers according to
a generic web analytics storage format.

FIG. 4 1s a block diagram of an example parser for extract-
ing data elements from formatted data.

FIG. 5 1s an example format for transferring data between
auser (alsoreferred to as client) computer and a web analytics
system.

FIG. 6 1s an example web page that includes a video player
and multiple advertisements configured to have user interac-
tions collected using a web analytics system.

DETAILED DESCRIPTION

FIG. 1 1s an example environment 100 in which a generic
storage and query format can be used in conjunction with a
web analytics system 110. A user of the computer 102 can
direct a web browser program on the computer 102 to a web
site served by the web server 104. The web server 104 can
respond by sending one or more web pages to the computer
102 for display to the user, with the computer 102 functioning
as a user interface device for the user to interact with the one
or more web pages. The code of the transferred web pages can
include one or more scripts that, depending on user interac-
tions with the web page, instruct the web browser to send
formatted data 108 to the web analytics system 110. For
example, HITML of a web page served by the web server 104
can 1mclude embedded Javascript that causes formatted data
108 to be transierred over the network 106 to the web analyt-
ics system 110. In some implementations, one or more HI'TP
requests are sent to the web analytics system from the com-
puter 102 with a suilix including the formatted data 108. For
example, an HT'TP request can include a URL appended with
a question mark “?”” followed by a string of characters.

A parser 112 of the web analytics system can parse the
URL and the appended information. The parser extracts data
clements from the appended string and stores the extracted
data elements 1n accordance with the generic storage format
described below. In some implementations, the received data
1s stored 1n association with a hit identifier (hit ID), as a
umque key, where each receipt of formatted data 1s consid-
ered a hit. In some 1mplementations, the received data 1s
stored 1n association with a visit identifier (visit 1D, also
referred to as a session 1dentifier or session ID). A set of hits
can be attributed to a user visit to a web site 11, for example, all
of the hits correspond to user interactions with the web site
that meet predetermined conditions. For example, the condi-
tions can include that all hits of a common visit correspond to
user interactions that occur during a period in which the user
does not direct a web browser to a different web site, and/or

US 8,307,101 B1

3

during a period during which the user does not log off of the
website (1f for example the web site 1ssues the user a login and
password). Another example condition can be that all of the
hits assigned to a given session are recerved before a threshold
delay has occurred since the last receipt of a hat.

Following extraction of the data elements from the format-
ted data 108, the extracted data can be stored in a datastore
114 where the extracted data elements are stored according to
the rules of the generic storage format. One or more projects
116 can access the stored data to, for example, provide web
analytics reporting information.

Web analytics systems collect information on various types
ol visitor-web page interactions, and as content and presen-
tation formats available on the Internet continue to evolve, the
interactions represented by collected data 1s likely to become
even more varied. As publishers request new analytics fea-
tures and/or advantages ol new capabilities are otherwise
made apparent, developers, usually working in teams on one
or more projects, continually create new capabilities for col-
lecting, analyzing, and reporting analytics data. Unfortu-
nately, the creation of new features often requires changes to
existing processing architectures used in the web analytics
system. For example, the code of a parsing program may need
to be edited and recompiled to support the collection of one or
more additional data elements, and/or a corresponding stor-
age fTormat might need to be updated to provide one or more
additional fields into which newly collected data i1s to be
stored. Frequent changes of this type and/or individual devel-
opment of separate processing architectures for respective
projects can be wasteful of effort, time, and money.

The use of a generic format for transmitting and storing
web analytics data avoids, to at least a degree, code changes
and recompilations, and changes to a storage archutecture. In
some 1mplementations a generic format for storing web ana-
lytics data includes storing one or more data elements 1n
association with a respective project 1dentifier (project 1D),
data type identifier (Data Type ID), and index number. A web
analytics system, or an administrator of that system, can
assign, for example, an integer project ID to respective
projects that use the analytics system to collect data. Data
collected for a given project can be stored 1n association with
the corresponding project ID. The system can also store each
data element 1n association with a data type ID and an index
number within the indicated data type. A data type can be, for
example, a type of variable represented by a given data ele-
ment, €.g., a string (also referred to as a key), an integer (also
referred to as a value), a double (floating point number), and
other defined data types. An index number indicates which of
the possible elements (of the elements stored by a given
project for a specified data type) a given to element repre-
sents. For example, a project having a project ID of 1 can store
15 data elements having a data type of “key”. An index
number of 2 for akey i project ID 1 indicates that a given data
clement corresponds to the second of the keys stored for
project ID 1.

Project teams can keep track of what is represented by the
data element stored at any given index number of a given data
type having a given project 1D, as this information 1s not
stored 1n association with a given data element. Generalizing
data elements 1n this manner permaits the storage format to be
elficient (e.g., redundant information is not included) and
flexible (e.g., no code changes, or a least a minimal amount of
code changes, are needed to support modifications to the
number and/or type of variables collected for a given project).
Project teams can add new variables and/or change what 1s
represented by a data element of a given type and index
number without needing to request changes 1n processing

10

15

20

25

30

35

40

45

50

55

60

65

4

architecture (e.g., data transfer and storage formats and pro-
cesses) from administrators of the web analytics system.

FIG. 2 1s a table showing a logical representation of an
example web analytics storage format. The first column of the
table 1s a visit ID. The second column 1s a hit ID. A number of
hit IDs can share a common wvisit ID representing, for
example, analytics data recerved in different data transiers
(hits) occurring during a user’s visit to a web site. The third
column 1s a project ID. Each hit can include data for any
number of projects. The fourth column 1s a data element
column. The data element column includes data elements
corresponding to any number of data types and index num-
bers within those data types. The table of FIG. 2 represents
logical relationships, not actual physical storage of the data.
For a given hit, data 1s optional for any of the projects sup-
ported by the web analytics system, and within a project data
1s optional for any of the index numbers of the various data
types. The data stored for a given hit need not include a record
having a column structure as shown in FIG. 2.

FIG. 3 15 a table showing an example of a data element
stored 1n association with a number of identifiers according to
a generic web analytics storage format. A data element (1n this
case an integer value of 1) 1s stored 1n association with a visit
ID, ahit ID, a project ID, a data type 1D, and an index number.
The visit ID can be, for example, an iteger or string that 1s
unmique among other visit IDs. The hit ID can be, for example,
an integer or string that 1s unique across all hit 1Ds. In some
implementations, the hit ID serves as a umique key for the
stored data. The project ID (12 as shown) indicates the project
to which a given data element belongs. The data type indi-
cates the data type (from among the data types supported by
the web analytics system) to which the element of data cor-
responds. The web analytics system can store the data ele-
ment (in this case the integer 1) 1n association with a visit 1D,
a hit ID, a project 1D, a data type ID, and an index number to
be used for reporting of collected analytics information.

FIG. 4 1s a block diagram of an example parser 402 for
extracting data elements from formatted data 404. In some
implementations, two data types are supported by the web
analytics system; strings (referred to as keys), and integers
(referred to as values). The parser recerves formatted data 404
and extracts the data elements. The project data 406, 408, and
410 includes data corresponding to respective project IDs.
The web analytics system can use the extracted data to, for
example, generate and store records representing the recerved
data. For example, the extracted data can be used to generate
records conforming to the logical format shown 1n FIG. 3. In
some 1implementations, a project ID corresponds to a project
and/or team using the web analytics system to track user
interactions with one or more web pages. The web analytics
system (or administrators thereol) can assign a respective
project ID to each project and/or team using the analytics
system. In some implementations, the system stores data
clements as generic keys and values. To access the data a
grven team keeps track of their data element to variable map-
pings. The lack of variable names in the data format permits
the format to remain compact and etficient, and a given team
can add new variables to their project, and/or modity their
variable mapping (also referred to as schema) with little or no
changes (e.g., code changes and recompiling) being required
to the parsing or storage architecture.

FIG. 5 1s an example format 500 for transierring data
between a user (also referred to as client) computer and a web
analytics system. The example data format 500 can be used,
for example, to transier any number data elements belonging
to any number of data types (using a series of characters)
assigned to any number of project IDs. In some implementa-

US 8,307,101 B1

S

tions, the transferred characters are ASCII characters. For
example, the data format 500 can be used as the format for the
formatted data 108 of FIG. 1. The data format 500 shown
includes data elements belonging to two data types: keys and
values. In the data format 500, the key data type 1s used to
transier strings of alphabetic characters. The value data type
1s used to transfer numeric characters. Although the example
tormat shown merely includes two data types, the format can
support additional data types. For example, data types of
double (for floating point numbers).

The example format begins with a global parameter 302.
The global parameter shown 1s “utme”, but the global param-
eter can be any character or string of characters whose appear-
ance 1n a string ol data 1s unique 1n a series of recerved
characters so that it 1s recognized as the start of a data transfer
corresponding to the example format. A string parser, the
parser 112 for example, that encounters the global parameter
followed by an equal sign (*=") can be programmed to rec-
ognize the beginning of a data transfer according to the
example format and parse the information that follows
accordingly.

The example data format 500 includes project 1dentifiers,
data type identifiers, and data groups. A project i1dentifier
(project ID) 504 1s used to denote that the subsequent data
belongs to a specified project. Keys and values received for a
given project that are received, for example, at a parsing
program, are stored 1n association with that project to distin-
guish the data from that of other projects to avoid variable
collision between two or more projects. In the example for-
mat 500, data that follows the project ID 504 1s treated by a
parser as corresponding to that project until another project
ID 1s encountered. In some implementations, an 1nitial project
ID 1s required to follow the global parameter and equals sign.
A parser reading data sent using the example format can be
programmed to treat numeric characters located outside of
parentheses “()” as a project ID.

Parentheses “()” are used 1n the example format to enclose
groups ol data. Within the parentheses the data elements
correspond to one of the data types supported by the format.
The supported data types can be given an enumeration order
corresponding to an order to which a parser, absent an explicit
indication 1n the recerved data, will assign data elements
encountered within the data transfer format. In the example
format 500, the enumeration order can be keys then values,
meaning that unless explicitly indicated in the data, a first
group of data elements will be considered by a compatible
parser to be a group of keys, and the next group of data
clements will be assumed to be a group of values.

The example format 500 does not include an explicit indi-
cation that the first group of data elements corresponds to any
given data type. Therefore, (according to an enumeration
order of keys then values) the first encountered group of data
clements 1s considered to be a group of keys. The key data 506
in the first data group includes multiple elements delimited by
asterisks (*). Unless explicitly indicated 1n the data, the first
encountered key element 1s treated as belonging to an aitial
index value. Subsequently encountered key elements 1n the
group are treated as belonging to the previous index value
plus one. An explicit index 1s designated 1n the example
format with an exclamation point “!”. Upon encountering an
exclamation point, a compatible parser will assign the data
clement following the exclamation point to the index indi-
cated by the numeric characters preceding the exclamation
point. In the example format 500, the key data 506 includes an
exclamation point preceded by “10” to indicate that the key
clement following the exclamation point should be assigned
to the key index 10.

10

15

20

25

30

35

40

45

50

55

60

65

6

The next data group following the key data group 506 1s,
according to the enumeration order, a value data group. The
value data 508 includes three data elements delimited by
asterisks. A compatible parser processes value data elements
similarly to that of key elements. That 1s, unless explicitly
indicated 1n the data, a first element 1s assigned to a first index,
and subsequent elements are assigned to the index of the
previous element plus one. An index 1s explicitly indicated
using an exclamation point. The value data 508 includes an
exclamation point preceded by “5”. The value element fol-
lowing the exclamation point i1s therefore assigned to the

value index 5.

The value data 508 1s followed by a project ID 3510. The
project ID 510 of *“2” indicates that the data groups enclosed
in brackets following the project ID 510 are to be assigned to
the project having the project ID o1 “2”. The data type 1D 512
of “v” explicitly indicates that the next data group 1s a value
data group. The data type ID 512 1s followed by value data
514. The first data element 1n the value data 514 1s explicitly
assigned to the index value of 12 and the subsequent elements
are assigned to the index of the previous element plus one.

The example data format 500, unlike many transfer for-
mats, does not include variable names (variable names fol-
lowed by respective values, for example). This decreases the
data transter overhead inherent in the data format 500 as
compared to formats that include variable names. The
example data format 500 also does not include characters that
require the use of an escape sequence when used as part of a
URL (for example, concatenated to the end of a URL). Char-
acters that require URL escaping incur a size penalty for use
of the escape sequence. For example, a three character escape
code 15 needed to represent a single character when a URL
escape code 1s used. The delimiters of the example data for-
mat 500 do not require the use of an escape code for use as a
URL suffix, thereby increasing the efficiency of the format.
The data format 500 can be used to transier data to a web
analytics system to record visitor interactions with one or
more web pages.

An example web page 1s presented below with examples of
events that can be tracked (and event data collected) using a
web analytics system that utilized the generic storage format
described above. The web page example 1s followed by
examples of queries of the collected data supported by the
analytics system and the generic data format.

FIG. 6 1s an example web page 600 that includes a video
player and multiple advertisements configured to have user
interactions collected using a web analytics system. The
example web page includes a video player 602 having a set of
controls 604. A row of links 606 sit beneath the video player,
and advertisement region 608 1s shown on the right of the web
page 600. The code, for example HI ML, of the web page 600
can 1nclude one or more scripts for use i providing analytics
information to a web analytics system. The scripts can be
written 1n, for example, Javascript or other scripting lan-
guages capable of being embedded 1n web page code and
handling events, e.g., user interaction events. One or more
scripts can be used to send data from the client computer (on
which the web page 600 1s being displayed) to a web analytics
system for collection, storage, and reporting.

In some 1mplementations, scripts embedded 1n the web
page 600 instruct the web browser of the client computer to
send analytics data to a web analytics program encoded
according to the example format 500 shown 1n FIG. 5. One or
more scripts can be configured to track, for example, how
many times a given video was visited (e.g., loaded on a web
page), 1f a user moves a mouse pointer over the advertisement

US 8,307,101 B1

7

arca 608, and/or track a load time (latency) of an animated
advertisement appearing on the page.

Assuming that respective project teams desire to track
video player events, web page events, and latency, respective
project IDs are assigned to each of the projects. For example,
a web analytics system assigns project 1D 1 to the video
tracking project, project ID 2 to the web page event tracking,
project, and project ID 3 to the latency tracking project. The
video project can track, for example, the popularity of videos
provided by an online video provider by individual video title
and by video author. Online videos are oiten able to be
embedded 1 any of a number of web pages (e.g., a blog,
message board, etc.) For this case, a script of the video player
itself can transmit the hit to the web analytics system. To
encode the video player information using the format 500, a
key having an index number of 1 can be used to represent the
name of a video, a key having an index number of 2 can be
used to represent the author of a video, and value can be used
to represent the occurrence of the load event (so that the value
sent 15 1 for each occurrence). Upon a video being visited
(loaded 1n a web browser) the data 1s sent to the web analytics
system. For example, a script can request a small (e.g., one
pixel by one pixel) image from a web server of the web
analytics system having the tracking data encoded 1n a suffix
to the URL of the requested image. For example, for a video
entitled “CarChase” having an author “ACMECars” the fol-
lowing string can be appended to the URL by the script,
“?utme=1(CarChase®* ACMECarCompany)(1)”. This trans-
mits the video name, the video author, and the number of load
events that occurred to the web analytics system. The web
analytics system can parse the appended data, extract the
individual data elements, and store them as described with
respect to FIG. 3.

The event tracking project can track, for example, any
number of user interactions with the web page 600. For a
specific example, the tracking of an event wherein a user
moves a mouse pointer over an advertisement region will be
described. A key having an index number 1 can represent the
name of an event, and a value having an index number 1 can
represent the number of times the named event occurred (so
that the transmitted value 1s 1 for each occurrence.) Upon a
user moving a mouse pointer over the advertisement region,
608 a script embedded 1n the code of the web page 600 can
request a small (e.g., one pixel by one pixel) image from a
web server of the web analytics system having the tracking
data encoded 1n a suflix to the URL of the requested image.
For example, the following string can be appended to the
URL by the script, “7utme=2(MouseOverAd)(1)”. This
transmits the name of the event that has occurred and the
number of occurrences to the web analytics system. The web
analytics system can parse the appended data, extract the
individual data elements, and store them as described with
respect to FIG. 3.

Collected web analytics data, stored in a web analytics
system as described above, can be queried to obtain tracking
results for use by, for example, web page publishers for use in
determining the effectiveness or a particular presentation, or
the relative popularity of content offered to visitors. For
example, the web page event tracking project team (having
the project ID 2) can query the stored data to produce reports
that can be provided to web publishers (for example, through
a web based reporting interface).

To query the data collected by the system, two or more data
clements can be 1dentified for aggregation. For example, to
obtain a list of the most popular videos offered by the online
video provider described above, event counts 1n value index
number 1 (of projectID 1) can be aggregated across key index

10

15

20

25

30

35

40

45

50

55

60

65

8

number 1 (video name). The result of this aggregation output
by the web analytics system 1s a sum of the value (index
number 1) for each unique video name.

This aggregation can be specified (by a project team mem-
ber for example) by providing an identification of the data
clements on which the aggregation will be based to the web
analytics system. For example, to specily the above aggrega-
tion, a project team member can specily the data elements
(keys and value) to be aggregated by indicating the project 1D,
data type ID, and index number for each. For the most popular
video aggregation described above, the project team member
can specily that project ID 1, key index number 1 and project
ID 1, value index 1 are to be aggregated. In response, the
system retrieves all data elements stored 1n association with
project ID 1, a data type of key, and an index number of 1, and
sums the integer values stored 1n association with project 1D
1, a data type of value, and an index number of 1 for each
unique key (movie name). A value can be attributed to a given
key based on being stored with a common hit ID and/or a

common visit ID. The output of the example aggregation is a
table with a column of movie names and another column that
holds the number of times the named movie was viewed as
indicated 1n the collected data.

If multiple keys are specified for an aggregation, the out-
putted table can include atable of the combinations of the two
keys appearing in the collected data for the same hit (and/or
visit) and a count of the number of times the combination
appears.

Similarly, for the video tracking project (project 1D 1) to
determine the most popular video authors, data type value,
value index number 1, can be aggregated across data type key,
index number 2 (video author). For each umique author name
found 1 key index number 2 (for project ID 1) the web
analytics system sums the values in index number 1. The
system can generate, for example, a table of the results.

To determine the number of times a user moved a mouse
pointer ol an advertisement region, data type value, imndex
number 1 (ol project ID 2) can be aggregated across data type
key, index number 1 (event name). For each unique event
name found in key index number 1, the web analytics system
counts the number of collected occurrences. A table of
results, can 1include a row for “MouseOverAd” showing the
number of times the event occurred.

In some implementations, the web analytics system sup-
ports pre-aggregation of collected data, based on user defined
aggregations (or views) of the data. Pre-aggregation can
speed the delivery of requested information as compared to
requesting an aggregation of data waiting for the result. For
instance, in the examples above (most popular video by visits,
most popular video author by visits, and events by number of
occurrences) these aggregations can be pre-computed. The
web analytics system can support user (1.e., project team)
defined views of the data that will be pre-aggregated by the
web analytics system and stored for more immediate access.
A user can define a view of the data to be pre-aggregated by
supplying a project ID and set of keys and values to the web
analytics system for pre-aggregation. For example, a set of
keys and values specified for performing pre-aggregation can
be stored 1n a file and/or directory of a web analytics system
where a system process periodically polls the file and/or
directory for pre-aggregation definitions and performs any
specified pre-aggregations that are found. The results of the
pre-aggregation can be stored 1n a datastore of the web ana-
lytics system for use 1n, for example, creating reports.

The storage format of the web analytics application further
enables aggregations and pre-aggregations to be performed
across projects. For example, i one project team 1s interested

US 8,307,101 B1

9

in data regarding a type of user interaction that has not been
collected by their team, but 1s being collected by another team
using the web analytics system, the first project team can
create an aggregation of the collected data based on their own
tracked data in combination with data collected by the other
team. For example, a user (e.g., a project team member) can
specily an aggregation of data by identifying one or more key
data elements from a {first project, one or more key data
clements from a second project, and a value data element
from either or both of the projects. The web analytics system
can provide aggregated results using collected data from both
projects.

Embodiments of the subject matter and the functional
operations described 1n this specification can be implemented
in digital electronic circuitry, or in computer software, firm-
ware, or hardware, including the structures disclosed 1n this
specification and their structural equivalents, or 1n combina-
tions of one or more of them. Embodiments of the subject
matter described in this specification can be implemented as
one or more computer program products, 1.e., one or more
modules of computer program instructions encoded on a tan-
gible program carrier for execution by, or to control the opera-
tion of, data processing apparatus. The tangible program car-
rier can be a computer-readable medium. The computer-
readable medium can be a machine-readable storage device,
a machine-readable storage substrate, a memory device, a
composition of matter affecting a machine-readable propa-
gated signal, or a combination of one or more of them.

The term ““data processing apparatus” encompasses all
apparatus, devices, and machines for processing data, includ-
ing by way of example a programmable processor, a com-
puter, or multiple processors or computers. The apparatus can
include, 1n addition to hardware, code that creates an execu-
tion environment for the computer program in question, €.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a com-
bination of one or more of them.

A computer program (also known as a program, software,
software application, script, or code) can be written 1n any
form of programming language, including compiled or inter-
preted languages, or declarative or procedural languages, and
it can be deployed 1n any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use 1n a computing environment. A computer
program does not necessarily correspond to a file 1n a file
system. A program can be stored 1n a portion of a file that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single file dedicated to
the program 1n question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub-programs, or por-
tions of code). A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network.

The processes and logic tlows described 1n this specifica-
tion can be performed by one or more programmable proces-
sOrs executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e€.g., an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a

10

15

20

25

30

35

40

45

50

55

60

65

10

random access memory or both. The essential elements of a
computer are a processor for performing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transier data to, or both, one
or more mass storage devices for storing data, €.g., magnetic,
magneto-optical disks, or optical disks. However, a computer
need not have such devices. Moreover, a computer can be
embedded 1n another device, e.g., a mobile telephone, a per-
sonal digital assistant (PDA), a mobile audio or video player,
a game console, a Global Positioning System (GPS) receiver,
to name just a few.

Computer-readable media suitable for storing computer
program 1nstructions and data include all forms of non-vola-
tile memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks. The processor
and the memory can be supplemented by, or incorporated 1n,
special purpose logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e€.g., amouse or a trackball, by which the user
can provide mput to the computer. Other kinds of devices can
be used to provide for mteraction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be recerved in
any form, including acoustic, speech, or tactile input.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any mvention or of what may be claimed, but
rather as descriptions of features that may be specific to
particular embodiments of particular inventions. Certain fea-
tures that are described 1n this specification 1n the context of
separate embodiments can also be implemented in combina-
tion 1n a single embodiment. Conversely, various features that
are described 1n the context of a single embodiment can also
be implemented 1n multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can 1n some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted 1n the drawings in
a particular order, this should not be understood as requiring
that such operations be performed 1n the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents i the embodiments described above should not be
understood as requiring such separation 1n all embodiments,
and 1t should be understood that the described program com-
ponents and systems can generally be integrated together in a
single software product or packaged into multiple software
products.

Particular embodiments of the subject matter described 1n
this specification have been described. Other embodiments
are within the scope of the following claims. For example, the
actions recited in the claims can be performed 1n a different
order and still achieve desirable results. As one example, the

US 8,307,101 B1

11

processes depicted in the accompanying figures do not nec-
essarily require the particular order shown, or sequential
order, to achieve desirable results. In certain 1implementa-
tions, multitasking and parallel processing may be advanta-
geous.

The mvention claimed 1s:

1. A system comprising one or more computers operable
to:

receive a string including webpage event data from a client

device, wherein the event data comprises a plurality of
data elements, each data element having a project 1den-
tifier, a data type, and an index number according to a
format of the string;

process the string to extract the data elements, the process

comprising:

identifying a first group of data elements associated with a

first data type, each data element 1n the first group having
the first data type and having the index number of the
respective data element determined 1n relation to the first
group, and

identifying a second group of data elements associated

with a second data type, the second data type being
different than the first data type, each data element 1n the
second group having the second data type and having the
index number of the respective data element determined
in relation to the second group, at least one data element
in the second group having an index number that 1s the
same as a data element 1n the first group; and

store each data element at 1ts indicated index number

within 1ts indicated data type in association with its
indicated project 1identifier 1n a datastore.

2. The system of claim 1, wherein the project identifier, the
data type, and the imndex number of a given data element
together 1dentify a variable to which that data element corre-
sponds.

3. The system of claim 1, wherein the datastore comprises
data for a plurality of project identifiers.

4. The system of claim 1, wherein the string includes data
clements and formatting characters and does not include any
variable names corresponding to the data elements.

5. The system of claim 1, wherein the string 1s received in
an H1'1TP request.

6. The system of claim 1, wherein the data types supported
by the format of the string comprise:

key data consisting of characters; and

value data consisting of integers.

7. The system of claim 1, wherein the first data type 1s
determined according to an enumeration order of data types.

8. The system of claim 1, wherein the data type of a given
data element 1s determined according to an enumeration order
of the format of the string and the location of the given data
clement 1n the string.

9. The system of claim 1, wherein the string does not
include any characters that require a URL escape code.

10. The system of claim 1, wherein the webpage event data
includes latency information corresponding to a load time
associated with an 1tem displayed on the webpage.

11. The system of claim 1, wherein the one or more com-
puters are further operable to:

generate aggregated results based on the stored data ele-

ments; and

transmit the aggregated results.

12. The system of claim 1, wherein the one or more com-
puters are further operable to:

generate a pre-aggregated table of results based on at least

a specified project ID and a key index number of one data

10

15

20

25

30

35

40

45

50

55

60

65

12

clement, and a specified project ID and a value index
number of a second data element.

13. A computer-implemented_method comprising:

receving a string including webpage event data from a

client device, wherein the event data comprises a plural-
ity of data elements, each data element having a project
identifier, a data type, and an index number according to
a format of the string;

processing the string, using a computer system, to extract

the data elements the processing comprising:

identifying a first group of data elements associated with a

first data type, each data element 1n the first group having,
the first data type and having the index number of the
respective data element determined 1n relation to the first
group, and

identifying a second group of data elements associated

with a second data type, the second data type being
different than the first data type, each data element 1n the
second group having the second data type and having the
index number of the respective data element determined
in relation to the second group, at least one data element
in the second group having an index number that 1s the
same as a data element in the first group; and

storing each data element at 1ts indicated index number

within 1ts indicated data type in association with 1ts
indicated project identifier 1n a datastore.

14. The method of claim 13, wherein the project 1dentifier,
the data type, and the index number of a given data element
together 1dentify a variable to which that data element corre-
sponds.

15. The method of claim 13, wherein the datastore com-
prises data for a plurality of project identifiers.

16. The method of claim 13, wherein the string includes
data elements and formatting characters and does not include
any variable names corresponding to the data elements.

17. The method of claim 13, wherein the string is received
in an HT'TP request.

18. The method of claim 13, wherein the data types sup-
ported by the format of the string comprise:

key data consisting of characters; and

value data consisting of integers.

19. The method of claim 13, wherein the index number of
a given data element 1s determined according to an enumera-
tion order of the format of the string and the location of the
given data element 1n the string.

20. The method of claim 13, wherein the first data type 1s
determined according to an enumeration order of data types.

21. The method of claim 13, wherein the string does not
include any characters that require a URL escape code.

22. The method of claim 13, wherein the webpage event
data includes information corresponding to a video embed-
ded in the webpage.

23. The method of claim 13, wherein the webpage event
data includes latency information corresponding to a load
time associated with an item displayed on the webpage.

24. The method of claim 13, wherein the webpage event
data includes information corresponding to user mouse
movements.

25. The method of claim 13, further comprising:

generating aggregated results based on the stored data ele-

ments.

26. The method of claim 25, wherein the aggregated results
comprise mformation corresponding to two or more project
identifiers.

277. The method of claim 23, further comprising:

transmitting the aggregated results to a user.

US 8,307,101 B1

13

28. The method of claim 13, further comprising;:

generating a pre-aggregated table of results based on at

least a specified project ID and a key index number of
one data element, and a specified project ID and a value
index number of a second data element.

29. A computer storage medium encoded with computer
program 1nstructions that when executed by one or more
computers cause the one or more computers to perform
operations comprising;:

receiving a string including webpage event data from a

client device, wherein the event data comprises a plural-
ity of data elements, each data element having a project
identifier, a data type, and an index number according to
a format of the string;

processing the string to extract the data elements, the pro-

cessing comprising:

identifying a first group of data elements associated with a

first data type, each data element 1n the first group having

5

10

15

14

the first data type and having the index number of the
respective data element determined 1n relation to the first
group, and

identifying a second group of data elements associated
with a second data type, the second data type being
different than the first data type, each data element 1n the
second group having the second data type and having the
index number of the respective data element determined
in relation to the second group, at least one data element
in the second group having an index number that 1s the
same as a data element in the first group; and

storing each data element at 1ts indicated index number
within 1ts indicated data type in association with 1ts
indicated project identifier 1n a datastore.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,307,101 Bl Page 1 of 1
APPLICATION NO. : 12/334335

DATED : November 6, 2012

INVENTORC(S) : Lik Mui, Sagnik Nandy and David White

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claim 13, Column 12, Line 3 — delete “computer-implemented_method™ and insert
-- computer-implemented method --, therefor.

Claim 13, Column 12, Line 10 — delete “elements” and 1nsert -- elements, --, therefor.

Signed and Sealed this
Fifteenth Day of January, 2013

David J. Kappos
Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,307,101 Bl Page 1 of 1
APPLICATION NO. : 12/334335

DATED : November 6, 2012

INVENTOR(S) : Mui et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:
The first or sole Notice should read --

Subject to any disclaimer, the term of this patent 1s extended or adjusted under 35 U.S.C. 154(b)
by 777 days.

Signed and Sealed this
Second Day of June, 2015

Tecbatle 7 Lo

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

