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Product Examples

Take a discrete finite partial order (X, C) over the set {1, z2, 23, T4, 5, Tg }
with the following labeling:

“f S = - 3 2.
o < < = © o
X, Rog  XKeg u g g

Take two subsets of X, set A and set B, where A = {z1,22} and B =

{$3:$4;$5}-
A B
¥ < o, Y 3
< <& v < - <

B.

Take the result of this product, itself the set B®.A and the set C, where

C = {zg}. B
/L/g 3 (o j
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Perform a product between C' and B®A letting C be the set producted

above A®B. 2
e

The product of C over B A in this labeling will Push-Down the label value
of C to an appropriate position.

Perform a product between F and D, letting E be the set pro ducted above
D.

Fig 3 (k)
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Ay O W

The product of F over D in this labeling will Push-Up the label value of
D to an appropriate position.

Ao E\)(G

R &9 20 R l

Notice how a product between E and F, where F = {5}, fails because all of
product’s requirements of E and ¥ are not satisfied, i.e |F| # [ ]
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Split Examples

Take a discrete finite partial order (X, C) over the set {1, 2, T3, %4, %5, Lo }
with the following labeling:

= B G - 2 \
<7 < o L < -

Take a finite partial order (X,C) over the set {1, Zs, 3, %4, Ts,Tg} With
the following ordering and labeling:

% o0 %,

Ko B 8% Ko
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Perform a split on zs.

Fig 4 (4)
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Projection Examples

Take a finite partial order (X,L) over the set {x1, 3, %3, Z4,z5} with the
following ordering and labeling:

Take the isolated subset I, where I is the entire partial order X, and do
a projection of I to get J.

12 V2.

Xy /
1

Ko | L [N XK 2
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Delete Over Entire Partial Order Examples

Take a finite partial order (X, C) over the set {x1, Z2, Z3, T4, Ts, Tg, T7} With

the following ordering and labeling:
IS o X,

Ry
y S \25 X =
Perform a delete on the third largest label in X. In this instance, this is
0. O is attached to x3, which is not a minimal or maximal element in X.

Therefore, the label 9 is treated as smaller than any other label in X, repre-
sented here as 9~ and push down 1s now called on 9™.

1S b S
—
=5

Now the element with the smallest label in X, ¢ with the label 9~ is deleted.
‘S x %

Xg

= Xq.
3 X =
2o Xy

Take the original finite partial order (X,C) at the start of this example
and instead of deleting the third largest label, delete the the largest. In this
instance, this is 15. 15 is attached to z;, which is a maximal element in X.

Therefore it i1s stmply removed.
Hg G ()
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Delete Over Strict Subset Of Partial Order Exam-
ples

Take a finite partial order (X, C) over the set {z1, 2, Z3, T4, T5, T, Tr} With
the following ordering and labeling:

Xy

Perform a delete on the second smallest label in S7. In this instance, this
is 9. 9 is attached to x3, which is not a minimal or maximal element in S/1.
Therefore, the label 9 is treated as smaller than any other label in S1, rep-
resented here as 97, and Push-Down is now called on 9™ until it is attached
to a minimal element in SI. (The other solution would be to treat the label
9 as greater than any other label in ST, represented as 9%, and Push-Up is
called on 97 until it is attached to a maximal element in SI.)
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Now the element with the smallest label in SI, 4 with the label 97, is

deleted. (Or the element with the largest label in ST is deleted.)
1=

Take the original finite partial order (X, C) and the subset SI at the start of
this example and instead of deleting the second smallest label in S7, delete
the smallest label in S7. In this instance, this is 8. 8 is attached to x4, which
is the minimal element in 57. Therefore it is simply removed.
S 'S
oy, Ay

s DY

>
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METHOD FOR DEVELOPING SOFTWARLE
CODE AND ESTIMATING PROCESSOR
EXECUTION TIME

This 1s a national stage of PC'T/IE06/000012 filed Feb. 16,
2006 and published 1n English, claiming benefit of U.S. pro-
visional application number 60/653,092, filed Feb. 16, 2005.

FIELD OF THE INVENTION

The mnvention relates to control of data processor activity
and utilization of memory.

Prior Art Discussion

There are many soitware code applications which imvolve
a large number of comparison operations and for which 1t
would be very advantageous to be able to predict the proces-
sor time to execute the code. This 1s particularly true for real
time applications such as are tlight control systems 1n aircraft
or vehicle cruise control applications.

An example of the source code language which 1s used for
development of comparison-based programs 1s Java Librar-
1es™. It would be very advantageous to be able to accurately
predict the processor execution time for a program developed
in this language as execution of the programs mnvolves many
cycles of retrieving libraries and processing their data. If
accurate prediction were possible, 1t would 1n turn be possible
to correctly deploy the correct hardware resources for opti-
mum trade-oif between performance and cost, to plan the
timing of interactions between tasks, and to allocate tasks to
processing units.

At present, estimation of execution time 1s typically on the
basis of Worst-Case Execution Time (“WCET”). The prob-
lems with this approach are that (a) they output a worst-case
scenario so that there is typically over-specification of hard-
ware resources, and (b) the processes for generating the
WCET are not completely automated.

As software code 1s concerned with manipulating data, the
state of the data 1s constantly changing during that program
cycle. At any point 1n the program, depending on previous
decisions made by the program, the data will be 1n a particular
state. Current software technology does not provide for deter-
mimng all possible states data can be 1n at any point of a
program’s execution.

The 1nvention 1s directed towards providing a software
development method for more accurate prediction of execu-
tion time and/or for more automated prediction of execution

time. It 1s also directed towards the development of an asso-
ciated static analysis timing tool to perform steps of the
method. It 1s also directed towards providing a data process-
ing system incorporating software developed 1n this method.

SUMMARY OF THE INVENTION

The invention provides a method of developing software
code for executing on a target digital processor using a
memory in which 1t maintains data structures having ele-
ments, each of the elements storing data which 1s represented
by a label, and at least some links between the elements being,
created by the target processor as data 1s being processed, the
method comprising the steps of:

(a) writing the software code with data structure processing
operations which comply with random structure preserva-
tion rules, and
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2

(b) a static analysis timing tool automatically:

(1) parsing the code developed in step (a) to identify all
operations,

(1) determining from an operation and all possible input
states for that operation an average time value for execu-
tion of the operation by a target data processor, and
storing said average time value,

(111) determining from the operation and all possible input
states all possible output states for that operation,

(1v) repeating steps (11) and (111) for each next operation,
using the all possible output states determined 1n step
(111) as all possible input states, and

(v) generating an output total average time which 1s a sum
of all average times stored 1n step (11).

Other features of the mvention are set out 1in the appended

claims, the contents of which are incorporated herein by
reference.

Detailed Description of the Invention

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention will be more clearly understood from the
tollowing description of some embodiments thereolf, given by
way ol example only with reference to the accompanying
drawings 1n which:

FIG. 1 1s a flow diagram of the major steps of a method of
the invention:

FIG. 2 1s a plot of illustrating random structures before and
alter operations of software code developed according to the
invention; and

FIGS. 3 to 7 inclusive are illustrated examples of opera-
tions performed by developed code, i terms of the data
structure processing.

DESCRIPTION OF THE EMBODIMENTS

The 1nvention provides a method of developing software
code, called MOQA (MOdular Quantitative Analysis), the
method 1mnvolving use of a static analysis timing tool called
“Distr1 Track™ after software development to automatically
estimate the actual times for execution of the code. The
MOQA method allows knowledge about the data to be
derived by the Distri Track tool, 1.e. all possible states of data
are known at any given point of the code execution, and to
keep track of all states during the execution.

This method of developing software code 1s based on a
specific body of rules. Any programmer or automatic devel-
opment tool which adheres to these rules of how data is
created and mampulated can apply the Distri Track tool to
statically analyze the code and determine the average-case
time of the computation.

The Dastr1 Track tool extracts the data distribution infor-
mation at any given point of the computation. By using this
information 1n a way described further below, the average
number of basic steps a computation performs (for example,
comparisons, swaps, and assignments ) in order to manipulate
the data can be calculated by Distri Track. This information in
turn enables Distr1 Track to statically predict the average-case
time of the computation, simply by multiplying the number of
computation steps by the time 1t takes to compute such a step
(or an upper bound of this time) on the particular processor
used and summing up the resulting times.

Referring to FIG. 1 the overall method is indicated by the
numeral 1. It uses a base 2 of random structure preserving
rules and 1t comprises steps 3 to 11 inclusive. In step 3 code 1s
developed on the basis of the rules 2. This 1s achieved 1n a
simple manner, by using only pre-defined data structure pro-
cessing operations, defined 1n detail below (including the four
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main MOQA operations and any other MOQA operation
satisiying the random sequence preservation criteria). In step
4 the static analysis tool parses the code, without any need to
execute the code. In step S the tool retrieves from pre-stored
settings all possible input states (PIS) for the operations from
configuration settings. As indicated by the decision step 6, for
the first operation the tool performs two logically parallel
functions 7 and 8. Function 7 comprises determining from the
current operation and all PIS the average time to perform the
operation. Step 8 mmvolves determining from the operation
and all PIS all Possible Output States (POS) for the operation.
Following step 7 the tool adds the average time to a counter 1n
step 9. Following step 8 the POS are used as PIS for the next
operation to perform steps 7, 8, and 9. There are 1iterations
until there 1s no further operation and the iterations stop as
indicated by step 10. At this stage the counter holds the total
value of the average time for all operations and this 1s output-
ted 1n step 11 to provide the final output.

Any program operates on data structures. MOQA however
states unambiguously how to create and manipulate a data
structure 1 order to make average timing of this mampulation
possible.

A memory data structure consists of data and how this data
1s related. How this relationship between data 1s represented
varies from program to program. MOQA states a particular
way to represent the relationship as defined below.

In more detail, a memory data structure 1s a finite collection
of elements and the relations, or “links”, between elements.
The elements store the data. The MOQA methodology 1s used
to form the relation or links between the elements. The ele-
ments are not mdividually uniquely addressed or labelled.
Instead, the processor identifies the data stored 1n them and
uses the data to relatively address the elements. A data value
comprises a pair of an identifier or “label” and a piece of data.
To take the example of a temperature measurement 1n a
chemical process plant, there are many millions of such mea-
surements and each one may comprise a pair of a temperature
value (the label) and a piece of data comprising the location
where the measurement was taken. Data will always have a
label. The labels are always comparable with respect to a
specific order, for example “less than or equal to”. Theretfore
for any two labels one can always decide whether the first 1s
less than the second or the second 1s less than the first, 1n that
example. Sometimes 1t 1s not necessary to have a label 1t the
data 1tself 1s directly comparable, e.g. sorting numbers. In
these cases the label 1s also the data.

When a new link 1s created between two elements, the link
has a direction. For example, for two elements x and v, it 1s
indicated whether the link proceeds from x to y or from y to x.
So the processor creates a relation from x to y or from y to x.
In other words the data of x must be below the data of y or visa
versa. However we now have to take into account that both
pieces of data have labels. For instance 11 the data 1n x has the
label which 1s the number 13445 and 1f the data 1n y has the
label which 1s the number 12333 and 11 a link 1s created from
X to y (indicating “x 1s below y”’) then the numbers need to be
moved (1n fact swapped 1n this case) along with their data, or
solely the numbers 1n case of pointers linking labels and data,
depending on the choice of implementation. This needs to
happen for the end result to respect the less than or equal to
ordering that 1s indicated by the link.

These labels may or may not be the same. However, for
data storage in MOQA, the labels are required to be distinct
from one another. If data 1s supplied that has a label already
attached to another piece of data, 1t 1s a rule to ensure that this
1s dealt with appropriately to prevent duplicate labels being
attached to stored data.
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In this document the word “label” 1s synonymous with
identifier. We now have described what a data structure 1s and
how MOQA represents such a data structure.

The MOQA methodology 1s concerned with how the data
structure 1s changed, how the links 1n the data structure are
created and destroyed in an acceptable fashion, which leads to
data being reorganized accordingly. The acceptable methods
of changing a MOQA data structure include the four main
MOQA operations below. A “delete” operation removes an
clement and 1ts data with 1ts associated label from (part of) a
data structure. A “product” operation allows one to “merge”
two (parts of) data structures into a larger data structure, made
up of the original two data structures and reorganize their
labels accordingly. A “split” operation allows one to link
clements 1n (part of) a data structure 1n such a way that the
clements are above or below a specified element, depending
upon the identifiers/labels of the elements. A “projection”
operation allows one to produce a copy of (part of) a given
data structure.

The invention 1s not restricted to these operations, but these
are core operations in this embodiment, for which the first
three 1n particular are key to all data manipulation.

We also characterize precisely a condition which any
operation (not only the above four, but any other operation
complying with the rules) needs to posses 1n order for the data
mampulation to achieve the desired etfect. This 1s the condi-
tion of “random structure preservation”. This enables one to
test 1n practice whether the average-case time of the operation
can be determined by the static analysis tool Distr1 Track. We
also characterize the exact parts of data structures on which 1t
1s allowed to execute the MOQA operations, 1n particular the
isolated subsets of a data structure and the strictly 1solated
subsets of a data structure. Depending on the operation 1n
question (as described below), the operation can be applied to
such a part (1solated or strictly 1solated), whereupon the Distri
Track tool can track the random sequences produced.

Distr1 Track obtains the average-case time by having the
guarantee that every MOQA operation satisfies the condition
of random structure preservation (and thus “random sequence
preservation”). To explain these terms we first introduce the
concept of a labeling and the related concept of a random
structure.

Labeling

We know that each piece of data has a label. Gathering
together all the labels of all the elements 1n a data structure 1s
defined to be the particular labeling of that data structure. The
labels respect the ordering of the data structure and a data
structure can have more than one possible labeling that
respects the ordering of that data structure.

For instance, we consider a data structure consisting of the
V-shaped triple of elements, say an element x (at the apex of
the V-shape) 1s linked to an element y and an element z. Say,
for example, we use natural numbers as labels. Say we want
to store the information consisting of the numbers 3, 6 and 9
in elements of the V-shape. Since the element x 1s linked to the
clements y and z (in the direction from vy to z) our rule on the
ordering indicated by links specifies that labels stored 1n x
must have a value less than the labels stored 1n vy and 1n z.
Hence the label stored mm x must be the number 3. In the
storage of the labels 6 and 9, we have freedom: we can store
the label 6 in the cell y and 9 inthe cell z, or 9 in the cell y and
6 1n the cell z. This results 1n two possible labelings. The first
which assigns the value 3 to x, the value 6 to y and the value
9to z, and the second which assigns the value 3 to x, the value
9 to v and the value 6 to z.
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Random Structure

The two labelings 1n the previous example form a “random
structure” over the data structure consisting of the V-shape. In
general, 11 a data structure has n elements and 1f we collect all

possible labelings of these elements from a given fixed setof 3

labels a(1), . . . a(n), then this collection of labelings 1s called
a random structure over the data structure.

Random Structure Preservation and Random Sequence Pres-
ervation

During a computation only one of these particular label-
ings will be 1n use at any given stage, so a MOQA operation
will take a particular labeling over the elements of a data
structure and return another data structure with a particular
labeling for that structure.

Ifa MOQA operation does this individually for every label-
ing of a data structure, 1.¢. the entire random structure, we can
guarantee that 1f we gather together the results, they can be
grouped 1nto one or more random structures, with no leftover
individual resulting labelings that do not form a random struc-
ture. So 1f some data structure with a particular labeling 1s
selected from the resulting output of a MOQA operation on a
random structure, the random sequence preservation guaran-
tee 1s that all the other possible labelings for that the data
structure will also be among the output, when the operation
has been applied to all possible mput labelings from the
random structure. The random structure 1s over a particular
set of labels.

Random structure preservation means a random structure
can be transformed 1nto one or more new random structures,
cach of which could be copied a certain number of times. This
final result 1s referred to as a random sequence.

Each random structure preserving operation can be
extended to operate on random sequences as follows (we refer
to this as “random sequence preservation”). Random
sequence preservation then means that a random sequence 1s
transformed into a new random sequence, by carrying out a
random structure preserving operation on each of the random
structures 1n the random sequence. Each random structure 1n
the random sequence 1s replaced by the new random sequence
produced from this random structure. Random structures are
regarded as random sequences of size one.

Multiplicities

The output of a MOQA operation on a random structure
can be grouped 1nto one or more random structures. These one
or more random structures are referred to as a random
sequence of random structures. If some of the random struc-
tures 1n the random sequence are identical, they can be
grouped together and represented by one copy of the random
structure together with a number indicating how many times
it appears 1n the random sequence. This number 1s called the
multiplicity of the random structure (in the random
sequence).

Therefore any random structure has a multiplicity of either
one, 1t appears once 1n the random sequence, or more than
one, 1t appears more than once 1n the random sequence.
Distri-Track

The Daistr1 Track static analysis timing tool operates on
program code developed via MOQA methodology. It initially
takes a random structure, consisting of the 1nitial input states
for this program, and the first MOQA operation of the pro-
gram on that random structure, and calculates the random
sequence outputted by the operation. Subsequently, it takes
that random sequence and the subsequent MOQA operation
will now be performed on a random sequence. Distri Track
takes each random structure in that random sequence and
applies the principles of how a MOQA operation changes a
structure to determine 1ts associated random sequence. It then
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6

replaces the random structures in the original random
sequence, with the new random sequences reflecting the con-
sequences of the MOQA operation on the random structures
in the original random sequence.

This cycle continues with this random sequence now being
taken by Distr1 Track which applies the next MOQA opera-
tion and so on until program completion and the final random
sequence 1s produced.

This process 1s 1llustrated 1n FIG. 1.

Computation of Output Random Sequence by Distr1 Track

Distri Track does not calculate the random sequence by
calculating the result of the operation over all labelings of the
original random structure. Rather it takes the original random
structure and produces from 1ts data structure a new sequence
of data structures based on the rules for the MOQA operation.
Moreover, Distr1 Track immediately computes the multiplici-
ties involved 1n the output random sequence. The fact that this
eificient approach works 1s guaranteed by the fact that the
MOQA operations are random sequence preserving.

We describe the process of random sequence preservation
in the context of Distr1 Track. A random sequence (R1,
K1), ..., (Rn,Kn) 1s here represented as a distribution. The
horizontal axis represents the random structures, while the
vertical axis represents how many copies of the random struc-
tures are produced in the computation. FIG. 2 1llustrates the
new random structures produced via a MOQA operation and
their respective multiplicities.

By calculating the random sequence produced by one
operation, Distn1 Track can, along with complex mathemati-
cal formulas, determine the average-case time of this opera-
tion.

The compositionality of MOQA operations (guaranteed by
their random sequence preservation) enables Distr1 Track to
determine the average-time of any program written with the
MOQA methodology.

Distri Track parses the code to follow the program flow 1n
calculating the average-case time, whether sequential or
branching. It 1s fully modular in that 1t determines the aver-
age-case time of each program (produced via MOQA meth-
odology) 1in terms of linear combinations of the average-case
times of the MOQA operations within that program.

If software has been timed and one alters a piece of the
soltware, only this particular piece needs to be re-timed by
Distri1 Track and recombined with the priorly obtained times
(excluding the time of the replaced piece); since the tool 1s
modular. None of the current timing tools 1s (functionally)
modular 1n this sense.

For the example of a program composed of sequential
MOQA operations, Distr1 Track will produce the average
time of the program as the SUM of the average times of each
individual operation. The fact that the average time of a pro-
gram or collection of programs can be obtained in this way 1s
only guaranteed for MOQA-produced software. This 15 a
major improvement over the prior art, in which programmers
had to carefully select a tiny but approprnate collection of
inputs among millions, perhaps infinitely many possible
inputs, itself a laborious (or impossible) task, with no guar-
antee of accuracy. In fact it was not possible to produce 1n this
way the exact average-case time. As well as the selection
process, they then had to carry out the actual testing proce-
dure, which 1n many cases, due to the amount of memory
required, resulted 1n only very small sample cases to be test-
able. Often these approximations could be close to the mark,
but this 1s msuilicient 1n the context of real-time analysis and
critical applications, where precision needs to be guaranteed.
In these cases trust had to be placed in the approximated
average-case time as this was the only answer available.
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The MOQA methodology radically transforms average
case analysis. No longer are such laborious tests required.
Distri Track produces the precise answer with one run of 1ts
program. There 1s no need to execute the soitware to be timed
on any of 1ts inputs, not even once. Distr1 Track hence saves
hours 1n testing, increasing productivity of programmers, let-
ting the focus be on accurate code as opposed to timing the
code. Because the average-case time 1s known, code can be
written which better optimizes the use of resources. So the
exact average-case time allows time 1tself to be saved 1n code
development and therefore this additional time can be allo-
cated to the production of more efficient code.

Operation Description

Betore describing the four key MOQA operations 1n more
detail, the following are some useful definitions that will
assist 1n characterizing these operations.

Data structures (finite collections of elements and their
links) are formally characterized as finite partial orders. We
do not insist that all links of a partial order are actually
represented 1n an implementation of the data structure/stored
in memory. In fact we allow the traditional approach for
partial orders of minimizing the number of links through the
so-called transitive reduction and the well-known partial
order concept of Hasse Diagram.

We also characterize the exact parts of data structures on
which 1t 1s allowed to execute the MOQA operations, in
particular the 1solated subsets of a data structure and the
strictly 1solated subsets of a data structure. Depending on the
operation in question (as described below), the operation can
be applied to such a part (isolated or strictly 1solated), where-
upon the Distri Track tool can track the random sequences
produced.

The definitions are as follows:
Partial Order
A partial order 1s a binary relation between elements of a

set, written as (X, & ). It defines relationships between all
of the elements of a set. These relationships must obey
the following three axioms for some set X to be a partial

order:

1. Reflexive 1f a=a for all a eX.

2. Antisymmetric 1f a=b and b=a=a=b for all a, b €X

3. Transitive if a=b and b=c=a=C for all a, b, ¢ eX.

Maximal and Minimal Elements

A maximal element of a subset S of some partially ordered
set 1s an element of S that 1s not smaller than any other
clement 1in S. Formally, given a subset S of a finite partial

order (X, C) an element Mis a maximal element of S
such that if m C sfor any SeS, then =111

A minimal element of a subset S of some partially ordered
set 1s an element of S that 1s not greater than any other
clement in S. Formally, given a subset S of a finite partial

ey

order (X, C), an element Mis a minimal element of S such
that if yn C sfor any SeS, then §=11
Path

A path between two elements Land Y where x, y (X, ).
is a sequence (X,,...,X ), where T1 = Tand I, = Yand V1

ell,...n-1}.x,EK , orx, Ox

-1

Component (Connected Component)

Two elements in a partial order (X,C)) are connected if
there exists a path from one to the other. A connected set
1s a set for which every two elements 1n the set are
connected. A connected component 1n a partial order 1s
a maximal connected subset 1n that partial order, which
1s non-empty.
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3
Directly Related

Two elements Zand ¥., where x, y € (X,C)), are directly
related 11 there 1s a path between x and y and the
sequence (X, . . ., X, ) 1n the path from x to y, where
T1 = Tand T, = ¥, contains exactly two elements, 112. In
other words, two elements are directly related 1 the path
between them 1s (X, y), with no intermediate elements.

Isolated Set

An isolated set in a partial order (X, Z)) is a subset of that
partial order whose maximal and mimimal elements are
the only elements 1n the set that are directly related to
any elements outside of the 1solated set. Any element 1n
an 1solated set that 1s not a minimal or maximal element
1s only related to elements outside of the i1solated set
through transitivity, 1.e. 1s not directly related to any
element outside of the 1solated set. As well as this, all
maximal elements must have the same set of elements
above them that they are directly related to and con-
versely, all minimal elements must have the same set of
clements below them that they are directly related to.

Formally, given a finite partial order (X, C)). A subset [of X
1s 1solated 11T it satisfies the following three conditions:

[I- D) =T and [I-M(D)] <1 1
VL, Ye TH(D)-[ L= Y] 2

V&, YeM (1) ¥]=| Y] 3

Where | x| is the set of all the elements below Zthat Zis
directly related to and | %| is the set of all the elements
above Tthat T1s directly related to. M(I) 1s the maximal
clements of I and 77r2(1) 1s the minimal elements of 1.

Strictly Isolated Set

A strictly isolated set in a partial order (X, C)) is an isolated
subset of that partial order where every element, not just
directly, related above a maximal element of the 1solated
subset and every element, not just directly, related below
a mimmal element of the 1solated subset, along with
every element within the 1solated subset form the com-
plete set of elements of a component within the partial
order. Note that as 1t 15 an 1solated subset every maximal
clement of the subset will have the same set of elements
related above 1t and that every minimal element of the
subset will have the same set of elements related below
it.

Formally, 1t can be viewed in another way. In order to do
this, the notion of a seam 1s useful.

A seam of a partial order (X, &) is a pair (A, B) of subsets
A, B of X such that:

a) A 1s completely below B
b) A=0, B=0 and (A |, )U(B 1 )j=component of X

A strictly isolated subset I of a partial order (X, &) is a
subset for which:

a) | m(D) |=0=(| m(D) |, (1)) forms a seam.

b) [M(D) [z0=M(I),| M(I)]) forms a seam.

Please note, throughout this document, that 1n any case
where there seems to be a discrepancy between the explana-
tion of a definition and 1ts formal definition, then the formal
definition 1s to be relied upon. An explanation i1s not neces-
sarily mathematically equivalent to the formal definition but
rather an aid to understanding. More formal defimitions are
provided 1n the section below entitled “More Detailed Tech-
nical Specification”.

Random-Sequence-Preservation

Every random structure over a data structure has a data

structure which 1s determined by a partial order and also has
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a set of labels. There are two sets mnvolved: a set of elements
of the partial order and a second set which 1s the partial
order’s set of labels. Both these sets are the same size. The
partial order attaches these label values to 1ts elements 1n an
order-consistent way, consistent with the relationship
between the elements. An order consistent way of attaching
the labels 1s called a labeling. Often there 1s more than one
order-consistent way that the labels can be arranged over the
clements 1n the partial order. Gathering together all the pos-
sible ways a set of labels can be arranged over a partial order,
1.e. gathering all labelings, 1s defined as a random structure.
Formally, arandom structure consists of all possible labelings
ol a partial order from a given set of labelings and where
labels are used which are all distinct from one another and
stem from a collection of labels which has same size as the
number of elements in the random structure. A random-se-
quence-preserving operation transforms a random structure
to a sequence of random structures. This random-sequence-
preserving property of all MOQA operations 1s what enables
average-case time to be automatically dertved, from running
MOQA code through a static analysis tool. To gain a clearer
understanding of what 1t means for a MOQA operation to be
random-sequence-preserving, we examine the general
behaviour of any MOQA operation on a single labeling of a
partial order.

Every MOQA operation takes a particular labeling over the
clements of a finite partial order and the majority of MOQA
operations then change the relationship between the elements
of this partial order. As well as adjusting the relationships
between the elements, the MOQA operation may also need to
adjust the particular labeling of the original partial order, as
the particular labeling may not be order-consistent over the
new partial order, consistent with the updated relationships
between the elements. The two definitions, Push-Down and
Push-Up are MOQA-package operations used by MOQA
operations to harmonize a particular labeling with its newly
adjusted partial order.

A MOQA operationreceives a partial order and a particular
labeling over that partial order’s elements. It then returns
another partial order with a particular labeling over that par-
tial order’s elements. If a MOQA operation does this indi-
vidually for every labeling of a partial order, 1.e. the random
structure, we can guarantee that i1f we gather together the
results, they can be grouped 1nto one or more random struc-
tures, with no leftover individual results that do not form a
random structure. So 1f some partial order with a particular
labeling 1s selected from the resulting output of a MOQA
operation on a random structure, the random-sequence-pres-
ervation guarantee 1s that all the other possible labelings for
that partial order will also be among the output. Consider a
partial order with all six distinct possible labelings, 1.e. a
random structure. The same MOQA operation 1s executed on
cach labeling of this partial order and the six end results are
distinct labelings over some new partial order. Due to the
operation being random-sequence-preserving, these six
labelings will also be all the possible labelings of the resulting
partial order. While this situation can occur it 1s generally too
simplistic to be realistic. The overall result can easily contain
a number of different partial orders for which all possible
labelings are generated. In the example of the 1nitial partial
order of six possible labelings, which are all passed to the
same MOQA operation, the outcome could be two different
partial orders, one with two labelings, the other with four
labelings. However, again due to the random-sequence-pres-
ervation of MOQA operations, the two labelings will be all
possible labelings of that partial order and the four labelings
will be all possible labelings of the other partial order. So a
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number of different partial orders may be generated from
changing one partial order across all 1ts possible labelings.
The guarantee of any MOQA operation 1s that all the possible
labelings of these new partial orders will be generated too,
with no leftovers/incomplete random structures.

When two or more random structures are generated, there
can be more than one random structure for the same partial
order, where each i1dentical random structure has its own
complete set of all possible labelings. In other words all the
possible labelings for a partial order can appear twice, three
times, four times, etc. The number of 1dentical random struc-
tures, where each random structure has i1ts own distinct and
complete set of all possible labelings, 1s formally called the
multiplicity of that random structure. So if there was a partial
order with two possible labelings and six labelings for this
partial order were found 1n the result of some MOQA opera-
tion going over all possible labelings of an original partial
order, then there must be three 1dentical random structures of
that partial order in the result, that the multiplicity of the
random structure 1s three.

In summary, a MOQA operation executes over one pos-
sible labeling of a finite partial order at a time. The operation
generally alters the relation between the elements 1n that
partial order and the labeling may also be altered to be 1n line
with the new partial order. So either before or after the ele-
ments have their ordering changed, 1t may be necessary to
change what labels are attached to what elements, by means
of Push-Down and Push-Up, until the labeling 1s consistent
with the new ordering of the elements. Due to the fact that
MOQA operations are random-sequence-preserving, that 1s
applying them to a random structure always gives a sequence
of random structures, means we can rely on the fact that the
probability of a possible labeling occurring within 1ts random
structure and the probability of a possible labeling occurring
over all random structures can be determined. The probabaility
of a possible labeling occurring within 1ts random structure 1s
equal to the probability of any other possible labeling within
that random structure occurring. The probability of a possible
labeling occurring over all random structures, 11 each random
structure 1s distinct, 1s one over the number of all possible
labelings that can occur. The number of all possible labelings
that can occur 1s the sum of the size of every random structure
in the sequence. The size of a random structure being the
number of all possible labelings of its partial order. The prob-
ability of a possible labeling occurring over all random struc-
tures, 11 each random structure 1s not necessarily distinct, 1s
the size of the labeling’s random structure multiplied by its
multiplicity over the total number of labelings that are 1n the
random sequence. The total number of labelings 1n the ran-
dom sequence 1s the sum of the size of each random structure
multiplied by its multiplicity for every random structure in the
random sequence. This mmformation 1s used by the static
analysis tool to determine average-time case time automati-
cally, an advantage MOQA has over other standard program-
ming languages. Random-sequence-preservation 1s the key to
this new technology.

Product
Product Definition

The product operation 1s used to construct any partial order
other than the partial order that has the identity relation =, 1.¢.
the discrete order. The discrete order 1s the 1nitial input from
an external source that i1s supplied in an 1mplementation-
dependent manner. Every MOQA data structure 1s built from
the base case MOQA data structure, which 1s the discrete
order. The discrete order 1s the starting point prior to any
sequence of random-sequence-preserving MOQA opera-
tions. Once a discrete order has been supplied, the product
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operation can be used to specily a relation between elements
in a partial order, to 1mpose an ordering between elements
which 1s more than the identity relation =. The product opera-
tion 1s defined as follows:
The product operation takes place between two subsets
within a partial order. A product between three subsets 1s
a product between two subsets with that result then
producted with the third subset, a product between four
subsets 1s the product between three subsets with that
result producted with the fourth subset, and so on.
A product operation places one of the subsets above the
other and then proceeds to connect every minimal ele-

ment in the subset above to every maximal element in the
subset below. Once this relation between the elements
has been established, 1t may be necessary to reorganise
the element’s label values so that the newly-formed rela-
tion 1s 1 accord with the mathematical ordering on the

finite partial order (X, C)). This adjustment is assisted by
the helper methods Push-Down and Push-Up, which are
independently described below as they are used within
other MOQA operations.

The first step for the labeling to be consistent with the
ordering on X, 1s to select the smallest label value,
7r2272, among the minimal elements of the set pro-
ducted above and the largest label value, maz, among
the maximal elements of the set producted below.

The second step is to compare if mwn>max (As a partial
order in MOQA contains distinct label values, there1s no
possibility of these values being equal. We can handle
duplicate input labelings, 1n line with the traditional
Computer Science approach, by assuming that the aver-
age-case time being determined by MOQA 1s on non-
duplicate labels and then using this value as an approxi-
mation of the average-case time when there are duplicate
labels 1mmvolved.). If so, this means that all the label
values 1n the set producted above are greater than all the
label values 1n the set producted below. This satisfies the
ordering and product 1s complete.

However, if min’ max, this means the contrary is true,
that one or more label values 1n the set producted above are
smaller than one or more label values 1n the set producted
below, violating the ordering on X. I so, 1n the third step, the
label values of minand mazare swapped. Push-Down is
called on minand Push-Up is called on maz. This will result
in minand mazbeing placed in the correct position in the
current ordering. Step four 1s to return to step one. This cycle
continues until the entire ordering on X 1s correct.

So as to ensure random-sequence-preservation, the sets to
be producted together must have certain properties 1 com-
mon, otherwise the product operation will fail in an appropri-
ate manner, without any change to the partial order. The
properties are as follows:

1. Both sets are 1solated sets.

2. Both sets have the same set of elements directly above
them. Take two isolated sets, set A and set B, [A] is the
same as [ B]. Another way of saying this is that any maxi-
mal element 1n set A has the same set of elements directly
above 1t as any maximal element 1n set B.

3. Likewise, both sets have the same set of elements directly
below them. | A |is the same as | B|. Another way of saying,
this 1s that any minimal element 1n set A has the same set of
clements directly below 1t as any minimal element in set B.

4. Both sets are distinct, 1.e. the intersection of A and B 1s null,
they have nothing in common.

A more formal way of describing the properties of the two
sets 1s to say that A and B are two distinct components of an
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isolated subset I of a finite partial order (X,)). A distinct
component 1s 1tself an 1solated subset so this can be rewritten
as A and B are distinct components I, and I, of an 1solated
subset I of X.

Once the parameters for the product operation meet the
conditions outlined above, the product operation, 1n combi-
nation with other MOQA operations, can build partial orders
at any level of complexity desired by the computation. So {far,
product has been described as taking place within a partial
order but what about a product operation across two distinct

partial orders (X,,E)) and (X,,E))? Assuming that the label
type of X, and the label type of X, are directly comparable
and the set of label values of X, and X, are distinct, they then
tulfill product’s parameter requirements. Therefore, unlike a
product internal to a partial order, for which a formula can be
automatically derived expressing average-case time, no such
formula can be automatically dertved for a product across two
partial orders.
Product Examples

Examples of the product operatin are set out in FIGS. 3(a)
to 3(c).
Split
Split Definition

The split operation, like the Product operation, changes the
ordering of a partial order by adding additional relations
between the elements 1n the partial order. The split operation
1s defined as follows:

The split operation takes place between one element of a
set and the rest of the elements 1n that set. The set must
be discrete/atomic, which 1s another way of saying that
no element 1n the set 1s related to any other element 1n the
set. The one element around which split takes place 1s
selected by code external to split and 1s a specified
parameter for the operation.

The particular labeling over the discrete set that contains
the specified element, L=, 1s examined. All elements

who have label values greater than the label value of the
specified element £m are grouped together in the set

I—

Xz and all the elements who have label values smaller
than the label value of the specified element € are

grouped together in the set <X,,... Either of the two sets,

X 5, 0r £z, can be empty. This places every element
of the discrete set into one of three distinct subsets, the
set of elements with labels less than the label of £, the
set containing Lm 1tself, and the set of elements with
labels greater than the label of Tm,. As any label value 1n
a partial order 1s comparable with any other label value
in that partial order, there will be no label value 1n the
discrete set that cannot be placed in one of these three
sets.

Now X, is producted above Zm and the result of this
product has X, producted below it. Of course, this

could be done the other way around, <X,,.is producted

I rrra—

below Zm and the result of this product has X ,,pro-
ducted above 1t. The labeling does not have to be
adjusted as the nature of the operation ensures that it 1s
correct, though Product will double check this fact. The
implementation could be designed in such a manner that
an 1nternal call to Product from the split operation skips
any adjustment of the labeling and therefore does not
make any unnecessary calls to Push-Down and Push-

Up.
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So as to ensure random-sequence-preservation, the set that
1s being split around one of 1ts specified elements must have
certain properties, otherwise the split operation will fail 1n an
appropriate manner, without any change to the partial order.
The properties are as follows:

1. As already stated, the set 1s discrete.

2. Every element 1n the set has the same set of elements
directly above it. Take the discrete set A, V z,yeA,
-y,

3. Likewise, every element in the set has the same set of
elements directly below it. ¥V z, yeA, | z|=| ¢].

A more formal way of describing the properties of the set
that the specified element ©m is within is that it must be an

atomic isolated subset of a finite partial order (X,C)). The
discrete finite partial order 1s an atomic 1solated subset of
itself. Note that the required conditions of the set containing
Zm ensure that the two sets in each of the calls to Product in
split satisiy the parameter requirements of Product.

While split has much in common with Product by 1ts con-
structive nature, the underlying approach differs in more than
just definition details. It has already been shown that arandom
structure can be seen as the combination of two separate sets,
the set of elements and the set of labels for these elements.
The set of elements have an ordering between them and the set
of labels can be laid over the set of elements 1n one or more
ways that satisty the ordering. Product forms a relation
between two sets of elements, subsets of a larger set of ele-
ments, once these sets meet the required properties of Prod-
uct. The particular labeling 1nvolved, which 1s laid over the
larger set of elements, 1s then shifted around this new ordering
if necessary. However, split forms a relation between an ele-
ment and the other elements in the set, once the set meets the
required properties of split, based on the particular labeling of
that set. Product changes the ordering 1n a partial order inde-
pendent of the particular labeling. The labeling 1s only con-
sidered afterwards as part of the cleaning-up process. How-
ever, split changes the ordering in a partial order based on the
particular labeling. The labeling i1s an intrinsic part of the
operation, used to influence the new ordering.

Split Examples

Examples of the split operation are 1llustrated in FIGS. 4(a)
and 4(b).

Projection
Projection Definition

The projection operation 1s simply a copy operation. The
projection operation 1s defined as follows:

The projection operation takes place on some set I. A new

set, J, 1s created, which 1s order-isomorphic to the set 1.
J 1s a new set of elements, distinct to I. The number of
clements 1n J 1s the same as the number of elements in 1.
The ordering between I's elements 1s the same as the
ordering between I’s elements. J has a new set of labels,
distinct to I. The number of labels 1n I 1s the same as the
number of labels 1 1. I”s label set 1s comprised of the
same label values that I’s label set 1s comprised of.

It a MOQA operation, other than projection, 1s executed on
I after projection, I will no longer be order-isomorphic with J
and vice versa. This clearly holds 11 the MOQA operation 1s
executed on J instead. Now J will no longer be order-isomor-
phic with I and vice versa. To restore order-isomorphism in
the first case, the same MOQA operation must be executed on
I after being executed on I. Not only the same MOQA opera-
tion but the same MOQA operation involving the same size
subset(s) as 1n I. Plus the subset(s) of ] involved in the MOQA
operation must have the same ordering, 1n terms of the overall
set, that the subset(s) of I involved in the MOQA operation
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had. As I and J’s element and label sets are distinct, the
order-1somorphism does not hold otherwise.

S0 as to ensure random-sequence-preservation, the set I
that 1s being projected must have a certain property, otherwise
the projection operation will fail 1n an appropriate manner,
without the creation of the set J. The property 1s as follows:

1. The set 1 is an isolated subset of a finite partial order (X, ).
There 15 also a version of projection that differs to the copy
description above. This projection removes the comple-
ment of an 1solated subset of a partial order. It will not be
turther expanded upon in this document.

Projection Examples
Examples of the projection operatin are illustrated i FIG.

5.
Delete
Delete Definition

T'he delete operation 1s not always as simple or as intuitive
as 1ts name suggests. Delete 1s defined in terms of the entire

finite partial order (X, T)) and in terms of a strict subset of the

finite partial order (X,C)). Both definitions are similar but
there 1s a subtle but significant difference between them that
motivates the following two separate definitions so as to
prevent the asymmetry between them going unnoticed.
Delete Over Entire Partial Order

The delete operation over an entire partial order 1s defined
as follows:

A single element is removed from the partial order (X, ).
The element to be removed 1s not actually specified as a
parameter for delete. Rather the element to be removed
1s implied by reference to the label value it 1s attached to
in the particular labeling. However, 1t 1s not the actual
value of the label that 1s specified but the relative posi-
tion of the label value to the other label values 1n the
partial order’s set of labels. For example, the specified
parameter may request that the element with the third
largest label 1n the entire partial order 1s removed from
the partial order or the element with the smallest label 1n
the entire partial order 1s removed from the partial order.
This breaks away from the modus of the operations
prescribed above, where the relation between label val-
ues 1s based onthe relation between the elements that the

label values are attached to. Here the relation specified

by delete’s parameter refers solely to the relation

between the label values 1n the label set of the partial
order, regardless of the relation between the elements
they are attached to.

When the actual label value 1s selected by its specified
relation to the other label values 1n the entire partial

order, e.g. the actual value of the third largest label 1n the
entire partial order or the actual value of the smallest
label 1n the entire partial order, the element that this label
value 1s attached to 1s i1dentified as the element to be
removed from the partial order.

Once the element to be removed 1s 1dentified 1t 1s not
removed from the partial order without question. The
clement to be removed must be a mimmal or maximal
clement 1n the partial order. If it 1s, then 1t can be
removed from the set of elements without further ado
and any ordering between the removed element and the
rest of the elements in the set of elements are also
removed with 1t. If the element to be removed 1s not a
minimal or maximal element then i1t cannot be removed
from where 1t 1s 1n the partial order. Only an element 1n
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a minimal or maximal position 1n the partial order can be
sately removed, to guarantee the random-sequence-
preservation of delete.

In the case where an element to be removed 1s not a mini-
mal or maximal element of the partial order, one solution
to sately remove 1t from the partial order 1s to change the
label of the element to be less than the smallest label 1n
the label set of the partial order. Push-Down 1s then
called on the new label value. This will result 1n the label
value being pushed down to a minimal element 1n the
partial order. This minimal element can then be safely
removed. The alternative solution 1s to change the label
of the element to be removed to be greater than the
largest label in the label set of the partial order. Push-Up
1s then called on the new label value. This will result 1n
the label value being pushed up to a maximal element in
the partial order. This maximal element can then be
sately removed.

When the element to be removed 1s 1dentified and 1t 1s not
a minimal or maximal element of the partial order, either
of the above solutions will produce a new partial order
that may not meet expectations as the element with the
label value that meets the specified relation 1s not
removed from the partial order. Rather 1t 1s assigned a
new label value and remains 1n the ordering. Instead
some unrelated element, whose selection 1s entirely due
to 1t being a minimal or maximal element 1n the partial
order, 1s removed from the partial order, even though 1ts
label value remains 1n the partial order’s set of labels.
The 1dentified element for removal, which 1s not actually
removed, recetves a new label value because of the call
to Push-Down or Push-Up. Not only does the identified
clement for removal, which 1s not actually removed.,
receive a new label value but every element on the path
between 1t and the maximal(Push-Up) or minimal(Push-
Down) element that 1s removed receives a new label
value due to the semantics of Push-Down or Push-Up.

So depending on the ordering of the element selected ndi-
rectly for deletion, 1t may either be actually removed
from the partial order i1 1t happens to be a minimal or
maximal element 1n that partial order, otherwise just its
label value 1s removed and some other element 1s
removed, whose label value remains, because 1t happens
to be a mimmal or maximal element 1n the partial order.
This 1s not a standard approach to delete and 1s a conse-
quence that code calling delete needs to be aware of.

So as to ensure random-sequence-preservation, the prop-

erty of the partial order that an element 1s deleted from must

simply be that it is a finite partial order (X, C)).
Delete Over Entire Partial Order Examples

Reference 1s made to FIGS. 6(a) and 6(b) which give
illustrated examples.
Delete Over Strict Subset of Partial Order

The delete operation over a strict subset of a partial order 1s
defined as follows:

A single element 1s removed from a strict subset of a partial

order and consequently 1s removed from the overall

partial order (X,C)). The element to be removed is not
actually specified as a parameter for delete. Rather the
clement to be removed 1s implied by reference to the
label value it 1s attached to 1n the particular labeling.
However, it 1s not the actual value of the label that is
specified but the relative position of the label value to the
other label values 1n the strict subset’s set of labels. For
example, the specified parameter may request that the
clement with the third largest label in the strict subset 1s
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removed from the strict subset of a partial order or the
clement with the smallest label in the strict subset 1s
removed from the strict subset of a partial order. The

third largest label 1n a strict subset of a partial order 1s
likely to be different to the third largest label 1n that

partial order. Consider some partial order (X,E)) with
the label set {1, 2, 3, 4} and some strict subset of that
partial order with a label set {1, 2, 3}. The third largest
label of the partial order 1s 2, whereas the third largest
label of the strict subset of that partial order 1s 1 and 1t 1s
the relation between the strict subset’s set of labels that
this explanation of delete 1s interested in. Again, this
breaks away from the modus of the other non-delete
operations prescribed above, where the relation between
label values 1s based on the relation between the ele-
ments that the label values are attached to. Here the
relation specified by delete’s parameter refers solely to
the relation between the label values 1n the label set of

the strict subset of a partial order, regardless of the
relation between the elements they are attached to.

When the actual label value 1s selected by its specified

relation to the other label values in the strict subset of a
partial order, the element that this label value 1s attached
to 1s 1dentified as the element to be removed from the
strict subset and therefore to be removed from the partial
order.

Once the element to be removed 1s 1dentified 1t 1s not

removed from the strict subset without question. The
clement to be removed must be a mimmal or maximal
element 1n the strict subset. If 1t 1s, then 1t can be removed
from the strict subset’s set of elements, and conse-
quently the partial order’s set of elements, without fur-
ther ado and any ordering between the removed element
and the rest of the elements 1n the partial order’s set of
clements are also removed with 1t. If the element to be
removed 1s not a minimal or maximal element then 1t
cannot be removed from where it 1s 1n the strict subset.
Only an element 1n a minimal or maximal position 1n the
strict subset can be safely removed, to guarantee the
random-sequence-preservation of delete.

In the case where an element to be removed 1s not a mini-

mal or maximal element of the strict subset, one solution
to sately remove 1t from the strict subset 1s to change the
label of the element to be less than the smallest label 1n
the label set of the strict subset. Push-Down 1s then
called on the new label value. However, this will be a
modified version of Push-Down, as the label value
should not be pushed all the way down to a minimal
clement 1n the partial order, which Push-Down defined
below will always do. Rather 1n this modified version of
Push-Down the label value will be pushed down to a
minimal element 1n the strict subset. So the modified
version of Push-Down will stop when the label value
reaches an element that has been marked as a minimal
clement of the strict subset though 1t may not be a mini-
mal element of the partial order. When the minimal
clement of a strict subset 1s also the mimimal element of
the strict subset’s partial order, the two versions of Push-
Down will produce the same result. This will resultin the
label value being pushed down to a minimal element 1n
the strict subset. This minimal element can then be
safely removed. The alternative solution 1s to change the
label of the element to be removed to be greater than the
largest label 1n the label set of the strict subset. Push-U

1s then called on the new label value. However, this will
be a modified version of Push-Up, as the label value
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should not be pushed all the way up to a maximal ele-
ment in the partial order, which Push-Up defined below
will always do. Rather 1n this modified version of Push-
Up the label value will be pushed up to a maximal
clement 1n the strict subset. So the modified version of
Push-Up will stop when the label value reaches an ele-
ment that has been marked as a maximal element of the
strict subset though 1t may not be a maximal element of
the partial order. When the maximal element of a strict
subset 1s also the maximal element of the strict subset’s
partial order, the two versions of Push-Up will produce
the same result. This will result in the label value being
pushed up to a maximal element 1n the strict subset. This
maximal element can then be safely removed.

When the element to be removed 1s 1dentified and 1t 1s not
a minimal or maximal element of the strict subset, either
of the above solutions will produce a new partial order
that may not meet expectations as the element with the
label value that meets the specified relation 1s not
removed from the strict subset, and consequently its
partial order. Rather 1t 1s assigned a new label value and
remains in the ordering. Instead some unrelated element,
whose selection 1s entirely due to it being a minimal or
maximal element of the strict subset, 1s removed {from
the partial order, even though its label value remains in
the partial order’s set of labels. The 1dentified element
for removal, which 1s not actually removed, receives a
new label value because of the call to Push-Down or
Push-Up. Not only does the identified element for
removal, which 1s not actually removed, receive a new
label value but every element on the path between 1t and
the maximal(Push-Up) or minimal(Push-Down) ele-
ment that 1s removed receives a new label value due to
the semantics of Push-Down or Push-Up.

So depending on the ordering of the element selected 1indi-
rectly for deletion, 1t may either be actually removed
from the strict subset 1f 1t happens to be a minimal or
maximal element 1n that subset, otherwise just 1ts label
value 1s removed and some other element 1s removed,
whose label value remains, because 1t happens to be a
minimal or maximal element in that strict subset. This 1s
not a standard approach to delete and 1s a consequence
that code calling delete needs to be aware of.

So as to ensure random-sequence-preservation, the strict
subset of the partial order that 1s having an element deleted
from 1t must have a certain property, otherwise the delete
operation will fail 1n an appropriate manner, without the
deletion of an element. The property 1s as follows:

1. The strict subset 1s a strictly 1solated subset of a finite partial

order (X, C))

Delete Over Strict Subset of Partial Order Examples

Please refer to FIGS. 7(a) and 7(b) for 1llustrated examples
of this operation.
Push

Push-Down and Push-Up are used by other MOQA opera-
tions for the purpose of ensuring that the particular labeling in
question 1s to be consistent with the new ordering on the
partial order. The MOQA operations will specily which label
value 1n the labeling that they want Push-Down or Push-Up
called upon. Depending on the definition of the MOQA
operation and how out of sync the labeling 1s with the new
ordering, Push-Down and/or Push-Up may be repeatedly
executed on a series of label values. The definition of Push-
Down and/or Push-Up are as follows.
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Push-Down Definition

Push-Down takes the specified label value, {vs, and col-
lects together the set of all the label values directly below

U, If this is empty, then Push-Down halts and returns to the
MOQA operation from which 1t was called. Otherwise, the
largest label value 1n this set 1s determined. Then there 1s a

comparison between the specified label value, {vzand the

largest label value in the set directly below {vg vy, to see if

lup>lvg, If this is so, then Ilvzand {wviare swapped.

If {vi$ {vg then Push-Down halts and returns to the MOQA
operation from which it was called. Otherwise, the specified

label value, {vzis now in the set of labels that were originally
directly below 1t, and Push-Down 1s then called again on

V4 1n its new position. This is repeated until the label value

vz is greater than all the label values directly below it or
there 1s no label values directly below 1t. This 1s a recursive
view of Push-Down, an iterative formal definition of Push-
Down 1s as follows:

W-Push-Down( {vz, F)

while | Ivg |20 and lvz <V | lvg ]

swap( (v, V| {vg |, F)

Where | {v; | is the set of all the elements below [v,that

[vgis directly related to. F is a particular labeling of the
partial order 1n question.

Note how this formal defimition of Push-Down 1s called
W-Push-Down. This 1s because the manner of pushing the
label value down to its appropriate position, described here
both recursively and 1iteratively, was initially defined by Wil-
liams 1n his implementation of Push-Down [W1164, which we
refer to as W-Push-Down. The other approach 1s Floyds
[Flo64]. Floyd’s differs to Williams in that he does not con-

tinuously swap {vzdown to its correct position in the order-
ing. Instead Floyd finds {vzand then for that value finds its

lvithe greatest label value directly below {vzand so on until a
leat 1s reached, a label value that has no label values directly
below it. The algorithm now backtracks up this path until 1t
finds a label value greater than the specified label value

lvz VL Now the label value directly preceding {Vz.on the path

is replaced with VL. This replaced value then replaces the
label value directly preceding 1t on the path and so on until the

specified label value {vzis replaced by the value directly

succeeding it on the path. {v;now replaces the empty gap in

the path where {Vr.originally was.
Whether Push-Down 1s 1n the style of Floyd or Williams 1s

an implementation detail as both versions produce the same
solution. The 1dea 1s that a label, which 1s not 1n its correct
position because 1t 1s smaller than one or more label values
below it 1n the ordering, 1s pushed down to a suitable position

that now satisfies the ordering.
Push-Up Definition
Push-Up 1s the mverse of Push-Down as this definition

shows. Push-Up takes the specified label value, {vs, and
collects together the set of all the label values directly above

[Vg, If this 1s empty, then Push-Up halts and returns to the
MOQA operation from which 1t was called. Otherwise, the
smallest label value 1n this set 1s determined. Then there 1s a

comparison between the specified label value, [v4, and the

smallest label value in the set directly above (v, Z'”S:,, to see
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if (s< lvg,. If this is so, then {v;and lvs are swapped.

If s, 3 vz, then Push-Up halts and returns to the MOQA
operation from which i1t was called. Otherwise, the specified

label value, {v;, 1s now in the set of labels that were origi-
nally directly above 1t, and Push-Up 1s then called again on

vz 1n its new position. This is repeated until the label value

[vg1s smaller than all the label values directly above it or
there 1s no label values directly above 1t. This 1s a recursive
view of Push-Up, an iterative formal definition of Push-Up 1s
as follows:

W-Push-Up({vy F)

while | (U |#0 and {vz> A vy

swap( Ve, [ Lvs ], F)

Where | lvg,] is the set of all the elements above [vthat

iVgz3s directly related to. F 1s a particular labeling of the
partial order 1n question.

Note how this formal definition of Push-Up 1s called
W-Push-Up. This 1s because the manner of pushing the label
value up to its appropriate position, described here both recur-
stvely and 1teratively, was imitially defined by Williams 1n his
implementation of Push-Up [Wi1l64], which we refer to as
W-Push-Up. The other approach 1s Floyds [Flo64]. Floyd’s

differs to Williams 1n that he does not continuously swap

[vzupwards to its correct position in the ordering. Instead
Floyd finds [Vs,and then for that value finds its #¥s., the small-

est label value directly above Z'”s,j and so on until a root 1s
reached, a label value that has no label values directly above
it. The algorithm now backtracks down this path until 1t finds

a label value less than the specified label value [v,, Us.. Now
the label value directly preceding [vs.on the path 1s replaced

with {s.. This replaced value then replaces the label value
directly preceding 1t on the path and so on until the specified

label value {v4 s replaced by the value directly succeeding it

on the path. {vz now replaces the empty gap in the path where

lvs originally was.

Whether Push-Up 1s 1n the style of Floyd or Williams 1s an
implementation detail as both versions produce the same
solution. The 1dea 1s that a label, which 1s not 1n its correct
position because it 1s larger than one or more label values
above 1t 1n the ordering, 1s pushed upwards to a suitable
position that now satisfies the ordering.

It will be appreciated that the current state of the art of
modular time dertvation 1s extremely limited. We have shown
that it can NOT be achieved 1n general for worst-case time
analysis. Some partial modularity has been obtained 1n prior
art and only 1n extremely limited contexts such as forced
complete execution of both conditional branches of any con-
ditional statement. Also partial modulanty for worst-case
time can be achieved under conditions where all processes are
assumed to be entirely independent from one another, 1.e.
there 1s no functional dependency and no process every waits
for the outcome of another process. Again, this 1s an
extremely restrictive context.

The MOQA methodology on the other hand, works for the
average-case time, where 1t 1s shown that modularity 1s guar-
anteed (as opposed to partial modularity) and where func-
tional dependency 1s allowed, 1.e. it 1s perfectly allowed for
one process to have to wait for the output of another 1n order
to continue the computations.
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The following section, called “More Detailed Technical
Specification” describes the operations and the static analysis
timing tool more comprehensively. There 1s a degree of rep-
ctition or overlap between the following passages and the
preceding ones. This 1s considered necessary as 1t allows the
following passages to be read as a unit without need to fre-
quently refer back to the preceding passages, which are writ-
ten at a slightly higher level description for ease of under-
standing the invention.

MORE DETAILED TECHNICAL
SPECIFICATION

1 Introduction

Each random sequence consists of “random structures”
paired with a multiplicity. The multiplicity retlects the num-
ber of copies of the random structure which are produced after
an application of a data structuring operation.

These multiplicities play a crucial role 1n average-case time
analysis.

In particular, 1f we compose basic data structuring opera-
tions 1n order to obtain a transformation of one data structure
into another, we can obtain an expression (recurrence equa-
tion) of the average-case time of this composed operation
provided all the basic operations are Random Structure Pre-
serving (in the sense specified below). Indeed, 1n the case of
Random Structure Preservation, we are guaranteed that a
Random Sequence 1s once again transformed into a new
Random Sequence. The multiplicities of the resulting
sequence can then be used to determine the average-case
time.

Our results are specified for labels which can come from
any linear order. For the sake of simplicification of presenta-
tion we focus on data structures for which a labeling has no
repeated labels. However, our results apply to the general case
of repeated labels as well.

Essentially our method guarantees modular timing, 1.¢. the
average-time of a composition of data structuring operations
1s guaranteed to be obtainable from the average-times of the
basic operations involved in the composition. This induces a
considerable simplification 1n average-case time determina-
tion, which 1s obtained thanks to this novel approach.

The verifications that the method works are made 1n the
following.

2 Introductory Notions
We denote the real numbers by Rand the natural numbers by
N.

For any set X, we let |X| denote 1ts cardinality. For any
function f: X—=Y we let Ra(J) denote the set of values
1f(@)l xeX} and refer to this set as the range of f. The result
of restricting a function to a subset A of X is denoted by f[A.

Similarly, the restriction of a partial order (X, C)) to a subset A
of X is denoted by (A, £ [A) or often, when no confusion can

arise, by (A, ).

The result of concatenating two sequences, say
A=(a,,...,a_)and B=(b,, ..., b, )1s the sequence Conc(A,
B)=(a,,...,a_,b,,...,b ). Concatenation of more than two

sequences, Conc(A,, ..., A ), 1s defined 1n a similar way.

An aifine combination of a sequence of real-valued func-
tions f,, ..., , 1s anexpression of the form o, f,+ ... +o T,
where ¢, . . . ,o, are scalars and



US 8,302,085 B2

21

o

2.1 Partial Orders & Hasse Diagrams

A partial order is a pair (X,E)) consisting of a set X and a

binary relation T)between elements of X such that the rela-
tion 1s:

1) Reflexive: z C =
2) Transitive: z E Y, yL 2 =g
3) Anti-symmetric: z L ¥,y

C z,
o=z =Y.

We use the following notation for partial orders (X, C)):

For zeX, welet £|={y|¥eXand ¥y C z}and z}={ y| ¥eX
=y} MAc X thenAt=U, xt and A|=U, . |.

If(X,, & )) and (X, ) are partial orders then a function f:

X—Y is increasing iff Vz,%X,. £ E1 ¥y =fz) Eofy). In
case the function f is an increasing bijection and ' i
increasing, we refer to § as an order-isomorphism between

and =

the given partial orders. If (X, &)) is a partial order then we

define z — ¥ <=z C y} and z # y)). The binary relation
—q1s defined to be the set of all pairs ( &, ¥) such that z = yand

.

We assume that the reader 1s familiar with Hasse Diagrams
(e.g. [DP90]) which we will use to represent partial orders 1n
the examples. The transitive reduction of a partial order

ﬂzm:z

(X, ) is obtained by omitting from T)all its reflexive pairs
and pairs that can be inferred by transitivity. The Hasse Dia-
gram ol a partial order 1s a digraph representation of 1its
transitive reduction, where we require that 1n the representa-
tion, related elements Z, Ywhere z C yare displayed such
that Zis below #n the Hasse diagram. In other words, Hasse
diagrams represent directed acyclic graphs for which the
transitive reflexive closure 1s the given partial order. Again in
other words, we only display the relation 1) in a Hasse
Diagram. When speciiying a partial order we typically list a
set of pairs speciiying the Hasse Diagram for the partial order.

A linear order (X, C)) is a partial order such that every pair
of elements &, Ye X 1s related with respect to this order, 1.e.
VZ,yeX. =z L yor y C ..

For any set X we denote the discrete partial order on X, 1.¢.
the partial order consisting only of the retlexive pairs

{(z, ) eX}, by (X, E).

For any subsetY of a partial

order (X, L)) we say that Y is

a discrete subset of X in case the restriction of the order & )to
Y 1s the discrete order.

An element Zof a partial order (X, ) is maximal (mini-

mal) iff ByeX. z C y(¥ T T)).

An extremal element of a partial order 1s an element which 1s
maximal or minimal. A maximum (minimum) element of a

partial order (X,E)) is an element e X such that Vy eX.
y & x(z Ly

For any two points Z, YeX we call asequence ( Z1,...,Zn)
a path from x to y when 2Zi,...,2ZneX, 2+, Ly = ¥ and

Viell,.

order (X, _)) 1s a partial order such that for every two points
Z, Yot X there exists a path from Zto y¥. A component of a

.n-1}. z; C z3p0r 25 J T411.. A connected partial
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partial order 1s a non-empty connected subset of maximal
s1ze. Any partial order can be partitioned (as a graph) 1nto a set
of components.

The length of a path of a fimite partial order 1s the number of
clements on the path.

A chain in a partial order (X,5)) is a path which forms a

linear order under the restriction of C).
2.2 Uniform Distribution and Multi-Sets

We consider data structures in the following and operations
on data structures. In this context we have the physical data
structuring object in mind and we consider operations over
these data structures. Hence we will refer to “inputs™ of such
operations, which will be particular instances of the data
structure under consideration. We remark that every mput I
has a size n € N.which depends on the data structure under
consideration. For instance, the size of a list1s its length while
the size of a tree 1s the number of nodes 1n the tree.

We briefly discuss identification up to order-isomorphism
of mput sets which plays a main role 1n Average-Case Time
analysis. Typically there are infimitely many inputs corre-

sponding to a given data structure for a given size. For
instance, the infinite collection of all finite lists of s1ze n over

the natural numbers, i.e. the set N7={(k,,...,k )k, ....k,
eN} Two lists (a,, ..., a), (b,,...,b,) of size n are
equivalent up to order isomorphism iff Vi,j €{1, . .., n}.
a,=a;*7b,=b,. This 1s denoted by: (a,, ..., a,)=(b,, ..., b,).
Identification up to order-isomorphism of N7 w.r.t. to the
equivalence relation = yields a finite quotient N/~ with n!
representatives, which we denote in the following by A . We
use the notation “A’rather than “£”since the latter will be
reserved to indicate sets of labels. For instance for the case of
lists of size 3, the quotient 1s

v%{[(}?3)],[<1,,3,2)],,[(2,1,,3>],[<2,3,,1)],[<3,,152)],[(3;
2,1)]

where we chose as representatives the 3! permutations over
the 3 element set {1,2,3}. In general, and with abuse of
notation, we will simply denote the quotient classes via their
representatives, as 1n:

v43={(1,2,3), (1,3,2),(2,1,3), (2,3.1), (3,1,2), (3,2,1) }.

For data structures, such as lists and heaps, we use the
following notation, where we work modulo 1dentification up
to order-isomorphic copies: A denotes the set of n! non-
isomorphic lists of size n with pairwise distinct elements, i,
denotes the set of non-1somorphic heaps of size n with pair-
wise distinct elements. Also, we let S§,,denote the set consist-
ing of the single sorted list of s1ze n. In case we do not wish to
specily the data structure under consideration, we let the finite
set Zdenote the set of inputs of size n for this particular data

structure, 1dentified up to order-isomorphism.

A multi-set 1s a finite set-like object 1n which order 1s
1gnored but multiplicity 1s explicitly significant. Thus, con-
trary to sets, multi-sets allow for the repetition of elements.
Therefore, multi-sets {1,2,3} and {3,1,2} are considered to be
equivalent, but {1,2,2,3} and {1,2,3} differ. We refer to the
number of times an element occurs 1 a multi-set as the
multiplicity of the element. The cardinality of a multi-set 1s
the sum of the multiplicities of its elements. Each multi-set A
of n elements has an associated set B={b,, ..., b,} such that
UA=UB and where each element b, of B 1s repeated K, times
where 1=K, =n and
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k

ZK,_':H.

=1

It 1s clear that a multi-set A can be represented in this way as
a set of pairs {(b,.K,), ..., (b, K))}.

In fact 1t will be convenient to adopt a slight generalization
of this type of representation as our formal defimition of a
multi-set 1n the following. I.e. a multi-set 1s formally defined
in this context as a finite set of pairs {(b,.K,), ..., (b, K},
where each K, 1s a natural number, referred to as the multi-
plicity of the element b, and where we do not require that the
elements b, are pairwise disjoint. In case (*) Vij. b;zb,, we
refer to the finite set of pairs {(b,.K,), ..., (b,,K,)} as a strict
multi-set. We allow a more flexible approach in which we do
not require (*) to hold since 1n practice some repetitions of an
clement b may occur in different contexts, e.g. as K repeti-
tions 1n one context and L. 1n another, 1n which case we chose
to keep track of these repetitions separately as pairs (b,K) and
(b,L) in the same multi-set rather than as a single pair (b, K+1)
in the multi-set.

To keep track of the number of times that a particular output

1s produced, we will represent the range of the mput-output
function of a data structure operation as a multi-set.
Notation 1 (Input and Output Multiset)
For any data structure operation P we indicate the multi-set of
its inputs by Z p.. The multi-set of inputs of size n is denoted
by Zp.(n). A multi-set of inputs Zfor a data structure opera-
tion P 1s a sub multi-set of the input multi-set Z p.. Typically
we will require that Z< Z p(n) for some n.

Op(Z)denotes the multi-set of outputs, referred to as “the
output multi-set”, of the computations of a data structure
operation P on a multi-set of inputs Z.

If Zp(n)=1L, for a particular data structure under consid-

eration then we denote the output multi-set Op(Z,by @ p(n).
It 1s clear that in case Zis an input multi-set for a data

structure operation P, the multi-sets Zand Op(Z have the
same cardinality where the input-output relation forms the
corresponding bijection.

Multi-sets are useful to represent sets of data that are uni-
formly distributed. A multi-set A={(b,.,K,), ..., (b K} is
called uniformly distributed iff Vi,j e{1, ..., n}. K=K, Itis
clear that if A={(b,.K,), ..., (b,,K,)} is a uniform multi-set
then we can simply use the simplified notation A={(B,K)},
which indicates that the multi-set A consists of K copies of the
set B. In particular: |AI=KIBI. FEach element of a uniform
multi-set A with associated set B arises with equal probability

of

We define a multi-sequence to be a multi-set for which the
order of the elements 1s fixed. A uniformly distributed multi-
sequence 1s a multi-sequence obtained by fixing the ordering
of a uniformly distributed multi-set. It will be convenient to
work with multi-sequences later on since, for implementation
purposes, the order of the elements will be required in order to
specily the application of data structure operations to these
clements.

In order to formalize the notion of a “uniformly distributed
data structure” obtained via “identification up to label-1so-
morphism”, we will introduce the concept of a Random
Structure 1n Section 4.
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2.3 Timing Measures

We recall the standard definitions of comparison based algo-
rithms and of Worst-Case Time and Average-Case Time for
comparison based algorithms. A comparison based algorithm
1s an algorithm for which every action during the code execu-
tion 1s determined by a comparison between two elements of
the input data structure (e.g. [AHUR?7]). In particular, every
assignment and every swap during the execution of the code
1s a direct consequence of a comparison between two ele-
ments. Most sorting and search algorithms fall into this class
and traditional lower bound estimates apply 1n this context.
Convention 2 We will focus 1n what follows on measuring the

number ol comparisons made during the execution of a
comparison based algorithm. This simplifies the presenta-
tion and 1s consistent with standard approaches such as
|AHUR7]. Of course one could fine-tune matters and take
into account assignments and swaps, which falls outside
the scope of the present paper.

For a comparison based algorithm P we define the enact
time T,(I) on an input I to be the number of comparisons
made by the data structure operation P during the computa-
tion of the output P(I). The notation T ,(n) indicates the
restriction of the function T, to the set Z,. We will consider
subsets Zof Z, and consider the following time measures with

respect to Z:
The Total Time of P for inputs from Z, denoted by T ,.(Z)

1s defined by:

THI) = ) Te(D).

fcf

The Worst-Case Time of P for inputs from Z, denoted by
T,.”(T) is defined by:

TPW(I)ZH]&X{TP(I)IIEI.

The Best-Case Time of P for inputs from Z, denoted by
T,%(Z) is defined by:
TPB(I)Zmin{TP(I) 7el.

The Average-Case Time of P for inputs from Z, denoted by
T (Z) is defined by:

> Tp(l)

L]

_ T (T
Tp(I) = |¢(T|) -

In order to denote an arbitrary measure, which can include
any of the above, we use the notation 7 pand the usual corre-

sponding notations Zp(Z)and Zp(n).
We observe that:
VLI 1,2(D)=Toby=1,"(1).

If the exact time of P 1s a constant C on the inputs from I
then:

To(L)=T2(L)=1."(L)=C.

Of course, 1n case Z = Z,, we will for the Total, Worst-
Case, Best-Case and Average-Case Time respectively use the
following standard notation based on size indication only:
T, (n), T%(n), Tp"(n) and Tp(n).

3 Compositionality

The capacity to generate recurrences 1s particularly impor-
tant for the Average-Case Time measure since, 1n general, the
direct determination of the Average-Case Time via the for-
mula
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1s no feasible. For instance, for the case of sorting algorithms

where |Z=n!, a direct computation of

would require an excessive time 1n order to add the n! com-
parison times T (1) for the mputs I of size n. This 1s clear by
Stirling’s approximation

n! ~ m(g)”.

The computation time would be too great, even for the rela-
tively small input size of n =20. If on the other hand one has
a recurrence expressing the Average-Case Time, this time can
be determined for very large values of n. We will introduce a
method, IO-compositionality, which will enable one to derive
recurrence equations for the average-case time of composi-
tions of our data structure operations.
3.1 IO-Compositionality

The compositional treatment for time measures that are
defined with respect to sets of mnputs of a given size, needs a
more refined type of bookkeeping via output multi-sets. This
1s captured by the notion of “I0-Compositionality™.

Definition 3 Given a time measure 7 .. Let P,, P, denote
arbitrary data structure operations and I denotes an 1nput
multi-set for P,. We say that:

T is lower IO-Compositional iff VP,, P, V1.

Tpy;p, (L)<= Ty (Z)1 T, (Op, (T),
T is upper 10-Compositional iff VP,, P, V1.

TPHPZ (I )i Ipy Z )+ Ip, (01"’1 (I )

T 1s semi IO-Compositional iff
T .is lower or upper 10-Compositional
T is IO-Compositional iff
T .is lower and upper 10-Compositional, i.e.:

VP, P vI‘- TPliPz (I} TPl (I+ TPE (Opl (I)

Lemma 4 The Total Time T,’ is O-Compositional. The
Worst-Case Time T,” and the Best-Case Time T,” are
respectively lower and upper IO-Compositional.

Proof: Given P,, P, arbitrary data structure operations and
I .an input multi-set for P,. We first verify the IO-Composi-
tionality of the Total Time:

Thyipy () = ) Toypy ()

=¥l

= > Tp(D+ > Tpy(d)

=T JEOpl ({)

= T_fgl (L) + T;z (Opl ().
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For the Best-Case Time and the Worst-Case Time, we
observe that for any input I € I clearly we must have that
TPIBU)"‘TPEB(S?PE (I)))E Tp, p,)=Tp (D+Tp (P
(D)=1p, " (D)+
75, (Or (Z)),

from which the lower and upper 10-Compositionality for
Worst-Case and Best-Case time follows.

Remark 5 The right hand-side of the lower I0-Composi-
tionality 1nequality for the Worst-Case Time, TPIW(I.)+

T, " (Op (1)), is typically used in Real-Time Languages as
an upper bound approximation for the Worst-Case Time of a
sequential data structure operation composition of the type
1p i »(Z.). This provides an example of how composition-
ality, even 1n this weak form, aids Software Timing.

We will show that the Worst-Case Time T, and the Best-
Case Time T,” are in general not IO-Compositional, i.e. the
sem1 10-Compositionality mequalities can be strict in gen-
eral. Secondly, we will verify that the Average-Case Time T,
1s 10-Compositional.

3.2 Strict Semi 10-Compositionality for Worst-Case and
Best-Case Time

We show that IO-Compositionality for Worst-Case Time and
Best-Case Time cannot be achieved in general, 1.e. their semi
[I0-Compositionality inequalities are strict in general. Hence,
as 1s well-known, the worst-case bounds 1n a Real-Time con-
text are not exact in general. This 1s 1llustrated by the counter-
example given below. A similar example can be constructed

for the Best-Case Time.

The example displayed on the next page 1s clearly an arti-
ficial one. Yet it illustrates nicely the lack of control one has 1n
guaranteeing IO0-compositionality for the Worst-Case Time
and (via a similar example) for the Best-Case Time. It 1s easy
to see that this problem arises 1n many cases, where no appar-
ent pattern seems available to obtain some compositional
subclass of suflicient generality.

COUNTER-EXAMPLE 6

Worst-Case Time

PROGRAM P,
EXECUTION TIME

A

WORST-CASE

TIME 1 7,

» INPUIS A

PROGRAM P»
EXECUTION TIME

WORST-CASE

HME 7 17 0p, )

» INPUTS Op (A)
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3.3 Average-Case Time 1s IO-Compositional

Proposition 7 The average-time measure 1s IO-Composi-
tional, 1.e. the following equality holds for any two data
structure operations P,, P,, where P, operates on an input

multi-set I and produces the output multi-set Op, (Z);
T,y DT, D+ Tp(Op (O P (L)),
Proof:

D Teypy (D)

fcf
| Z]

D Te D+ ) Tpy()

lel JeOp, (1)
]

=Tp (I)+Tp,(Op (1)),

where the last equality follows from the fact that | Z||=|

|
4 Rangé:’m{%)tructures

We mtroduce a formalization of the notion of a Random
Structure. This formalization 1s new and will serve as a basis
tor the data structures. As mentioned in the previous section,
a Random Structure can also be viewed as a formalization of
a “uniformly distributed data structure” obtained through
identification up to order-isomorphism.

We will define a Random Structure (Definition 10) as a set
of labelings on a finite partial order. One could develop the
theory 1n the more general context of directed acyclic graphs,
but the lack of transitivity in this context would introduce an
additional layer of techmicality. Labelings are functions
which assign to each element of the partial order a “label”. For
our purposes, 1t 1s convenient to consider labels that are natu-
ral numbers equipped with the usual order. One can of course
work in general with a countable linear order as the set of
labels. In particular, the data structures can incorporate labels
that are words, real numbers etc. In the present paper, such a
generalization involving labels from an arbitrary linear order
can be achieved via minor technical modifications.

We use in the following the notation £to denote a finite
subset of natural numbers. When considering a partial order
and an associated set of labels, we implicitly assume that the
two sets have the same cardinality. We only consider labelings
with elements that are pairwise distinct. This simplifies the
presentation and corresponds to a standard assumption when
carrying out the complexity analysis of algorithms. For
instance, for the case of sorting and searching algorithms, list
clements typically are assumed to be distinct [AHUR7]. Gen-
eralizations allowing for repetitions are of a technical nature
and will not be considered here. Of course the operations
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which we present could be generalized to the case of data
structures for which repetition of labels 1s allowed. In that
case the average-case time analysis can be carried out under
the assumption that labels are distinct, yielding a good
approximation of the true average-case time. We specily
below the essential case which 1s typically considered, 1.e. the
case where labels are distinct, and remark that for the general
case this analysis method again applies 1n order to give a good
approximation of the average-case time.

A Random Structure will be defined as the set of all pos-

sible order-consistent labelings ofa finite partial order (X, C))
from a set of labels £, 1.e. the labelings of a partial order are
required to be increasing functions. This allows one to incor-
porate well-known data structures (ci. Example 12).

We discuss one example at this stage: the data structure of
lists. For lists of size n the identification up to order-isomor-
phism vields as usual the n! permutations over n elements.
These can be incorporated as a Random Structure A over the
discrete partial order which, when labeled in all possible ways
from a finite set of labels, say from the set {1, ... ,n}, results
in the n! permutations.

Other examples of data structures can be incorporated such

as Heap-Ordered-Trees and Heaps [AHUR7]. A trivial and

degenerate example of a Random Structure 1s the Random
Structure over the linear order which allows for a single
order-consistent labeling. This 1s interpreted as a data struc-
ture consisting of the sorted list.

4.1 Random Structures

We recall that Random Structures will serve as the fundamen-
tal notion of Data Structures. They will be used to represent
the set of lists of a given size, the singleton consisting of the
sorted list of a given size, the empty data structure, the set of
heaps of a given size, efc.

We proceed with formal definitions. The first one defines
our concept of a labeling, which 1s always order-consistent.
We recall that Lo (N =).

Definition 8 A labeling of a finite partial order (X, C)) from a
set of labels £, where IX|=| £l, 1s an increasing injection
F:X— L.

Of course, 1t follows from the above definition that label-
ings are bijections.

Omuitting the order in the following notations consists of a
slight abuse of notation, which will not cause ambiguities 1n
the paper. Let (X,C)) be a finite partial order. We let m(Y)
denote the set of minimal elements of (Y,C)) and M(Y) denote
the set of maximal elements of (Y, £)). Let F be a labeling of
this partial order. We let m(F) denote the labels for F of
minimal elements of (X,5)), 1.e. F(m(X)), and we let M(F)
denote the labels for F of maximal elements of (X,C)), i.e.
F(M(X)). For any subset Aof the set of labels £, we let m(.A)
denote the labels in Aof minimal elements of (F~'(\A), T)),

o S —
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i.e. Fm(F~ " (\A))), and we let M(A) denote the labels for F of
maximal elements of (F~'(A), C)), i.e. FMM(F~! (A))).

Finally we use the following notation: V.Adenotes the
maximum label of the set Awhile A.A denotes the minimum

label of A,

Remark 9 It 1s quite evident that the greatest (least) label must
occur at a maximal (mimimal) element.

Defimition 10 The Random Structure on a finite partial order

(X, C)), with respect to a set of labels Lwhere IX|=| £, is
the set of all labelings from Lof'the partial order. We denote
this random structure by: R -(X,C)).

Notation: We {frequently denote a random structure R,

(X,C)) by R and in that case refer to the underlying set X
and set of labels Las X and £L,.

We remark that the definition of a random structure does
not require the underlying partial order to be connected.

Remark 11 Random structures, R 2,(X,C)) and Rz,(X, C)),

of a given partial order (X, C)) and obtained for two different
sets of labels, £, and La, can easily be seen to be label-
1Isomorphic, 1.e. there exists an order preserving bijection

P((L1,L2)) from the linear order ( £,=) to the linear order
(L2,=), where = is the usual order on the natural numbers,

such that Rzo(X,E)={WP((£1,£2))oFIFe Rz (X,C )} So if
L£—1a,,...,a tand Lo7={b ,...,b | whereVie{l,... n-1}.

a;<a,,, and b,<b, , then Vie{,,...,n}. ¥ (ﬁl,ﬁz))(az.):bl.. We
refer to the unique equivalence class for the equivalence rela-
tion “label-isomorphic™ as the random structure Z(X,C)) of a
partial order (X, C)).

—

Moreover, for the purpose of time analysis, we will focus
on data structures, referred to as Random Structures, for
which the labels are pairwise distinct. This 1s however not an
essential requirement. Any operation on data structures which
extends the ones we give below to the context where labels are
no longer pairwise distinct, allows for an average-time analy-
s1s estimation 1n a similar way.

It 1s easy to see that random structures allow one to 1cor-
porate traditional labeled data structures, including heaps,
unordered lists, sorted lists, . . . , as long as the labelings
respect the underlying order. We illustrate this in the next
example.

EXAMPL.

(L]

12

In each part of the example, we display the Hasse Diagram
of the given partial order on the left and the labelings on the
right. In each case the underlying set consists of elements
{®1,..., %}, while the labels are the set of indices {1, . . .,
n}. Part ¢) illustrates that random structures incorporate the
case of lists 1n a natural way.

a)
) T3 2 3 3 2
I ] ]

The random structure R (X,C)) consists of the labelings F,
and F,, where:

Fl:{( mlal):( :BE:Z):( x3:3)} and FEZ{( mlal):( xE:S):
(xihz)}
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b)

7, 4 4

x| | I
The random structure R (X,
and F,, where:

Fl:{( mlal):( 9.:2:2):( m3:3):(
( EE:S):( ES:Z):( m4:4)}'

¢) Consider the partial order (X,C)) over the set
{21,22,...,%n} equipped with the discrete order, i.e.

% y= L Yand y Z x.. The random structure
R.AX,C)) consists of all n! permutations of labels on the
clements of X and can be interpreted as the set of lists of
size n. We will denote in the following such a random
structure by 4,where Astands for “Atomic”.

L)) consists of the labelings F,

mﬁl:q’)} and FEZ{( mlal):

L] 23 Ly-1 Ln

d) Consider the partial order (X,C)) over the set
{z1,Z2,...,%n} equipped with a linear order. The ran-
dom structure R(X,C)) consists of a single labeling,
denoted by S_, which can be mterpreted as the sorted list.

Ly H
mﬂ-l | H-l 1
| |
| |
| |
| |
| |
| |
3 3,
L2 4 2

¢) We denote the following four-element random structure by
N

L3 Ly 3 4 4 3 3 4
£ ] ) 1 2 1 2 2 1

4 3 4 2
2 1 3 1

Therandom structure N consists of the labelings F,, . ..
where

:FS:

Flz{( mlnl): ( mE:z): ( $3:3): ( m4:4)}:

FEZ{( mlal): ( :EE:Z): ( $3:4): ( $4:3)}:

FBZ{( :I:l:z): ( mE:l): ( :33:3): ( :34:4)}:
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F4:{( 3:192): ( mE:l): ( :33:4): ( $4:3)}:

F5:{( :3153): ( xE:l): ( 2:3?4)? ( xﬁhz)}

) Finally, we remark that heaps can be represented as random
structures over a partial order which has a tree as Hasse
Diagram. Heaps of size n are denoted by Hy. For instance,
the random structure 73, determined by the tfollowing
Hasse Diagram and label set {1, 2, 3, 4 }consists exactly of
three labelings as can easily be verified.

Similarly, Heap Ordered Trees 1n general can be repre-
sented 1n this way.
It 1s obvious that the cardinality of Random Structures over
partial orders with n elements lies between 1 and n! included.

4.2 Floor and Ceiling Functions
We mtroduce “floor” and “ceiling” functions for elements of

partial orders. For a partial order (X,C)) and an element ZeX,
we define | | to be the set of all elements immediately and

strictly above z, 1.e.
[ L1={y Iy, 3.

Similarly, we define:

[ 2]y IyL, 2},

For a discrete subset Y of X, we define:

[YTFU, oy |

[YJ:UyEY[yJ'

Given a labeling F with range £,, the floor and ceiling of a
label ae L, and of a set of labels, are defined as follows:

[a]=F([F(a)])

la|=F(F'(a))).

For a subset Aof L,we define:
[AFIF (AN
| A =R (A,

Of course, we have:
ae[b]™a>b

ae|b | ™ a<b.

EXAMPL.

13

(Ll

For the labelings displayed 1n the example, we have that:

[21={3,51.12]={1}.[4]={5}.[4]={1}.[5]=0and
[5]={2.4}.
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4.3 Random Structure Preserving Functions
We will define operations that transform a random structure
RAX,E1) into a multi-sequence of random structures

(ReyX,,E1)), K)), ..., (R (X, ,En) K))), where Vie

11, ... n} £, L Such operations will be called random
structure preserving operations, or RS-preserving operations.
The label sets £, are subsets of the original label set Lsince
the operations include a deletion operation which may
remove some labels.

We mtroduce the notion of a refinement in the following.
Random operations “refine” the original partial order in that
the newly created partial orders of the resulting sequence have
underlying sets X, that are subsets of the original set X and
have orders T ; that are finer than, 1.e. include, the restriction
of the original partial order to the new set X, under consid-
cration. We formalize this below.

Definition 14 Let R=RAX,C) and Vie{l, ..., n}. R=R.,
(X.,C;), where Vie{l, ..., n}. £;© Land Vie{l,...,n}. X,

X and VZ,yeX,. ¢ & y=z L; y.We call any sequence
of random structures (R, . .., R ) satistying this condition a
refinement of the random structure R. We also refer to £as a
refinement of the label set £and to each (X,,C,) as a refine-
ment of the partial order (X, C).

The operations typically transform random structures R
into a refinement (R,, . .., R ) of R; more precisely they
determine refining functions.

Notation 15 We use the following notation: U, referred to as
the universe, 1s a countable list of variables, say U=

fu In e N}}. We denote the set of all finite partial orders

over U by

POg,(U)={ (X, ;)IXEU and (X, D) is a finite partial
order. }.

The set of all labelings over partial orders from PO, (U) 1s
denoted by F, 1.e.:

_?::{ﬂp;()(: L)— N?(X? L)ePO,,(U)and Fis a
labeling}.

Definition 16 A function ¢: F— F is refining on R if there
exists a refinement (R, . .., R ) of R such that ¢: R—=R,
U...UR 1s surjective.

Definition 17 In case we have determined a refinement
(R,,...,R,)ofR, based on which we can establish that the
function ¢ 1s refining on R, then we refer to ¢ 1n combina-
tion with this particular selection of a refinement as a
representation for ¢. Such a representation i1s denoted as
follows: ¢: R—2*R,,...,R)).

The following definition formalizes the notion of Random

Structure Preservation.

Definition 18 A function n: 7— F is Random Structure pre-
serving on a random structure R (RS-preserving on a ran-
dom structure R) iff there exists a partition #,,...,F, of
R, a refinement (R, .. ., R ) of R and non-zero natural
numbers K, . .., K such that

VFeR- I (N F 1=K,

The function n 1s called strongly RS-preserving 1f and only
ifn=1.

Remark 19 1) Note that since multiplicities are required to be
non-zero, we obtain, following the notation of Definition
18, that: Vie{l, ..., n}-uw(F,)=R..

2) The definition of RS-preservation 1s more general than the
informal use of randomness preservation 1n the literature.
The informal use of randomness preservation only regards
the preservation of the uniform distribution and does not
deal with Random Structures. We capture uniform distri-
bution preservation in case a random structure 1s mapped to
a single random structure and no non-trivial multiplicity 1s
involved (1.e. K=1). This 1s captured in our context by the
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notion of a strongly RS-preserving function with multiplic-
ity 1. RS-preserving functions in our context, map a ran-
dom structure to a multi-sequence of random structures.

Remark 20 It 1s clear that the definition of RS-preservation
could be simplified 1n case the random structures R, . . .,
R have pairwise disjoint underlying partial orders. In that
case the definition 1s equivalent to the following:

VFeR In ' (F)I=K.

Of course, one can always guarantee that the random
sequence (R,, . . ., R ) 1s such that the underlying partial
orders are pairwise disjoint by identitying random structures
with the same, 1.e. order-isomorphic, underlying partial
orders and by adjusting the multiplicities accordingly. We
prefer to keep the more general version of RS-preservation at
this time, since identification of order-isomorphic partial
orders 1in practice may be costly.

The generalization 1s important and lifts the applications
from rather straightforward reasonings on preservation of
uniform distribution based on strong random structure pres-
ervation to more intricate applications of a wider scope.
Defimition 21 In case we have determined a refinement

(R,, ..., R)of R with multiplicities K,, . . . , K with

respect to some partition F,, . ... F , based on which we

can establish that the function p 1s RS-preserving on R,

then we refer to u1n combination with this particular selec-

tion of a refinement, partition and multiplicities as an RS-
representation for u. Such an RS-representation for u 1s
denoted as follows:

W(FTyeenydn) RTZIRLKYD, ..., (RLK)D.

Definition 22 A partition ( Fq, ..., Fy) 1s uniform 1t all mem-
bers of the partition have the same cardinality, 1.e.
| F 1=l Fsl=. . . =| F; | The function p is called uniformly
RS-preserving iff 1t has an RS-presentation w(Fy,...,Fn):
R—=+((R,.K;), . . ., (R _,K )) for which the partition
(F1,...,Fy) 1s uniform.

Remark 23 Strongly RS-preserving functions are (trivially)
uniformly RS-preserving since their representations have
partitions of cardinality one.

Notation 24 Typically, and with some abuse of notation, we
will not mention the partition involved for RS-representa-
tions:

H:R l_e_}((RlzKl): L (R-n:Kn))'

The motivation behind this shorter notation 1s that once our
choice for the refining sequence, the partition and the corre-
sponding multiplicities have been determined, we only need
the resulting random sequence 1n order to determine the aver-

age-case time.

Definition 25 A random sequence 1s a finite sequence of pairs,
(R,,K,),..., (R, ,K )}), each ofwhich consists of arandom
structure R paired with a multiplicity K.

We extend RS-preserving functions from random struc-

tures to random sequences as follows:
Definition 26 (RS-preservation on a random sequence)

It (R,.,K,),...,R,K) i1s a random sequence and t 1s
RS-preserving on each of the random structures R, . . .,

R, where
ViE{I: =t H}'“:Rf E_e_}((flil:Kfl): =t (I{ini:Kin)):

then we denote this by:

[l

H:((RI:KI): =t (RH?KH)) ((RII:KIIXKI): =t
(RIHI:KIHIXKI): LR (Rnl:Kn1XKn): L (R-nnﬁ.:
K,"xK.,).

We say 1n that case that:
u1s RS-preserving on the random sequence (R,,K,), .. .,
(R,.K,,)).
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We omit the straightforward verification of the following
two results.
Proposition 27 If p: (R,,K,), ..., (R, ,K, ))re>
(R,"K,'xK,), . . ., R/K/"'%K,), . .., R 'K 'x
K, ...,[R K "xK )}))then:

imxmfhiimxﬁfxueﬂ.
i=1

i=1 j=1

Lemma 28 The composition of RS-preserving functions on

random sequences 1s RS-preserving.

For strongly RS-preserving functions, Proposition 27
yields the following immediate corollary.

Corollary 29 If u: R, ¥R, 15 a strongly RS-preserving func-
tion then IR, | divides IR,I.

Remark 30 Note that no zero-value problem arises with the
above division since for every random structure R one has
IRI=1. Indeed, 11 R 1s the random structure over the empty
set,—then |R|=1 where R consists of the “empty function™.

Definition 31 Random structures that are the image of some
discrete random structure A, for a (strongly) RS-preserv-
ing function are called A-constructible (Atomic-construct-
ible).

To 1llustrate a basic application of Corollary 29, we remark

that the random structure N of Example 12, part (e), is not

A-constructible. Indeed, the cardinality of Nis 5 which does
not divide the cardinality 24 of the discrete four-element
random structure.

4.4 Isolated Subsets

We itroduce the notion of an isolated subset of a partial
order. Isolated subsets have the following important property:
given a Random Structure (X,C)) then the restriction of the
labelings of this Random Structure to an 1solated subset Y
forms, after 1dentification up to order-isomorphism, a number
of copies of the Random Structure R(Y,L)).

The notion of an 1solated subset will be useful to allow the
extension of our operations from a definition on the random
structure determined by an 1solated subset of a given Random
Structure to the entire Random Structure. Conversely, 1s0-
lated subsets are useful to define a notion of projection of a
given Random Structure to the Random Structure determined
by the given 1solated subset.

An informal definition of an 1solated subset I 1s that I 1s a
subset of the underlying set of a Random Structure for which
the extremal elements (with respect to the restriction of the
order to the set I) are the only exit and entrance points of the
set I to related points 1n the complement, which motivates the
choice of the adjective 1solated. This 1s captured by condition
1 of Definition 32. Moreover, we require that every point that
does not belong to the set I and 1s directly above a maximal
(directly below a minimal) element of I must be directly
above (directly below) every maximal (minimal) element of 1,
which 1s captured by condition 2 of Definition 32. We formal-
iz¢ this 1n the following definition.

Definition 32 Given a finite partial order (X,)). A subset I of

X 1s 1solated 1ff 1t satisfies the following three conditions:

[I- D)| =T and [I-M()] 1 1

v &, Ye )| T)-| (Y] 2
1= Y] 3

An atomic isolated subset, or A-isolated subset, is an iso-
lated subset of a partial order for which the restriction of the
order to the 1solated subset 1s the discrete order.

V&, YeMI)|
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Since a component of a partial order has no outside con-
nections, clearly every component of a partial order (ci. Sec-
tion 2.1) 1s 1solated and thus any set of components of a partial

order 1s 1solated.

EXAMPLE 33

We consider a partial order with Hasse diagram as dis-
played below. The 1solated sub set I 1s determined by the

clements contained in the ellipse on the diagram.

EXAMPLE 34

The Hasse diagram below provides an example where the

set {Z3,Z4} does not form an atomic isolated set, while
{ x4, 25} forms an atomic isolated set.

We define the useful notion of completely connected sub-
sets of a partial order and proceed to give an alternative
characterization of a 1solated subset.

Definition 35 Given a partial order (X,Z)) and a pair of sub-
sets A and B of X. The set A 1s said to be completely below B
and B 1s said to be completely above A 1if

[(ZTy W) TeA, YeB, Te| Y|1=AxB.

The sets A and B are said to be completely connected (cc)<= A
1s completely below B or A 1s completely above B.

Remark 36 If A 1s completely below B then A and B are
discrete sets and ANMB=0.

We continue Example 33 below and illustrate the sets A=M
(I) and B=[M(I)| which are completely connected and the
sets C=|m(I)| and D=m(I) which are completely connected.
We remark that the sets A, B, C and D are discrete subsets.
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Remark 37 If at least one of the sets A or B 1s empty then the
pair A and B 1s completely connected.

Lemma 38 Given a finite partial order (X, £)). A subset I of X
15 1solated 1T 1t satisfies the following three conditions:

[ I-m(T) ] < T and [I-M(D)] < T 1
|m(1) | is completely below m(I) 3

M(I) is completely below [M(I)]. 3

Proof: Exercise.

Remark 39 If I is an isolated subset of (X,C)) then every
component of I with respect to the restricted partial order
(I,E)) is also an isolated subset of the given partial order.
We illustrate Remark 39 via the Example 33, where the set

I consists of three 1solated components displayed below.

\/ [ I3

Finally, we define the result of removing an 1solated subset
from a given partial order.
4.4.1 Strictly Isolated Subsets
We define the notion of a strictly 1solated subset of a partial

order. In order to do this, the notion of a seam 1s usetul.
Definition 40 A seam of a partial order (X, C)) is a pair (A, B)

of subsets A, B of X such that:

a) A 1s completely below B
b) A=0, B=0 and (A | )U(B1)=X

EXAMPLE 41

In the example below the pair (A,B) forms a seam of the
grven partial order.

Comment: By condition b) and Remark 36 one has | X[1=2.
We leave the proofs of Lemma 42, Lemma 44 and Corol-

lary 45 as an exercise.

Lemma42If (A,B)isaseam of (X,C))thenF(A|)and F(BT)
are independent of F, i.e. VF,, F.e KAX,C)). F,(A|)=F,
(AT)and F,(B| =F,(B1).
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Notation 43 If (A,B) is a seam of (X,C)) and Fe K AX,C))
then £ =F(A|) and L,=F(B1).
[emma 44 RAX,C)={F,UF,IF e Re(A],2)),
F.e Reg(BT,E))}-
Corollary 45 | RAX,E)I=IRe (A}, E)Ixl RexB1,E)).
Definition 46 A strictly 1solated subset 1 of a partial order
(X,0)) 1s a subset for which:
a) |m(1) |20=-(|m() |, m(I)) forms a seam.
b) (M) |=0=M1),|M()]) forms a seam.
An atomic strictly 1solated sub set of a partial order 1s a
strictly 1solated subset for which the restriction of the order to
this subset 1s the discrete order.

Notation 47 If (X,E)) is a partial order and A = X then

Z=[M(4)]1 and 4=|m(4)]}.

Lemma 48 Every strictly 1solated subset of a partial order 1s
1solated.

Proof: If (X,C)) is a partial order and I is a strictly isolated
subset of this partial order then clearly X-I=IUI. The result
follows since I is completely below T and I is completely
below 1. B

Remark 49 The empty set 0, the set X, and every union of
components of X are 1solated since for each such set A:

| m(A)|-TM(A)]-0.

EXAMPLE 50

The partial order displayed below has the set I=

L 21,29,23, 24} as isolated set, where the relations of its
Hasse Diagram are indicated via dotted lines. I 1s an example

of a strictly 1solated subset.

Definition 51 Given a partial order (X,E)), we define the
following sets:

I(X,E)={YIY is an isolated subset of (X,C))}
AIX,E)={YIY is an atomic isolated subset of (X,E))}
SIX,EN={YIY is a strictly isolated subset of (X,E))}
ASI(X,EN={YIY is an atomic strictly isolated subset of

(X.E)}
Clearly we have that SI< 1 and AI =1 and ASI=SINALI
As mentioned in the introduction to this Section, isolated
subsets possess an important property in that the restriction of
all labelings of a random structure to the 1solated subset forms
multiple copies of the Random Structure over this isolated
subset. This 1s captured by Proposition 54 below. We first
need the following technical lemma.
Lemma 52 In case I 1s an 1solated subset of X we also have

that:

Rex,El-Up R B,
[FRAX-DNUGIGe K. LF(X_D(I,;))} and 1
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Rex BN =i Fe Rp-niFe Rax,E)lix
RIE)) 2

In case 1 1s strictly 1solated we also have that:

R e, Eh= Rt E)ixt R, E)ix

Rim@]1,E)) 3

Proof: We leave 1) and 3) as an exercise and sketch the proof
for 2). To show 2), we consider the set consisting of the

restrictions of the labelings of R A(X,E)) to the set X-1, i.e.

the set {F R A(X-1)IFe R(X,E))}. We refer to a labeling G in
this set as an “outer labeling”. We define an equivalence

relation on the set of labelings R (X,5)) as follows: two
labelings are equivalent 1if they give rise to the same outer
labeling. It 1s clear that two labelings are equivalent 111 they
differ only on 1. Using 1), we obtain that the resulting quotient

consists of equivalence classes of size K,=| R(I,5))I. In other

words,| R (X,E))I=MxK,, where M is the cardinality of the
quotient, i.e. M=I{F R ;(X-I)le R(X,E))}I.

Notation 53 Consider a random structure R=R AX,E))and Y
< X. We use the following notation: R R /Y 1s the multiset
consisting of all restrictions of labelings from R to the

subset Y, in other words: RTR/Y={(FR_,Y,
k)|k:CaI‘d({GER|G RﬁYZF REY})}

We use the following notation: = for the identity up to
label-1somorphism.

Proposition 54 Let R=R(X,E)), Y = X and

(R(X, C)|
K =

|R(Y, O
vel(X,E) =R R or~( R(v,.B) k). 1
Yedl(X,E) = RIv~( A, K). >

YeSI(X,Z)) = K= R([M(Y)]T,;))Ix
 Rmn]4,E). 3

Proof: We sketch the proof: 1) and 3) follow directly from
Lemma 52 b) and ¢). 2) 1s an easy consequence of 1).

We 1llustrate these results on some basic examples below.

EXAMPLE 55

The isolated subsetY in the four element binary tree (X,E))
displayed below 1s indicated via the ellipse as the right-most

leat of the tree. The restriction of the three indicated labelings
to this leaf yields the following labels for the leaf: 1, 1 and 2
and thus the restriction to the 1solated subset yields K=3

copies of the random structure A, . Note that | R(X,E))|=3 and

| R(Y,E))I=1 and

—] tJ
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In the following example the strictly 1solated subset indi-
cated by the two elements contained 1n the ellipse. The restric-

tions of the labelings to this strictly 1solated subset consists of
K=2 copies of the random structure .A,. Note that

| R(X,E)I=4 and | R(Y,E))I=2 and

Moreover, we have K= R[(M(Y)]1,E)Ixl Rm(Y)]|E)I=2x
1.

4 5 4 5
:':. _-2_ : _3_ :‘ :f _-3_ -2: :‘
1 1
5 4] 5 )

Finally, we present an example of a non-1solated subsetY
of which the elements again are contained in the ellipse
below. The restriction of the labelings to this subset do not
form a number of copies of a random structure. Indeed, the
restriction of the final labeling to Y, with labels 4 and 2 on Y,
only represents one labeling of the newly created restricted
discrete two-element partial order (Y,=), while the second
labeling of (Y,=), with the labels 2 and 4, 1s missing.

The notion of an atomic 1solated subset introduced 1n Defi-
nition 32 will be useful 1n defining the operation “random
split”.

An atomic 1solated subset intuitively forms a discrete sub-
set 1 a random structure for which any labeling, when
restricted to this set, forms a set of pairwise free labels. 1.e. the
labels simply can be permuted on this set without violating
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the labeling condition. The following Lemma captures this
idea. The proof of the following Lemma 1s a trivial exercise.
In fact one can show that the two conditions stated 1n Lemma
56 are equivalent. The verifications are of a technical nature
and we omit them at this stage since we will only avail of the
implication below.

Lemma 56 Given a random structure R(X,E)). If I is an

atomic isolated subset I of X then VFe R(X,E)). F(Q) is a free
set of labels for F.

Remark 57 This fact enables one to easily determine, for two
given elements of an 1solated atomic multiset, what the
probability 1s that the label of the first element 1s smaller
than the label of the second element. Indeed, 1t 1s easy to see
that these events are independent and that the probability 1s
/2. For atomic strictly 1solated subsets I of a given random

structure RR(X,L)), the probability that an element Zhas
a given label a 1s again easy to determine. The probability
that an element Zhas a given label a 1s

1]

whenever ae{F(D)IFe R(X,C))} and 0 otherwise, since
{F(DIFe R(X, C)}=I1I. This will be of use in the time veri-
fication of conditional statements.

Proposition 58 1) I is strictly isolated I and I are strictly
isolated and X-I=IUI. )

2)I=0or [=0=>(1is strictly isolated <X-I is strictly isolated).
Proof: To verity 1), we show that 1n case 1 1s strictly 1solated,

both L and I are strictly 1solated. The converse 1s left as an
eXercise.

Assume that I 1s strictly 1solated. Then:
a) | m(D) |=0=(|m(D) |,m(I)) forms a seam.
b) [M(D) [=0=M(I),| M(I)]) forms a seam.

If | m(I) |=0 then we know that I=(| m(I) |=0)| =0 and hence
I is strictly isolated. Similarly I is strictly isolated in case

IM(I)|=0. Thus we can assume that | m(I)|=0 and [ M()]=0.
We remark that i particular (*)I=0.

By a) and b) we obtain that: (|[m(I)], m(I)) and (M{),[M
()]) each form a seam.

We verify that I is strictly isolated. The proof forI1s similar.

Note [M(D[=[M(M@DD1) [=MX)[=0

However | m(I) [=|m([M(D) | |=| [M(D)|[=M() where the
last two equalities follow from the fact that (M(I),| M(I)])
forms a seam.

Since by (*) we know that 1=(), we obtain that M(1)=0 and
hence | m(T)|=0.

Hence, in order to verify that I is strictly isolated, it suffices
to verify that (|m(D) |, m(I) forms a seam. But this follows
since we have verified above that |m(I)[=M(I) and m(
D=[M(D)| and since (M(I),|{M(I)|) is a seam.

We proceed to verily 2) under the assumption that I 1s a
subset which satisfies I=0. The case where 1=0 is similar.

We show that I strictly 1solated implies that X1 is strictly
1solated. The converse 1s shown 1n a similar way.

Since [=0, we obtain that [ M(I)]|1=0 and hence, since I is
strictly 1solated, we know that X-I=I. By 1) we know that I 1s
strictly isolated and hence X-I is strictly isolated. )

Finally we state the following Lemma, leaving the proof as
an exercise, which sheds some light on the relations between
the notions of a seam, 1solated and strictly 1solated.
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Lemma 359 The following statements are equivalent:

1) (X, E)) has a seam.

2) AI.OcI <X, I=0 and I is strictly iso.
3) dl.O0cI<=X,I=0 and I is strictly iso.
In case X 1s a component of (X, C
statements are also equivalent to:
4) d1.0cI <X, I and X-I are 1solated.
4.4.2 Extension Process
We will distinguish two types of RS-representations for RS-
preserving functions, the contractive ones, which reduce the
underlying set to a strict subset of this set, and the non-
contractive ones, which leave the underlying set of a random

structure unchanged.

Definition 60 An RS-representation u: 7Rp(X,E) e
(Re X, E)).K), ..., (Reg(X,,C)),K ))is contractive
iffdie{1, ..., n}. X, =X and is non-contractive otherwise.
The Extension Process states that 1t suifices to define non-

contractive RS-representations on an 1solated subset of the

partial order of a gitven Random Structure and subsequently to
extend these functions to RS-representations of RS-preserv-
ing functions on the entire Random Structure. For contractive

RS-representations the Extension Process holds on condition

that the extension occurs on a strictly 1solated subset.

The Extension Process will be used to define three of the
basic operations: the Random Product and the Random Split,
which are non-contractive operations, and the Random Dele-
tion, which 1s contractive. The fourth operation, the Random
Projection, can be defined without the aide of the Extension
Process.

As usual, with some abuse of notation, we will denote the
restriction of the partial order Lo a subset A of X by the
partial order (A L.). We will refer to the notion of label-
isomorphism in the following and use the corresponding

notation introduced 1n Remark 11.
Notation 61 Ref (R(X,5))={¢l¢ is a refining function on

RoX, D)}

The following definition extends the label-isomorphism

lated.
lated.
)) then the previous

U, e L — Llintroduced in Remark 11 for random struc-
tures, to an operation on refining functions.

Definition 62 Given £,£'< N and (X, ) such that IXI=I £

=1 L'|. We define a relabehng operator Wz Ref (Re
(X, D)—Ref (R X,E)) as {follows: VeeRef(K.

(X,0),VF'e R(X, D).
U 22y =W profo Bt o))

Lemma 63 Definition 62 1s sound, 1.e., using the notation of
Definition 62,%,,/ is composable with ¢( V¥, 0F") and

Uzcr(§)eRef (R pAX. D).
Proof: Let peRetf (K (X, E)) and consider a representation

o: Rexx, Do Reyx B, ... Rz, X, 5)).

We remark that since refining functions are surjective,

VEF'e R (X, D)Jie!{l, . . ., n} such that ¢( ¥z o0F)e R,
(X L.). Thus the composmon U, ro[® WerpoF")] 1s defined
since ¢ 1s refining and hence £ < L.

To show that ¥ coi(@leRel( R (X,

C)), we remark that

U 2oro) Renx,B) Fo Reyx,, B),
Rﬁ;‘l(xn? :)1)):
where Vie{l, . . . , n}. L =%(L;)Indeed,
since W - raS a label-1somorphism we

have £; C L = L=U,pp (L) V(L) = L' We leave the

verification that ¥ ./(¢) is surjective as an exercise.
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The following lemma, which uses the notation of Defini-
tion 62, illustrates that the relabeling operator W preserves
RS-representations.

[Lemma 64 If
1L (}-1 1"'1Fﬂ)1( RE(X; ;)) =7 Rﬁl(Xln ;)):Kl):
(R X, E).K))
then
[ 2o (FL TR (Ropnx, ) Fo= Ry,
x.E) K, ..., (Royx )X,

where F=W ;1 Fiand Viell, .

Proof: Let u(¥i,.. Fﬂ.)Rﬁ(X
K,), . (Rf,n) (X, ,C), K. The partition Fi,...,7Fnof
R;;(X )) is such that Vie{l, . . ., n}tu(F)=R; and Ve
. =t (F)N Fi~K.. In order to show that

i

U oo Renx,C) o Reyx,, C),K,),

onp Ly =Tep(Ls)
_))"5""‘5"((7?«&) (X5 B

R ™ X, E)K,),

it suffices to remark that since ¥, is a labeling isomorphism
and since for each ie{l, ... .n}, Fi=W o, we immediately
obtain that F1,. ., Fnpforms a partition of R(X,C). It 1s

also easy to verify that VF'e R,q). (X, _Z__ll(\iI o)™

(F)M Fg‘ZKf-

We now 1ntroduce an Extension Operator which extends a
refining function defined on a random structure S, determined
by an 1solated subset of a given random structure R, to the
entire random structure R.

Definition 65 Suppose that I is an isolated subset of (X, )
and let Ge Ro(X,C). The Extension Operator Ext(G,I):
Ref (Rg(I,LE[T))—=Ref( R(X,C)) is defined as follows:
VoeRet (Ra(IED)),VFe R(X,E)).

Ext(G.I@)F)=F [(X-DUMW ¢, ron @) F [D)].

The following lemma shows that Definition 65 1s sound.

Lemma 66 Let Ge R(X, ) and peRef( R (1E[T)) and con-
sider a representation of ¢:
o: Ra,Cln R, B), . .., Raaa T

Bxt(G.)(¢)

We determine a representation for the extension
ol ¢.

If:

,CE-:{F(X—I)U[ G, 7 (P)(E IDII)IFe Rg(X,

()(‘I’F(DC;(D(F I‘I))ERM (I C)} X =X-DHUI,

Ci=least partial order containing the following sets of pairs:

CIX-L)x(X-1)],C) {(a,b)laeM(I,), be[M(I)|} and {(a,b)

ae|m(1)|, bem(I )}

Then: Vie{l, ..., n}.

Rﬂﬁxf;:é&“ )={F =DV 7, 0, @)
(F D190 rpi(F [D)e Romy1, E))
Ext(G,I)(¢) 1s refining with representation:
Ext(G.D(¢): RoX, E) " Reax . E1.. ...

7 . X))
Lon
Proof: We show that Vie{1, ..., n}.

Reyx, =i )={F f(X—I)U[ G
@) F DO F [D)e Remy1, E)].

Note that I, 1s an 1solated subset of (X, C)) and hence, by the
definition of X, and &7 1. is also an isolated subset of (X, =5)).
Hence, by Lemma 52 1), we know that: Rz(C, CJ)=

{HI(X,-1)UH'He R£(X,, &) and H'e Rﬁz(){ I (I,p )}

C)).

and

We remark that {F (X - I)Lj[‘PGG) ()
(FDIOWYrp 60 (FD)e Raty (I: ED={H[X,~1)U
H'|He Rcy(X,,C) and H'e Ry, )(I,C}))} since X-1=X,-I, and
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?inE;}{F'I {[liIG(I) Fa (@) D] (W rnhenF 1))e Rm,)
IjIj:Rgi(X C)and H'e Rg(1, )}, by the surjectivity of ¢ and

by the definition of a label-1somorphism.
We verily that the function Ext(G,I)(q)) 1s refining. Note

that £; C £LX,cXandthe VZ,¥9eX. a Ty =z CF y.. The
last claim follows from the fact that C) refines T and from the
definition of L. We leave the fact that Ext(G,D)(¢): Rz
(X, __,))ﬁ Re X, EDU...UR.(X ,C;)is surjective, as an
exercise.

We use the notations of Definition 65 and of Lemma 66 in
Theorem 67.

Theorem 67 (Extension Process) Consider arandom structure
RAX,C) and an isolated subset I of X and Ge RAX, ).
Consider a refining function

H- RG(I —;)rl) I_E—}RM](IU —:-*)): SR
(Rma, E)).

If a) u 1s non-contractive or b) (u 1s contractive and I 1s
strictly 1solated) and 1f

i Ra, B [ (R, BE) X)) ..,
(Rma1, E)K)

1s RS-preserving then

Ext(G.D(w): RoX, B) He) (Reyx  TY)
Kps- - (RLn(X,,En) K)

1s RS-preserving.
Proof: To verily a), we consider a non-contractive RS-pre-

serving representation of u: p: Rgyy, (DO (R,
1,,51).K,) ..., (Rmfl , E), K )). Since the function is
non-contractive, we know that Vie{l, ..., n}. I=I and
M =G(1). Thus
i R, B) ko) (Ra, LD.K)) .. ..
(RG(LOK,)
Since u is RS-preserving there is a partition Gy,...,Gpf

RG@ (L,
WHe Ra, @, Eyp-tann Gi=k..

LIT) such that

Since I 1s 1solated we know by Lemma 52 1) that

[ ——

0 R oox, E)-UiFlx-nuGiFe R gx, ©)) and
Ge RF(L —:-))}

We define the following collection of sets: forie{1,...,n} we

let:

F{ (FlX=D)U(W copmnol) 1 Fe Ropx, E)) and
He s }}

We verify that the collection Fj ¢

R X, L)) such that VHe RAX,C
The fact that ( Fy),.q; ., lorms a partition tollows since
(Gidieg1 . forms a partltlon and hence, since W 1z 18
a label-isomorphlsm we obtain that when i,je{1, . 11} and

) forms a partition of

). 1Bz H) N A=K,

i=], we have {W 5z o HI

and thus J; N F=A. The fact that U, , = Fi = ’RL
(X,E)) follows since Ut 1 ... v FilUeen o
{(i h(X_I))U(lPG(DF(DOE )i *ERI:(X:—)) He gi}:

1(

‘(X_I))U(IPG(DF(DOP JIFe R £(X,E)),
HEUI’E{I ... Hf gz} } Since UzE{l 7} g RG (I: ;)):
we obfain that Uiert .t Fe {(F[(X I))U(IPGG)F(DO

MIFe RAX,E), HeRglCH={FI(X-D)UGIFeR

X, Rp), Ge RH{1,E)}=R (X,E)) where the last equality
follows by (*%).
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We remark that p 1s RS-preserving and hence surjective.
Thus, by Lemma 66, Ext(G,I)(u) 1s surjective and:

Rﬁw(x » =1 ) {F r (X-DHU [lpG(I)F(I) ()(
FII I r oo FlDe Rmy, o).

This equality combined with (*) implies that VH e R,

(X,5). IExt(G,]) (w)z (H)N FiEK..

Part b) for contractive functions and strictly 1solated sets
follows by a similar argument.

Notation 68 We remark that the extension Ext(G.I) (1) given
by the Extension Process is independent of G and hence
will be denoted 1n the following by: Ext(I)(u).

In Section 3.6 we discuss two counter-examples 1llustrat-
ing that the condition “strictly 1solated” can not be weakened

to the condition “i1solated” for the case of contractive repre-
sentations.

5 Basic Data Structuring Operations

In the following sub section we outline the fundamental data
structuring problem as described in [MR98] and then pro-
ceed to present randomness preserving versions of the

main operations involved for the case of random structures.
5.1 The Fundamental Data Structuring Problem
We focus on partial order data structures which allow one to
incorporate all of the basic operations of the basic data struc-
turing problem listed 1n [MR95] 1n the context of randomized
algorithms.

We brietly discuss these operations below. We should point
out that the following discussion 1s mtended to be motiva-
tional. Indeed, the intricacies of randomness preservation will
require some operations to be more restrictive than in a gen-
cral context. We only present the operations since they form a
nice summary ol the most fundamental data structuring
operations.

For the fundamental data structuring problem one 1s
required to maintain a collection of sets of items so as to
cificiently support certain types of queries and operations.
Each item 1 1s an arbitrary record indexed by a key k(1) drawn
from a totally ordered universe. We assume that each item
belongs to a unique set and that the keys are all distinct.

The operations to be supported 1n this context are:

MakeSet(S): create a new empty set S

Insert(1,S): 1nsert 1tem 1 1nto the set S

Delete(1,S): delete the item 1 from the set S

Find(1,S): return the 1tem 1 1n the set S

Paste(S,, S,): replace the sets S, and S, by the pair of sets

(S, S, Ywhereforall tems1in S, 'and 10 S,": k(1)<k(3)
and theunion of S, and S, equals the union of S,'and S.'.
Split(k,S): replace the set S by the new sets S, and S, where
S, consists of the elements 1 1n S such that k(y)<k and S,
consists of the elements j 1n S such that k(3)>k.
Jomn(S,,1, S,) where 1€S, US,: replace the sets S, and S, by
the triple (S,', 1, S,'), where for all items 110 S, ", k(3 )<k(1)
and for all items 110 S,", k(1)<k(y) and the union of S, and
S, equals the union of S,'and S.,".

We should point out that [MR95] presents these operations
in a different stmplified fashion. Indeed, the solution of the
data structuring problem presented 1n [MR95] uses binary
search trees. When operating on such trees one typically
considers two sets S, and S, consisting of the elements “left”
of the root, all of which have keys smaller than the root key
and the elements “right” of the root, all of which have keys
greater than the root key. We refer to two sets that satisty this
condition as a “pre-split pair”. For pre-split pairs, the opera-
tions above can be formulated to start from a pre split pair of
sets S, S, and end up with the same pair of sets S, S, rather
than with an altered pair S,', S,'. We generalized the opera-
tions to data structures where we assume that two parts S, S,
of the structure are not necessarily pre-split.
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The first operation, which concerns the creation of a new
empty data structure (in the above case a set) we simply
interpret in our context as creating an empty random data
structure. This 1s taken care of 1n our context via the use of a
constant () indicating the empty structure. Since a join obvi-
ously 1s very similar to a split, from a set theory point of view,
we will focus on finding RS-preserving versions for the sec-
ond up to the sixth operation.

The operations listed 1n [MR95] however are not necessar-
1ly RS-preserving and are restricted to the context of trees. We
will ensure that our data structure operations are randomness
preserving and that arbitrary data structures can be incorpo-
rated. Random structures form the basic building blocks of
random sequences, 1.¢. of the data structures, and consist of
labeled partial orders. This approach allows for the inclusion
of traditional data structures, including of course lists, heaps,
etc. The operations are random product, random 1nsertion,
random deletion, random projection and a random split, each
of which has been designed 1n a novel way to guarantee
randomness preservation of the underlying data structures.

The random 1nsertion can easily be inferred from the ran-
dom product: 1t simply consists of the random product of a
singleton random structure with an arbitrary random struc-
ture. Direct access to elements of a random structure will be
restricted, with the exception of access via projections on a
singleton 1solated subset.

Comment: The operations introduced below can easily be
extended to take more arguments than specified 1n their
defimition. The details are of a straightforward techmical
nature and have been omitted in the paper. We will restrict
the definitions to the minimum number of arguments 1n
each case.

Convention 69 In the following we will consider arbitrary
label sets of natural numbers, 1.e. we no longer require that
label sets form an 1nitial segment of the natural numbers.

Remark 70 We will typically first define the operations on
partial orders, then define the operation on labelings and
finally define the operation on a random structure. To gen-
cralize the operations we will use two extension results. We
will use the Extension Process (Theorem 67) to allow the
operations to be applied to i1solated subsets of the partial
order corresponding to a random structure. Finally, though
we will not state this explicitely for each operation, we
define the randomness-preserving extension of each opera-

tion, from random structures to random sequences, via
Definition 26.

5.2 The Random Product

In order to define the random product, we first define the
product of two finite partial orders. Then we define the
product of two labelings and we extend this defimition to
sets of labelings. Finally, we define the random product on
arandom structure as a unary operation, which performs an
operation on two sub structures of the given random struc-
ture and reproduces a new random structure.

5.2.1 The Product of Two Fimte Partial Orders

Definition 71 Given two finite disjoint partial orders (X, L=1)
and (X, L=2).

The set X, ®X,, is defined to be the union of the disjoint sets
X, and X,. The relation E; & Eois defined to be the least
partial order on X, ®X, containing CTiand Ceand X, xX,.
It 1s easy to verify that the partial order =1 & Cais the

transitive closure of the binary relations £1, —sand the set of

pairs {(M, m)IM is a maximal element of (X,,C1)), mis a

minimal element of (X,,Cs2)).
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EXAMPLE 72
If we consider the sets X,={z1,22,3}and

X2: {$4, T5, L8, iBT}th@Il Xl ®X2:_$1: T9, T3, T4, Thy T, L7, We
indicate the new pairs added via the operation ®via dashed
lines,

7

£2

A4

]

XLED

L3

L5

(XZ: ;2)

(X1®X2: E 1 ® ;2)

Clearly the sets X, and X, always form a pair of completely
connected subsets (ci. Definition 35) of the product partial
order (X, ®X,,E; & o).

We define the product of two labelings as a first step
towards the definition of the random product of two random
structures.

5.2.2 The Product of Two Labelings
Let F,,F, be labelings on finite partial orders (X,,Z1)) and

(X,,C2))respectively. We call F, and F, disjoint when their

domains X, and X, are disjoint and theirranges F, (X, ) and

F,(X,) are disjoint.

Pseudo-Code for the Product ®on Labelings
Let F,, F, be disjoint labelings which are provided as inputs.

We define the product of the two labelings. To avoid tech-
nicalities, we assume 1n the following pseudo-code that the
labelings F, and F.,, of which the product 1s taken are (1implic-
itly) processed {irst to retrieve a new function F, consisting of
the join of the labelings F, and F,. The creation of F will be
indicated 1n the final pseudo-code for the random product by
the mnitial code line: F=F,UF,, where we consider the graph
union of these functions.

We will also assume the implicit generation of the restric-
tions of this function F, i.e. F[X, and F [X.,, to the sets X, and
X, respectively and hence won’t specily the detailed imple-
mentation of these restrictions in the pseudo code. The func-
tion F and its restrictions F [X, and F [X,, will freely be referred
to 1n the pseudo-code for P.

The pseudo-code to generate a labeling from F=F, UF, 1s
specified below.

Push-Down(b,F)

while |b| = 0and b < V|b]
swap(b, V|b|,F)

Push-Up (a,F)

while [a] = 0and a > AJa]
swap(a, \[a], F)

As before, we will use Push-Down and Push-Up freely 1n
the pseudo-code, without specifying which version we use
since this 1s a matter of choice of implementation.

As usual we will define the operations on 1solated subsets
of a given random structure. We will show that the operations
are randomness preserving for the case of strictly 1solated
subsets and then generalize to arbitrary 1solated subsets via
the Extension Process (Theorem 67).

We provide the pseudo-code for the Labeling-Product
Algorithm where the mputs for the algorithm are the disjoint
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labelings F, and F,. We denote the function F returned by the
Labeling-Product algorithm as F, ®F.,.

Pseudo-code for the Labeling-Product Algorithm

F = Fl U FE?
while VM(F[X,) > AM(F [X;) do

a = VM(F[X);b := AMF [X5);
swap (a,b,I);
Push-Down(b,F);
Push-Up (a,F)

Return F

Lemma 73 IfF, and F,, are disjoint labelings then F, ®F, is a
labeling.

Proof: This follows wvia straightforward vyet technically
lengthy verifications from the pseudo-code of the random
product algorithm. We omit the details.

EXAMPLE 74

In the example given below, we consider two labelings F,
and F, for the partial orders displayed below and illustrate the
steps mvolved 1n executing the Labeling-Product algorithm.
We indicate the selection of labels of extremal elements by
tull circles and these elements occur swapped 1n the following
picture. For each while loop execution, mnitiated by an origi-
nal swap of labels of two extremal elements, the other pairs of
clements to be swapped are linked 1n the picture via a double
arrow (1n dashed line display). These elements occur swapped
in the following picture. The final picture illustrates the end
result of the computation, i.e. F, ®F,,.

L6

L3 x4
/\ /\ . B
x| TH 4 L5
X1, C)) (X2,E5) 3
g ? s}
(X1®X2:;1®E2)
6 4
A\ A\
3 : 5 | 2 2
4 4
’..--L
/Fz\ 4 /\
@ 2 6 2
® I 11
3 — - —
R
F| /\’
3 5 3 5
6 6
| /X) | /\5
o I11
l’f —h"'
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Definition 75 Let £y, and £+, be disjoint sets of labels. The
label-product function

X R, £1) % Ry, Ca
o X%,
_I_—_—I X L=2)
is defined by: &, F,)=F, ®F.,.

The following result 1s important to obtain that the Random
Product 1s an RS-preserving operation.

Theorem 76 the Label-Product Function 1s a Bijection.
Proof: Consider two disjoint partial orders (X,,C)) and

(in :2)

We present a proof.

We view the execution of the labeling product algorithm as
a series of swaps along chains of X, ®X,. For a given pair of
disjoint labelings, F, and F,, each such chain 1s determined by
a single run of the two push operations 1n the code of the
random product. We recall that at the start of the while loops,
labels a and b are imnvolved 1n the swaps, where 1n terms of the
pseudo-code, a=VM(F|X,) and b=Amm(F|X,). We refer to
these labels as the extremal labels. The label b 1s swapped
downwards along a unique chain 1n the partial order (X, ,C5)
labeled by F, and a 1s swapped upwards along a unique chain
in the partial order (X,,C2)) labeled by F,. The result of
appending these two paths forms a chain 1n the product partial
order (X, ®X,,C; ® L,). We will show that each such swap
sequence along such a unique chain 1s mfective. It follows
that the labeling-product function ®is infective.

In order to show the result, we assume that we have two
labelings I, F,' of the partial order (X ,,C4) and two labelings
F,, F,' of the partial order (X,,E9) such that F, and F, are
disjoint, F,'and F." are disjoint and F, ®F,=F, ®F,. We show
that F,=F,' and F,=F,".

We will display the labels on the chain determined by the
swap sequence arising from the call to F, ®F., by:

[a;,85,...,8,_],[by, by, ..., by,

where (a,b) 1s the first pair which 1s swapped by the algorithm,
a_=a, b,=b,the sequence|a,,a,,...,a_]consists ofthelabels
in the labeled partial order (X, ,E1, F,) which are respectively
swapped with b and the sequence [b,, b,, . .., b, ] consists of
the labels 1n the labeled partial order (X, Cs,, F,) which are
respectively swapped with a.

In the above, we allow the case where m=0 and k=0, 1.e. no
swap OCCUrs.

Similarly, we display the labels on the chain determined by
the swap sequence arising from the call to F,'®F,', by:

, &, (01502, ., b

where (a', b") 1s the first pair which 1s swapped by the algo-
rithm, a '=a', b,'=b', the sequence [a,', a,',...,a_ '] consists of
the labels 1n the labeled partial order (X,,C4, F,") which are
respectively swapped with b' and the sequence [b,'.b,", . . .,
b' ] consists of the labels 1n the labeled partial order (X,, o,
F.") which are respectively swapped with a'.

In the above, we again allow the case were n=0 and 1=0, 1.¢.
no swap occurs.

We remark that Ra(F,)=Ra(F,")=£; and
Ra(F,)=Ra(F,')= £,. This implies that a=a' and b=b'.

We show that a=a'. The case b=b' 1s similar. The algorithm
selects the maximal label a at depth O in the labeled partial
order (X,,C1, F,) and the maximal label a' 1n the labeled
partial order (X,,C3, F')). Since Ra(F,)=Ra(F,")=£; and
labelings are increasing, we know that the maximum label of
Limust occur as a label of a maximal element and thus

la;as, . ..

that

a=a'=maximum( (£1)).
We remark that this fact does not alter, even after the first
two push operations 1n the algorithm have been run through a
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number of times. Inductively one can show that Ra(F,)=Ra
(F,") remains true. Indeed, 1n case a<b no swaps will occur
and the result holds trivially. Otherwise, after the first series of
swaps has happened for the first two while loops, we obtain
that 1n Ra(F,), the label a simply has been replaced by the
label b and 1n F,' the same has taken place. Hence we preserve
the fact that the ranges of the respective labelings coincide,
which sullices to yield the desired property.

It follows by the fact that a=a' and b=b' at the start of each
swap sequence, the number of non-trivial swap sequences
induced by F, ®F, is identical to the number of non-trivial
swap sequences induced by F,'®F.,".

Hence we can focus on the last swap sequences induced by
F, ®F, and F,'®F,' respectively and assume that both swap
sequences, by the above, must start with a swap on the same
pair of elements, a and b. Since the labelings of course have
changed during the previous swap sequences, we denote the
labelings at the start of the final swap sequences by G,, G, and
G,', G,' respectively.

Consider these final chains along which the labels are
swapped, 1.¢. the chain

(G, (a,),G, " (ay), . .., G, (a,)],[Gy (b ),Gy !
(bs), + s Gy (by)]

and the chain

[(Gll)_l(all):(GlI)_l(aﬂl): LR (Gll)_l(anl)]:[(GEI)_l
(bll):(GEI)_l(bEI): L (GEI)_l(b.-:’I)]'

To show 1njectivity for the final swap sequences, 1t suifices
that these chains must be identical.

Indeed, assume that these paths are the same, say a path
denoted by P. Since F, ®F,=F ,'®F.' and the swap sequence
on P does of course not affect labels of X, —P, the labelings G,
and G', must coincide on the set X, —P. Moreover, since the net
result of the Push-Down operation is to move the label of the
maximal element of P to the element originally labeled with
b 1n F, and to move every other label of an element of P to the
clement immediately above 1t on P, we obtain that G, must be
identical to G',.

We claim that it 1s always the case that the swap sequences
corresponding to b must be the same for GG, and (', and hence,
by the above, the final swap operations form an injective
operation.

We recall that since F, ®F ,=F '®F,', we must have that at
the end of both Push-Down operations the label b 1s a label of
the same element in the partial order. We assume by way of
contradiction that the paths are not identical and hence
diverge at one point. Because b must end up at the end of the
final swap sequences 1n the same position, we know there 1s a
first time, after the sequences diverge, that the label b ends up
as a label of the same element z of X. Say that prior to these
swaps we had: H, ' ((z))=b and H," '({y))=b where z 3 yand
where H, and H,' are the labelings obtained from G, and G’
by carrying out the swaps on G, and G,' up to the point prior
to the first convergence of the paths.

We clarity the situation for both labelings H, and H,' in the
tollowing figure. In H, the label b will be swapped with a label

a. while in H,' the label b will be swapped with a label {3.

Since after these swaps the labels of Zzand ywill not be
changed again, the labels as displayed 1n the figure below, are
the only ones possible 1n order to guarantee that the final
results of the Push-Down calls are 1dentical.
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We now obtain a contradiction since from labeling H, 1t 1s
clear that o< while from labeling H,' we obtain that <a.

Hence we cannot have divergence of the path and the result
follows.

Since the same argument holds for o, we obtain that both
swap paths must be identical.

The proof can now be concluded by an inductive argument
remarking that the same must hold for every pair of swap
sequences, when run through 1n reverse order of their occur-
rence. Since on elements outside the swap paths, no labels are
ever swapped, we obtain that F,=F," and F.,=F,".

Finally we need to verity that the label-product function 1s
surjective. It suffices to verify that |Rg,(X,,E7)IxIKz,

(Xo, Ea)l=1 Rau X, 8X,,C1 @ Ca))l.
We Rf.:lUﬁz(Xl; ®X2: L1 @ ;2)|:R£1
X, E1)x Ry ,, C2))l, where Liconsists of the first 1X,1

remark  that

elements in the sorted version of Lwhile [Z;;consists of the last
| X, | elements in the sorted version of £.This follows by the
fact that the sets X, and X, are completely connected in the
partial order (X, ®X,, 1 &) C»). Since we can identify label-
ings up to order-isomorphism, it is clear that |Rz(X,,Z1))

=ReX,.C1)l and that | RelX,. Co)l=l 7ei(X,, Ca))l.
Hence the result follows.

We obtain the following immediate corollary.

Corollary 77 Let £jand Lsform a partition of the set of labels
L. Then:

IRLO(I ®x,, C1 & Ca)= [Rﬂloil, L1 )i
(X5, E2).]

EXAMPLE 78

In the example given below, we illustrate that the creation
of the random product of labelings 1s an 1njective process. We
do not display all cases, but restrict our attention to the case of
a fixed set of labelings which can be used on the first partial
order ({1, 2, 3, 4}) and a fixed set of labelings which can be
used on the second partial order ({5, 6, 7}). It is easy to verify
that the number of possible combinations of labelings for the
given partial orders from the set of labels {1, 2,3, 4,5, 6,7}
1S

7
( ]x5><2=350,
4

which prevents a complete 1llustration of all cases. The first
five combinations of pairs of labelings are displayed 1n bold
design at the top of the following page, followed by the
computation steps, while the next five combinations are dis-
played again on the next page in bold design, followed by the
computation steps.
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We detine the unary random product to be the function:
1, B, X D: R E)-Rix, En@n

le:lere VFe R(X, —))'Mfl ®I2 XDEF) (1, BL)=(F[T,) &FL,)

an
W(F) [(X-(1,UL,))=F[(X-1,Ul,)).

Theorem 81 Consider a random structure 7%(X,C)) and dis-
tinct components I, and I, of an 1solated subset I of X. The
unary random product p; &, (X,I) is RS-preserving with
multiplicity

10
. 5 ®\/5 ®\/5 ®\/5
(|1’1|+|fz|]
I I I .
7 6 6 7 | 1]
4\4 cJ\ 1

Proof: By the Extension Process it suifices to verily that the
random product i, &, (I, UL, I, UL, ) is RS-preserving. Let
Lbe a set of labels for I, UI,. From Corollary 77 we obtain

that for any partition (L1, La)of LiIRp(1,®1,,C1 ® C2)

6 7 7 5 7 6 7 6 6 7
20 |= lR,cl(I LEIXRefl,, Eg)l. The result follows since there
1 SR R ] G £ 4. s sho N4 sk )¢ are
At y 2 e P e
( 11| + |12] ]
| | | 1 |
4 3 3 4 4 3 3 4 4 ) 22 |11
’ ) ) ) g such partitions.
G\/ w w w w We provide an example of the unary random product.
30 _
> > > > > EXAMPLE 82
4 7 7 4 7 3 7 4 4 7
@I\ ; @I\ 1 a4 \L) ; \J@ ; \J?) Consider the Hasse Diagram of the following tree:
5 5 5 5 5
\VARRVa \VARVar
I I I 1 I >
6 7 7 4 7 6 7 6 6 7
2 2 2 2 2 40
L] £32
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We display the eight labelings of the tree, where we
selected the two leaves at the deepest level, 1.e. x; and X, to
form the atomic 1solated subset I and labels for this set have

been indicated as below.

lxd
_<
I

We define the binary random product below, which may be

the first type of product that comes to mind, followed by the
unary random product which 1s the one that will be used 1n the

applications.

lxd
_<
2

trd
(o

5.2.3 The Binary Random Product

lxd
_<
2

lxd
_<
a2

Definition 79 Let (R z(X,,

;1)) and REE(X.'Z:

joint random structures. We define the

product,(R (X, E1) @ Reo(X,, Ez),

(Xl ®X2; ;1 ® ;2)

5.2.4 The Unary Random Product

Definition 80 Consider a random structure (X, C)) and dis-
tinct components I, and I, of an 1solated subset I of X. We
define the unary random product of the partial order (X, L))
with respecttoI,, I, and I to be the partial order (X &1, ® 12)

where Er @ ris the least partial order containing

(ETL) QET ).

Co) be two dis-

binary random
by R£1U£2

— ]

A
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We apply the unary random product to the 1solated subset
[={x,, X,} and we use the components I,={x, } and I,={x, }.
The result 1s displayed below. The multiplicity imnvolved 1s

(|m|f+1|“2|]:(f]:2'

Indeed, obtain two copies of a random structure, a first copy
consisting of the labelings marked by (I), 1.e. the labelings
with odd 1ndices, and a second copy consisting of the labels
marked by (II), 1.e. the labelings with even indices.

(D

(1)

(D
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(1)
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-continued
(1I)

5

y\
4 1

£X

24

5.3 The Random Projection

We first define a contractive version of the Random Projec-
tion, referred to as the strong Random Projection which
takes a random structure and one of 1ts 1solated subsets as
argument and restricts the labelings to this 1solated subset,
destroying the complement of this 1solated subset 1n the
pProcess.

Definition 83 Let (X,L)) be a partial order with an 1solated
subset I. The strong random projection S—=Proj((X,%)), I) of
(X,Z)) on I1s defined to be the restricted partial order (I,L2)).
Definition 84 The strong Random Projection on an 1solated

subset I of a random structure R=R ~(X,C)) is defined as

follows: S-Proj(ILR) 1s the multiset R|I resulting from the

restriction of all labelings of K (X,L2)) to the subset 1.

Next we consider the Random Projection which produces
a copy of the restriction of a labeling to an 1solated subset.
Definition 85 Let (X,E)) be a partial order with an isolated
subset I. The random projection Proj((X,5)),I) of (X,C)) on I
obtained as follows: let I be a newly created set, disjoint from
X and such that J is equipped with a partial order C)where
(1,C)) is order-isomorphic to the restricted partial order (I,5)).
Definition 86 The Random Projection on an 1solated subset I
of a random structure R=R (X,C)) is defined as follows:
consider the random projection (J,E)) of the partial order
(X,C)) with respect to I. Say W: (I,C))—(J,0)) is an ordet-
isomorphism. Proj(I,R) is the multiset {F ,|IFeR} resulting
from the transposition of all labelings from R to the subset
J as follows: VF € R Vie J. F,()=F(¥ ().
Theorem 87 Consider an 1solated subset I of a random struc-
ture R=R(X,E)). S-Proj(I,R): R(X,C)—((R(1,C)),K) is
an RS-preserving operation where

R(X, O)|
K = .
|R(I, C)

In case I is strictly isolated, we have: K=IR(|[M(D)]1.1,E))
I R((m(D)]. L, E)LI.

With some abuse of notation we write the following:

Proj(LR): X(X,E)—(K7.E)) K.

The abuse lies 1n the fact that the resulting random structure 1s
produced 1n addition to the original random structure, which
1s unchanged and which 1s not displayed 1n the above nota-
tion. Proj(I,R) 1s an RS-preserving operation where

_ IR(X, C)
RS, =)

In case I is strictly isolated, we have: K=|R([M(D|1,T, E))

I R(Im(D]{, 1 E)I.

Proof: These results follow from Proposition 54.1 and Propo-
sition 54.3 respectively.

Remark 88 The relation “1solated subset™ 1s transitive, 1.e. 11 J
1s an 1solated subset of a given 1solated subset I of a partial
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order then J 1s an 1solated subset of this partial order. Hence

there 1s no need to apply the Extension Process for the case

of the Random Projections.

We consider the example of a strong random projection on
an 1solated subset of the random structure A4s.;.

EXAMPLE

39

We 1illustrate the effect of a strong random projection on
Az = R({X,.%, X5 },E)). In the picture below, the first col-
umn indicates the possible labels for x,, the second column

indicates the labels for x,, while the third column i1ndicates
the labels for x,. Let I={x,, x,}. We display the result of
Proj(I, R(X,C))), which results in

copies of .Ay. Indeed, we obtain a copy consisting of the
labelings {(1,3), (3,1)}, indicated by (I) on the picture, a copy
consisting of the labelings {(1,2), (2,1)}, indicated by (II) on
the picture, and a copy consisting of the labelings {(2,3),
(3,2)}, indicated by (III) on the picture.

1l 2 |3 -
11 3 |2 -~-—
— |2 1 |3] D
18 M
(I1II) |2 3 |1| -—
— 3] 1 |2
31 2 |1
- . - e
|Pr(1,R(X, )

5.4 The Random Split

We define the random split operation first on an atomic ran-
dom structure A,and then use the Extension Process
(Theorem 67) to allow applications of the random split
operation to Atomic Isolated Subsets of arbitrary random
structures.

5.4.1 The Random Split of a Discrete Partial Order

Definition 90 We define the random split operation on a
discrete partial order (X, Z)) where say X={x,, ..., X }.
The enumeration of the elements of X 1s 1rrelevant. Differ-
ent enumerations will yield order- and label-1somorphic
end results for the split operation.

Forevery me{1, ..., n} we define Z_to be the partial order
obtained on X via the transitive retlexive closure of the rela-
tionX UX , where X ={(x,, x )l1=k=m} X ={(x,,. X,)
m<I=n} and where the first set is defined to be empty in case

m=1 and the second set 1s defined to be empty 1n case m=n.
The random split of the discrete partial order (X,L2)) is
defined to be the sequence

(XEp)s v o v s

The partial order Z_ 1s 1llustrated via the following dia-
gram:
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L+ Tm+2 . Lyl :EH

EXAMPLE 91

We 1llustrate the resulting sequence of partial orders
obtained via a random split on the discrete four-element par-

tial order (X, 2)), where say X={X,, X,, X3, X, }.
4
L3
L2 | T X3
L] L2

5.4.2 Random Split of a Random Structure

The general defimition of the random split operation requires
a formulation 1n terms of random structures. Since a split
involves an operation on an atomic 1solated subset, we first
discuss the result of carrying out a split operation on an
atomic random structure, A, = R-(X,C).

We first define the random split operation on a single label-
ing of an atomic random structure A, = R-{(X,Z).and then
define the random split of 4,.to be the result of applying this
operation to each labeling of A4,Let {x,, ..., x } be an
enumeration of X and let xeX. The reader will remark that the
pseudo-code for the random split 1s similar to the one used in
traditional Quicksort [AHU.-]. Indeed, Quicksort 1s an
example of an algorithm which uses a partitioning of ele-
ments based on a random split operation. The “pivot” around
which the elements are partitioned 1s indicated by “x”” 1n the
pseudo-code below.

Pseudo-code for random split Split (F) on a labeling F of 4,
u:=1; vi=n; a:=F|x];

while u<v do

while F[x ]<a do u:=u+1;

while F[x |>a do vi=v-1;

11 u<v then swap(F[x |, F[x ],F)

Remark 92 Let £'=(a,, ..., a ) be the sorted list obtained from
the set of labels £If m is the position of the label F(x) in the

sorted list Li.e. F(x)=a, then Split (F)(x, )=a,. Moreover
the labels to the lett of a_ form the set of labels smaller than
a_.ie.{a,,...,a_ _,},and the labels to the right of am form
the set of labels larger thana_,ie. {a_,,,...,a,}.

We define Split (.4.,) to be the set of functions obtained by
applying the preceding algorithm to each of the n! labelings F
of A,,

In the following we will identify (for each me{1, ..., n});

labelings G from (X,= )) and

labelings G from Split (A,,), where G=Split (F) for some

Fe A,, which satisty:

G(X,)<G(x) if k<m,G(x)=a,, and G(x;)>G(x) if [>m.
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It 1s easy to vernily that any choice of x will produce the
same set of functions, i.e. Vx, x'eX. Split_(A4,,)=Split_{ A4,,).
Hence the choice of x does not need to be specified 1n this
context, but of course will be specified in particular data
structure operations that are based on the Split Operation
since the choice of x will affect the way subsequent compu-
tations proceed.

For every choice of xeX, we let 47 ™denote the set of
labelings of A, for which the label F(x) 1s the m-th element,

i.e.a_, in the sorted list £ We let Split_(.4n™) denote the set
of functions obtained by applying random split to all label-

ings F of 45™

Remark 93 We remark that Ax"=(n-1)! and RAX,Z )=
(m-1)!'(n-m)!
Lemma 94 For all £X,yveX, m =|X|=L=n, we have:

1) Vme{l, ... .n}. Split, (A" FRAX.E,).

2) ISplit,~ (G)N (A"} is independent of G.

Proof: To show 1), we remark that the inclusion from lett to
right follows from the definition of the pseudo-code of the
Split operation. To show the converse, let GeR=R /X, E ),

then, still from the definition of the pseudo-code, 1t 1s clear

that G=Split, (F), when Fe A, 1s obtained from G by swap-
ping only the labels G(yx) and G(y, ) of ¥ and ¢ respec-
tively. Hence we obtain the local surjectivity ot Split, with

respect to (Az" Ji.e. Split, (Ax™ FRAX.E,,,
To show 2), we remark that forevery G, G' e R A X.Z ), we
have G(y)=G'(y). Let a=G(y). Because of the structure of the

partial order (X,= ), 1t 1s clear that there 1s a permutation o of
the labels of G which satisfies o(a)=a,Vb.b <a—oa(b)<a and

b>a—0(b)>a and which 1s such that G'=0cG. But then, it 1s

clear that for any Fe (A2"") we have: Split, (F)=G <Split,,
(ooF)y=00G, from which 2) follows immediately.
Proposition 95 For all £, X,xeX,m =IX|=| £, ]=n , we have:

Spuggn —e(RAXEDK), ..., (RaxE),

where Vm e{1, ... n}.

Proof: We remark that 4% " forms a partition of A,, Combin-
ing 1) and 2) of Lemma 94, we obtain that ISplit%'l
(G)NAZ™=K  for some non-zero constant K . Finally, we
remark that Vm e{1, . .. .n}.

by Remark 93.
From Proposition 95 and the Extension Process (Theorem

6'7), we obtain (using the notation of Theorem 67):

Theorem 96 Let R=R £(X,C)) be a random structure and let
I be an atomic isolated subset of (X,C)) , enumerated by

Yls++ ey Yn- Then

(—

Ext(D)(Split, ):R 27 R x5,
Kl)? c ey Rﬁ@:;;))?]:{ﬂ)?
where |ie{1, ... .n}.
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The following example illustrates the effect of a split on an
atomic strictly 1solated subset 1. This subset has no degree of
freedom on the labels for the set X-1. Indeed, X-I consists of
the maximum and the minimum of the underlying partial
order and hence there 1s a unique label assigned to each of
these elements. For such an atomic strictly 1solated subset, the
cifect of a split 1s essentially the same as the effectofa split on
atomic random structures A4.,as discussed in Lemma 94. The
example nevertheless provides a good illustration of the type
of random structures generated via a split operation. Example
98 1llustrates how a split operates on a more general type of
atomic 1solated subset 1.

EXAMPLE 97

We 1illustrate the effect of a split on the following partial
order (X, 2)) for which the elements of an isolated subset I
have been indicated via the ellipse:

We consider the following enumeration of the elements of
I: Vie{l, . .., 4}. y/=y,,,. After performing the split on 1=

{5, . .. X5}, We obtain the sequence:
(& Ey )& By N=(XEz )X E 2 )
(X,C)
6
:1?2 :ES
,
L6
43 s
=)
x|
(X:EL'C3)
L6
L3
‘:["21




59

-continued

g

X

x4

L T3

L1
L6

Ls

L]

We continue the example and consider the set of labels
£={1,2,3,4,5, 6}. It is easy to verify that the number of
possible labelings for the partial order (X,

We consider the atomic 1solated subset I of A, —e~(X,!

US 8,302,085 B2
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5' SI 5-

4 4 4 4 4 4
203 2<>3 3<>2 302 3<>2 203
1 | | 1 1 |

(KEz,) ) )
5 5% 54
10
Clearly n =4 and m =3.
15
n—1 3
o) ()3
m—1 2
20

duced.

) 15 24.

) for which the labels on X

25

Y —

determined by the four element subset {x,.x,,X,.X. }. We con-

sider the set of labelings F consisting of the labelings that

label the element v 5, 1.€. ¢, with the label 4 as displayed 1n

the following picture.

30

atomic isolated subset I of a given random structure R(X,C

EXAM.

Thus

copies of the random structure R (X, Eyahave been Pro-

The following example illustrates the effect of a spliton an

p—

—I can vary.

PLE 98

We consider the same tree and random structure over this

tree as 1n Example 82. After performing a split, Ext(1)(Split)
(R) determined by the atomic 1solated subset I enumerated by

Y1715y > Lo and by the ]

Hxtension Process, Theorem 67, we

obtain a set of labelings for a new partial order as displayed

35 below.

40

45

50

The split of the partial order (X,
order with Hasse Diagram:

Finally, we display the result of the operation

) results in the partial

55

60

Ext(I)

(Split) K 24X, Chon the subset of labelings F..

()

(1)

()

(1)
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-continued
(1)

(1)

(D

(1)

We obtain two copies of arandom structure indicated by (I)
and (II) above. In fact, the multiplicities determined by the
Extension Theorem are:

(1)

I.e. the split operation, as defined, does not automatically
identify these random structures. Of course this identification
can be achieved via a simple adaptation of the definition of the
split operation 1f desired or during the time analysis later 1f
this turns out to be usetul. In that case would obtain the same
end result as for the unary random product discussed in
Example 82.

5.5 The Random Deletion

In this subsection we mtroduce two 1mportant data structure
operations Del,Del of deleting a label from a random struc-
ture. These operations allow one to incorporate dynamic data
structures, thereby removing a main obstacle in the determi-
nation of Average-Case Time of algorithms based on dynamic
data structures, such as Heapsort. They are generalizations of
two operations Del™ and Del™ that we introduce below.

1
1andf<2:(l]:1.

Remark 99 We chose to implement the Deletion operations
such that the label a to be deleted will be returned by the
operation. The element y labeled by a however will be
removed from the partial order under consideration. It 1s
casy to see that the operations could be defined 1 an
alternative way such that the element i 1s actually kept after
deletion as a minimum of the partial order, where a 1s kept
as the label of this new minimum. We prefer to interpret the
deletion operation in the usual way, 1.e. leading to the
removal of an element.
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5.5.1 Deleting an Extremal Label

Definition 100 Consider (X,E)) a finite partial order. For any
extremal eclement e of the partial order, we define
(X,E))-{e}=(X-{e},E;), where C.is obtained from the
binary relation by removing all pairs of Twhich contain
the element .

We leave the straightforward proot of the following lemma to
the reader.

Lemma 101 Let (X,C)) be a finite partial order and let € be an
extremal element of the partial order. (X,0))—{e}=(X-
{e},L¢) is a partial order which we refer to as the result of
deleting the extremal element e from the given partial order

(X.E)).

We define the Random Deletion operations on a partial
order.

Definition 102 Given a finite partial order (X,E)). Del(X,E))
1s defined to be the sequence of partial orders

(X=1%}> Exdvem(x)yemx, While Del(X,E)) is defined to be
the sequence of partial orders (X—{y},Eaz)zecr(x) Dnvert X

We recall that the greatest (least) label must occur at a maxi-
mal (minimal) element (ci. Remark 9).

Definition 103 We define the operation of deleting the largest
label a from a given labeling F as follows: Del™(F)=
F[(X—y) where ¥ is the element labeled with a. We define
the operation of deleting the largest label a from a given
random structure R to be the result of applying this opera-
tion to each labeling of R, i.e. Del¥(R)={Del™(F)IFeR}.

We will informally refer to Del*(R) as the result of deleting

the maximum element of the random structure X £(X,C)).
Similar one can define Del™ 1n two stages, first as an opera-
tion on labelings and subsequently as an operation on ran-

dom structures.

We state the following RS-preservation result for the
operation Del* which returns a sequence of random struc-
tures, each of which has multiplicity 1. Similar results hold
for the operation Del™ .

Proposition 104 If R g£(X,C)is a random structure and a the
largest label of Lthen:

1) Rﬁ—-ﬂ(X_ £ ;m)):{Ff(X—X)|FE MX: =): F(X):El}
2) DEIMRI:(X, ;))):RE—-{E}(X—{X}, Em):ﬂEm(X)

Proof: Exercise.

We 1llustrate the deletion of the minimum label via Del™ on
the following example.

EXAMPLE 105

We circle the label 1 to be deleted.
x3 Ly 3 4 4 3
| L9
3 4 4 3 4 2
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The effect of deleting the label 1 1s given by:

X3 Ly 3 4 4 3
Ly x5 2 2

3 4 4 3 4 2
2 2 3

Hence we obtain two random structures, consisting of the
labelings from the set {2, 3, 4 }of a connected V-shaped partial
order and of a partial order consisting of a two point compo-
nent and a single element component.

The effect of deleting the label 2 on the other hand does not
yield a sequence of random structures. This 1s explained by
the fact that the minimum label always has to occur at a
minimal element. The label 2 does not and for instance occurs
once at a maximal element. If we were to delete the label 2
from each of the five labelings, the result would be the fol-
lowing set of labelings, which do not form a sequence of
random structures:

x3 Xy /3 4 /4 3 3 4
] T : : :
4 3 4

The operations of deleting an extremal label will take as
inputs the labelings from a random structure, where these

labelings are stored 1n a variable X. Hence the operations will
be denoted as: Del*™(X) and Del™(X) for the deletion of a

maximal label and a minimal label respectively. These opera-
tions remove, for any given labeling, the extremal element
from the partial order corresponding to the largest label. The
operations return this largest label and replace the random

structure by a new sequence of random structures as
described above.

5.5.2 Percolation and Deletion of Arbitrary Labels
We consider here the case of labels for elements which are not

necessarily extremal. It 1s clear that the deletion of an 1internal
label cannot simply occur by removing a label from all pos-

sible labelings where connections with other elements are
deleted 1n a similar way as for the deletion of an extremal
label. The same problem arises as for the deletion of the label
2 1n Example 105.

In order to delete an arbitrary label a from a random struc-
ture, for a given labeling F, we proceed as follows 1n two steps.
First we percolate an internal label to a position where 1t
becomes alabel of an extremal element. Then we carry out the
deletion of the newly created extremal label as described 1n
the previous section.

In the following we will assume that the label a to be
deleted actually occurs as a label in the random structure.
Percolation
Percolation of a label a 1s carried out as follows:

Search for the index 1 of the element i, with label a. This
search can start for instance at the minimal (or maximal)
labels, exhaustively searching labels at every level until the
label 1n question 1s found.
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We sketch two methods to remove the label, via down-
wards or upwards percolation, each of which can be applied in
our context.

We describe the process of percolating an element down-
wards.

Perc

Here we replace the value of a by a value less than any label
from the labeling F under consideration. This value 1s only a
technical aid and 1s indicated by a”. The label a=, which will
become a part of the given labeling, 1s then pushed down in
the usual way, 1.¢. the process 1s exactly the opposite as 1in the
definition of @where we insert one element into a random
structure.

The label a™ 1s systematically swapped with the largest
label of among the elements which are immediately below the
element labeled with a™, 1n case there are at least two elements
immediately below the given element, or with the label of the
single element immediately below the element labeled with
a~ (depending on which 1s the case) until label a~ becomes the
label of a minimal element. Of course, 1n case a~ was already
a label of a minimal element, no swaps are necessary.
Remark 106 The above distinction between more than one
clement and a single element immediately below a given
clement means that 1n practice the algorithm will need n -1
comparison in case there are n =2 children below the node
under consideration (in order to determine the maximum
label of the children) and, at first glance, 1t would appear that
no comparisons need to be made 1n case of a single child
below the node under consideration. Indeed, 1n case of a
single child, we can immediately perform a swap since the
parent node 1s labeled with a~ which by definition 1s smaller
than the label of the unique child. However, 1in practice one
also needs to determine whether a parent has one or more
children, which inherently involves a comparison. In order to
obtain a more fair representation of cost, we will assume 1n
the following that heaps are full binary trees, 1.¢. every parent
has exactly two children, some of which may be the empty
tree. A leaf then 1s a node for which both children are empty.
In case of a single child, one comparison will be counted to
determine this situation. We will return to this issue 1n the
analysis of Percolating Heapsort.

Next we describe the process of percolating an element
upwards.

Perc

We can alternatively replace the label of a by a value which 1s
larger than all labels from F, denoted by a™ and push-up the
label 1n a similar way.

Deletions of Arbitrary Labels

Finally, the operations Del and Del are again first defined on
labelings and then extended to random structures.

To define the operations on labelings, we consider two
inputs: an index k and a labeling F.

We can now define the deletion of an arbitrarily selected
label of a given labeling, which generalises the deletion of
extremal labels.

Del(k.F) 1s defined to be the operation of percolating the k-th
smallest label a downwards as a label a~ followed by the
deletion of the extremal element labeled by a™. The output
returned 1s the deleted label and the random structure i1s
updated to be the newly obtained sequence of random struc-

tures, 1.€. a sequence of partial orders all labeled from the
same set of labels to form the random structures. The defini-
tion of Del(k,F) is similar.

We note that 1n contrast with the deletion operation which
generates a sequence of random structures, the percolation
operation only generates a single random structure.
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For deletion operations we set aside 1n the definition of data
structure operations a countable set of storage variables U, V,
W ... which are used to make allocations of the deleted labels
to a singleton random variable, 1.e. a random variable of size
one. These can then be inter combined of course with the join
operation.

The Delete operations hence return the deleted label and
update the random structure to a new sequence of random
structures as described above.

We 1llustrate both deletion processes in the following
example.

EXAMPLE 107

Consider the partial order (X,C)) given by the following
Hasse diagram:

4 x5

L2

g

For a given set of labels £={1, 2, 3, 4, 5} we obtain the
tollowing labelings:

4 5 4 5 5 4 5 4 4 3 3 4
1 1 1 1 | 1
3 5 5 3
ww
1 1

To continue the example, we 1llustrate the result of remov-
ing the second smallest label, which for the case of our
example 1s the label 2, from the above random structure via
the Del method and the Del method respectively.

We first illustrate the Del method and display the change of
the label 2 to 27, the subsequent end result of calling push-up

on this new label and finally we display the resulting sequence
of random structures. The label 2 1s then used to label the

clement of a singleton random structure U.

We 1llustrate below the effect of removing the second
smallest label via the Del method on the first four labelings.

4 5 45 s 4 5 4
2+\>/3 3\>/2+ 2+ 3 3\>/2+
! ! ! !
| 1 ; 1
| 1 1 1
1 1 1 1
| 1 1 1
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-continued
4 5 24 5 5 4 5 2+
1 1 1 1
Y ¥ Y Y
4 5 5 5 4 5

4 3 3 4 5 3 3 5
5\>/2+ 5\>/2+ 4\>/2+ 4\>/2+

| | 1 1

! | i !

[ 1 1 I

I I I I

[ 1 1 I
4 2+ 2+ 4 5 2+ 2+ 5

(I11)

(11) (I11)

(1)

Hence we obtain a sequence of three new random struc-
tures, 1identified by (1), (II) and (I1I), each of which 1s labeled
from the set of labelings {1, 3, 4, 5}. Of course, one can see
that (II) and (III) are identical. Hence they can be 1dentified
during an analysis of the deletion process. Since however the
copies created in this way depend on the structure of the
original partial order, we will not 1dentify the copies at this
stage and treat each as a partial orders would require too much
time 1 general. Later on, in a complexity analysis of an
algorithm involving a deletion process, 1f needed, we can
make the necessary 1dentifications during the set up of the
recurrence equations depending on the partial order under
consideration.

Removing label 2 via the Del method:

We only illustrate the end result which consists of a single

new random structure with an extra singleton random struc-
ture V labeled with 2:

4 5 4 5 5 4 5 4 4 3
1 \A 3 \/1 1 \A 3 \/ 5 \/
3 4 3 5 5 3
5 \/ 4 \/ 4 \/1
The following result states that the Deletion operation 1s
RS-preserving. The prootf 1s similar to (and essentially con-
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tained 1n) the proof of the RS-preservation of the Random
Product since both operations are based on the push-down/
push-up operations. Hence we will not include the proof here.

Theorem 108 Let R=70£(XE))) be a random structure and
ke{l,...,IXI}. The operation Del(k,R) is RS-preserving,

Delo)R Fo* (RL—ayx—{y), Ez))zem(x)

where a 1s the k-th smallest label of £.. A similar result holds
for Del(k). Both operations lead to random sequences for
which the multiplicities are constant 1.

Remark 109 We remark that both deletion operations trans-

form the empty Random Structure 0 to 0.

As for the previous operations, all versions of the random
deletion can be extended via the Extension Process (Theorem
6'7) to 1solated subsets and finally extended to arbitrary ran-
dom sequences via Definition 26.

5.6 Contractive Operations Revisited
We provide two counter-examples demonstrating that the

Extension Process can not be generalized to 1solated sub-

sets for the case of contractive operations.

COUNTER-EXAMPLE 110

Deletion

We 1llustrate that the deletion operation on 1solated subsets
does not allow for an extension as in The Extension Process
(Theorem 67).

Consider the partial order given in Example 121) and the
corresponding random structure Hjof heaps of size 4. We
consider the 1solated subset I= 21, 220 (cf. Example 12 1)). If
we apply the deletion operation Del to the four copies of the
random structure S, determined by this isolated subset, then
we obtain the following heaps, which do not form a random

structure. Indeed, randomness preservation 1s excluded since
the cardinality of H; does not divide the cardinality of H,.

4 4 4
2 3 3 23 1

COUNTER-EXAMPLE 111

Strong Projection

Consider the same random structure Hjdiscussed 1n the
previous counter-example and the 1solated subset I= 21, z2.
Consider a strong projection on the isolated subset J={y, } of
the set I. The result1s displayed below. Once again, we do not

obtain a random structure.
4 4 4
1 3 1 2 2 1

5.7 Uniformly RS-Preserving Functions

Uniformly RS-preserving functions have been introduced in
Definition 22. By Remark 23 and the fact that the Random

Product and the Random Projection are strongly RS-Pre-

serving, it follows that these operations are uniformly RS-
preserving. We leave 1t as a straightforward exercise to

verily that the Random Split 1s uniformly RS-preserving.
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However the Random Deletion 1s not uniformly RS-pre-
serving. This can be readily verified from Example 107. It
one applies the Random Deletion operation Del™ to each of
the eight labelings displayed in Example 107, a partition
yielding an RS-representation of this operation necessarily
constitutes of three components: one component of cardi-
nality 2 and two components of cardinality 3. This follows
from an inspection of the three partial orders correspond-
ing to the Random Sequence which has been obtained as
the result of the deletion.

6 Compositional Determination of Average Time

6.1 Composition and Affine Combinations

In the following we state the results for RS-preserving data
structure operations.

Remark 112 1) Let P be a data structure operation and R and

R' two random sequences, where R:[R}pjﬁp] and P:[R}pj

K

,]—R'. As usual, the exact time of P on an input labeling
F, denoted by T 4(F), 1s the total number of comparisons
made by P during the execution of the data structure opera-
tion P for the input F. We will indicate the average time for
a data structure operation by T ,(R), which is warranted by
the fact that our data structure operations are RS-preserv-

ing and hence can be interpreted as operating on random
structures. So the average time T, is given by:

I=p

Z K; % Z Tp(F)
FeR;

Tp(R) = -

| Rl

I=p

Z K: % Z Tp(F)
FeR;

i=1

p
> K X|Rj]
=

2) For the particular case where R=(R,,K,), the previous
equality reduces to:

TP(R):TP(R 1)-

The following proposition shows that the average time, as
a consequence ol RS-preservation, can be expressed as an
ailine combination in terms of the average times of the com-
ponents of the input Random Sequence.

Proposition 113 Let RZ[R}F?KP] then

i=p
Tp(R) =) a;xTp(Ry).
i=1]

where
Yiell, ..., p}

K; X|R;|

; =

- .
2. Ki x|R;|
|

Proof: The result tollows since 2., T ,(F) =T (R,)X 51 R,I.

Theorem 114 (Compositionality) Consider RS-preserving
data structure operations P and Q such that

P:R—R'and Q:R'—=R". Assume that RZ[R;,KP] and that V1
E{lﬂ ot p} P(Rf):[(R(z‘,l):L(f,l)): R (R(z',q(i)):L(i,q(f)))]'
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Define Vi e{1, .. ., p}. R'=[(Rg1 M) - -5 R
M, )], where each M, is a multiple of L, ie.
M, »=L yxK,. Fially let P(R)=R'=[R']. Then:

TP;Q(R):TP(R)+TQ(RI):

where both average times are expressible as affine combina-
tions:

i=p
Tp(R) = Z ;i X Tp(R;)
i—1

and

p qli)

To(R) =) > Buyp*To(Rup):

i=1 j=1

where
Viell,....pWjell,.... ph
K; X|R;] M; j X | R, jl
Q; = > and ;B(f,j)= JlR"l ! .
> K X | Ryl
i=1
Proot:
p
E Kix Y (Tpg(F)
L 1 FeR;
TP;Q(R): |R|
p
E Kix ) (Tp(F) + Tp(P(F))
1 FekR;
- IR|
p
g Kix ) (To(P(F))
o =1 FeR;
=T p(R)+
p(R) R
We remark that
p p
E Kix > (To(P(F)) E KixLgpx . To(G)
=1 FER; - E GER,
| K| |R|
p  ql)
1 \
2 2 Mijx ) To(G)
-1 =1 GERG, /)
- |R]

p g)

1 1
L Mijx »  To(G)
1
|

=1 = GERG, f)

R|

p qli)
Do) M xR | X To(Rq p)

i=1 j=1

R|

=To(R'),

where the last equality follows from Proposition 113 and the
fact that [RI=IR'I.

We continue to 1llustrate informally on a basic example that
the preservation ol Random Structures 1s crucial for Average-
Time Analysis. We present an example of a toy program
“PROJ” which we refer to as “the projection program™ and
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which nicely illustrates how control over the number of cop-
1ies of Random Structures produced in the output multi-set 1s
crucial in Average-Case Time analysis.

;L‘] :L‘2 :E3 CE2 ¥
1 2 3 2 3
1 3 2 3 2
2 1 3 1 3
| —
2 13 1 3 1
3 1 2 1 2
3 2 1 2 1

A3—1--(A2, 3)

Its pseudo-code 1s described as follows: PROJ takes lists of
s1ze 3 and returns the tail of the mput list, 1.e. the 1input list
without the first element, as output. One aim of the work 1s to
interpret MOQAprograms as transformation from Random
Structures to Random Structures. In fact we recall that will 1n
general consider more general transformations from “Ran-
dom Sequences’ to “Random Sequences”. PROI illustrates a
Random Structure Preserving transformation.

The mput-output relation for PROIJ 1s displayed above,
where ¥, ,%, ., represent the elements of the mput list of size
3 and v ,,x, are the elements of the output list of size 2.

It 1s clear that the program PROJ transforms the Random
Structure £ 1o three copies of the Random Structure A, after
identification up to order-isomorphism. Indeed, the first two
output lists form the set {(2,3), (3,2)}, the second two output
lists form the set {(1,3), (3,1)} and the final two form the set
1(1,2), (2,1)}. Hence after identification up to order-isomor-
phism we obtain 3 copies of the Random Structure Aa.

Identification up to order-isomorphism 1s typically
required to make the Average-Case Time analysis feasible. To
ensure that this identification 1s possible, we need to guaran-
tee that the resulting output multi-set 1s once again distributed
in a specific way. We will require 1n particular that the output
multi-set will consist of several copies of a Random Structure
(Strong Random Structure Preservation) or more generally

consists ol a Random Sequence where each Random Struc-
ture 1n the sequence 1s copied a number of times. The multi-
plicity of these copies plays a crucial role 1n carrying out the
Average-Case Time analysis. We 1llustrate this on our
example PROJ under the assumption that PROJ 1s composed

with another program, say P. Through 10-Compositionality
combined with the fact that PROJ 1s Random Structure Pre-

serving, the average time of PROJ; P can be specified via the
linear combination:

Tpros. o AS) =T pros A3 ))'l'TP( A?:)-

Indeed, by 10-Compositionality and the fact that PROJ 1s
Random Structure preserving we know that:

T pros.p(A3) = Tpros(A3) + Tp(Opros(A3z))
= Tpros(A3) + Tp({(Az, 3)))

However
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-continued

> T 3 ) Te(l)

JE{(A2,3)} fEHz

Tp({{A2, 3} = = 3y

= T o(A5).
(A2, D)) PlA2)

Hence we obtain the linear expression: Tpzp,: p(A5)=
L proAA3)+ 1 5(A).

So 1t 1s clear that, for the case of the above given basic
examples, IO-Compositionality and Random Structure Pres-
ervation implies Linear-Compositionality. Since I0-Compo-
sitionality 1s guaranteed to hold for the Average-Case Time
measure, we can state more concisely, for the case of the
above examples, that Random Structure Preservation implies
Linear-Compositionality.
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The mvention claimed 1s:

1. A method of developing software code for executing on
a target digital processor using a memory in which it main-
tains data structures having elements, each of the elements
storing data which 1s represented by a label, and at least some
links between the elements being created by the target pro-
cessor as data 1s being processed, the method comprising the
steps of:

(a) writing the soitware code with data structure processing
operations which comply with random structure preser-
vation rules, and

(b) a static analysis timing tool automatically:

(1) parsing the code developed 1n step (a) to 1identity all
operations,

(11) determining from an operation and all possible input
states for that operation an average time value for
execution of the operation by a target data processor,
and storing said average time value,

(111) determining from the operation and all possible
input states all possible output states for that opera-
tion,

(1v) repeating steps (11) and (1) for each next operation,
using the all possible output states determined in step
(111) as all possible 1nput states, and

(v) generating an output total average time which 1s a
sum of all average times stored 1n step (11); and

wherein said rules require the labels to be comparable;
wherein the rules require directionality in links between
clements and labels are assigned to elements to respect
directionality of the links; and

wherein all directions of links of a data structure indicate
the same label comparison ordering.

2. The method as claimed 1n claim 1, wherein the timing,
tool uses pre-stored values for all possible input states for the
first operation, and the output of step (111) for the subsequent
operation.

3. The method as claimed 1n claim 1, wherein the rules
require random sequence preservation, in which there 1s ran-
dom structure preservation for operations performed on all
random structures 1n a random sequence.

4. The method as claimed in claim 1, wherein some ele-
ments store a pair of a label and a piece of data.

5. The method as claimed 1in claim 1, wherein a rule
requires that all labels of a particular data structure are dit-
ferent.
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6. A method of developing software code for executing on
a target digital processor using a memory 1n which 1t main-
tains data structures having elements, each of the elements
storing data which 1s represented by a label, and at least some
links between the elements being created by the target pro-
cessor as data 1s being processed, the method comprising the
steps of:

(a) writing the software code with data structure processing,
operations which comply with random structure preser-
vation rules, and

(b) a static analysis timing tool automatically:

(1) parsing the code developed 1n step (a) to 1dentity all
operations,

(11) determining from an operation and all possible input
states for that operation an average time value for
execution of the operation by a target data processor,
and storing said average time value,

(111) determining from the operation and all possible
input states all possible output states for that opera-
t1on,

(1v) repeating steps (11) and (111) for each next operation,
using the all possible output states determined in step
(111) as all possible input states, and

(v) generating an output total average time which 1s a
sum of all average times stored 1n step (11),

wherein said rules require that in an operation only one
labeling of a data structure 1s used at any given time and
the output of the operation 1s another data structure with
a particular labeling, and this 1s repeated for every label-
ing of a data structure.

7. The method as claimed 1n claim 6, wherein an operation
on a random structure 1s grouped nto one or more random
structures, namely a random sequence of random structures.

8. The method as claimed 1n claim 7, wherein 1f some ofthe
random structures 1n a random sequence are 1dentical, for at
least some specified operations the rules require that they are
grouped together and represented by a copy of the random
structure together with a multiplicity number indicating how
many times 1t appears in the random sequence.

9. The method as claimed in claim 1, wherein the timing,
tool:

imitially takes a random structure, consisting of initial input
states, and the first operation of the program code on that
random structure,

calculates the random sequence outputted by the operation,

takes that random sequence and the subsequent operation
1s performed on that random sequence,

takes each random structure in that random sequence and
applies the principles of how an operation changes a
structure to determine 1ts associated random sequence,

replaces the random structures in the original random
sequence, whereby the new random sequences retlect-
ing the consequences of the operation on the random
structures 1n the original random sequence, and

continues by applying the next operation and repeats 1tera-
tions until program completion and the final random
sequence 1s produced.

10. The method as claimed in claim 9, wherein the timing
tool takes an original random structure and generates a new
sequence of data structures based on said rules for operations
and proceeds to compute multiplicities 1n the output random
sequence.

11. The method as claimed 1n claim 1, wherein an operation
1s a product operation in which mmput data structures are
connected by linking elements in a manner which preserves
the directionality of links of both input data structures.
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12. The method as claimed 1n claim 11, wherein the prod-
uct operation comprises the further steps of re-organmizing the
labels of the output data structure to preserve consistent direc-
tionality.

13. The method as claimed 1n claim 12, wherein the further
steps are performed by push-up and push-down helper meth-
ods.

14. The method as claimed in claim 11, wherein the input
data structures are 1solated sets, the 1solated sets have the
same elements directly above them and directly below them,
and both sets are distinct, having null intersection.

15. A method of developing software code for executing on
a target digital processor using a memory in which 1t main-
tains data structures having elements, each of the elements
storing data which 1s represented by a label, and at least some
links between the elements being created by the target pro-
cessor as data 1s being processed, the method comprising the
steps of:

(a) writing the soitware code with data structure processing
operations which comply with random structure preser-
vation rules, and

(b) a static analysis timing tool automatically:

(1) parsing the code developed 1n step (a) to 1dentity all
operations,

(11) determining from an operation and all possible input
states for that operation an average time value for
execution of the operation by a target data processor,
and storing said average time value,

(111) determining from the operation and all possible
input states all possible output states for that opera-
tion,

(1v) repeating steps (11) and (111) for each next operation,
using the all possible output states determined in step
(111) as all possible 1nput states, and

(v) generating an output total average time which 1s a
sum of all average times stored 1n step (11); and

wherein an operation 1s a split operation which adds links
between elements of an input data structure according to
comparisons of labels with a particular element.

16. The method as claimed 1n claim 15, wherein a rule
requires that the input data structure must be discrete, how-
ever the rule allows that the input data structure 1s a discrete
1solated subset of another data structure.

17. The method as claimed in claim 16, wherein the output
of a split operation 1s a data structure 1n which all elements fall
into one of three categories, namely a set 1n which the ele-
ments store data with labels greater than that of the particular
clement, the particular element, and a set of elements which
store data having labels less than that of the particular ele-
ment.

18. The method as claimed in claim 1, wherein an operation
1s a projection operation 1 which a copy i1s performed of a
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data structure to another data structure, with preservation of
directionality between elements.

19. A method of developing software code for executing on
a target digital processor using a memory 1n which 1t main-

5 tains data structures having elements, each of the elements
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storing data which 1s represented by a label, and at least some
links between the elements being created by the target pro-
cessor as data 1s being processed, the method comprising the
steps of:

(a) writing the software code with data structure processing,
operations which comply with random structure preser-
vation rules, and

(b) a static analysis timing tool automatically:

(1) parsing the code developed 1n step (a) to 1dentity all
operations,

(11) determining from an operation and all possible input
states for that operation an average time value for
execution of the operation by a target data processor,
and storing said average time value,

(111) determining from the operation and all possible
input states all possible output states for that opera-
tion,

(1v) repeating steps (11) and (111) for each next operation,
using the all possible output states determined in step
(111) as all possible input states, and

(v) generating an output total average time which 1s a
sum of all average times stored 1n step (11); and

wherein an operation 1s a delete operation, 1n which a label

1s deleted from a data structure, and wherein 1n case the
label to be deleted i1s stored 1n a maximal element of the
data structure or 1n a minimal element of the data struc-
ture, the label and the element at which 1t 1s stored can be
outright deleted; wherein 1in case a label 1s not attached to
a minimal or to a maximal element, then the label,
throughout the remainder of the delete operation, will be
regarded as the smallest label or the largest label of the
data structure; and wherein the delete operation then
performs a push-down operation or a push-up operation
on the altered label until the label reaches a minimal
element or a maximal element; wherein after that the
label 1s restored to 1ts original value at which 1t no longer
1s regarded as the smallest or largest label and the label
and the maximal element or minimal element at which 1t
1s stored are deleted.

20. An automatic software code development system stor-
ing rules, and comprising functions for developing software
code 1n a method of claim 1 according to said rules.

21. A The computer readable medium comprising software
code for performing a method of claim 1 when executing on
a digital processor.
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