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SYSTEMS AND METHODS FOR IMPROVED
PARALLEL ILU FACTORIZATION IN
DISTRIBUTED SPARSE LINEAR SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not applicable.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

Not applicable.

FIELD OF THE INVENTION

The present mvention generally relates to parallel ILU
factorization for distributed sparse linear systems. More par-
ticularly, the present invention relates to a method for order-
ing the nodes underlying the equations 1n distributed sparse
linear systems belfore solving the system(s) using a parallel
ILU factorization preconditioner.

BACKGROUND OF THE INVENTION

Many types of physical processes, including tluid flow 1n a
petroleum reservorr, are governed by partial differential equa-
tions. These partial differential equations, which can be very
complex, are often solved using finite difference, finite vol-
ume, or finite element methods. All of these methods divide
the physical model into units called gridblocks, cells, or ele-
ments. In each of these physical units the solution 1s given by
one or more solution variables or unknowns. Associated with
cach physical unitis a set of equations governing the behavior
ol these unknowns, with the number of equations being equal
to the number of unknowns. These equations also contain
unknowns from neighboring physical units.

Thus, there 1s a structure to the equations, with the equa-
tions for a given physical unit containing unknowns from that
physical unit and from its neighbors. This 1s most conve-
niently depicted using a combination of nodes and connec-
tions, where a node 1s depicted by a small circle and a con-
nection 1s depicted by a line between two nodes. The
equations at a node contain the unknowns at that node and at
the neighboring nodes to which 1t 1s connected.

The equations at all nodes are assembled nto a single
matrix equation. Often the critical task in obtaining the
desired solution to the partial differential equations 1s solving
this matrix equation. One of the most effective ways to do this
1s through the use of incomplete LU factorization or ILU, 1n
which the original matrix 1s approximately decomposed to
the product of two matrices L and U. The matrices L and U are
lower triangular and upper triangular and have similar non-
zero structures as the lower and upper parts of the original
matrix, respectively. With this decomposition, the solution 1s
obtained 1teratively by forward and backward substitutions.

There 1s an ongoing need to obtain better solution accuracy.
One way to do this 1s to divide the physical model into smaller
physical units, or in other words to use more nodes, perhaps
millions of them. Of course, the time needed to perform the
computations icreases as this 1s done. One way to avoid this
time 1ncrease 1s to perform the computations in parallel on
multiple processors.

There are two types of parallel computers, those using
shared memory and those using distributed memory. Shared
memory computers use only a handful of processors, which
limaits the potential reduction in run time. Distributed memory
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2

computers using tens of processors are common, while some
exist that use thousands of processors. It 1s desired to use
distributed memory parallel processing.

When using distributed memory, the computations are par-
allelized by dividing the physical model into domains, with
the number of domains being equal to the number of proces-
sors to be used simultaneously. Each domain 1s assigned to a
particular processor, which performs the computations asso-
ciated with that domain. Each domain contains a specified set
of nodes, and each node 1s placed 1n a domain.

The entire modeling process involves many computations,
nearly all of which are performed node by node. Some of
these computations at a node require only information local to
the node. Information 1s local to a node when 1t 1s contained
completely within the same domain as the node. These com-
putations are sometimes called embarrassingly parallel, since
they require no special treatment to perform 1n parallel. Other
computations require information at the node and 1ts neigh-
bors. If the node 1s on the boundary of 1ts domain with another
domain, one or more of 1ts neighbors will reside 1n the other
domain. To perform computations that require neighbor
information at boundary nodes, information about these
neighbors must be obtained from the domains 1n which these
neighbors reside. If the information needed 1s known in
advance, 1t can be obtained easily by “message passing,” and
the computations are easily parallelized. It 1s important that
the information be known 1n advance because message pass-
ing takes time. In particular, there 1s a large, compared to
normal computational times, latency; 1n other words, 1t takes
a finite time for the first element of a message to reach 1ts
recipient. If the information 1s known in advance, the message
containing i1t can be sent before it 1s needed 1n the other
process. In this manner, 1t can arrive at the other process
betore it 1s needed.

Unfortunately, 1n factorization computations, the informa-
tion needed 1s not known 1n advance. Instead, it 1s generated
during the factorization. The computations are “inherently
sequential.” The general flow of the computations 1s as fol-
lows:

1. Update the current node’s equations based on computa-
tions performed at its neighbors that have already been
factored.

2. Factor the resulting modified equations at the current
node.

3. Provide information about the current node’s factoriza-
tion to 1ts neighbors that have not yet been factored.

“Neighbors™ need not be immediate neighbors. They can be
several nodes away.

The sequential nature of these calculations 1s not a problem
if there 1s one domain. The sequential nature of these calcu-
lations 1s a problem 1f there 1s more than one domain. Infor-
mation must be sent from one process to another. If this
information 1s not known until immediately before it 1s
needed at the other process, there will be a delay while the
message containing 1t 1s sent. These delays can be avoided i
the computations are ordered such that any information to be
sent to another process 1s known well before 1t 1s needed at the
pProcess.

To consider this further, assume two domains. Each
domain has interior nodes that communicate only with nodes
in the same domain and boundary nodes that commumnicate
with nodes 1 both domains. The processing could be per-
formed in the following order:

1. Process interior nodes in domain 1.

2. Process boundary nodes 1n domain 1.

3. Send boundary node information from domain 1 to
domain 2.
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4. Process boundary nodes in domain 2.
5. Process interior nodes in domain 2.

If this order 1s used, domain 2 cannot begin 1ts processing,
until domain 1 1s completely finished. There 1s no parallel-
ization of the computations at all.

A better processing order 1s as follows:

1. In parallel, process mterior nodes 1n domain 1 and inte-
rior nodes 1 domain 2.

2. Process boundary nodes in domain 1.

3. Send boundary node information from domain 1 to
domain 2.

4. Process boundary nodes in domain 2.

Using this order, the calculations on interior nodes are
performed in parallel. This 1s significant since there are more
interior nodes than boundary nodes. However, the boundary
nodes are still processed sequentially. Typically 20%-40% of
total nodes are boundary nodes.

There are quite a few parallel algorithms for ILU factor-
ization. In the book “lterative Methods for Sparse Linear
Systems (first edition)” written by Yousel Saad, Society for
Industrial and Applied Mathematics, 1996 (“Saad™), two
algorithms are introduced. One of them 1s the multi-elimina-
tion algorithm described on p.p. 368-372, which takes advan-
tage of independent sets existing 1n the sparse linear system.
However, this approach may be unsuitable for a distributed
data structure. A second algorithm described on p.p. 374-375
factors 1nterior nodes simultaneously on each processor then
processes the boundary nodes 1n some order. The drawback of
this second algorithm 1s that some processors remain idle
while waiting for data coming from other processors. A third
algorithm described in Parallel Threshold-based ILU Factor-
ization by George Karypis and Vipin Kumar, 1998, Technical
Report #96-061, 1s similar to the second algorithm, except
that 1t colors the boundary nodes and then factors the nodes of
cach color. A few colors, however, may be required. As more
colors are required, more messages must be passed between
processors, usually impairing the overall performance of the
solver.

There 1s therefore, a need for an improved parallel ILU
factorization algorithm that 1s suitable for distributed sparse
linear systems and reduces processing time.

SUMMARY OF INVENTION

The present invention meets the above needs and over-
comes one or more deficiencies 1n the prior art by providing
systems and methods for parallel ILU factorization in distrib-
uted sparse linear systems, which utilize a unique method for
ordering nodes underlying the equations in the systems(s) and
reducing processing time.

In one embodiment, the present invention includes a
method for ordering multiple nodes underlying equations in a
distributed sparse linear system that comprises 1) designating
nodes that do nothave a connection that crosses a partitioning,
interface as interior nodes; 11) designating nodes that have a
connection that crosses a partitioning interface as boundary
nodes; 1) designating no more than three codes to distinguish
the boundary nodes; and 1v) processing each boundary node
using a computer processor by: a) assigning a {irst code to
cach boundary node representing a first boundary node,
wherein each {irst boundary node connection cannot cross a
partitioning interface to connect two first boundary nodes; b)
assigning a second code to each boundary node representing
a second boundary node, wherein each second boundary node
connection cannot cross a partitioning interface to connect
two second boundary nodes; and ¢) assigning a third code to
cach boundary node representing a third boundary node,
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4

wherein each third boundary node connection cannot cross a
partitioning interface to connect an interior node.

In another embodiment, the present mnvention 1ncludes a
non-transitory program carrier device tangibly carrying com-
puter executable istructions for ordering multiple nodes
underlying equations in a distributed sparse linear system.
The mstructions are executable to implement 1) designating
nodes that do not have a connection that crosses a partitioning
interface as interior nodes; 11) designating nodes that have a
connection that crosses a partitioning interface as boundary
nodes; 111) designating no more than three codes to distinguish
the boundary nodes; 1v) assigning a {irst code to each bound-
ary node representing a {irst boundary node, wherein each
first boundary node connection cannot cross a partitioning
interface to connect two first boundary nodes; v) assigning a
second code to each boundary node representing a second
boundary node, wherein each second boundary node connec-
tion cannot cross a partitioning interface to connect two sec-
ond boundary nodes; and vi1) assigning a third code to each
boundary node representing a third boundary node, wherein
cach third boundary node connection cannot cross a partition-
ing interface to connect an interior node.

Additional aspects, advantages and embodiments of the
invention will become apparent to those skilled in the art from
the following description of the various embodiments and
related drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention i1s described below with references to
the accompanying drawings 1n which like elements are ref-
erenced with like reference numerals, and 1n which:

FIG. 1 15 a block diagram illustrating a system for imple-
menting the present invention.

FIG. 2A 15 a flow diagram 1illustrating one embodiment of
a method for implementing the present invention.

FIG. 2B 1s a continuation of the method 1llustrated 1n FIG.
2A.

FIG. 2C 1s a continuation of the method 1llustrated 1n FIG.
2B.

FIG. 2D 1s a continuation of the method illustrated in FIG.
2C.

FIG. 2E 1s a continuation of the method illustrated 1n FIG.
2D.

FIG. 2F 1s a continuation of the method illustrated i FIG.
2E.

FIG. 2G 1s a continuation of the method illustrated 1n FIG.
2F.

FIG. 2H is a continuation of the method illustrated 1n FIG.
2B.

FIG. 3 1s a continuation of the method illustrated 1n FIG.
2E.

FI1G. 4 15 a continuation of the method 1llustrated in FIG. 3.

FIG. 5 1llustrates an example of domain decomposition.

FIGS. 6A and 6B illustrate examples of coloring regular
boundary nodes.

FIGS. 7A, 7B and 7C illustrate examples of coloring super
boundary nodes.

FIG. 8 1llustrates an example of incomplete factorization.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The subject matter of the present invention 1s described
with specificity, however, the description itself 1s not intended
to limit the scope of the invention. The subject matter thus,
might also be embodied 1n other ways, to include different
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steps or combinations of steps similar to the ones described
herein, 1n conjunction with other present or future technolo-

gies. Moreover, although the term “step” may be used herein
to describe diflerent elements of methods employed, the term
should not be interpreted as implying any particular order
among or between various steps herein disclosed unless oth-
erwise expressly limited by the description to a particular
order.

System Description

The present invention may be implemented through a com-
puter-executable program of instructions, such as program
modules, generally referred to as software applications or
application programs executed by a computer. The software
may 1nclude, for example, routines, programs, objects, com-
ponents, and data structures that perform particular tasks or
implement particular abstract data types. The software forms
an interface to allow a computer to react according to a source
of mput. NEXUS™, which 1s a commercial software appli-
cation marketed by Landmark Graphics Corporation, may be
used as an interface application to implement the present
invention. The software may also cooperate with other code
segments to mitiate a variety of tasks in response to data
received 1n conjunction with the source of the received data.
The software may be stored and/or carried on any variety of
memory media such as CD-ROM, magnetic disk, bubble
memory and semiconductor memory (e.g., various types of
RAM or ROM). Furthermore, the software and its results may
be transmitted over a variety of carrier media such as optical
fiber, metallic wire, free space and/or through any of a variety
of networks such as the Internet.

Moreover, those skilled in the art will appreciate that the
invention may be practiced with a variety of computer-system
configurations, including hand-held devices, multiprocessor
systems, microprocessor-based or programmable-consumer
clectronics, minicomputers, mainirame computers, and the
like. Any number of computer-systems and computer net-
works are acceptable for use with the present invention. The
invention may be practiced in distributed-computing environ-
ments where tasks are performed by remote-processing
devices that are linked through a communications network. In
a distributed-computing environment, program modules may
be located 1n both local and remote computer-storage media
including memory storage devices. The present invention
may therefore, be implemented in connection with various
hardware, software or a combination thereof, 1n a computer
system or other processing system.

Referring now to FIG. 1, a block diagram of a system for
implementing the present invention on a computer 1s 1llus-
trated. The system includes a computing unit, sometimes
referred to as a computing system, which contains memory,
application programs, a client interface, and a processing
unit. The computing unit 1s only one example of a suitable
computing environment and 1s not itended to suggest any
limitation as to the scope of use or functionality of the mven-
tion.

The memory primarily stores the application programs,
which may also be described as program modules containing,
computer-executable instructions, executed by the comput-
ing unit for implementing the methods described herein and
illustrated in FIGS. 2A-4. The memory therefore, includes an
IL.U Factorization Module, which enables the methods 1llus-
trated and described i1n reference to FIGS. 2A-4, and
NEXUS™,

Although the computing unit 1s shown as having a gener-
alized memory, the computing unit typically includes a vari-
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6

ety of computer readable media. By way of example, and not
limitation, computer readable media may comprise computer

storage media and communication media. The computing
system memory may iclude computer storage media 1n the
form of volatile and/or nonvolatile memory such as a read
only memory (ROM) and random access memory (RAM). A
basic input/output system (BIOS), containing the basic rou-
tines that help to transfer information between elements
within the computing unit, such as during start-up, 1s typically
stored 1n ROM. The RAM typically contains data and/or
program modules that are immediately accessible to and/or
presently being operated on by the processing unit. By way of
example, and not limitation, the computing unit includes an
operating system, application programs, other program mod-
ules, and program data.

The components shown in the memory may also be
included 1n other removable/nonremovable, volatile/non-
volatile computer storage media. For example only, a hard
disk drive may read from or write to nonremovable, nonvola-
tile magnetic media, a magnetic disk drive may read from or
write to a removable, non-volatile magnetic disk, and an
optical disk drive may read from or write to a removable,
nonvolatile optical disk such as a CD ROM or other optical
media. Other removable/non-removable, volatile/non-vola-
tile computer storage media that can be used 1n the exemplary
operating environment may include, but are not limited to,
magnetic tape cassettes, flash memory cards, digital versatile
disks, digital video tape, solid state RAM, solid state ROM,
and the like. The drives and their associated computer storage
media discussed above therefore, store and/or carry computer
readable instructions, data structures, program modules and
other data for the computing unait.

A client may enter commands and imnformation into the
computing unit through the client interface, which may be
input devices such as a keyboard and pointing device, com-
monly referred to as a mouse, trackball or touch pad. Input
devices may include a microphone, joystick, satellite dish,
scanner, or the like.

These and other input devices are often connected to the
processing unit through the client interface that 1s coupled to
a system bus, but may be connected by other interface and bus
structures, such as a parallel port or a universal serial bus
(USB). A monitor or other type of display device may be
connected to the system bus via an interface, such as a video
interface. In addition to the monitor, computers may also
include other peripheral output devices such as speakers and
printer, which may be connected through an output peripheral
interface.

Although many other internal components of the comput-
ing unit are not shown, those of ordinary skill in the art will
appreciate that such components and their interconnection
are well known.

Method Description

Referring now to FIG. 5, an example of domain decompo-
sition 1s 1llustrated for purposes of describing how parallel
processing, sometimes referred to herein as parallelism, may
be utilized by the present invention for solving distributed
sparse linear systems. In FIG. 5, a two-dimensional gridded
rectangular model 500 1s decomposed into two domains (£21
and £22), which are separated by a broken line 506. This
example 1s based on a finite difference or finite volume cal-
culation using the five-point stencil 502, which comprises
solid lines and dots. The resulting coeilicient matrix has the
same connectivity as the model 500 shown 1n FIG. 5. The
present mvention may be applied to other more complex
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examples however, this example 1s used here because of 1ts
simplicity. The linear equations corresponding to domains
(21 and €22 are loaded to processor P1 and P2, respectively.
The parallelism takes advantage of the fact that all of the
interior nodes 1 one domain are not connected to any nodes
in the other domain, which allows both processors to process
their local data simultaneously. The boundary nodes 504,
shown as open circles, should be accessible for both proces-
sors, but the parallelism still can be realized among them by
using a color-based ordering.

For example, to obtain a better ordering, regular boundary
nodes may be colored as illustrated 1n FIGS. 6 A and 6B. In
FIGS. 6 A and 6B, each domain 1s separated by a partitioning
interface 602 and 604, respectively. The lighter broken lines
represent the connections between nodes 1n the same domain.
Each solid line therefore, represents a cross-domain connec-
tion. Although the term *“‘color” 1s referred to herein to distin-
guish boundary nodes from interior nodes and to describe a
process for ordering the nodes, other types of coding may be
used, 1nstead, to achieve the same objectives.

The present mvention utilizes the following rules, which
were applied to the nodes in FIGS. 6 A and 6B:

1. I (anterior) nodes can connect only to nodes 1n the same
domain;

2. C2 nodes must not connect to C1 nodes 1n a different
domain;

3. C2 nodes must not connect to C2 nodes 1n a different
domain; and

4. C3 nodes can connect to nodes of any color 1n any

domain.
The C3 nodes act as a buifer between the C1 nodes in one
domain and 1n a different domain and between the C2 nodes
in one domain and 1n a different domain. If the node connec-
tivity 1s as shown 1n FIG. 6 A, this buller 1s not needed and
there are no C3 nodes. If there are diagonal connections as
shown 1n FI1G. 6B, the butfer 1s needed and 1s provided by the
two C3 nodes shown.

Now, the nodes may be computed (processed) 1n the fol-
lowing order:

1. In parallel, send domain 1 C3 information to domain 2

and send domain 2 C3 information to domain 1.

2. In parallel, process interior nodes in domain 1 followed
by C1 boundary nodes 1n domain 1, and interior nodes 1n
domain 2 followed by C1 boundary nodes 1n domain 2.

3. In parallel, send domain 1 C1 boundary node informa-
tion to domain 2, send domain 2 C1 boundary node
information to domain 1, and process C3 nodes.

4. In parallel, process C2 boundary nodes in domain 1 and
C2 boundary nodes in domain 2.

Typically, around 1%-5% of the total nodes are C3 nodes.

This invention divides all of the nodes into two categories,
1.¢. the interior nodes and the boundary nodes. The interior
nodes are processed across all the processors simultaneously,
and the computation for the interior nodes 1s very intensive in
CPU time because there are usually more interior nodes than
boundary nodes. Conventional methods do not use this local
computation to cover any communication between proces-
sors, which 1s a inefficient. A new coloring algorithm 1s
designed to utilize this local computation in interior nodes to
overlap cross-processor communication and at the same time
limit the number of colors for the boundary nodes to three.
The basic principles for the coloring are that any adjacent
nodes which belong to two different domains cannot have the
same color except the accessory color C3 and each of the
major colors (C1 and C2) must occur on all the processors. In
most cases with regular stencils and reasonable domain
decomposition, two colors are adequate for the coloring. The
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accessory color C3 i1s needed to switch the major colors
cross-boundary to realize the second part of the basic coloring
principles. In this invention, the boundary nodes with the
third color (C3), 1f any, are made accessible for both sides of
this boundary by message passing at the very beginning so
that the communication can be overlapped with the local
computation in factorization of the iterior nodes.

With C3 nodes accessible for both sides of the partitioning,
the factorization and the forward and backward substitution

procedures are much same as for the cases with only two
boundary colors, 1.¢. only one message passing 1s required for
cach of these procedures and the message passing 1s readily
overlapped with local computation 1n boundary nodes. With
that, it 1s possible to design a scalable parallel ILU precondi-
tioner.

The following description applies the foregoing rules and
processes the nodes 1n three major stages: 1) coloring; 11)
factoring; and 111) solving. The coloring stage determines an
ordering of the nodes, which in turn determines the order 1n
which the equations will be factored and the solution will be
performed. Once the coloring 1s determined, the factorization
and solution are routine, although perhaps complex.
Coloring

One embodiment of a method for implementing the color-
ing stage 1s described 1n reference to FIGS. 2A-2H. In addi-
tion, FIGS. 7A-7C are referenced to illustrate examples of
coloring super-boundary nodes.

In FIGS. 7A-7C, the boundary nodes connected to multiple
external domains are defined as super-boundary nodes. All
other boundary nodes are called regular-boundary nodes The
connections in FIGS. 6A, 6B and 7A-7C represent the non-
zero entries 1n a coellicient matrix, which are not necessarily
the same as the grid connectivity because the connectivity in
a coellicient matrix depends on what kind of stencil 1s used for
the discretization of the partial differential equations. In these
figures, only the cross-domain connections, which are repre-
sented by the solid lines, are considered for the coloring
procedure. The broken lines represent a partitioning interface,
which separates each domain.

Referring now to FIG. 2A, the method 200A 1s the begin-
ning of the coloring stage.

In step 202, find all connections that will be used to deter-
mine the node colors, which are cross-domain connections.
Only these connections are used 1n determiming node colors.

In step 204, the interior nodes, which have no connections
across domain boundaries, are 1dentified.

In step 206, the boundary nodes, which have connections
across domain boundaries, are identified.

In step 208, the super-boundary nodes, which are those that
connect to at least two domains other than the domain 1n
which they are located, are 1dentified.

In step 210, a connectivity matrix of the super-boundary
nodes 1s constructed.

In step 212, the greedy multi-coloring algorithm, which 1s
well known 1n the art, 1s applied to color the super-boundary
nodes. The basic principle of this coloring 1s that no two
connected nodes have the same color. The multi-coloring
algorithm 1s run several times using different seed nodes 1n
order to {ind the minimum number of colors.

In step 214, determine 11 the number of colors 1s greater
than three.

In step 216, all colors greater than 3 are made color 3 (C3).
With that, some adjacent super-boundary nodes may have the
same color and this color must be C3, as shown 1n FIG. 7B.
For reasonable domain decompositions, there will be a very
limited number of such color 3-color 3 (C3-C3) connections.
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Referring now to FIG. 2B, the method 200B 1s a continu-
ation of the method 200A for implementing the coloring
stage.

In step 216, s 1s equal to the number of partitioning inter-
faces.

In step 218, for each partitioning interface p(s), construct a
connectivity matrix with only connections that cross the p(s).

In step 220, all nodes that have been previously colored
with color 1 (C1), color 2 (C2), and color 3 (C3) are found.

In step 222, 11 C1 or C2 exist, method 200B continues to
step 284 1n FIG. 2H. IT C1 or C2 do not exist, step 224 picks
the side with more uncolored nodes as the starting side, and
puts the first uncolored node on this side 1n the 1-queue.

In step 226, C1 1s assigned to C, as the starting color on the
starting side, and C2 1s assigned to C..

Referring now to FIG. 2C, the method 200C 1s a continu-
ation of the method 200B for implementing the coloring
stage.

In step 228, x 1s equal to the number of nodes 1n 1-queue.
In step 228a, for node 1(x) adjacent nodes j are determined.
In step 228b, vy 1s equal to the number of adjacent nodes j of

1.

In step 230, determine 1f node j(y) 1s colored. It 1(y) 1s
colored, step 232 determines 11 1(v) 1s colored C. If 1(y) 1s not
colored, then j 1s colored to be C_ and added to the r-queue 1n
step 232a.

In step 232,111(y) 1s colored C, , recolorj(y) to be C3 1n step
2325, then continue to step 234. If 1(v) 1s not colored C1 the
method continues to step 234.

In step 234, determine 11 vy 1s greater than one. If v 1s not
greater than one, all adjacent nodes 1(y) of 1 have been visited
and the method 200C continues to step 236. I1'y 1s greater than
one 1n step 234, some adjacent nodes j(v) of 1 have not been
visited and the method 200C continues to step 234a.

In step 234a, y 1s equal to y minus 1. The method returns to
step 230 from step 234a.

In step 236, node 1(x) 1s removed from the 1-queue.

In step 238, determine 11 X 1s greater than one. If X 1s greater
than one, then 1-queue 1s not empty and step 238a sets x equal
to x minus 1. If X 1s not greater than one, then 1-queue 1s empty
and the method 200C continues to FIG. 2D.

Referring now to FIG. 2D, the method 200D 1s a continu-
ation of the method 200C for implementing the coloring
stage.

In step 240, m equals the number of nodes 1n r-queue.
In step 240q, for node 1(m) adjacent nodes j are determined.
In step 2405, n 1s equal to the number of adjacent nodes j of

1.

In step 242, determine 1f node j(n) 1s colored. If j(n) 1s
colored, step 244 determines 11 j1(n) 1s colored C,. I 1(n) 1s not
colored, then 1(n) 1s colored to be C, and added to the 1-queue
in step 244b.

In step 244, 1t j(n) 1s colored C,, recolor j(n) C3 1n step
244a, then continue to step 246. If j(n) 1s not colored C, the
method continues to step 246.

In step 246, determine if n 1s greater than one. If n 1s not
greater than one, all adjacent nodes j(n) of 1{m) have been
visited and the method 200D continues to step 248. If n 1s
greater than one 1n step 246, some adjacent nodes 1(n) of 1(m)
have not been visited and the method 200D continues to step
246a.

In step 2464, n 1s equal to n minus 1. The method returns to
step 242 from step 246a.

In step 248, node 1(m) 1s removed from the r-queue.
In step 250, determine 1f m 1s greater than one. If m 1s
greater than one, then r-queue 1s not empty and step 250q sets
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m equal to m minus 1. If m 1s not greater than one, then

[

r-queue 1s empty and the method 200D continues to FIG. 2E.

Referring now to FIG. 2E, the method 200E i1s a continu-
ation of the method 200D for implementing the coloring
stage.

In step 252, determine if the number of colored nodes
reaches half of the total number of nodes on either side. If the
number of colored nodes 1s equal to half the total number of
nodes on either side, then the method proceeds to FIG. 2F to
exchange colors C, and C,. If the number of colored nodes 1s
not equal to half the total number of nodes on either side, then
the method proceeds to step 254.

In step 254, determine 11 all nodes are colored. It all nodes
are colored, the method proceeds to step 254a. If some nodes
are not colored, the method proceeds to step 254c.

In step 254qa, determine 1f s 1s greater than one. If s 1s not
greater than one, all interfaces have been visited and the
method continues to step 302 1n FIG. 3. IT's 1s greater than one,

step 2545 sets s equal to s minus 1 and the method returns to
step 218 1n FIG. 2B.

In step 254¢, determine if 1-queue 1s empty. If 1-queue 1s
empty, step 256 finds the first uncolored node on the starting
side, colors 1t C,, places 1t 1n the 1-queue, and continues to
step 228 1 FIG. 2C. If 1-queue 1s not empty, the method
continues to step 228 1n FIG. 2C.

Retferring now to FIG. 2F, the method 200F 1s a continua-
tion of the method 200F for implementing the coloring stage.
During the coloring process, when the number of nodes col-
ored on either side reaches half of the total number of nodes
on that side, colors C, and C, must be exchanged. Before the
colors can be exchanged, the method 200F must first deter-
mine whether any nodes have been colored with color 3 for
this switch.

In step 2564, t equals the number of nodes 1n 1-queue

In step 258, determine 11 t 1s greater than one. If t 1s not
greater than one, 1-queue 1s empty and the method continues
to step 276 1n FIG. 2G. If t 1s greater than one, 1-queue 1s not
empty; and step 260 determines adjacent nodes 7 for node 1(t)
in 1-queue.

In step 262, determine 1t all adjacent nodes j of 1(t) are
colored C.. It all adjacent nodes j of 1(t) are colored C , step
274 removes node 1(t) from the 1-queue. If some adjacent
nodes 1 of 1(t) are not colored C , step 264 sets z equal to the
number of adjacent nodes j of 1(t).

In step 266, determine 1f adjacent node 1(z) 1s colored. If
1(z) 1s colored, step 266a determines if j(z) 1s colored C,. It
1(z) 1s not colored, then step 270 places j(z) 1n the r-queue
without coloring.

In step 266a, 11 node 1(z) 1s colored C,, step 268 recolors 1(t)
to be C3, and the method continues to step 274. If node 1 1s not
colored C,, the method 200F continues to step 272.

In step 270, 1(z) 1s placed 1n the r-queue without coloring.

In step 272, determine if z 1s greater than one. If z 1s greater
than one, then some adjacent nodes have not been visited and
step 272a sets zequal to zminus 1. If z 1s not greater than one,
then all adjacent nodes 1(z) have been visited and the method
200D continues to step 274.

In step 274, node 1(t) 1s removed from the 1-queue.

In step 274a, t1s equal to t minus 1, and the method returns
to step 258.

Referring now to FIG. 2@, the method 200G 15 a continu-
ation of the method 200F for implementing the coloring
stage.

In step 274b, u equals the number of nodes 1n r-queue.

In step 276, determine 1f r-queue 1s empty. If r-queue 1s
empty, then colors C, and C, are exchanged 1n step 276a and
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the method 200G returns to step 254 1n FIG. 2E. If r-queue 1s
not empty, 1n step 278, adjacent nodes 7 are determined for
node 1(u) 1n r-queue.

In step 280, determine 1f all adjacentnodes j are colored C, .
If some adjacent nodes 7 are not colored C,, then step 280a
colors node 1(u) to be C3. It all adjacent nodes j are colored
C,, then step 2805 colors node 1(u) to be C..

In step 282, node 1(u) 1s removed from the r-queue.
In step 2824, u 1s equal to u-1, and the method returns to
step 276.

Referring now to FIG. 2H, the method 200H 1s a continu-
ation of the method 200B for implementing the coloring
stage.

In step 284, nodes with colors C1 and C2 on both sides of
the 1interface are counted.

In step 286, the color with the most nodes on either side of
the 1interface 1s selected as the starting color, denoted by C, .

In step 288, the iterface side with the most C, nodes 1s
selected as the starting side.

In step 290, the C, nodes on the starting side are stored in
a queue named 1-queue.

In step 292, the color different from C, 1s assigned to C..
In step 294, determine 1f C  exists among nodes that have
cross-domain connections to nodes 1 1-queue. If C, exists
among nodes that have cross-domain connections to nodes 1n
1-queue, those C_ nodes are stored 1n a queue named r-queue
in step 296. If C, does not exist among nodes that have
cross-domain connections to nodes in 1-queue, the method
continues with step 228 in method 200C.

Factoring

Referring now to FIG. 3, the method 300 1s a continuation
of the method 200E for implementing the factoring stage.

Method 300 illustrates the incomplete factorization
according to the present mnvention. The following steps are
performed on each processor in parallel.

In step 302, 1 C3 nodes exist, their equations are made
accessible to both sides of the boundary by message passing.
Step 302 mitiates the non-blocking message sends and
receives.

In step 304, all local interior nodes are approximately
factored by ILU factorization. There are several well known
variants of ILU {factorization, which are available and are
described 1n Saad. This step 1s CPU time intensive and should
allow time for the messages sent 1n step 302 to arrive at their
destinations.

In step 306, C1 boundary nodes are factored.

In step 308, non-blocking sends and receives for upper
factorization coetficients related to C1 nodes, and interior
coellicients related to C3 nodes are 1ssued.

In step 310, C2 nodes are updated using information from
local interior nodes.

In step 312, when the messages of step 302 have arrived,
update C3 nodes using information from local interior and C1
nodes.

In step 314, C3 and C2 nodes are factored when the mes-
sages ol step 308 have arrived.

Solving

Referring now to FIG. 4, method 400 1s a continuation of
the method 300 for implementing the solving stage through
forward and backward substitution, which are techniques
well known 1n the art.

In step 402, 11 C3 nodes exist, initiate message passing of
their right hand side.

In step 404, the forward solution for interior nodes 1s per-
formed.

In step 406, the forward solution for C1 nodes 1s per-
formed.
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In step 408, non-blocking sends and receives of the forward
solution at C1 nodes and interior nodes connected to C3 nodes
are 1ssued.

In step 410, C2 and C3 nodes are updated based on local
interior and C1 solutions.

In step 412, C2 and C3 nodes are updated due to remote
interior and C1 solutions when the messages of step 408 have
arrived.

In step 414, the forward solution for C3 and C2 nodes 1s
performed.

In step 416, the backward solution for C2 nodes 1s per-
formed.

In step 418, the non-blocking sends and receives of C2
node solutions are 1ssued.

In step 420, C3 and interior nodes are updated due to local
C2 solution.

In step 422, C3, C1, and 1nterior nodes are updated due to
remote C2 solutions when the messages of step 418 have
arrived.

In step 424, the backward solution for C3 nodes 1s per-
formed.

In step 426, the backward solution for C1 nodes 1s per-
formed.

In step 428, the backward solution for interior nodes 1s
performed.

Referring now to FIG. 8, an example of incomplete factor-
ing and solving 1s 1llustrated for a re-ordered matrix for two
processors. I and C represent the interior nodes and boundary
nodes, respectively. Both procedures of factorization and
solution can be explained readily 1n this figure. In the factor-
ization and the forward substitution, the processors (P1/P2)
treat interior nodes first and then C1 boundary nodes, and
finally on C2/C3 boundary nodes. In the backward substitu-
tion, both processors solve C2 boundary nodes first then C3,
C1 and I nodes. Message passing happens after C1 boundary
nodes are treated 1n the factorization and the forward substi-
tution or after C2 boundary nodes are treated 1n the backward
substitution. Before the factorization and the forward substi-
tution are taken, information about C3 boundary nodes, 1f any
exist, 1s exchanged for both processors.

While the present invention has been described in connec-
tion with presently preferred embodiments, it will be under-
stood by those skilled 1n the art that 1t 1s not intended to limat
the invention to those embodiments. The present invention,
for example, 1s not limited to the o1l and gas industry and can
generally be applied 1n many fields where it 1s necessary to
solve for a general linear system. Such applications include,
but are not limited to, field programmable gate arrays (FPGA)
and other types of electrical circuit stmulation. It 1s therefore,
contemplated that various alternative embodiments and
modifications may be made to the disclosed embodiments
without departing from the spirit and scope of the mnvention
defined by the appended claims and equivalents thereof.

The mvention claimed 1s:
1. A method for ordering multiple nodes underlying equa-
tions 1n a distributed sparse linear system, comprising:

designating nodes that do not have a connection that
crosses a partitioning interface as interior nodes;

designating nodes that have a connection that crosses a
partitioning interface as boundary nodes;

designating no more than three codes to distinguish the
boundary nodes;

processing each boundary node using a computer proces-
sor by:

assigning a first code to each boundary node representing a
first boundary node, wherein each first boundary node
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connection cannot cross a partitioning interface to con-
nect two first boundary nodes;
assigning a second code to each boundary node represent-
ing a second boundary node, wherein each second
boundary node connection cannot cross a partitioning,
interface to connect two second boundary nodes; and

assigning a third code to each boundary node representing,
a third boundary node, wheremn each third boundary
node connection cannot cross a partitioning interface to
connect an mterior node and each third boundary node
connection can connect two third boundary nodes, a
third boundary node and a second boundary node, or a
third boundary node and a first boundary node.

2. The method of claim 1, wherein each partitioning inter-
face separates multiple domains.

3. The method of claim 2, wherein each domain comprises
a set of boundary nodes and a set of interior nodes.

4. The method of claim 2, further comprising;

transmitting information associated with each third bound-

ary node 1n a domain to another domain;

transmitting information associated with each third bound-

ary node 1n the another domain to the domain; and
performing each transmitting step in parallel.

5. The method of claim 4, further comprising;

processing each interior node 1n the domain followed by

each first boundary node 1n the domain;

processing each interior node 1n the another domain fol-

lowed by each first boundary node in the another
domain; and

performing each processing step in parallel.

6. The method of claim 5, further comprising:

transmitting information associated with each first bound-

ary node 1n the domain to the another domain;
transmitting information associated with each first bound-

ary node 1n the another domain to the domain; and
performing each transmitting step in parallel.

7. The method of claim 6, further comprising;

processing each second boundary node in the domain;

processing each second boundary node in the another

domain; and

performing each processing step in parallel.

8. The method of claim 1, wherein each code 1s a different
color.

9. The method of claim 1, wherein each interior node
connection only connects nodes within a single domain.

10. A non-transitory program carrier device tangibly car-
rying computer executable mstructions for ordering multiple
nodes underlying equations in a distributed sparse linear sys-
tem, the instructions being executable to implement:

designating nodes that do not have a connection that

crosses a partitioning interface as interior nodes;

designating nodes that have a connection that crosses a

partitioning interface as boundary nodes;

designating no more than three codes to distinguish the

boundary nodes;
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assigning a first code to each boundary node representing a
first boundary node, wherein each first boundary node
connection cannot cross a partitioming interface to con-
nect two first boundary nodes;

assigning a second code to each boundary node represent-
ing a second boundary node, wherein each second
boundary node connection cannot cross a partitioning
interface to connect two second boundary nodes;

assigning a third code to each boundary node representing,
a third boundary node, wherein each third boundary
node connection cannot cross a partitioning interface to
connect nan interior node and each third boundary node
connection can connect two third boundary nodes, a
third boundary node and a second boundary node, or a
third boundary node and a first boundary node.

11. The program carrier device of claim 10, wherein each

partitioning interface separates multiple domains.

12. The program carrier device of claim 11, wherein each
domain comprises a set of boundary nodes and a set ol interior
nodes.

13. The program carrier device of claim 11, further com-
prising:

transmitting information associated with each third bound-
ary node 1n a domain to another domain;

transmitting information associated with each third bound-
ary node 1n the another domain to the domain; and

performing each transmitting step in parallel.

14. The program carrier device of claim 13, further com-

prising;:

processing each interior node in the domain followed by
cach first boundary node in the domain;

processing each interior node 1n the another domain fol-
lowed by each first boundary node in the another
domain; and

performing each processing step in parallel.

15. The program carrier device of claim 14, further com-
prising:

transmitting information associated with each first bound-
ary node in the domain to the another domain;

transmitting imnformation associated with each first bound-
ary node 1n the another domain to the domain; and

processing each transmitting step 1n parallel.

16. The program carrier device of claim 15, further com-

prising;:

processing each second boundary node 1n the domain;

processing cach second boundary node in the another
domain; and

performing each processing step in parallel.

17. The program carrier device of claim 10, wherein each
code 1s a different color.

18. The program carrier device of claim 10, wherein each
interior node connection only connects nodes within a single
domain.
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