12 United States Patent

US008291081B2

(10) Patent No.: US 8,291,081 B2

Ahmed et al. 45) Date of Patent: *Oct. 16, 2012
(54) META-DATA BASED METHOD FOR LOCAL 6,178,461 B1* 1/2001 Chanetal. 709/247
CACHE UTILIZATION 6,240,447 Bl 5/2001 Banga et al.
6,510,458 B1* 1/2003 Berstisetal. 709/219
1 =
(75) Inventors: Salmaal.l. Syt::d Ahmed, Mississauga g:ggg:igg E égggg %llllat;g ctal. e 7097213
(CA); Ajit Singh, Waterloo (CA) 6,675,214 B2* 1/2004 Stewartetal. 709/226
6,751,608 Bl 6/2004 Cohen et al.
(73) Assignee: Slipstream Data Inc., Waterloo, Ontario 6,772,203 B1* 8/2004 Felertagetal. 709/219
(CA) 6,826,626 Bl1* 11/2004 McManus 709/246
6,883,068 B2* 4/2005 Tsirigotisetal. 711/133
: : : : : 6,907,501 B2 6/2005 Tariq et al.
(*) Notice: Subject to any disclaimer, the term of this 7055.160 B2* 52006 Delpuch etal. o........ 725/100
patent 1s extended or adjusted under 35 7.139.811 B2 11/2006 Lev Ran et al.
U.S.C. 154(b) by 0 days. 7,191,290 Bl 3/2007 Ackaouy et al.
| | | | | 7,269,784 B1* 9/2007 Kasriel etal. 715/205
This patent 1s subject to a terminal dis- .
claimer. (Continued)
(21) Appl. No.: 13/186,157 OTHER PUBLICATIONS
(22) Filed: Jul. 19, 2011 Liao et al. “Architecture of Proxy Partial Caching using HT Tp for
supporting interactive video and cache consistency”, Oct. 14, 2002.
(65) Prior Publication Data _
(Continued)
US 2012/0016931 Al Jan. 19, 2012
Related U.S. Application Data Primary Examiner — Karen Tang
(63) Continuation of application No. 11/017,931, filed on (74) Attorney, Agent, or [Firm —Bereskin & Parr
Dec. 22, 2004, now Pat. No. 8,010,670. LLP/S.EN.CR.L. s.rl.
(60) Provisional application No. 60/531,615, filed on Dec.
23, 2003. (37) ABSTRACT
(51) Inmt. CI. A system and method for caching data and verifying cached
GO6F 15/173 (2006.01) data using a client-server model and meta-data. In particular,
GoOol 15/177 (2006.01) a client proxy and a server proxy are in communication with
(52) US.CL ... 709/226; 709/223; 709/225; 709/217 cach other and with the client and the server, respectively;
(58) Field of Classification Search 709/226, client proxy meta-data and server proxy meta-data related to
709/223, 225, 217 the data cached by the client proxy and server proxy, respec-
See application file for complete search history. tively, are calculated and communicated between the client
proxy and the server proxy; and the client proxy meta-data
(56) References Cited and the server proxy meta-data are compared to determine a

U.S. PATENT DOCUMENTS

5,931,904 A *

0,085,195 A 7/2000 Malkin et al.

(16)

(17)

(18)

(19)

(20}

(21}

(22)

(23)

(24)

8/1999 Bangaetal.

cache hit or miss.

..... 709/217

9 Claims, 6 Drawing Sheets

&)

Client Proxy forwards the HTTP GET
request to the Server Proxy along with
the assoclated meta-data

1

Server Proxy examines its own cache
for the presence of a prier HTTP response
data eorresponding to a prier HTTP GET
request for the given URL that i
presantly valid

Is such data present In No
Server proxy’s cacha?

Yes

Server Proxy attempts to match all
elements of meta-data from the Client
Prux'{ with the corresponding elemants
of meta-data in the Server Proxy

Is the match successful?

Yes

Server Proxy sends Client Proxy the
notification that Client Proxy’s cached
data corresponding to the HTTP GET

reguest Is valld

1

Client Fn_:igtr%sends HTTP response data
tothe H Client from its own cache

®

US 8,291,081 B2

Page 2
U.S. PATENT DOCUMENTS 2003/0188009 Al* 10/2003 Agarwallaetal. 709/236
1 3k
7,296,051 B1* 11/2007 Kastiel ..oocooovrrrvvvvee..... 709/203 S 1072003 Agarwalla etal. oo 7097217
7,305,473 B2* 12/2007 VOgL ...oovvviriviiiinnnnns 709/227 2006/0059223 Al 3/2006 Klemets et al.
7,334,023 B2* 2/2008 Kobaetal. 709/213 2006/0190607 A 22006 Towerv et al
7,349,929 B2 * 3/2008 PHitznercoooovvvvviviiiiiiiiininnnn. 1/1 2006/0224752 A 10/2006 P&I'ekfly ‘
7,480,731 B2* 1/2009 Sekietal. 709/232 N
. 2010/0241810 Al 9/2010 Lowery et al.
7,487,261 B1* 2/2009 Kasrielooooooi 709/246 2011/0320510 A1* 12/2011 O’Connell ef al 707/827
7,849,134 B2* 12/2010 McCanneetal. 709/203) S
7,864,186 B2* 1/2011 Robothametal. 345/581 OTHER PUBLICATIONS
7,962,594 B2 6/2011 Kasrieletal. 709/223
2002/0026511 Al 2/2002 Garcia-Luna-Aceves et al. R. Fielding et al. “Request for Comments:2616, Hypertext Transfer
2002/0055966 Al 5/2002 Border et al. Protocol—HTTP/1.1”, Network Working Group, Jun. 1999.
2003/0115420 Al* 6/2003 Tsirigotisetal. 711/133
2003/0149737 Al* 8/2003 Lambertetal. 709/214 * cited by examiner

US 8,291,081 B2

POYIAIN DT QN 10} 81nj0d8}IYdly aiemyjos | ainbi4

-_r e S S e s oy ik e W T we

o
S
3 SAIXO01]
7 I9AIRG
pue juai[’) 131ndwo)) Wal[)
- U23Mm)ag
S 0201014
o
- I9AI3S
2 | oty & >
Q e L) O i I . e
AX01J I9AIAG
JOUIAIU] JaUI3U] :

U.S. Patent

U.S. Patent Oct. 16, 2012 Sheet 2 of 6 US 8,291,081 B2

Start: HTTP Client determines the URL for
(1) which the HTTP GET request is to be sent
after examining its own cache

) HTTP Client sends the HTTP GET
(2) request to the Client Proxy

Client Proxy searches its own data
(3) cache for a prior response data
for the specified URL

Is such data present?

(4)

Yes °
No
(5) Forward HTTP Client’s request
to Server Proxy

FIG. 2A

U.S. Patent Oct. 16, 2012 Sheet 3 of 6 US 8,291,081 B2

O

Server Proxy searches its own data
(8) cache for a Prior response data
for the specified URL

Is such data present? Yes

(9)

No

Server Proxy forwards the HTTP GET
(10) request received from the Client Proxy
to HTTP Server

(1) Server Proxy receives the HTTP
response data from the HTTP Server
(2) Server Proxy computes meta-data
elements for the HTTP Response data
(3) Server Proxy stores the HTTP
response data and meta-data in its
own cache along with the URL.

(12) Server Proxy sends the HTTP response
data to Client Proxy

(1) Client Proxy receives the HTTP
response data
(2) Client Proxy computes the meta-data
elements
(3) Client Proxy caches the HTTP response
data along with the URL and the meta-data

Client Proxy sends the HTTP response
(14) data to HTTP Client
(15 ° FIG. 2B

(11)

(13)

U.S. Patent Oct. 16, 2012 Sheet 4 of 6 US 8,291,081 B2

NG

Client Proxy forwards the HTTP GET
(17) request to the Server Proxy along with
the associated meta-data

Server Proxy examines its own cache
for the presence of a prior HTTP response
(18) data corresponding to a prior HTTP GET
request for the given URL that is
presently valid

Is such data present In

(19) Server proxy’s cache?

Server Proxy attempts to match all
(20) elements of meta-data from the Client
Proxy with the corresponding elements
of meta-data in the Server Proxy

(21) Is the match successful? No o
Yes
Server Proxy sends Client Proxy the
(22) notification that Client Proxy’s cached

data corresponding to the HTTP GET
request Is valid

53 Client Proxy sends HTTP response data
(23) to the HTTP Client from its own cache
FIG.

U.S. Patent Oct. 16, 2012 Sheet 5 of 6 US 8,291,081 B2

Server Proxy makes the HTTP GET
(26) request to HTTP Server

Server Proxy Receives the HTTP response
data from the HTTP Server and stores
it in its own cache along with the URL
and meta-data elements computed by
the Server Proxy for the HTTP response data

(27)

Server Proxy attempts to match all
elements of meta-data from the Client
Proxy with the corresponding elements
meta-data in the Server Proxy

(28)

Is the match successful?

(29)

Yes

Server Proxy sends Client Proxy the
notification that Client Proxy’s cached
data corresponding to the HTTP GET
request is valid

(31) Client Proxy delivers the HTTP response
to HTTP Client from its cached data
FIG. 2D

(30)

U.S. Patent Oct. 16, 2012 Sheet 6 of 6 US 8,291,081 B2

Server Proxy sends the HTTP response
(34) data to Client Proxy

Client Proxy caches the HTTP response
(35) data along with the URL and the meta-data

Client Proxy sends the HTTP response
(36) data to HTTP Client

FIG. 2E
(39) Finish: HTTP Client receives the
HTTP response data

FIG. 2F

US 8,291,081 B2

1

META-DATA BASED METHOD FOR LOCAL
CACHE UTILIZATION

CROSS-REFERENCE TO RELAT
APPLICATIONS

T
»

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 11/017,931, filed on Dec. 22, 2004, which
claims priority from U.S. Provisional Patent Application Ser.
No. 60/531,615, filed on Dec. 23, 2003. The entire contents of
both of these applications 1s hereby incorporated by refer-
ence.

FIELD OF THE INVENTION

The present invention relates to a method (named Meta-
Data Based Caching, or MDBC) of caching data locally by a

client while using HI'TP protocol for downloading data from
a server 1n order to reduce the volume of data communication

and also possibly reduce the data transmission time.

BACKGROUND OF THE INVENTION

At present, large volumes of data are delivered over the
Internet network to client computing devices such as desktop
and laptop computers and various handheld digital devices
using a communication protocol called, the Hyper Text
Transier Protocol (HTTP). The HT'TP protocol can be visu-
alized as a protocol for interaction between a H1'TP client (or
simply called client 1n this document) that sends requests for
data, and a HTTP server (or simply called server in this
document) that supplies the data. The client, after sending the
request, waits for the server’s response, and then normally,
upon receipt of data, delivers the data to the end user. In many
cases, the client 1s implemented by a soitware component
called a web-browser. The server 1s usually implemented by a
software component called a web-server. However, 1t 15 pos-
sible to use HT'TP protocol by other types of software com-
ponents to create a HI'TP clhient or a HITP server for
exchange of data over the Internet. The client uses a text string
called a Uniform Resource Locater (URL) to 1dentify the data
being requested by the client.

Since 1t 1s often the case that the data corresponding to a
specific URL remains constant for some period of time, the
HTTP protocol provides a mechanism for making use of the
data previously accessed from the server which may be
cached locally by a client. Such methods are described 1n R.
Fielding, J. Gettys, J. Mogul, H Frystyk, L. Masinter, P.
Leach, and T. Berners-Lee, “Request for Comments: 2616,
Hypertext Transier Protocol-—HTTP/1.1,” Network Working
Group, June 1999 (“Fielding’™), which 1s hereby incorporated
by reference herein.

Generally, the primary benefits of caching data by the
client are reduction 1n the volume of data transmitted by the
server to the client, and reduction in the time required for
accessing the data by the client. When a client locally stores or
caches a copy of the data corresponding to a URL, the next
time the same client requests the data for the same URL, the
client’s copy of the data corresponding to the URL 1s consid-
ered to be “fresh” or “stale” depending on whether the client’s
cached copy still contains the valid data or not. If the client’s
cache does contain a valid copy of the requested data, the
client’s copy 1s considered to be “Iresh”. On the other hand, 1f
the client’s cached copy no longer contains valid data corre-
sponding to the URL, the client’s copy 1s considered to be
“stale. The HT'TP protocol outlined 1n Fielding essentially

10

15

20

25

30

35

40

45

50

55

60

65

2

relies on one of two metrics to determine 1f the copy of the
content cached at the client 1s “stale” or “fresh™:

A. The protocol can rely on the server that supplies data
(called origin-server) to explicitly provide the expiration
time and/or date for the data.

B. The client uses heuristics based on metrics specified by
the HT'TP protocol (such as the Last-Modified time) to
estimate a plausible expiration time/date.

In Method A, the origin-server provides an explicit expi-
ration time/date for the data corresponding to the URL. The
client’s caching mechanism maintains a database that maps
cach named data to 1ts respective expiration time/date. Thus,
cach time the data 1s requested, the client’s caching mecha-
nism checks the database to see 11 the data 1s 1n the local cache
of the client and 11 the expiration time/date has passed. It the
expiration time/date has not passed then the request 1s ful-
filled directly from the local cache and the origin server 1s not
consulted. This technique or method 1s known as the “expi-
ration” method of cache control.

Method B differs from Method A 1n that the origin-server
does not explicitly specily an expiration time/date for each
object, rather the caching mechamism associated with the
client uses 1ts own 1nternal metrics to approximate an expira-
tion date and time.

Method A 1s the preferred caching method, and also the
more accurate of the two, but it 1s generally only effective as
long as the server’s expiration times are caretully chosen.
Unfortunately, for a large and complex server with dynamic
data, 1t 1s almost impossible to know a prior1 how much time
will pass belore a specific data will semantically change.

While Method B does not impose any requirements on
server’s administrators, it 1s not possible for this method to be
perfectly accurate and, as a result, it may compromise seman-
tic transparency.

In general, caching, as described 1n Fielding has two spe-
cific methods for reducing the volume of data transmission
during the interaction between a client and a server:

I. Eliminate the need to send full requests, using an “expi-

ration” mechamsm (“Expiration Time Method™).

I1. Eliminate the need to send full responses, using a “vali-
dation” mechanism based on last-modified time (“Last-
Modified Time Method™).

As described earlier, Method I relies on the origin-server to
supply an explicit expiration time/date for the data. Accord-
ing to this method, 1f the requested data 1s found 1n the local
cache of the client, and it has not expired, the client need not
send the request to the server.

On the other hand, for using the Method II, the origin-
server need not provide an expiration date for the data. With
Method II, the client’s caching mechanism checks 1ts data-
base for a cached version of the requested data. If a cached
version 1s found, then a request 1s sent to the origin-server to
send the data if and only if the requested content has been
modified since the time the client cached the data. If the
content has not been modified, then the server only sends a
response header and thereby instructs the client to use the
cached copy. However, 11 the data has been modified since the
last access, the server sends the new data.

Neither of Method I or Method II deals with a situation 1n
which the data has been specified as not being suitable for
caching by the server (or administrator thereof). In some
situations, it may be simpler or more beneficial for a server to
identify all data as not being suitable for caching so that there
1s no need to calculate/estimate an expiration time/date or
other reason. As such, there i1s a need for a way to allow
caching of many types of data, including that which 1s ordi-
narily indicated as “no cache”.

US 8,291,081 B2

3
SUMMARY OF THE INVENTION

The system and method of the invention builds upon and 1s
intended to improve upon the existing methods described
above by providing additional methods for ascertaining the
validity of cached data between a client and server, and thus
reduce the volume of data transmission requirements. The
method 1s based on utilizing computed characteristics, called

meta-data, associated with the response data for a particular
URL.

According to one embodiment of the imvention, there 1s
provided a system for caching data using a client-server
model. The system includes: a) a client proxy and a server
proxy in communication with each other and with the client
and the server, respectively; b) a plurality of processors for
calculating client proxy meta-data and server proxy meta-
data related to the data cached by the client proxy and server
proxy, respectively; and, ¢) a communication link for com-
municating said meta-data between the client proxy and the
server proxy. At least one processor from the plurality of
processors 1s further configured to compare the client proxy
meta-data and the server proxy meta-data to determine a
cache hit or miss.

According to another embodiment of the invention, there 1s
provided a method for optimizing the transmission of data
from a server to a client said method comprising the steps of:
a) upon a client request for data to a client proxy, determining
i a prior version of said data exists in a client proxy cache, 1f
so Tforwarding a request containing client proxy meta-data
describing said prior version of said data to a server proxy; b)
if at step a) said prior version of said data does not exist in said
client proxy cache, sending a request for said data to said
server proxy; ¢) upon receipt of a request from step a) said
server proxy determining if said prior version of said data 1s
current based on comparing said client proxy meta-data with
server proxy meta-data describing the data requested, 11 said
prior version of said data 1s current, informing said client
proxy of this, 11 not then fetching the current data from the
said server, returning current data and updating server proxy
meta-data; d) upon receipt of a request from step b) fetching,
current data from said server, updating server proxy meta-
data, and sending said current data to said client proxy; €)
updating said client proxy meta-data when said client proxy
receives current data from said server proxy; and 1) forward-
ing said prior version of said data or said current data from
said client proxy to said client.

According to yet another embodiment of the mvention,
there 1s provided a method for ascertaining the validity of
cached data on a HT'TP client for a given URL using meta-

data derived from response data previously fetched from the
HTTP server for the same URL.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the general structure of a meta-data based
system for local cache utilization according to an embodi-
ment of the mvention.

FIG. 2 shows a flowchart of the operation of a meta-data
based method for local cache utilization according to an
embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The software architecture for the MDBC method of inter-
action between a HTTP client and HT TP server 1s shown in

FIG. 1.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

In FIG. 1, the client computer 1s connected to the Internet
using any type of link low or high bandwidth). HT'TP Client
in FIG. 1 represents any HT'TP client that requests data from
a server using the HI'TP protocol. HI'TP Server component
in FIG. 1 represents any HT'TP server that supplies data to
requesting clients. HI'TP Client on the client computer does
not directly interact with HTTP Server. Rather, two interme-
diate software components are used—one on the client side,
and the other on the server side. The client side component 1s
called Client Proxy. The server side component 1s called
Server Proxy. A Server Proxy can concurrently interact with
(or serve) more than one Client Proxy components located on
different client computers. Instead of sending 1ts HTTP
request for data directly to HI'TP Server, HITP Client sends
the data to Client Proxy. Client Proxy, as described later, may
modily the original request from HT TP Client and then sends
the request to Server Proxy. Depending upon the situation, as
described later, Server Proxy first attempts to respond to
Client Proxy’s request using its own cached data, failing
which 1t may send the request to HI'TP Server. Similarly, an
HTTP response from HI'TP Server 1s communicated through
the Server Proxy and then to Client Proxy, before being deliv-
ered to HI'TP Client. Optionally, all the data that 1s commu-
nicated between Client Proxy and Server Proxy can be opti-
mized using a customized protocol between Client Proxy and
Server Proxy by using optimization techniques, including but
not limited to, data compression techniques.

Based on the software architecture shown in FIG. 1, the
caching techmques outlined in Fielding are improved using
the algorithm described as follows:

Priorto sending a HT'TP request for data, HT'TP Client may
optionally search its own cache and then determine if a valid
copy of the required data i1s present 1n its own cache or
whether a HI'TP request for a given URL needs to be sent.

Next, for each data being requested, HI'TP Client sends
Client Proxy a request of the following form:

GET <URL> PROTOCOL VERSION
For instance:

GET http://www.w3.org/HTTP/1.1

Both Client Proxy and Server Proxy maintain their respec-
tive databases that hold, for a certain period of time, addi-
tional information about each HTTP response data corre-
sponding to a URL that has previously been recerved along
with the actual response data. This additional information 1s
called meta-data associated with the response data. This
meta-data includes, but 1s not limited to, the URL associated
with the response data, (more generally, the meta-data can be
indexed or keyed to the requested URL) the type of data in the
response data (for example, atext file, or a GIF imagefile), the
length of the response data, a hash value associated with the
response data. The hash value could be computed using CRC
16, CRC-32, SHA1, MD2, MD4, MD?3, or any other suitable
algorithm. By design, Client Proxy and Server Proxy are
coordinated with respect to the meta-data elements used 1n a
particular implementation of MDBC method and algorithms
used for computing each such meta-data element.

In a case 1n which no prior response data 1s found in Client
Proxy cache for the given URL, the Client Proxy simply
tforwards HTTP Client’s request to Server Proxy. Server
Proxy first searches its own data cache for the response data
for the URL specified by the Client Proxy that is currently
valid based on either Expiration Time Method or the Last-
Modified Time Method. It such data 1s found, Server Proxy
returns the response data to the Client Proxy. Otherwise,
Server Proxy interacts as a regular H1'TP client with HTTP
Server as described 1n Fielding and receives the response data
from the HTTP Server. Server Proxy sends the response data

US 8,291,081 B2

S

to Client Proxy. In etther case, the Client Proxy, in turn, sends
the response data to HI'TP Client. Both Client Proxy and
Server Proxy cache the response data along with the meta-
data in their respective databases for their future use.

In a case 1n which, a prior response corresponding to the
requested URL 1s found in Client Proxy’s cache, Client
Proxy, as part of a modified request, forwards to Server Proxy
clements of the meta-data associated with the prior response
data for that specific URL.

Server Proxy, upon receiving the request from the Client
Proxy, first attempts to fulfill the request from the Client
Proxy by examining its own cache. If a prior response data for
the particular URL 1s found 1n Server Proxy’s cache, which 1s
still valid based on either the Expiration Time Method or the
Last-Modified Time Method, then Server Proxy retrieves the
meta-data for the response data from 1ts cache and compares
cach element of the newly computed meta-data with the cor-
responding values of meta-data supplied by Client Proxy. IT
the values for all the corresponding elements of meta-data
match, then the Server Proxy informs the Client Proxy to
deliver to HT'TP Client the response data that 1s stored 1n the
Client Proxy’s cache. The actual response body 1s not trans-
mitted from the Server Proxy to Client Proxy. Client Proxy
delivers the HTTP response data from the Client Proxy’s
cache to the HT'TP client.

If, on the other hand, Server Proxy does not find a valid
prior response data for the particular URL 1n 1ts cache then
Server Proxy acts as a HT'TP client to the HT'TP Server and
sends a regular HT'TP request based on the protocol described
in Fielding to HT'TP Server. HI'TP Server sends the HT'TP
response data to Server Proxy. On receiving response data
from HT'TP Server, Server Proxy computes the meta-data for
the newly received response data from HTTP Server, using,
the same algorithm as was used by the Client Proxy, and
compares e¢ach element of the newly computed meta-data
with the corresponding values of meta-data supplied by Cli-
ent Proxy. If the values for all the corresponding elements of
meta-data match, then the Server Proxy informs the Client
Proxy to deliver to the HT'TP Client the data that is stored 1n
the Client Proxy’s cache. The actual response body 1s not
transmitted from the Server Proxy to Client Proxy. Server
Proxy stores the response data along with the associated URL
and meta-data 1n 1ts own cache.

Finally, 1 Server Proxy, on receiving the requested
response data either from 1ts own cache or from HT'TP Server,
computes the meta-data for the newly recerved response data,
and any element of the newly computed meta-data does not
match with the corresponding element of the meta-data sup-
plied by the Client Proxy, the cached copy of the response
data, stored in Client Proxy’s cache, 1s considered mnvalid. In
this case, Server Proxy sends the newly recerved response
data to the Client Proxy. Client Proxy then sends the response
data to HI'TP Client. Both Client Proxy and Server Proxy
cache the new response data in their respective databases
along with the associated URL and meta-data for their future
use.

This method may result 1n a significant reduction in the
volume of data transmission from Server Proxy to Client
Proxy, and therefore, 1t may also reduce the time elapsed from
the time the request was generated by the HI'TP Client and
the time the response 1s delivered to the HT'TP Client. It 1s
particularly beneficial when Client Proxy and Server Proxy
are connected over a low bandwidth link.

The caching method according to embodiments of the
invention coexists with those techniques described 1n Field-
ing, but also handles cases the techniques in Fielding may
miss. For instance, even data marked as “Cache-Control:

10

15

20

25

30

35

40

45

50

55

60

65

6

private” or “Cache Control: no-cache” (indicating that the
data should not be cached) can be safely cached using the

MDBC method according to embodiments of the invention.
Also, the meta-data can be used to supplement the methods in
Fielding as additional or independent metrics for ascertaining
whether a cached copy of response data 1s valid or not.

Furthermore, so long as a suitable meta-data 1s used, the
HTTP Client can achieve a high degree of certainty 1n receiv-
ing the requested data that 1s correct, and not *“‘stale”.

EXAMPL

(Ll

As an example, a situation 1s illustrated here where Client
Proxy uses the length of the response data and a computed
hash value as two elements of the meta-data (1in addition to the
URL string itseltl) associated with a response data for a URL.
For each data being requested, HI'TP Client sends Client
Proxy a request of the following form:

GET <URL> PROTOCOL VERSION
For mstance:

GET http://www.w3.org/HTTP/1.1

In a case 1n which no prior response data 1s found 1n Client
Proxy cache for the given URL, the Client Proxy simply
torwards HTTP Client’s request to Server Proxy. Server
Proxy first searches its own data cache for the response data
tor the URL specified by the Client Proxy that 1s currently
valid based on either the Expiration Time Method or Last-
Modified Time Method. It such data 1s found, Proxy Server
returns the response data to the Client Proxy. Otherwise,
Server Proxy interacts as a regular HT'TP client with HTTP
Server as described 1n Fielding and recerves the response data
from the HTTP Server. Server Proxy sends the response data
to Client Proxy. In either case, Client Proxy, in turn, sends the
response data to HI'TP Client. Both Client Proxy and Server
Proxy cache the response data, along with the URL string,
length and hash value, in their respective databases for their
future use.

In the case where a prior response corresponding to the
requested URL 1s found in Client Proxy’s cache, Client
Proxy, as part of a modified request, forwards to Server Proxy
the request for the URL along with the length and the hash
value of the last response data 1t received for that specific
URL.

Server Proxy, upon receiving the request from the Client
Proxy, first attempts to fulfill the request from the Client
Proxy by examining its own cache. If a prior response data for
the particular URL 1s found in Server Proxy’s cache, which 1s
still valid based on either Expiration Time Method or Last-
Modified Time Method, then Server Proxy computes the
length and hash value for the response data from 1ts cache,
using the same algorithm as was used by the Client Proxy, and
compares new length and hash value with the length and hash
value respectively supplied by Client Proxy. If the length and
hash values both match, Server Proxy informs Client Proxy to
deliver HI'TP Client the response data that 1s stored 1n Client
Proxy’s cache. The actual body of response data 1s not trans-
mitted from the Server Proxy to Client Proxy. Client Proxy
delivers the HTTP response data from the Client Proxy’s
cache to the HTTP Client.

If, on the other hand, Server Proxy does not find a valid
prior response data for the particular URL 1n 1ts cache then
Server Proxy acts as a HI'TP client to the HT'TP Server and
sends a regular HI'TP request based on the protocol described
in Fielding to HT'TP Server. HI'TP Server sends the HI'TP
response data to Server Proxy. On receiving response data
trom the HT'TP Server, Server Proxy computes the length and
hash value for the newly received response data from HT'TP

US 8,291,081 B2

7

Server, using the same algorithm as was used by Client Proxy,
and compares the newly computed length and hash value with
the values of length and hash value respectively, supplied by
Client Proxy. If the length and hash value match with the
length and hash value supplied by the Client Proxy, then the
Server Proxy informs the Client Proxy to deliver to the HTTP
Client the data that 1s stored 1n the Client Proxy’s cache. The
actual response body 1s not transmitted from the Server Proxy
to Client Proxy. Server Proxy stores the response data along,
with the associated URL and meta-data 1n 1ts own data cache.

Finally, 11 Server Proxy, on recewving the requested
response data either from 1ts own cache or from HT'TP Server,
computes the length and hash value for the newly recerved
response data, and either newly computed length or hash
value does not match with the corresponding length and hash
value supplied by the Client Proxy, the cached copy of the
response data, stored in Client Proxy’s cache, 1s considered
invalid. In this case, Server Proxy sends the newly recerved
response data to the Client Proxy. Client Proxy then sends the
response data to HT'TP Client. Both Client Proxy and Server
Proxy cache the new response data 1n their respective data-
bases along with the associated URL and meta-data for their
future use.

Other embodiments of the MDBC method are possible
based on placement of software functionality for HT'TP Cli-
ent, Chient Proxy, Server Proxy and HTTP Server compo-
nents described above. These alternate embodiments are
briefly described here.

1. HTTP Client and the Client Proxy can be located on
different computers. A single Client Proxy, 1n this case,
can serve one or more HTTP Clients located on different
computers.

2. The functionality of the HI'TP Client and Client Proxy
can be combined 1n a single software component. For
example, a web-browser can implement the combined
functionality of HI'TP Client and Client Proxy.

3. Server Proxy and HTTP Server may be located on the
same computer.

4. The functionality of Server Proxy and Server can be
combined 1nto a single software component.

5. The MDBC method 1s also applicable and can be
extended to other name/value-based protocols such as
the file transfer protocol (F'TP).

It should be recognized that the embodiments described
herein and shown in the drawing figures are meant to be
illustrative only and should not be taken as limiting the scope
of mvention. Those skilled 1n the art will recogmize that the
clements of the illustrated embodiments can be modified 1n
arrangement and detail without departing from the spirit of
the invention. Theretfore, the invention as described herein
contemplates all such embodiments and modified embodi-
ments as may come within the scope of the following claims
or equivalents thereof.

The mvention claimed 1s:

1. A method for optimizing the transmission of data from a
server located on a server computer to a client located on a
client computer the method comprising steps for:

a) upon a client request for response data hosted by the
server located on a server computer to a client proxy,
determining 11 a prior version of said response data exists
in a client proxy cache, if so computing client proxy
meta-data from said prior version of said response data
to 1dentily said prior version;

b) 11 at step a) said prior version of said response data does
not exist in said client proxy cache, sending a request for
said response data to said server proxy;

10

15

20

25

30

35

40

45

50

55

60

65

8

¢) upon computing client proxy meta-data 1n step a), deter-
mining 1f said prior version of said response data 1s
current by comparing said client proxy meta-data with
server proxy meta-data computed from the response
data requested, 1 said prior version of said response data
1s current, informing said client proxy of this, 1 not then
fetching the current response data from said server,
returning current response data and computing new
server proxy meta-data from said current response data
to 1dentily a current server version;

d) upon receipt of a request from step b), fetching current
response data from said server and computing server
proxy meta-data from said current response data to 1den-
tify the current server version;

¢) after fetching the current response data 1n step d), com-
puting said client proxy meta-data from said current
response data to 1dentity a current client version; and

1) based on the preceding steps, forwarding said prior ver-
s1on of said response data or said current response data
from said client proxy to said client located on the client
computer.

2. The method of claim 1, wherein the server 1s an HT'TP

server having a URL and the meta-data comprises meta-data

other than the last-modified time/date and/or the expiration
time/date as specified 1n the response data fetched previously
from the HT'TP server for the same URL.

3. The method of claim 2, wherein said client proxy meta-
data and said server proxy meta-data comprise at least a hash
value.

4. The method of claim 1, wherein the client proxy and the
server proxy store meta-data indexed or keyed to a requested
URL.

5. The method of claim 1, wherein the response data 1s
indicated as uncacheable.

6. The method of claim 5, wherein the response data 1s
indicated as uncacheable by HI'TP headers selected from the
group of “Cache-Control: private” and “Cache-Control: no-
cache”.

7. A method for ascertaining the validity of cached
response data on a HT'TP client located on a computer for a
grven URL, the method comprising steps for:

a) recerving at a client proxy, a client request for response
data hosted by an HI'TP server located on a server com-
puter;

b) determining 1T a client proxy version of the response data
ex1sts 1 a client proxy cache;

¢) sending a request comprising client proxy meta-data
computed from the client proxy version of the response
datato a server proxy if it 1s determined 1n step b) that the
client proxy version of the response data exists in the
client proxy cache;

d) sending a request to the server proxy for the response
data 11 1t 1s determined at step b) that the client proxy
version of the response data does not exist 1n the client
proxy cache;

¢) 1 a server proxy version of the requested response data
1s not found, receiving current response data retrieved
from the HT'TP server at the server proxy and computing
server proxy meta-data from the retrieved current
response data;

1) recerving a noftification from a processor that the client
proxy version ol the response data 1s current when a
comparison is made, by the processor, of the client proxy
meta-data and the server proxy meta-data, computed
from the server proxy version of the response data, and
the processor determines that the client proxy version of

US 8,291,081 B2

9

the response data 1s current, otherwise, receiving the
retrieved current response data from the server proxy at
the client proxy;

g) computing client proxy meta-data from the received
current response data independently of the server proxy
meta-data; and

h) forwarding the prior version of the data or the retrieved
current response data from the client proxy to the client
located on the client computer.

10

8. The method of claim 7, wherein the meta-data 1s other
than last-modified time/date and/or expiration time/date as
specified 1n the response data fetched previously from the
HTTP server for the same URL.

9. The method of claim 8, wherein the client proxy meta-
data and the server proxy meta-data comprise at least a hash
value.

	Front Page
	Drawings
	Specification
	Claims

