United States Patent

US008281178B2

(12) (10) Patent No.: US 8,281,178 B2
Thibadeau 45) Date of Patent: *Oct. 2, 2012
(54) HYBRID COMPUTER SECURITY CLOCK 4,593,384 A 6/1986 Kleijne
5,012,514 A 4/1991 Rentonccooevvvvnvennnnn, 380/4
(75) Inventor: Robert H. Thibadeau, Pittsburgh, PA 5,022,077 A 6/1991 Bealkowskietal. ... 380/4
(US) 5,027,401 A 6/1991 Solteszcvvevvvieeininnn, 380/54
5,101,374 A 3/1992 Sinutko, Jr. ... 395/725
(73) Assignee: Seagate Technology LLC, Cupertino, 5,164,988 A 11/1992 Matyas et al.
CA (US) 5,345,590 A 9/1994 Aultetal. 395/650
5,394,469 A 2/1995 Nageletal.e.l. 380/4
(*) Notice: Subject to any disclaimer, the term of this g*jﬁ;*gig i ;ﬁggg g:;ll((ledge, Ir. etal. ... gggggg
patent s ex;elfe‘i Of dadJ“Sted under 33 5,504,814 A 4/1996 Miyaharacoo........ 713/200
U.5.C. 154(b) by 567 days. 5,600,805 A 2/1997 Fredericks et al. 395/825
This patent 1s subject to a terminal dis- 2,623,637 A 41997 Jones etal. ..o, 395/491
claimer. 5,754,821 A 5/1998 Cripeetal. 395/491
(Continued)
(21) Appl. No.: 12/423,662
FOREIGN PATENT DOCUMENTS
(22) Filed: Apl‘. 14, 2009 CN 1567362 A 1/2005
(65) Prior Publication Data (Continued)
US 2009/0235109 Al Sep. 17, 2009
OTHER PUBLICATIONS
Related U.S. Application Data Office Action Dated Sep. 15, 2009 From Japanese Application No.
(62) Division of application No. 11/410,447, filed on Apr. 2007-114174.
25, 2006, now Pat. No. 7,539,890. .
(Continued)
(51) Imt. CL.
gggﬁ i;‘;g 538828; Primary Examiner — Mark Connolly
GO6F 7/04 (2006.05:) (74) Attorney, Agent, or Firm — Cesar1 & Reed, LLP; Kirk
(52) US.CL ... 713/500; 713/189; 713/3502; 726/1; A. Cesarl
726/29; 726/30
(58) Field of Classification Search 713/189,
713/500, 502; 726/1,29,30 ©7) ABSTRACT
See application file for complete search history. A clock object 1s provides, which includes a clock time and a
(56) References Cited monotonic time that are readable by the electronic device.

U.S. PATENT DOCUMENTS

3,576,544 A 4/1971 Cordero, Jr. et al. 340/172.5
3,890,601 A 6/1975 Pietrolewicz 340/172.5
4,183,085 A 1/1980 Robertsetal. 364/200
4,442,484 A 4/1984 Childs, Jr.etal. 364/200

The monotonic time 1s incremented every read of the mono-
tonic time from the clock object. The clock object can also
include an indication of a level of trust of the clock time.

19 Claims, 2 Drawing Sheets

106
HOST PERIPHERAL 0
(e B e ACCESS P 122
APP 1 | > CONTROL
B OBJECTS 146
112 124 \
—
o APP2 e CLOCK O8JECT NON-VOLATILE
130 / VOLATILE MEM MEM
CLOCK | CLOCK
TII-I::SR TABLE TABLE
S~ 170 %\ o144
3 142
PC 2| timer() 140
o <L .
CLOCK di e | | TIMER !
>
LOW TRUST o | @ E -
ExaciTime ll R j REAL TIME PROCESSOR
S 180 CLOCK
114
118 190 — 150 >
HIGH TRUST 62
Exactiime| HIGH TRUST
CLOCK [

SOURCE

US 8,281,178 B2

Page 2
U.S. PATENT DOCUMENTS 2002/0069169 Al 6/2002 Sukeda et al.
2002/0077177 Al 6/2002 Elliott
5.787.498 A 7/1998 Lee et al. -
’ " . 2002/0108051 Al 8/2002 Fougeroux et al.
5,809,546 A 971998 GreePStelﬂet al. ... 711/164 2002/0136406 Al 9/200?2 Fitzlglardinge ot al.
5,889,941 A 3/1999 Tushie et al. 2002/0157010 Al 10/2002 Dayan et al. 713/191
5,892,899 A 4/1999 Aucsmuth etal. 395/186 2002/0178337 Al 11/2002 Wilson et al.
g,ggé,ggi i %ggg gm’k N 395,;%%8; 2003/0023867 Al 1/2003 Thibadeau
5040513 A 81999 Aucsmith et al. ... 380/25 ggggfggggﬂé N %88; Momow
5,949,601 A 9/1999 Braithwaite et al. 360/60 2003/0126447 Aﬁ“$ 7/2003 Debiez et al ‘ 713/178
6,000,023 A 12/1999 Jeon ...ccovvovioeereeereinn, 711/173 3 P
6.044.349 A 3/2000 Tolopka et al.coccvvn.... 705/1 %883?83%282 i:‘ lflgggi ?““ et al
1 ablon ...oooovviien, 713/171
6,061,449 A 52000 Candelore et al. 2004/0088513 Al 5/2004 Biessener et al. T11/173
6,088,802 A 7/2000 Bialick et al. | 2004/0128500 Al 7/2004 Cihula et al.
630923202 A 7/2000 Vedetal. ...l 7-_~3/201 2005/0066191 Al 3/2005 Thibadeau 713/200
2’%‘;"2232 18%888 %Z}iyetal* ******************** ;:gggg 2005/0160151 Al 7/2005 Rawson, III
6.141,752 A 10/2000 Dancs et al. ...oooovvv.... 713/172 ggggﬁgﬂgg?ﬁ it‘ %882 JK“ et al
6.157.984 A 12/2000 Fisher et al. 711/112 -_~ eong etal. oo 7137135
197 | _ 2005/0197859 Al 9/2005 Wilson et al.
6,173,282 Bl %ZOOr M;Ca“ghaﬂ et al. . 2005/0210266 Al 9/2005 Cottrell etal. ..o............. 713/185
g’t‘;g’ggi Er iéggr iﬁﬁﬁaﬂ ********************** g;&gg 2005/0268114 Al 12/2005 Thibadeau
S . . s ! 2006/0174352 Al 82006 Thibadeau
6,182,222 Bl 172001 Oparalcccoovvvvvvvnnres 713/206 2007/0174920 Al 7/2007 Thibadeau
gﬂ%ﬂgé Er igggf gl?;gzr;t;l* ****************** 7;7;%1/2(53 2007/0250710 Al 10/2007 Thibadeau 713/168
<7 . LR A 2007/0250734 Al 10/2007 Thibadeau
0,219,771 Bf 4/200j~ Kikuchietal. 711/164 2007/0250015 Al 10/2007 Thibadeau ... 796/5
g%gggi‘ Et“ ggggr %I/[aﬁllphyet al. D 2008/0215306 Al 9/2008 Lidji etal. oooooovrrovvvroo. 703/26
6.268,789 Bl 7/2001 Diamant etal. 340/5.74 2009/0235109 Al 972009 Thibadeau
0,209,409 Bl 7/2001 Solomon ... 709/329 FOREIGN PATENT DOCUMENTS
6,321,358 Bl 11/2001 Anderson 714/763
6,324.627 Bl 11/2001 Kricheffetal. 711/163 CN 1716221 A 1/2006
6,330,653 Bl 12/2001 Murray etal. 711/173 P 2041550 A 2/1990
6,336,187 Bl 1/2002 Kernetal. ..ooovvvevviinn.. 713/161 JP 5134895 A 6/1993
6,360,945 Bl 3/2002 DIEW ovvivviveoeroerierieriinen, 235/382 JP 10097446 A 4/1998
6421779 B1 7/2002 Kuroda et al. JP 2001175354 A 6/2001
6,438,600 Bl 8/2002 Patel et al. JP 2002100118 A 4/2002
6,446,209 B2 9/2002 Kernetal. ..c.ooovvvvini... 713/193 JP 2003091704 A 3/2003
6,468,160 B2 10/2002 ELO ©oovovvoeoeoeeeeeenn 463/40 JP 2004199410 A 7/2004
6647481 Bl 11/2003 Luuetal. ...ocooovvviriii.. 711/206 JP 2004303095 A 10/2004
6,650,492 B2 11/2003 Lennyetal. ...cccoonv....... 360/31 P 2008287020 A 11/2008
6,691,198 Bl 2/2004 Hamlinccovevvvennan... 710/305 IP 2010097445 A 4/2010
6,691,226 Bl 2/2004 Frank, Jr.etal. 713/100 WO 0013073 Al 3/2000
6,707,548 B2 3/2004 Kreimer et al. WO 0180190 Al 10/2001
6,711,605 B2 3/2004 Sekiguchietal. 709/1 WO 0195273 Al 12/2001
6,715,073 Bl 3/2004 An et al.
6,820,063 Bl 11/2004 England et al. 705/54 OIHER PUBLICATIONS
6,830,853 Bl 12/2004 Doveretal. ... 713/502 “Protection and Control of Information Sharing in Multics” Commu-
6,854,039 Bl 2/2005 Strongmetal. 7TIVI63 jications of the ACM, vol. 17, No. 7, Jul. 1974,
6,871,278 Bi‘ 3/2005 Sglu_pac_ Korean Intellectual Property Tribunal Trial Decision dated Sep. 3,
6,889,329 Bl 5/2005 DiGiorgio et al. 2010 § dine K Avoplicat;
6297 383 R1 59005 Amdt 718/1 or corresponding Korean App 1cation No. 10-2007-0_040214.
" ’ - Japanese Office Action dated Sep. 15, 2009 for corresponding Japa-
6915402 B2 7/2005 Wilsonetal.ccooorvi.... 711/173 P - p. 1, P g Jap
6.957.364 B2 10/2005 Shimooka et al. 714/25 1ese Application No. 2007-114174. | 5
6.986.052 Bl 1/2006 Mittal TCPA Security and Internet Business: Vital Issues for I'T” Aug.
7.036,020 B2 4/2006 Thibadeau 713200 2000, pp. 1-70. |
7.046.805 B2 5/2006 Fitzhardinge et al. 380/210 Notice of Allowance dated Jan. 14, 2009 for corresponding U.S.
7,085,931 BI 8/2006 Smith et al. Appl. No. 11/410,447, filed Apr. 25, 2006.
7,114,051 B2 0/2006 Guuetal.ooovvviiiiiill. 711/103 Office Action dated Dec. 30, 2009 for corresponding U.S. Appl. No.
7.124301 Bl 10/2006 Uchida 11/410,453, filed Apr. 25, 2006.
7,155,616 B1 12/2006 Hamlin Office Action dated Mar. 4, 2010 for corresponding U.S. Appl. No.
7.178,034 B2 2/2007 Cihulaetal.ocooo..... 713/155 11/410,702, filed Apr. 25, 2006.
7,228,243 B2 6/2007 Brenner 702/61 Office Action dated Jun. 29, 2010 for corresponding U.S. Appl. No.
7,336,789 B1 ~ 2/2008 Mooy et al. 11/410,453, filed Apr. 25, 2006.
gaiggaggg Eg ggggg Eﬁis‘iziﬂa HI 709/213 Final Office Action dated Aug. 17, 2010 for corresponding U.S. Appl.
426, [hibadeau No. 11/410,702, filed Apr. 25, 2006.
zaggéaégg Eg 1?/{ 3882 Z?Eageau . Final Office Action dated Dec. 3, 2010 for corresponding U.S. Appl.
239, Lhibadeau No. 11/410,453, filed Apr. 25, 2006.
7.600,129 B2 10/2009 Libin et al. P
2001/0052073 Al 12/2001 Kern et al. * cited by examiner

U.S. Patent Oct. 2, 2012 Sheet 1 of 2 US 8,281,178 B2

100 \‘
106
- 102 [s 104

HOST L PERIPHERAL o0
/-—- 110 130 B Sp 12
e | ACCESS | }—122
. APP1 '4_.. - CONTROL ||
l ! | OBJECTS | 148
APP 2 17““““ CLOCWK OBJECT NON-VOLATILE|
| ld 130 VOLATILE MEM MEM
_ | CLOCK ||| CLOCK
LAG | TABLE | TABLE
' 470 L TN 144
—— é L . 142
i PC . E timer() 140 . T
CLOCK w| | & [TveR -
= 1]
LOW TRUST k 6o | E| | E [- n
| | ExactTime jn::: | L= j REAL TIME PROCESSOR
' 4|]| 180 CLOCK | |
5 S 5 :
116 190 — 150 —= |

HIGH TRUST

ExactTime | HIGH TRUST 162
CLOCK
| SOURCE

U.S. Patent Oct. 2, 2012 Sheet 2 of 2 US 8,281,178 B2

HOST PERIPHERAL
102 104

202 204
e

| |

Start Lag Timer
Read ExactTime ClockSetHigh[ExactTime,0]

| - DA
|

200 / 201 '/ Save ExactTime Read timer()

as HighTime Save as

< [Result] ‘t‘—"j }‘ E HighinitialTime

Read LagTime | 203

/I_ SetClockHigh[0,LagTime] | l__—(206
— ‘/ L _
205

204 | Save Laglime

as
Highl.ag

Y

- Record HighTime and
HighLad to Non-Volatile

| | Clock Table

US 8,281,178 B2

1
HYBRID COMPUTER SECURITY CLOCK

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s a divisional of and claims prior-
ity from U.S. patent application Ser. No. 11/410,447, filed
Apr. 25, 2006, the content of which 1s hereby incorporated by
reference 1n 1ts entirety.

Cross-reference 1s hereby made to U.S. application Ser.
No. 11/410,702, entitled “VERSATILE ACCESS CON-
TROL SYSTE M"’ and U.S. Application No. 11,410,433,
entitled “VERSATILE SECURE AND NON- SECUR*
MESSAGING, which were filed on Apr. 25, 2006, and are
hereby 1nc0rp0rated vy reference 1n their entireties.

Cross-reference 1s also made to copending U.S. patent
application Ser. Nos. 09/912,931, filed Jul. 25, 2001 and

entitled “METHODS AND SYSTEMS FOR PROMOTING
SECURITY IN A COMPUTER SYSTEM EMPLOYING
ATTACHED STORAGE DEVICES”; 10/963,373, filed Oct.
12, 2004 and entitled “SYSTEM AND METHOD FOR
DELIVERING VERSAIILE SECURITY, DIGITAL
RIGHTS MANAGEMENT, AND PRIVACY SERVICES
FROM STORAGE CONTROLLERS”; 10/984,368, filed
Nov. 9, 2004 and entitled “SYSTEM AND METHOD FOR
D_JLIV SRING VERSATILE SECURITY, DIGITAL
RIGHTS MANAGEMENT, AND PRIVACY SERVICES™;
11/178,908, filed Jul. 11, 2005 and entitled “METHODS
AND SYSTEMS FOR PROMOT NG SECURITY IN A
COMPUTER SYSTEM EMPLOYING AT'TACHED STOR-
AGEDEVICES”; 11/343,338, filed Jan. 31, 2006 and entitled
“METHOD AND APPARATUS FOR PROVIDING VER-
SATILE SERVICES ON STORAGE DEVICES”; and
11/346,118, filed Feb. 2, 2006 and entitled “METHODS
AND SYSTEMS FOR PROMOTING SECURITY IN A
COMPUTER SYSTEM EMPLOYING AI'TACHED STOR-
AGE DEVICES”.

FIELD OF THE DISCLOSUR.

(L]

The present disclosure relates generally to electronic com-
puting devices, and more particularly but not by limitation to
clock architectures for providing information about time,
such as for security functions.

BACKGROUND OF THE DISCLOSURE

Electronic devices often include a clock for providing
information about time. For example, 1t 1s desirable for elec-
tronic devices that perform security functions to have a means
for obtaining date and time information. For forensic logging
functions, it 1s important to have the capability of logging the
times of certain events.

A real time clock keeps track of the current time even when
the device 1s turned off. A real time clock therefore requires a
source of power, such as a battery, that allows the clock to
continue to function and keep time atter the device 1s powered
down. In contrast, clocks that are not real time do not function
when the device 1s turned off but keep time fairly accurately
when powered-up.

A problem common to many electronic devices, such as
storage devices, 1s that 1t 1s often impractical to include a real
time clock for cost reasons or reasons of practicality around
the need for power. This makes 1t difficult to maintain accu-
rate time 1mformation and to log a precise order of events so
that evidence as to what even occurred and when the event
occurred cannot be easily repudiated.

10

15

20

25

30

35

40

45

50

55

60

65

2

A clock architecture 1s therefore desired that 1s capable of
providing electronic devices with at least some clock infor-
mation that can be used to reliably order events without the
need for constant power, depending on the context of the
device and the context of use.

One or more embodiments of the present invention provide

solutions to these and other problems, and offer other advan-
tages over the prior art.

SUMMARY

An embodiment of the present mvention 1s directed to a
clock object. The clock object includes a clock time and a
monotonic time that are readable by the electronic device.
The monotonic time 1s icremented for every read of the
monotonic time from the clock object.

Another embodiment of the present invention 1s directed to
a clock object, which includes a clock time that 1s readable by
an electronic device and a trust indicator indicative of a trust
level of the clock time. The clock object 1s adapted to return
the clock time and the trust indicator to the electronic device
in response to a clock read request from the electronic device.

For example, the clock time can include at least one of a
high trust clock time and a low trust clock time. The trust
indicator and at least one of the high trust clock time and the
low trust clock time is returned to the electronic device 1n
response to the read request.

In a further embodiment, the clock object comprises a
static set time representative of a source time read from a
clock source, wherein the clock time 1s based on the source
time. The clock object further comprises a lag time represen-
tative of a delay 1n successiully recording the set time 1n the
clock database.

Other features and benefits that characterize embodiments
of the present invention will be apparent upon reading the
following detailed description and review of the associated
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 15 a block diagram of a multicomponent platform
having a peripheral device with a firmware-embedded clock
object according to an embodiment of the present invention.

FIG. 2 1s a diagram 1llustrating a message stream between
a host and a peripheral device during a ClockSetHigh method.

DETAILED DESCRIPTION OF ILLUSTRATIV.
EMBODIMENTS

L1

One or more embodiments of the present disclosure are
directed to a hybnid clock architecture in the form of a clock
object, which provides “clock time” that are based on differ-
ent clock sources, depending on the context of the device and
the context of use, along with information on clock error and
clock reliability. The clock object also provides a monotonic
time, which 1s always capable of ordering events regardless of
the granularity of the clock time. The terms “time” or “clock
time” can include any time information 1n any format or time
unit, such as a date, a time of day, and/or a count.

When a request 1s made to the clock object for information
on clock time, the clock object returns the current clock time
with an indication of the kind of clock from which the clock
information 1s provided. An embodiment of the clock object
has the following basic properties:

a. It can record and report both true clock (date/time) and a
monotonically incrementing counter (the monotonic time) as
appropriate to the circumstances;

US 8,281,178 B2

3

b. It distinguishes more reliable clock times that are exter-
nally set from less reliable clock times that are externally set;
c. It provides a means for bounding the error around exter-
nally set clock times;
d. It provides a natural means for using a reliable internal
real time clock 11 that 1s available.

1. Introduction

For purposes of description, the following disclosure pro-
vides an example of a hybrid clock object associated with a
“peripheral” that 1s coupled to a “host” by a communication
channel, where the host sets and fetches the current clock time
over the communication channel. The terms host and periph-
eral only distinguish that the host solicits a communication
session with the peripheral. The host device and the periph-
eral device each can include any electronic computing device
or peripheral of a computing device, such as but not limited to,
desktop computer systems, laptop computer systems, net-
worked computer systems, wireless systems such as cellular
phones and PDA’s, digital cameras including selif-contained
web-cams, storage devices, and/or any reasonable combina-
tion of these or other systems and devices.

The clock object can also be implemented 1n other envi-
ronments and on any electronic device, such as directly on a
host 1n a messaging or non-messaging environment. The
clock object can be accessed over a communications channel,
a data bus, or through other direct or indirect connections or
databases.

In an example embodiment, the clock object maintains a
table or other database with a time record and other time-
related information. The peripheral device may include any
number of clock objects, but typically one object would be
designated as a default clock object.

The clock object keeps track of date-time utilizing two time
markers, for example:

a 64 bit SN'TP Clock Time field (IETF RFC 2030) called
ExactTime: and

a 64 bit SN'TP Clock Time error field called LagTime,
where SNTP refers to “Simple Network Time Protocol”.
Other time formats, protocols or standards can also be used.

The clock object recerves the ExactTime from the host, so
it 1s expected that the host or some process communicating
through the host will measure the time lag between when 1t
reads the clock time from its source of clock time, to the time
when 1t receives confirmation from the clock object that the
ExactTime has been recerved. The host process then sends the
LagTime to the clock object and, on receipt of the LagTime
the clock object permanently records the ExactTime and the
LagTime. In this way, the clock object knows anumber for the
Exactlime and can also bracket the error, 1t only roughly,
through the LagTime. It should be clear the host can option-
ally repeat this operation to provide an average lag time or a
maximum bounding lag time as suited to the particular cir-
cumstances.

The clock object 1s also capable of distinguishing between
time recerved from a High'Trust Source and time received
from a LowTrust Source. A HighTrust Source may be a
remote, but strongly protected source of the time, while a
LowTrust Source may be an immediate, but not strongly
protected source of time, such as the local personal computer
(PC) clock.

In one embodiment of the present imnvention, the clock
object assumes that the HighTrust source 1s able to provide a
more authoritative time, but with a larger LagTime, so the
clock object uses the HighTrust source to bracket the error 1n
the Low'Trust ExactTime. In this way, a LowTrust, but accu-

10

15

20

25

30

35

40

45

50

55

60

65

4

rate time, can be detected and used. In many cases, a
LowTrust source provides a more precise, reliable time with

greater granularity than a HighTrust source. But, the HighT-
rust source 1s often more authoritative, or trusted, on the
current relative time.

As described 1n more detail below, the clock object can be
set to accept both a LowTrust ExactTime and a HighTrust
ExactTime, just a LowTrust ExactTime without a HighTrust
bracket, or just a HighTrust ExactTime using clock object
modes called HighTrustMode and LowTrustMode.

The clock object can also have two additional time modes,
TimerMode and ClockMode, to distinguish when the time
has been set after a device reset or 1f the clock object has never
been given a setting time. After a reset, the clock object 1s
placed in TimerMode (unless the device includes a backup
battery that maintains time progression and time information
when the device 1s reset or powered down). In TimerMode,
the ExactTime 1s still incremented 1n time, but a read will
show that the fetched time value cannot be trusted as an
absolute because of the reset.

In addition to the LowTrust ExactTime and the HighTrust
ExactTime, the clock object also, independently, maintains a
monotonic counter, which increments 1ts value each time that
a clock time 1s read from the clock object. In one embodiment,
the counter includes a 64 bit persistent counter having a value
called MonoticTime. The MonotonicTime 1s “monotonic” 1n
that 1t maintains a progressively incrementing (or alterna-
tively decrementing) value, even through a reset or reboot.
Each read of the clock time thus provides, in addition to the
current clock time (ExactTime), a unique monotonic value
that can be used to order events, such as during forensic
logging. The MonotonicTime can increment with uniform or
non-uniform increments, but does not return the same count
twice. The increments can be positive or negative as long as
the MonotonicTime changes monotonically (progressively
increases or progressively decreases).

The MonotonicTime 1s helpful since 1t 1s possible to have
the clock object ExactTime set back in time. It may also be
possible for subsequent reads of the clock time to return the
same ExactTime value due to the speed at which successive
reads can be made relative to the time value granularity. In
these cases, 1t would otherwise be difficult to determine with
authority the order of one event relative to another 1n time.

In an example embodiment of the present invention, in
response to a read of the clock time from the clock object, the
clock object returns to the requestor an indication of the kind
of clock time being returned, the ExactTime, the LagTime,
and the MonotonicTime.

2. Exemplary Embodiment

FIG. 1 15 a block diagram of a multicomponent platform
100 having a host 102 coupled to a peripheral device 104
through a communications channel 106 according to an
embodiment of the present invention. Various host software
applications, such as APP1 (labeled 110) and APP2 (labeled
112) may interact with peripheral device 104 through a driver
114 and a peripheral interface 116.

Peripheral 104 includes a secunity provider (SP) 120,
which includes an 1ssued set of tables and methods that con-
trol a persistent trust state of the peripheral device. In one
embodiment, security provider 120 1s a completely seli-con-
tamned and stand-alone security domain of such tables. A
security provider includes objects that are each composed of
persistent data and methods (or remote procedure calls). In
one embodiment, security provider 120 includes a set of
access control objects 122 and a clock object 124. Access to

US 8,281,178 B2

S

security provider 120 may be controlled, for example as
described 1in U.S. Patent Application Publication US2003/

0023867, published Jan. 30, 2003.

Applications on host 102 can query or change a persistent
state on peripheral 104, such as the state of the clock time
maintained by clock object 124, by establishing communica-
tion sessions with security provider 120. These sessions
execute one or more object methods (connectors 130 1n FIG.
1). Host 102 communicates with security provider 120 by
opening a session using the interface commands of the par-
ticular interface 116. In a simple case, host 102 1s the platform
host to which the peripheral device 1s directly attached. In a
more general case, host 102 could be some other platform
host that communicates with an intermediate platform host,
which relays the session stream to peripheral device 104 over
a network. The communication sessions and the security and
access control functions of security provider 120 are dis-
cussed 1n more detail in the U.S. patent applications cross-
referenced above.

In one or more embodiments, the clock object 124 1s
embedded within the firmware of peripheral device 104, such
as part of the firmware that implements the access control and
secure/non-secure messaging system of security provider
120. Although the embodiment shown 1n FIG. 1 1s described
in the context of a security and access control function for
peripheral device 104, clock object 124 can be utilized with
any electronic device and as part of a security or access
control function or not. Clock object 124 can be implemented
as a separate function unrelated to any security, access control
or messaging system 1n alternative embodiments of the
present invention.

In an embodiment, clock object 124 1includes a collection
of persistent data and methods (such as remote procedural
calls). The data can be maintained 1n one or more tables or
other database formats. Methods are procedures, for example,
that operate on tables or other objects. The caller (such as an
application on host 102) passes a list of parameter values of
the method to clock object 124, and the clock object returns a
list of result values, followed by a status code, for example.

Clock object 124 includes a collection of clock information
data and methods that operate on the data. The clock object
can further include all or part of any hardware, software or
firmware for implementing clock functions, storing the clock
data and executing the methods, for example.

In the embodiment shown 1 FIG. 1, clock object 124
maintains a clock table 140 within a volatile memory 142 and
a corresponding persistent clock table 144 1n non-volatile
memory 146. For example, 1f peripheral device comprises a
data storage device, such as a disc drive, volatile memory 142
can 1nclude the random access memory (RAM) used by the
drive processor 1350, and non-volatile memory 146 can
include the media of a data storage disc. However, any other
type of volatile and non-volatile memory can be used in
alternative embodiments.

As described 1n more detail below, clock tables 140 and
144 store clock information that can be changed or fetched
(read) by applications on host 102. For example, application
APP1 (labeled) 110 can set the LowTrust ExactTime or the
HighTrust ExactTime by reading the time value from a local
or remote low trust clock source 160 (such as a local PC
clock) or from a local or remote high trust clock source 162.
An example of a high trust clock source would be an SNTP
clock source that 1s read by host 102 through a wired or
wireless, local or wide area network, for example. The local
low trust clock source 160 provides a quickly available, pre-
cise but not authoritative Low'Trust ExactTime, while high
trust clock source 162 provides a perhaps less precise, but

10

15

20

25

30

35

40

45

50

55

60

65

6

authoritative HighTrust Exactlime. The high trust clock
source 162 typically has a longer access time than the local

low trust clock source 160.

When setting the LowTrust or HighTrust ExactTime value
maintained by clock object 124, the host application APP1
starts a lag timer 170 and then reads the ExactTime value from
clock source 160 or 162. The host application sends the read
time value to clock object 124 as a parameter of a “ClockSet™
method call, for example. Clock Object 124 receives the time
value and responds to the host application APP1 that the clock
time has been recorded 1n clock table 140. Once the host
application APP1 receives confirmation that clock object 124
has received the ExactTime value, the host application reads
the value, “LagTime”, of lag timer 170. The LagTime value
represents the maximum amount of time that the ExactTime
recorded by clock object 124 1s behind the actual time, which
1s the delay 1n successiully recording the ExactTime 1n the
clock database. The LagTime value exceeds the worst-case
lag error, but no further estimation needs to be done in one or
more embodiments of the invention.

The host application sends the LagTime value to clock
object 124 as a parameter of a further message. On receipt,
clock object 124 permanently records the ExactTime and the
LagTime, such as by sending the contents of volatile clock
table 140 to non-volatile clock table 144. The LagTime value
can be used to modily the ExactTime that 1s stored by clock
object 124 or to provide a measure or boundary on the clock
CITOr.

The host application may choose to open a messaging
session with clock object 124 either before or after 1t reads the
time from clock source 160 or 162, depending on the imple-
mentation. If 1t 1s desired to obtain the closest time, the Host-
side process will open a session with clock object 124 before
reading and sending the source clock time. However, the time
may have to come over a local, wide area network, 1n which
case there will be a larger lag time partly because the session
may have to authenticate itself or secure the session with
clock object 124 before the time 1s updated.

Once the static ExactTime value has been recorded, clock
object 124 uses timer 180 to increment its measure of the
current clock time, whether the recorded time 1s a LowTrust
ExactTime and/or a HighTrustExactlime. Once peripheral
device 104 1s powered up, timer 180 can maintain an accurate
and precise measure of time progression relative to the stored
ExactTime values.

In addition, clock object 124 maintains the independent
monotonic counter value, referred to as the MonotonicTime,
in volatile clock table 140. Clock object 124 increments the
MonotonicTime value each time a host application, or any
other object or process reads the time from clock object 124.
Periodically, clock object 124 stores the MonotonicTime
value 1n non-volatile clock table 144 so as to always provide
a monotonically increasing count, as discussed 1n more detail
below.

If a real time clock 190 1s available to peripheral device
104, clock object 124 can utilize its value as a low or high trust
clock time value, as appropriate. Clock object 124 can also set
the real time clock value through procedural calls made by a
host application, for example.

The timers and other support functions for clock object 124
can be implemented in hardware, firmware, software or a
combination 1n alternative embodiments.

3. Clock Tables

In an embodiment of the ivention, a table generally
includes a grid with named columns and addressable rows. At

US 8,281,178 B2

7

cach column and row 1ntersection there 1s a cell. All the cells
in a column have the same type. However, the term “table’ as
used 1n the specification and claims can include any data
structure or arrangement that can be used to associate two or
more fields of data in memory. The “rows” and “columns” of
the table refer to the manner 1n which the fields are associated
with one another, not necessarily the physical arrangement of
memory cells 1n which the fields are stored, and these two
terms are interchangeable.

In one exemplary embodiment, clock tables 140 and 144
have a single row. Table 1 provides a description of the col-
umns 1n clock tables 140 and 144, according to one embodi-
ment of the present invention.

Column Description

Type
Indicates if high trust time values are
valid. In particular, if this value 1s
true, then the HighByWho,
HighSetTime, HighlnitialTimer and
Highl.ag fields are meaningful. If
TrustMode 1s Low then this value
must be false.

Authority that set the high trust time.
Valid only if HaveHigh is set to true.
Otherwise it should be O.

Valid only if HaveHigh is set to true.
Otherwise 1t should be O.

Valid only if HaveHigh is set to true.
Otherwise 1t should be O.

Indicates if low-order time values are
valid. In particular, if this value 1s
true, then the LowByWho,
LowSetTime, LowInitial Timer and
LowLag fields are meaningful. If
TrustMode 1s High then this value
must be false.

Authority that set the low trust time.
Valid only 1f HaveLow is set to true.
Otherwise it should be O.

Valid only 1f HaveLow is set to true.
Otherwise it should be O.

Valid only if HaveLLow is set to true.
Otherwise it should be O.

The monotonic time counter value 1s
periodically saved here.

The MonotonicBase is saved every
Reserve increments or when
ResetClock 1s called.

Defines whether HaveHigh,

HaveL.ow, or both may be true.

HaveHigh boolean

HighByWho
HighSetTime

uidref{ Authority }

clock time

HighInitialTimer clock time

Highl.ag clock_time

Havel.ow boolean

LowByWho
LowSetTime

uidref{ Authority }

clock time
LowInitialTimer clock time

LowlLag clock_time

MonotonicBase clock time

Monotonic clock time

Reserve

TrustMode clock kind

In the above table, the data type “boolean™ 1s a one byte
unsigned integer, uinteger{1}, that can take on values O for
“false’” and 1 for “true”, for example. Alternatively, a one-bit
value could be used. The data type “vidref{ Authority} is a
unique 1dentifier that i1dentifies a particular access-control
authority, such as those maintained by the access control
objects 122 1n FIG. 1, through which the high trust time or the
low trust time were set. The data type “clock_kind” has the
format enum{Timer, Low, High, LowHigh}. One of these
types would be enumerated 1n this column. The data type
“clock_time” has the format typeOr{trusted:sntp_time,
monotonic:uinteger{8}}. If the host has supplied a trusted
time (LowTrust or HighTrust) since power up, then the
“trusted” clock time 1s used, which has an sntp_time format.
Otherwise the monotonic counter value 1s used, which 1s an
unsigned eight-byte mteger.

The HaveHigh field indicates 1f the high trust time values
are valid. It this value is true, then the HighByWho, HighSet-
Time, HighInitial Timer and Highlag fields are meaningful.
If TrustMode 1s Low then this value must be false, for

example.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Similarly, the HavelLow field indicates if the trust time
values are valid. If this value 1s true, then the LowByWho,
LowSetTime, LowInmitial Timer and LowLag fields are mean-
ingtul. If TrustMode 1s High then this value must be false, for
example.

The HighSetTime and the LowSetTime correspond to the
HighTrust ExactTime and the LowTrust .

ExactTime received
from the host, which are static time values. The Highlnmitial-
Timer and the LowInitial Timer correspond to the respective
values of “timer()” from timer 180 at the moment when the
values of HighSetTime and the LowSetTime are set. When
cither of these values are set by the host, the clock object
records the static value of timer() in the respective field
HighInitial Timer or LowInitial Timer.

The lag times measured by the host lag timer 170 for the
high trust and low trust clock sources are stored in the
Highlag and the LowlLag columns, respectively. These lag
times are generally representative of the delay between read-
ing the ExactTimes from the clock sources and recording the

corresponding set times 1n the clock table.

The value stored in the MonotonicBase column of the
volatile clock table 140 (1n RAM), which can be referred to as
a volatile MonotonicBase, 1s incremented by a specified uni-
form or non-uniform increment each time an application,
object or other process or device reads the time from clock
object 124. On each read, the value of the volatile Monoton-
icBase 1s returned to the requester as the MonotonicTime.

In one embodiment, the MonotonicBase has enough bits to
ensure that the monotonic count will never reach a maximum
count during the usetul life of the electronic device 1n which
it 1s used. For example, the MonotonicBase can have 64 bits.
However a larger or smaller number of bits can be used 1n
alternative embodiments.

The value of MonotonicReserve determines the period 1n
number of increments of the volatile MonotonicBase at
which the clock object 124 copies or saves 1ts contents, and
particularly the value of the volatile MonotonicBase, into the
non-volatile clock table 144 in non-volatile memory 146.
Thus, the non-volatile MonotonicBase value gets updated
every MonotonicReserve increments of the volatile Mono-
tonicBase. This keeps the count values incrementing while
minimizing the number of writes to main memory. The clock
object momitors the current sum of increments of the volatile
MonotonicBase since the most recent save to the non-volatile
memory, referred to as the MonotonicIncrement. When the
MonotonicIncrement reaches the MonotonicReserve value,
the clock object saves the volatile MonotonicBase to the
non-volatile clock table.

On a reset or power-down, for example, the previous value
of the volatile MonotonicBase 1s lost. However on power-up,
the clock object loads the MonotonicBase column of the
volatile clock table 140 with a value equal to at least the sum
of the saved, non-volatile MonotonicBase and the Monotoni-
cReserve values. This ensures that the new value of the vola-
tile MonotonicBase will be at least as great as the next most
previous value that was saved prior to the reset. The volatile
MonotonicBase value could not have incremented more than
the MonotonicReserve since the last permanent save to the
non-volatile clock table. Thus, the volatile MonotonicBase
value 1s guaranteed always to increase, even though 1t may
skip up by the MonotonicReserve value. Subsequent reads of
the clock time from the clock object will never return the same
MonotonicTime value.

The monotonic values can be handled in other ways 1n
alternative embodiments. For example on each save to the
non-volatile memory, the saved MonotonicBase can be
increased 1n advance by the MonotonicReserve. After reset,

US 8,281,178 B2

9

the saved value can then be loaded directly into the volatile
MonotonicBase. Other processes can also be used to ensure a
monotonically increasing (or decreasing i desired) count.
Thus, the clock object maintains the following constraints:
O=MonotonicIncrement=MonotonicReserve
Volatile MonotonicBase=Non-volatile MonotonicBase+
MonotonicIncrement
where MonotonicIncrement 1s the sum total of increments of
MonotonicBase since the last save to non-volatile memory.

4. Clock Methods

This section provides example of methods or processes that
can be called by a host application (or other process, object or
device) and executed on or by the clock object. A method 1s an
action that the host application desires to perform that makes
use of a resource or feature of the peripheral device, such as
the clock object.

4.1 GetClock Method

The GetClock method 1s used to fetch information about

the current time and has the following format:

TableName.GetClock] |

=>

[Kind:clock_kind, ExactTime:clock_time, LagTime:clock_
time, MonotonicTime:clock time]

The first expression indicates the desired clock table name
(the name of clock table 140 1n FIG. 1) and specifies the
GetClock method. The expression that follows the “=>”
arrow represents the result returned to the host from the clock
object.

The result has four parameters, “Kind” having the data type

“clock_kind”, “Exactlime” having the data type “clock_
time”, “Langme” having the data type “clock_time”, and
“MonotonicTime” having the data type “clock_time”. In an
alternative embodiment, one or more of these parameters are
returned 1n one or more separate messages.

Upon receiving a ClockGet Method call, the clock object
reads its volatile clock table. If HavelLow 1s true, then the
result will be [Low,LowTime,LowlLag, MonotonicTime].
Else 1t HaveHigh 1s true, then the result will be [High,
HighTime,HighlL.ag, MonotonicBase]. Otherwise the result
1s [“timer”,timer(),0, MonotonicBase]. Other priorities can
be implemented 1n other embodiments.

In this embodiment, the GetClock method call returns
either of the two virtual variables, HighTime or LowTime,
depending on the contents of the clock table and the Trust-
Mode. The clock object calculates these variables according
to the following expressions:

HighTime=HighSetTime+(timer()-HighInitialTime

LowTime=LowSetTime+(timer()-LowInitial Time

The clock object reads the values of timer 180 and HighlIni-
tialTime to determine the time lapse from the HighSetTime
(HighTrust ExactTime) mitially set by the host and stored 1n
the clock table. Alternatively, timer 180 can be reset each time
the host sets the Hi ghSetTlme and then simply added to the
HighSetTime when read again by the host. In a turther alter-
native embodiment, separate timers can be provided for the
high and low trust set times.

The clock_kind parameter thus serves as an indicator of a
level of trust of the Exactlime clock time that 1s being
returned. Alternatively, the clock object can return both the
HighTime and the LowTime together with valid flags that
indicate whether either of these clock times 1s valid. The valid
flags also serve as indicators of the trust level of the clock
source from which the clock times are based.

10

15

20

25

30

35

40

45

50

55

60

65

10
4.2 ResetClock Method
The ResetClock method has the following format:
TableName.ResetClock]| |
=>
[Result: boolean]

This method resets the clock and puts the clock object into
the timer mode. This method is called automatically when the
peripheral device resets or when called by the host.

The clock object sets the following properties when this
method 1s called:

TrustMode=T1mer
HaveHigh=0 (1.¢, false)
HaveLow=0 (1.¢, false)

Volatile MonotonicBase=Non-volatile
MonotonicReserve

MonotonicBase+

In addition, the memory variable MonotonicIncrement 1s
set to 0, which indicates the number of increments of the
volatile MonotonicBase since the last save to the non-volatile
MonotonicBase.

This guarantees that the volatile MonotonicBase always
increases (although 1t may 1n a ResetClock method call skip
up by MonotonicReserve value).

The boolean result returned by the clock object confirms
whether the ResetClock method executed.

4.3 SetClockHigh Method
SetClockHigh method has the following format:

TableName.SetClockHigh[ExactTime:sntp_time,LagTime:
sntp_time]

=

[Result:Boolean]

This method 1s used by the host to set the time from a high
trust source, such as source 162 1in FIG. 1.

FI1G. 2 1s a diagram illustrating an example message stream
between the host and the peripheral during a ClockSetHigh
method.

When setting the HighTrust ExactTime, the host applica-
tion starts lag timer 170 (FIG. 1), at step 200 1n FIG. 2, reads
the ExactTime value from clock source 162 and then sends
the ExactTime value to clock object 124 as a parameter in the
above format, at step 201. At this point, the LagTime param-
eter 1s not mcluded or set to a null value since the value

remains unknown. Clock Object 124 receives the |

Exactlime
value, stores the value 1 the HighTime column of the volatile
clock table 140, at step 202, and confirms to the host appli-
cation that the clock time has been recorded, at step 203. The
Boolean ‘Okay” result 1s set to true of the operation suc-
ceeded and false 11 the operation failed. The clock object also
reads the value of timer 180 and records this value in the
HighlInitial Time column of the clock table, at step 204. Once
the host application recetves confirmation that clock object
124 has recerved the ExactTime value, the host application
reads the value of lag timer 170, at step 204, and sends the
Lag'Time value to clock object 124 as a parameter of a further
SetClockHigh message, at step 205. On receipt, clock object
124 stores the LagTime 1n the HighlLag column of the clock
table and permanently records the High'Time and Highl.ag in
the non-volatile clock table 144, at step 206.

This method call 1s accepted only when TrustMode 1s not
Low. If this call 1s accepted, then HaveHigh is set to true and
HighByWho is set to the authority for this messaging session.
If the new high value does not bracket an existing low value
according to the following constraints, then HaveLLow 1s setto
false.

US 8,281,178 B2

11

When the TrustMode 1s LowHigh and both high and low
values are present, then the low value must be contained
within the high value. Specifically:

LowTime=HighTime; and

LowTime+LowlLag=HighTime+Highl.ag.

The Low'Time value should not be allowed to go back in
time, so 1t must be greater than the HighTime. Also, since the
LowLag should be shorter than the Highl_ag, then the second
inequality should be true. Otherwise, there 1s a problem with
the Low'Time value.

When either inequality 1s not true, the clock object discards
the LowTime because 1t 1s probably wrong, and resets the
HaveLow value to “0”” (false). Note that when implementing
these time comparison steps, the value of timer() 1s not
needed since 1t appears on both sides of the comparisons and

cancels out.
4.4 SetClockl.ow Method

The SetClockLow method 1s similar to the SetClockHigh
method and has the following format:
TableName.SetClocklLLow|[ExactTime:sntp_time,LagTime:
sntp_time]
=>
|[Result:boolean]

This method 1s used to set the time from a low trust source,
such as the PC clock 160 in FIG. 1.

This call 1s streamed 1n a similar fashion as that for the
SetClockHigh method described above. The host sends the
LowTrust ExactTime to the clock object while measuring the
LowLag time with lag timer 170. The clock object records the
LowTrust Exactlime in the LowTime column of the clock
table, reads timer 180 and records 1its value in the LowInitial-
Time column of the clock table. Once the clock object con-
firms 1t has recorded the LowTime, the host sends the clock
object the LowLag time value, which 1s stored 1n the LowLag
column of the table. Both LowTime and LowLag are recerved
betore either 1s updated in the non-volatile memory.

This method call 1s accepted only when TrustMode 1s not
High. If the mode 1s LowHigh and HaveHigh 1s true, then this
call 1s accepted only when the existing high value brackets the
new low value, according to the inequalities recited above.
Other comparisons or constraints can be used 1n alternative
embodiments.

If this call 1s accepted, then HavelLow 1s set to true and
LowByWho 1s set to the authority for this session.

4.5 ClockSetMode Method

This method sets the TrustMode 1n the clock table and has

the following format:

TableName.ClockSetMode[Mode:Clock_kind]
=>

[Result:boolean]

It the TrustMode 1s set to Low, then HaveHigh 1s set to
talse. If the TrustMode 1s set to High, then Havel.ow 1s set to
false. If the TrustMode 1s set to LowHigh, then HaveLLow and
HaveHigh are set to true.

4.6 RenewCounter Method

TableName.RenewCounter] |
=>
[Result:boolean]

The host calls this method any time 1t wants to synchronize
the non-volatile clock table on the main storage media with
the current values 1n the volatile clock table in RAM. The
clock object writes the current values to the non-volatile
memory and resets the Monotomiclncrement to zero. Note
this method leaves the value of virtual variable Monotonic-
Time unchanged.

10

15

20

25

30

35

40

45

50

55

60

65

12

5. Conclusion

The clock object described above therefore 1s capable of
providing electronic devices with at least some clock infor-
mation that can be used to reliably order events monotoni-
cally without the need for constant power. Regardless of the
granularity of the clock, the delay between subsequent clock
reads, or power resets, the clock object provides unique,
monotonically increasing information for each clock read.
This 1s extremely helptul 1n data logging applications where
it 1s 1important to accurately order events. For example the
clock object can generate time stamps for forensic logging
that prove a sequence of events that cannot be repudiated.

The clock object also provides an indication of whether the
clock information 1s based on a high trusted source or a low
trusted source and provides an indication of the clock error or
other bounding conditions of the clock information.

It 1s to be understood that even though numerous charac-
teristics and advantages of various embodiments of the inven-
tion have been set forth in the foregoing description, together
with details of the structure and function of various embodi-
ments of the invention, this disclosure 1s 1llustrative only, and
changes may be made 1n detail, especially 1n matters of struc-
ture and arrangement ol parts within the principles of the
present invention to the full extent indicated by the broad
general meaning of the terms in which the appended claims
are expressed. For example, the particular elements may vary
depending on the particular application for the clock object
while maintaining substantially the same functionality with-
out departing from the scope and spirit of the present inven-
tion. In addition, although the preferred embodiment
described herein 1s directed to a clock object for a peripheral,
it will be appreciated by those skilled 1n the art that the
teachings of the present invention can be applied to any elec-
tronic device, without departing from the scope and spirit of
the present invention.

What 1s claimed 1s:

1. A device comprising;:

a processor configured to implement a clock object includ-

ng:

a clock time that 1s readable by an electronic device; and

a trust 1indicator 1ndicative of a trust level of the clock
time, wherein there are more than two trust levels that
may be indicated and the clock object 1s adapted to
provide the clock time and the trust indicator to the
clectronic device.

2. The device of claim 1 wherein:

the clock time comprises at least one kind of a high trust

clock time and a low trust clock time, wherein the high
trust clock time 1s more authoritative than the low trust
clock time; and

in response to a clock read request, the clock object 1s

adapted to return at least one of the high trust clock time
and the low trust clock time and the trust indicator to the
clectronic device.

3. The device of claim 2 further comprising:

an interface for the device to communicate with the elec-

tronic device;

a memory to store the clock object; and

wherein the trust indicator indicates the kind of clock time

being returned.

4. The device of claim 2 and further comprising a memory
storing a clock database, which stores the high trust clock
time and the low trust clock time, 1f available, and an indica-
tion of whether the database contains the high trust clock time
and whether the database contains the low trust clock time.

US 8,281,178 B2

13

5. The device of claim 1, wherein the clock object further
COmMprises:

a monotonic time, wherein the monotonic time 1s incre-
mented for every read of the clock time from the clock
object; and

upon a reset of the clock object, the clock object 1s adapted
to adjust the monotonic time.

6. The device of claim 1 and further comprising:

a memory storing a clock database, which comprises:

a static set time representative of a source time received
from a clock source; and

a timer, which increments a timer value, wherein the clock
time 1s a function of the set time and the timer value.

7. The device of claim 1 and further comprising:

a memory storing a clock database, which comprises:

a static set time representative of a source time read from
a clock source; and

a lag time representative of a delay 1n successtully
recording the set time in the clock database.

8. The device of claim 1 wherein the trust indicator 1s
indicative of one of multiple trust levels including a first trust
level, a second trust level, and a third trust level, the first trust
level indicates a lower trust compared to the second trust level
that indicates a higher trust compared to the first trust level,
and the third trust indicator indicates no trust.

9. A device comprising:

a clock object having a clock time that 1s readable by an

electronic device;

the clock object provides an indicator of a type of clock
time from multiple available clock times to the elec-
tronic device; and

the clock object provides a monotonic count value 1n addi-
tion to the clock time to the electronic device.

10. The device of claim 9 further comprising an interface
coupled to the clock object to receive a request from the
clectronic device to provide the clock time and the interface
adapted to provide the indicator of the type of clock time to
the electronic device.

10

15

20

25

30

35

14

11. The device of claim 9 further comprising the indicator
of the type of clock time indicates of a trust level of the clock
time.

12. The device of claim 9 further comprising the clock
object provides a clock time of an indicated clock type.

13. The device of claim 12 further comprising the clock
object provides a monotonic count value to the electronic
device.

14. The device of claim 13 further comprising the clock
object provides a lag time to the electronic device, the lag time
representing a delay between the clock time and an actual
time.

15. The device of claim 9 further comprising the indicator
ol the type of clock time indicates multiple types of clock time
and the clock object provides multiple clock times associated
with the multiple types of clock time to the electronic device.

16. A device comprising:

a clock function adapted to provide a clock time to an

electronic device; and

the clock function 1s adapted to provide a monotonic count

value that 1s not dependent on time and 1s distinct from
the clock time to the electronic device.

17. The device of claim 16 further comprising the clock
function 1s adapted to provide an indicator of a type of clock
time, provide the clock time associated with the indicator, and
the indicator indicates a trust level of the clock time.

18. The device of claim 17 further comprising the trust
level 1s one of multiple trust levels including a first trust level,
a second trust level, and a third trust level, where the first trust
level indicates a lower trust compared to the second trust level
and the second trust level indicates a lower trust compared to
the third trust level.

19. The device of claim 16 further comprising the count
value 1s a monotonic count value and the clock function 1s
adapted to increment the monotonic count value based on
activity of the clock function.

	Front Page
	Drawings
	Specification
	Claims

