12 United States Patent

Rothman et al.

US008281116B2

US 8.281.116 B2
*QOct. 2, 2012

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)

SYSTEM AND METHOD FOR UTILIZING A
PROTECTED/HIDDEN REGION OF
SEMICONDUCTOR BASED
MEMORY/STORAGE

Inventors: Michael A. Rothman, Puyallup, WA
(US); Vincent J. Zimmer, Federal Way,

WA (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 289 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 12/347,840

Filed: Dec. 31, 2008
Prior Publication Data
US 2010/0332813 Al Dec. 30, 2010

Related U.S. Application Data

Continuation-in-part of application No. 12/135,076,
filed on Jun. 6, 2008, now abandoned, which 1s a
continuation of application No. 10/364,994, filed on
Feb. 12, 2003, now Pat. No. 7,395,420.

Int. CI.
GO6F 15/177 (2006.01)

US.CLo e 713/2

(38) Field of Classification Search 713/1, 2
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,360,945 Bl * 3/2002 Drewcciiiiiiniiinnn, 235/382
7,054,990 B1* 5/2006 Tamuraetal. ... 711/103

* cited by examiner

Primary Examiner — Kim Huynh
Assistant Examiner — Eric Chang

(74) Attorney, Agent, or Firm — Schwabe, Willlamson &
Wyatt, P.C.

(57) ABSTRACT

A method for accessing a protected area of a solid-state stor-
age device via firmware control 1s described. During system
initialization, firmware components are loaded and executed
to mitialize a computer system. These firmware components
include a firmware driver for accessing solid-state storage
devices connected to the computer system. The system firm-
ware enables a protected area on a solid-state storage device’s
media to be accessed under firmware control. After firmware
accesses, the protected area 1s closed from access by non-
firmware entities by “hiding” the true size of the media such
that those entities are unaware of this area of the media.
Mechanisms are disclosed for providing firmware access to
the protected area only during pre-boot, and for both pre-boot
and run-time operations. The firmware-controlled media
access scheme may be used to load firmware stored on solid-
state media during pre-boot and to store system information
in the protected area during pre-boot and/or run-time opera-
tions.

34 Claims, 10 Drawing Sheets

(SYSTEM START/POWER ON ’USD{J

EARLY FIRMWARE (£.G.. MEMORY INITIALIZATION) 302

INITIALIZE FIRMWARE DISK INTERFACE {LE. BIOS ATAPI 5 DEVICE DRIVER) g—304

S12E OF MEDIA

IS2UE A READ_NATIVE_MAX _ABDRESS COMMAND TO DETERMINE NATIVE | 206

ISSUE A SET_MAX_ADDRESS = READ_NATVE_MAX_ADDRESS (VALUE)
COMMAND TO SET MAX_ADDRESS AT TOP OF MEDIA

308

PERFORM MEDIA (DATA READ AND/OR RIGHT; ACCESS IN HFA REGION; 340
DATAFORMAT MAY BE FIRMWARE-SPECIFIC

ISSUE A SET_MAX_ADDRESS = WATERMARK COMMAND TO DEFINE 312
O5-VISIBLE TOF OF MEDIA ADDRESS

Y

" PROVIDE™.___
< RUN-TIME ACCESS .
TO HPA?

43 314

|

ISSUE A SET_MAX_FREEZE
COMMAND TO DISABLE CHANGE
IN MAX ADDRESS UNTIL NEXT

SYSTEM RESET

¥
DETECT EVENT,; INVOKE SERVICE ROUTINE TO

ACCESS HPA VIA FIRMWARE
420

RSUE A READ NATIVE_MAX_ADDRESS COMMAND

322

READ NATIVE _MAX ADDRESS (VALUE) COMMAND
TO SET MAX_ADDGRESS AT TOP OF MEDIA

ISSUE A SET_MAX_ADDRESS =

324

PERFORM HPA REGIUN ACLESS VIA FIRMWARE

-
_,-:-"d- L
- ~—

{E.G., WRITE DATA FERTAIKING TO MEMORY/

REGISTER DUMP)
326

e -H“h-,_h
- CONTINUE RT SUPPORT?

Gy

327

YES

L 4

IS5UE SET _MAX_ADDRESS = OS-VISIBLE T0P OF |

MEDIA ADDRESS COMMAND

330

U.S. Patent Oct. 2, 2012 Sheet 1 of 10 US 8,281,116 B2

110~ =

FROM

[TTTTTTITITT
AN EENEEE

]
]
*
|
L]
L]
]
¥
i
w»
[
[
o
--
.'
]
- w
1 é Ny -
PE L -.‘ -
LI =r
L] F
“- _-.'-'
- -
‘. "]
“I. .'
- ’
et
a
t.-
*a T -.
L e T
*u P o "
1 Y e __.-":.."".- L | S
Y N N - Femh I g
F’-—:’—I?J .-_=':-'__" i - i __-:;'r'f-'h i 1"‘-.._‘;_
e T L e . el M
| pEeT el s VAL e e
-.___-'q"-\. _ ':-q..;':-d--:iﬁ:-- __.:_"' ﬂf"{l i__J___n,“h - 5 quh::'\-"‘w-\._""‘x_
T | T e - -\.'":__:.'-' - - |1
:._;-"-' 1 | e _:{ e Tl
== ™ | -a-"‘v \“'\.. | [|":-\.- H'H |
.-& - L = - - g a-..__.- E- 1 I
-] - .- - Fpll s [1 .
_ '---1\&.\-‘ . . ! bl : ":"'_-_-_ _,:-'# .\""\T"__.-" L e - L | |: | | L~ e
- B R i S . e 1 I ‘1
- \’L;" Ny S Sl T S ““m‘*-u:u-"'j.-“:-ﬂl“l o Tl T
""'f-'- -~ iy - o] Lt e *}'_"':-_'"'.-'."-'_'"-'.‘”-"."a-:‘-""' R T 1
L o _-%1J,ﬁ -. T A e R iy B Lol |
- T o N e e D i gty B &‘-_,,_";-‘ Sy
M e P U ot o A S It C e ML I el = L
L g et) ST e A e e o
o R I T Ly T i R U Ly "“*«-. I R T e e e | 1 [
RS e _-\.)i‘:: . -"_L_:';.E ""'-r.-'_;'-'_"_'\.r . !E'F___':-I T L ar gttt - ?..._.?_"'-" T e T 1 - ! H“-"-qh}" 7l
T :-——"“:fl‘—ma‘ﬁﬁ“;’”’l‘i—&‘zﬁrﬂ H‘:?!}’fr;;” T x}fﬁf}fﬁﬁaaf’g T oo
- - -, '-———'\-'H-\.J_-.-' —Tw T A e T — — — .-'J:g".?‘_ =ttt % ey - e T .
T I D R e e AT D I e Ll s o Rl Ry
" — " —~— f—__lﬁr = T A P - = _.-":-'1,\,-\.'.\, . Rt e - - = __,-:ra

. T A i | -, P =
-\.?::M mf;‘__._—hl;:‘-.-_’_f_l':;x—zh_farl - ._; -t ﬂ'-‘-u:_._::_ — '\-,_t-'__.:-'__.d:-;h___ I:,_.:_ _-‘rﬂﬁa:_.-"__.__.-

3 —_———- = — L, Tl Rt e — —_—— . E,
"y T.:.-":. tr_—;] ":_.- — = __-"_:,-——_.:_\\I -"--.-"-:""\-\.I'\-_‘-“':-- == " Iy H":"\-c- .

" e e b T T T Ry Rl —

N R e T Pt v I —

a VTR T e R - g

""I e l.'|"_.—" '\"'.\:"nv e I"\E__.—"'

. . : g L T

100

10, I (Prior Art)

U.S. Patent

Oct. 2, 2012 Sheet 2 of 10

EARLY FIRMWARE (£.G,

MEMORY INTTHTALLZATION 200

DEVICE INFHALIZATION 204

OS5 BOOT SUFPPORT AND

RUNTIME INTERFACED <4

Fig. 2 (Prior Ari)

FIRMWARE VOLUME
HPROTOCOL DRIVER

HIRMWARE VOLUME BLOCK
PROTOCOL DRIVER

FIRMWARE VOLUME
HARDWARE

Fig. 8

US 8,281,116 B2

U.S. Patent

Fig, 3

Oct. 2, 2012 Sheet 3 of 10

SYOHEM START/RPOWER ON

EARLY FIRMWARE (£.G., MEMORY INFHALIZATION) 302

INITIALIZE FIRMWARE DISK INTERFACE (L. BIOS ATAP S DEVICE DRIVER] §ra04

iooUlE A READ NATIVE MAX ADDRESS COMMAND TO BETERMINE NATIVE
oIk OF MEDIA

SoURE A Sk _MAX_ADDRESS = READ_NATIVE._MAX_ADDRESS (VALUE)

COMMAND TO SET MAX_ADDRESS AT TOP OF MEDIA SU8

PERFORM MEDIA (DATA READ ANLYOR RIGHT) AUCEDS IN RPA REGION:

DATA FORMAT MAY BE FIRMWARE-SPECIF S10

ISoUE A SET MAX ADURESS = WATERMARK COMMAND TO UEFINE
OS-VislBLE TOP OF MEDIA ADDRESS

— —
-i'"d-f th-“'“-q
" e
— T
— F -
— T
—_ L ir e
e T

US 8,281,116 B2

318

< RUN-TIME ACCESS

314

COMMAND TO DISABLE CHANGE

[95UE A SET _MAX _FREESE

SSUE A SET_MAX_ADDRESS =
N MAX ADDRESS UNTIL NEXT

SYSTEM RESET

A 4
DETECT EVENT, INVORE SERVICE ROUTINE 1O
ALCESS HPA VIA FIRMWARE

READ NATIVE MAX ADDRESS (vALUE) COMMAND
TOOET MAX_ADDRESS AT TOF OF MEDIA

316

PERFURM RPA REGIUN ACLESS VIA FIRMWARE

324 |

(B, WRITE DATA PERTAINING TO MEMORY/

REGISTER DUMP)

327 1SaUk ob T MAX ADDRESS = O&6-ViSIBLE TOP OF
MEDIA ADDRESS COMMAND

U.S. Patent Oct. 2, 2012

44{}

]
y A A i '.f#f
o o
— Fl .
— - e
- L
— W - i
n = .
. - £
I‘ -
-]
) ' RUN-TIME -
- '
L] Sy =
‘.._ ""::}—F . .-.!P'-"-": 'I-
'Ill — ;{?Ff;ﬁ:’_-L;: e
b ﬁﬂé; :.«'di{; 5.
S B R -:—"{—J:cﬁ"’..;::"jr_. . T p
T e eEPE LT kel c TR e
| | - %-F-"‘: ‘:'_'_}".-1;.;.".—" .-_,.;-'_ T e . o !.-\'.?' 'H-:I. = - .
- L.-:t'i' T di-’_':'-"‘:-:f e e .-'.:‘;::}-.'-' ..ﬁ:a} .i._'ﬂ.h HH.___ | R
T TR B e §]| 1
- . ST i wE S EE - . *
.-'.-"":H*wfg:‘ .--"":.-\ﬁ.-* I-[\Il E":f":--}-'-j.:;'j‘ ..:'!T:T:-'."f:.ﬂﬁhjr.-'-f-":; e : T -.'"L-_x“ »ﬁR E A iy
R '«L I T v - L ey £ :
- ohy: . - T et L "'\-\.E-L\. | 1
) ' 2 L

PRI |

Sheet 4 of 10

NATIVE MAX ADDRESS-
410 ™

OS-ViIS_MAX _ADDRESS -

“' 8 o O30 0 0
/ i]
o o
, I]
'ml (]
O 2
, I_I I:_:I
] l
’ GE0Sa000

US 8,281,116 B2

ADDRESS (£

400

US 8,281,116 B2

Sheet S of 10

Oct. 2, 2012

U.S. Patent

¢ *31f

LTS . /.,
ﬁ%gﬁugq ’

S s Evﬁﬁg AT M
M

_% 1

 ZWNG Geie——.,

_” LRI
mgm N |M1 AXT R %

N Velh] X2 S LIS DUEEILIOE S0 Mlmsﬁ .mmﬁhwézf
- P KON 5 PUBLALICE
1
+- £ 42 wgz@ CREASES
S EASTNS — I ommd

PUBLUUON YO0 ... ZINS NS

LR AP S DLBAALIOG e

JEictvemps PSOIUY ﬁg S TS

/

m

“

m -

_m m ﬁ%ﬁg LANE
o LNSOLING - LINSELING — IEERE XS

P! EEEE O O XN

L ODOMRXYWIS, SERII0Y X L3S 35 0NN

ARBULIOO CRONVSSV

_ufe%éﬂwnm

- LA m%@i

m&wgm%

DOYOORNY ¥BN BSOS anlpoeLy amﬁ@ Y BES OVS

U.S. Patent

LIXE
LRIVER
L

P
MODULE
=3

Hin
MOBULE
A

600

714

71

708

Oct. 2, 2012

0 (B0

TTTTTTTTTTTTTTTTTTTTTTTT

by i, T o, T, e
TR
Rt

Sheet 6 of 10

EXECUTABLE IMAGE
(DRV 1)

US 8,281,116 B2

Ox1 0000 0000 (4GR)

HEADRER (UORY 1)

EXECUTABLE IMAGE
(PEIM B)

HEADER (PEIM B)

EXECUTABLE IMAGE
(PEIM A)

HEADER (FEIM A)

PLATFORM
iNETHALLZATION

o CORE
FRAMEWORK

EH FRAMBWORK

DXE FRAMBWORK

Rl FRAMEWORRK

LISPFATUHER

LI XE
DRIVER
3

PXE
URIVER

Qoo ooD

ATAP D

HIRMWARE-

LEVEL

ALLUEDSS

710

FIRMWARE
VOLUME

EXECUTABLE IMAGE

HEADER (PEIM C)

(PEIM C)

EXECUTABLE IMAGE

HEADER (DRV 2)

(NATIVE MAX ADDRESS
—
FHHA 416

7

(DRY 2)

7

MAGNETIC
MEDIA
RUN-TIME
ACCESSIBLE:
AREA

/ .
: Y L
.rl_-'" _ .-r‘_\- _} H‘ -:.._,-'
{.l"l £ ---E - o e
h, e d
H"\. .-'/-'ﬁ.:::"ff
) &=
", S -
W N,

) s

.‘- h"x .-"f \:‘:x

- . - ,-f"’f e ;,
| e o L

(T op of Memory Below 4GE8)

Fig. 6

US 8,281,116 B2

904
m YU 83
Col

&

™

3

—

s 9

—

—

o

2‘._....

g FNLL-NAY

S

U.S. Patent

1447

250U 4 UOHNISNT
(37 1A

vEL

ARBOMANWY A 143

@il idd ™OLL

AtV i
¥

gid

AV =

L BLf

LO0OY WALSAS

0L

IS X

" i

AHOMANY o4 K

C AANGA| || L HdAET
R®=ETia1C

004

IS A FHd

AROMANWY e A 1dd

e Widd - WNiHd
¢ Wi-dd

8L

U.S. Patent Oct. 2, 2012 Sheet 8 of 10 US 8,281,116 B2

—> EARLY FHRMWARE]v GO0
\
\

\ LOADS
\
\ | |
\

YV DRIVER{S) G2

] Q\/%ae

DRIVER Y
3/ SO8A FPURBLISHES ~—
NTERFACE / \

INSTANCES ACCESS
ACCESS J L </
FV PROTOCOL PV PROTOCOL

HO0A G000

INSTANCE

Yy PROTOCOLI . 2y PROTO{DOLl 006D
nsTance [POURE NSTANCE |

ALLESS ALCESS

(@ >/

INSTANCE

N N— e

Fig, 9

U.S. Patent Oct. 2, 2012 Sheet 9 of 10 US 8,281,116 B2

1000 :
e, 10

LOAD FIRMWARE 10 ACLUESS HPA 1002

COLLECT SYSTEM CONFIGURATION INFORMATION 1004
(£, 0., HARDWARE ANLVOR HIRMWARE CONFIG DATA]

OFEN HFA; SAVE OYSTEM CONFIGURATION L
INFORMATION N HPA; CLOSE HPA ‘

1006

SYSTEM RESET/STARTUP 1008
| OAD FIRMWARE TO ACCESS HPA 1010

COLLECT CURRENT SYSTEM CONFIGURATION

INFORMATION 1012

OFEN HPA; RETRIEVE PRIOK SYa TEM

CONFIGURATION INFORMATION 1014

COMPARE CURRENT CONFIGURATION INFORMATION]
WITH PRIOR SYSTEM CONFIGURATION INFORMATION
v f 1018
< _SAME OR DIFFERENT? _—DIFFERENT—

NOTIFY DY S TEM ANDIOR USER

OF CONFIGURATION CHANGE

SAME v YES——
JHEDATE CONFIGURATION
INFORMATION T T
— WHANGE AUTHORIZEDY 5
1028 ~— P
! 1026
CLUGE HPA 1020 E‘;@

ROLLBACK CONHGURAHON: INVOKE

VECHANISM TO RETURN SYSTEM TO |-
— . PRIOR CONEIGURATION

U.S. Patent Oct. 2, 2012 Sheet 10 of 10 US 8,281,116 B2

INITIALIZE PLATFORM
INCLULES EARLY HVWINTT/ 1100

MEMORY/CPUFETE, F fgﬁ j f

___.—P' -"H__H_
____.-' "'\-__h_h
- -
- s
- s
- -
- =
- T
- -
_-"f-- e
- - "'\-\.,___
.
.
-

HRFAT ~ LIKE

H_.i"-d- -\-H"\-\._

~ENHANCEMENT ACTIVE S

F’ mmm _ INCLUDFE FORCING ATTRIBUTES TO BF
- READ-QONLY, HIDING RANGE OF SECTORS,
ETC, PLATEQRM NV CONTROLLER CAN
NO) ACT AS INTERMEDIARY FOR THIS 1114
BEHAVIOR, BLOCK ACCESS CAN BE

o 1104
" BLOCK f— NCY _
T T N Yy FvE 7 =
< DEVICE PLATFORM o CON ﬂijgié?ﬁoﬁé =0 1106
FROCESS CONTENT FROM BLOCK
i | DEVICE AS APPLICABLE. THIS INCLUDES Ko 1108
L | READING FIRMWARE EXTENSIONS OR
POSTING UPDATES TO DEVICE
1140
—CONTROL TO™ f
:5& PASSED 10 BOOT > LOCKFREEZE THE HPA. THIS MAY

VIRTUALIZED THRU A VMM, OR PRL
SUPFPORT MAY B USED. CHANGING RAW
ATTRIBUTES (& NEW TO ENVIRONMENT.

boeeeeee CONTINUE FIRMWARE INIT 1112

ISSUE READ NATIVE MAX ADDRESS TO 1118
DETERMINE NATIVE SIZE OF MEDIA

ISSUE A SET MAX ADDRESS T VALUE
BELOW READ MAXIMUM ADDRESS TO 1118
RESERVE HPA FOR FIRMWARE USE

1122 ISSUE A SET_MAX_FREEZE S0 THAT
| LAUNCH BOOT TARGET MAXIMUM ADDRESS CANNQT BE SET 1120
AGAIN UNTIL SYSTEM RESET

US 8,281,116 B2

1

SYSTEM AND METHOD FOR UTILIZING A
PROTECTED/HIDDEN REGION OF
SEMICONDUCTOR BASED
MEMORY/STORAGE

CROSS-REFERENCE TO RELAT
APPLICATION

gs
w

This application 1s a Continuation In Part Application to
U.S. patent application Ser. No. 12/135,076 , entitled “Using,
Protected/Hidden Region Of A Magnetic Media Under Firm-
ware Control,” filed on Jun. 6, 2008 now abandoned by
Michael A. Rothman et al., which 1s a Continuation Applica-
tion to U.S. patent application Ser. No. 10/364,994, entitled
“Using Protected/Hidden Region Of A Magnetic Media
Under Firmware Control,” filed on Feb. 12, 2003, now 1ssued
as U.S. Pat. No. 7,395,420, all assigned to a common
assignee, the entire subject matter which 1s herein imcorpo-
rated by reference. 20

10

15

FIELD OF THE INVENTION

The field of invention relates generally to computer system
and, more specifically but not exclusively relates to firmware- 25
controlled access to a protected or hidden area of a semicon-
ductor, or solid-state, base storage media.

BACKGROUND INFORMATION
30
Computer platform firmware 1s used during 1nitialization
of computer systems to verily system integrity and configu-
ration. It also generally provides the basic low-level interface
between hardware and software components of those com-
puter systems, enabling specific hardware functions to be 35
implemented via execution of higher-level software nstruc-
tions contains 1n computer programs that run on the computer
systems. In computers, a primary portion of this firmware 1s
known as the Basic Input/Output System (BIOS) code of a
computer system. The BIOS code comprises a set of perma- 40
nently recorded (or semi-permanently recorded in the case of
systems that use tlash BIOS) software routines that provides
the system with 1ts fundamental operational characteristics,
including 1nstructions telling the computer how to test itself
when 1t 1s turned on, and how to determine the configurations 45
for various of built-in components and add-on peripherals.
In a typical personal computer (PC) architecture, the BIOS
1s generally defined as the firmware that runs between the
processor reset and the first instruction of the Operating Sys-
tem (OS) loader. This system initialization time-iframe 1s 50
commonly referred to as “pre-boot,” and the execution envi-
ronment prior to OS loading 1s called the pre-boot environ-
ment. As shown i FIG. 1, in a typical PC 100, the base
portion of the BIOS code 1s stored 1n some type of ROM (read
only memory) device on the PC’s mainboard (1.e., mother- 55
board) 102, such as a standard PROM 104 or a flash memory
device 106. In some configurations, this base portion may be
extended using code stored in ROM BIOS chips 108 con-
tained on one or more add-on peripheral cards 110, such as
SCSI controllers and bus-mastering devices. This portion of 60
the BIOS 1s stored 1n components that are commonly referred
to as “option ROMs.” The BIOS code in peripheral card ROM
BIOS chips 108 typically concerns specific functionality pro-
vided by their corresponding peripheral card and 1s executed
during 1nmitialization of that peripheral card according to a 65
(mostly) well-defined set of rules. In either of the foregoing
configurations, all BIOS firmware 1s stored on non-volatile

2

memory devices, either on the motherboard or in option
ROMs on the peripheral card(s) added to a system.

In many instances, the basic functionality of a computer
system platform 1s defined by the platform’s firmware.
Accordingly, 1n order to enhance this functionality, corre-
sponding code needs to be added to or modified 1n the firm-
ware. In existing PCs, this may be accomplished by either
replacing the BIOS chip(s) on the motherboard (and/or
peripheral cards), or, if those BIOS code 1s contained in
rewritable chips (e.g., flash memory chips), executing a BIOS
update soltware program that replaces the existing BIOS code
with new code. Both of these methods requires user actions
that may be prone to error, including improperly installing the
new BIOS chips and inadvertently damaging the BIOS code
by updating 1t with the wrong code or having a power failure
or system crash in the middle of the code-update process.
Furthermore, extensions to the system firmware are limited to
the firmware code that may be stored on these IC-based
firmware devices.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein like reference
numerals refer to like parts throughout the various views
unless otherwise specified:

FIG. 1 1s a schematic diagram of a computer system con-
taining conventional firmware for describing a conventional
firmware loading scheme;

FIG. 2 1s a flowchart illustrating high level operations cor-
responding to pre-boot operations performed subsequent to
loading a computer operating system;

FIG. 3 1s a flowchart illustrating a process 1n accordance
with one embodiment of the invention by which magnetic
media may be accessed under firmware control;

FIG. 4 1s a schematic diagram of a computer system con-
taining firmware 1n accordance with embodiments of the
invention that enable access to a protected area of media on a
magnetic storage device;

FIG. 5 1s a state diagram 1illustrating various mechanisms
for invoking state transitions in accordance with a security
scheme that may be implemented by embodiments of the
imnvention;

FIG. 6 1s a schematic diagram 1llustrating a firmware con-
figuration employed by one embodiment of the invention for
accessing a protected area ol media contaiming extended firm-
ware 1n accordance with the Extensible Firmware Interface
(EFI) framework.

FIG. 7 1s a block schematic diagram illustrating a multi-
phase computer system initialization scheme corresponding
to a system boot under the EFI framework;

FIG. 8 1s a block diagram of a protocol stack corresponding,
to a firmware volume access scheme 1n accordance with the
EFI framework:

FI1G. 9 1s a flow diagram 1illustrating the process of loading
and executing firmware to further access extended firmware
stored on one or more firmware volumes 1n accordance with
the EFI framework;

FIG. 10 1s a flowchart illustrating a process for storing
system configuration information 1n the protected area of the
media and for rolling back a system configuration in the event
an unauthorized system configuration change has occurred;
and

US 8,281,116 B2

3

FIG. 11 1s a tflow chart illustrating process for storing
system configuration information in the protected area of
solid-state media which allows for rolling back a system
configuration 1n the event an unauthorized system configura-
tion change has occurred, according to an embodiment of the
invention.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

(L]
Y

ERRED

Embodiments of methods and systems that enable access
to and employ a protected or hidden region of a semiconduc-
tor based memory, or flash memory 1n a pre-boot environment
are described herein. In the following description, numerous
specific details are set forth to provide a thorough understand-
ing of embodiments of the invention. One skilled 1n the rel-
evant art will recognize, however, that the mvention can be
practiced without one or more of the specific details, or with
other methods, components, matenals, etc. In other instances,
well-known structures, materials, or operations are not shown
or described 1n detail to avoid obscuring aspects of the mnven-
tion.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included 1n at least one embodiment of the
present invention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment”™ 1n various places
throughout this specification are not necessarily all referring,
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined 1n any
suitable manner 1n one or more embodiments.

Conventional BIOS Operation

In a conventional computer system, the BIOS starts to work
as soon as a system 1s turned on. For example, when existing
microprocessors, for example, available from Intel Corpora-
tion, e.g., Pentium III, IV, start to work, they immediately set
themselves up 1n real mode and look at a special memory
location 16 bytes short of the top of the one-megabyte real
mode addressing range, absolute address OFFFFO (Hex). This

location holds a jump 1nstruction that redirects the processor
to begin execution of code at another address corresponding,
to where the base portion of the BIOS 1s actually stored, such
as ROM chip 102.

Execution of the first portion of BIOS code performs a
series ol diagnostic routines, called the Power-On Self Test
(POST) routine, which ensures the major hardware compo-
nents 1n a computer system are functioning properly. As
depicted by a block 200 1n FIG. 2, during a first (1.e., early
firmware) phase of the POST routine the BIOS enumerates
and 1nitializes the system memory and performs other critical
chipset initialization operations. One by one, the POST rou-
tine checks the integrity of the motherboard, processor, and
memory, and checks for the existence of various devices,
including a mouse, a keyboard, various storage devices (e.g.,
floppy drive, hard drives, CD ROM drives, tape drives, etc.),
and other components corresponding to configuration infor-
mation stored 1n the computer’s CMOS memory, or similar
persistent storage. As depicted by a second phase block 202,
alter the BIOS makes sure that the system 1s operating prop-
erly, 1t enumerates all non-memory devices on all busses 1n
the system and 1nitializes and starts these devices, as appro-
priate. In a third phase 204, the BIOS provides means for
initiating the loading of the OS and produces runtime nter-
faces.

10

15

20

25

30

35

40

45

50

55

60

65

4

Magnetic Media Firmware-Controlled Access Scheme

As discussed above, 1n conventional personal computers,
all of the BIOS code 1s stored in ROM-type devices local to
the computer, either entirely on the motherboard, or via ROM
devices on the motherboard and option ROMs on one or more
peripheral add-on cards. Such local storage devices are
termed silicon firmware devices as used herein. In accordance
with aspects of the invention, a first mechanism 1s now dis-
closed for enabling access to one or more firmware resources
stored on magnetic media, such as that employed by a com-
puter’s hard disk system. More particularly, the mechanism
employs a protected or hidden region of a hard disk media that
1s used to store important data 1n a manner that 1s transparent
to the operating system, and 1s accessible 1n the pre-boot
environment.

A mechanism has been introduced 1n PCs that allows a
system to access storage locations on magnetic media without
depending on disk access functionality that 1s normally pro-
vided by an operating system during run-time. This mecha-
nism may be employed on magnetic storage devices having
controllers that support the Host Protected Area (HPA) fea-
ture set. In particular, the Host Protected Area 1s a feature that
was mtroduced by the ATA/ATAPI-4 (AT Attachment Packet
Interface) standard, and accordingly, hard disk controllers
that support the standard (and subsequent versions such as
ATA/ATAPI-3, which updated the standard) provide direct
access to store data on and retrieve data from magnetic media
via a corresponding HPA feature command set. Currently,
this standard 1s used to achieve a pseudo-disk capability such
that the system can have an alternate location to boot from
other than the O/S controlled remainder of the disk. This has
been used to launch items like system diagnostics 1n the past.

In accordance with the principles and teachings of the
invention, techniques for supporting various usage models
are disclosed that take advantage of HPA access for enhanced
system functionality. These usage models include: 1) the
ability to deprecate FAT (file allocation table) driver support
from firmware flash so a firmware volume (which firmware
has native support for) can be placed in the HPA area; 2) the
ability to store many extensibility modules in the HPA region
for additional pre-boot support without encumbering flash
overhead which 1s at a premium; 3) Firmware can enable the
saving ol critical file-system structures to the HPA for recov-
ery of broken boot structures, since these structures could
have been affected by viruses or malfunctioning programs.
An operating system would not normally be able to recover a
failure 1n a boot structure since it has yet to be loaded 1n this
case; 4) one can place data to the HPA region 1n an O/S
independent fashion. This allows for critical system core
dumps to take place 1n the pre-boot and the storing of this
information without the need to understand the native file-
system on the media. Using ram firmware formats to write
this data 1s sufficient for this private region of the media.
Generally, the HPA region may be used to store almost any
system-related data, and may further include storing system
secrets for further security extensibility, storing manageabil-
ity information (e.g., even logs, manufacturing data, etc.), and
storing other types of configuration information.

With reference to the flowchart FIG. 3, a generalized pro-
cess for accessing firmware stored on a hard disk in accor-
dance with an embodiment begins in a block 300 correspond-
ing to a system start/power on event (i1.e., a cold boot or
system reset). Inresponse to the event, early system firmware
1s loaded and executed 1n a manner similar to that discussed
above with reference to block 200 of FI1G. 2, 1in block 302. For
example, FIG. 4 shows a computer system 400 including a
mainboard 402 on which a flash device 404 1s mounted. The

US 8,281,116 B2

S

flash device contains firmware for mitializing the computer
system and for supporting BIOS run-time services. This firm-
ware 1s loaded and executed by a processor 406 to perform the
system 1nitialization operations described herein. In general,
firmware may be copied into memory 408 prior to execution
and for subsequent use for run-time firmware drivers. These
initialization operations continue 1n a block 304, wherein a
firmware-level hard disk/controller interface i1s initialized.
This interface provided the low-level interface between soit-
ware (specifically an operating system), and the hard disk
subsystem (controller and hard disk device). In one embodi-
ment, the interface comprises an ATAPI 5 compatible device
driver.

The disk interface enables firmware to access hard disks
connected to an ATAPI-compatible hardware interface via a
set of commands. Typically, a peripheral device or chip 1s
employed to facilitate this hardware interface, such as shown
in FIG. 4, wherein computer system 400 includes an ATAPI 5
controller peripheral card 410 that 1s inserted into an expan-
s1on slot 410 1n mainboard 402. Optionally, the ATAPI hard-
ware interface may be facilitated by an ATAPI peripheral
device controller chip 412.

Returning to the flowchart, the process continues 1n a block

306 1n which the firmware disk interface issues a READD NA-
TIVE MAX ADDRESS command to the ATAPI controller
(peripheral card or chip) to determine the native size of the
media (hard disk) connected to the controller. This command
1s one ol the commands employed by the ATAPI 5 HPA
feature command set. As shown 1n FIG. 4, this command will
return the highest address (s1ze) of the storage space available
on an ATAPI 5-compatible storage device (e.g., hard disk)

414 (1.e., the media). The firmware will then 1ssue a
SET MAX _ADDRESS=the wvalue returned from the

READ NATIVE MAX ADDRESS command in a block
308. This enables access to all of the storage space on the
media.

Next, i a block 310, any media access operations corre-
sponding to an HPA region 416 on the media are performed.
As described above, the HPA region comprises a special
portion of the media that 1s not visible to the operating system,
and thus data may be stored 1n this region of the media 1n an
OS-independent manner. For example, the firmware may
define 1ts own data storage scheme, such as a firmware-
specific file system.

Generally, HPA region 416 may contain data that 1s either
pre-loaded (e.g., by a system vendor or integrator), or 1s
generated by the system during pre-boot and/or run-time
operations. Typically, this portion of the mediamay be used to
store data that are specific to the computer system, such as
system configuration mformation, fault diagnostic informa-
tion, performance information, etc. In one implementation,
the HPA region 1s used to store additional firmware that 1s
loaded and executed during pre-boot, as described below 1n
turther detail.

After the HPA region of the media has been accessed, it 1s
necessary to redefine the size of the media such that the
operation system cannot overwrite data stored in the HPA
region. Under the ATAPI 5 HPA feature command set, a
scheme 1s employed to “hide” the HPA region from the oper-
ating system. This 1s accomplished by providing information
to the OS that indicates the size of the media 1s the media’s
native size minus the portion of the media reserved for HPA
access. Thus, 1n a block 312 the firmware 1ssues a SET MAX
ADDRESS=Watermark value that defines the top of the
media address that will be visible to the operating system. The
region between the media’s top native address and this water-
mark comprises the HPA region of the media.

10

15

20

25

30

35

40

45

50

55

60

65

6

The SET MAX ADDRESS command allows the host to
redefine the maximum address of the user accessible address

space. Accordingly, when the SE'T_MAX_ADDRESS com-

mand 1s 1ssued with a maximum address that 1s less than the
native maximum address, the device reduces the user acces-
sible address space to the maximum set, providing a protected

area above that maximum address. Under the ATAPI 3 speci-
fication, a SET_MAX ADDRESS command 1s to be imme-

diately preceded by a READ_NATIVE_MAX_ ADDRESS
command.
After the SET MAX ADDRESS command has been

1ssued, the device will report only the reduced user address
space 1n response to an IDENTIFY_DEVICE command
(which 1s commonly used by the OS (through the firmware
device driver) to determine the Media size and other device

parameters). Any read or write command to an address above
the maximum address specified by the SET_MAX_AD-

DRESS command will cause command completion with an
error indication returned, or otherwise aborting the com-
mand.

Depending on the implementation, access to the HPA
region may be provided only during pre-boot, or may be
provided both during pre-boot and run-time. Accordingly, in
a decision block 314 a determination 1s made to whether
run-time support 1s to be provided. If the answer 1s NO, the
firmware 1ssues a SET MAX FREEZE command in a block
316 to disable changing the maximum address until the next
system reset. Internally, 1ssuance of the command toggles a
volatility bit 1n the Sector Count register that enable the host
to specily whether the maximum address set 1s to be pre-
served across power-on or hardware reset cycles. On power-
on or hardware resets, the device maximum address returns to
the last non-volatile address setting regardless of subsequent
volatile SET_MAX_ADDRESS commands. Issuance of the
SE'T _MAX_FREEZE command locks out access to any
address above the most recently 1ssued SET_MAX_AD-
DRESS command until the next system reset or power on
event, and thus 11 this command 1s 1ssued during pre-boot,
access to the HPA region will be disabled during run-time
operations.

In some implementations, it may be desired to provide
access to the HPA region during OS run-time. However, 1n
order to preserve the integrity of the HPA region data, this
should be done 1n a manner that 1s transparent to the operating
system. As a secondary measure, it may be advantageous to
employ security measures provided by HPA feature com-
mand set. Accordingly, 1n an optional block 318, HPA secu-
rity support measures are set up. The security features include
password support that enables rogue, malicious, or otherwise
errant code from accessing the HPA region. In addition to
providing run-time security support, the security feature may
also be employed during pre-boot to prevent non-trusted
firmware components from accessing the HPA region.

With reference to the state diagram of FIG. 5, security
measures under ATAPI 5 operate 1n the following manner.
Page 43. The state diagram contains for states: SMO: the
Set_Max_Securnity_Inactive state; SM1: the SET_Max_Un-
locked state; SM2: the SET Max_Iocked state; and SM3:
the Set_Max_Frozen state. The SMO: Set_Max_Security_I-
nactive state 1s the default state that 1s entered with the device
1s {irst powered on. When 1n this state, SE'T MAX security 1s
disabled. Subsequently, state transitions proceed as follows:

Transition SM0a:SMO0O: When a SET MAX ADDRESS
command 1s received, the command will be executed and the
device will make a transition to the SMO: Set MAX Securi-
ty_Inactive state.

US 8,281,116 B2

7

Transition SMOb:SMO: When a SET MAX LOCK, SET
MAX UNLOCK, or SET MAX FREEZE LOCK command 1s
received, the device will abort the command and make a
transition to the SMO: Set. MAX_Security_Inactive state.

Transition SMO:SM1: When a SEFT MAX-SET PASS-
WORD command 1s received, the device will make a transi-
tion to the SM1: Set Max Unlocked state. SM1: Set Max
Unlocked: This state1s entered whena SET MAX SET PASS-
WORD or a SET MAX UNLOCK command 1s received.
When 1n this state, a SET MAX security password has been
established and the SET MAX security 1s unlocked.

Transition SM1a:SM1: When a SET MAX ADDRESS
command 1s received, the command will be executed and the
device will make a transition to the SM1: Set MAX Un-
locked state.

Transition SM1b:SM1: When a SET MAX SET PASS-
WORD 1s received, the password stored by the device will be

changed to the new value and the device will make a transition
to the SM1:Set MAX Unlocked state.

Transition SM1c:SM1: When a SET MAX UNLOCK
command 1s received, the command will not be executed and
the device will make a transition to the SM1: Set MAX Un-
locked state.

Transition SM1:SM2: When a SET MAX LOCK com-
mand 1s received, the device will make a transition to the
SM2: Set Max [.ocked state.

Transition SM1:SM3: Whena SET MAX FREEZE LOCK
command 1s received, the device will make a transition to the
SM3: Set Max_ Frozen state.

SM2: Set Max_ l.ocked: This state 1s entered when a SET
MAX LOCK command 1s received. When 1n this state, a SET
MAX security password has been established and the SET
MAX security 1s locked.

Transition SM2a:SM2: When a SET MAX ADDRESS or
SET MAX SET PASSWORD command 1s received, the com-
mand will be aborted and the device will make a transition to
the SM2: Set Max [.ocked state.

Transition SM2b:SM2: When a SET MAX LOCK com-
mand 1s receirved, the command will be executed and the
device will make a transition to the SM2: Set Max [.ocked
state.

Transition SM2:SM1: When a SET MAX UNLOCK com-
mand 1s received, the device will make a transition to the
SM1: Set Max Unlocked state.

Transition SM2:SM3: Whena SET MAX FREEZE LOCK
command 1s received, the device may make a transition to the
SM3: Set Max Frozen state. Hosts should not 1ssue the SET
MAX FREEZE LOCK command when 1n this state. (This
transition 1s proposed to be removed in the ATA/ATAPI-6
standard).

SM3: Set Max Frozen: This state 1s entered when a SET
MAX FREEZE LOCK command is received. In this state, the
device may not transition to any other state except by a power
cycling.

Transition SM3:SM3: When a SET MAX ADDRESS,
SET MAX SET PASSWORD, SET MAX UNLOCK, SET
MAX FREEZE LOCK, or SET MAX LOCK command 1s
recetved, the command will be aborted and the device will
make a transition to the SM3: Set Max Frozen state.

Run-time HPA region access support might be enabled
under situations 1n which 1t 1s desired to store system data and
parameters during run-time 1n a manner that is transparent to
the operating system. In particular, such information may be
saved without requiring any operations by the operating sys-
tem, and 1n fact may even be performed when the operating,
system crashes. Typically, the implementation will be
enabled through some OS-transparent event detection and

10

15

20

25

30

35

40

45

50

55

60

65

8

service mechanism, such as the System Management opera-
tional mode (SMM) provided by various Intel processors. For
example, a SMM system management interrupt (SMI) may
be mvoked in response to a pre-selected event (e.g., OS
crash), and a corresponding interrupt service routine may be
performed 1n which various data, such as register values,
memory contents, etc., are written to the HPA region. Return-
ing to the flowchart of FIG. 3, operations performed by such
an event detection and service mechanism are depicted 1n
block 320-330, beginming with the detection of the event and
invocation of an appropriate service routine.

Next, 1n blocks 322 and 324 the firmware 1ssues a READ
NATIVE MAX ADDRESS command and sets the maxi-
mum accessible address for the to the top of the native address
space, thus opening the HPA region. If HPA security 1s imple-
mented, appropriate commands and passwords may also need
to be 1ssued to effectuate access to the HPA region. At this
point, the firmware may access the HPA region to write and/or
retrieve data, as depicted 1n a block 326.

A determination 1s next made in a decision block 327 to
whether continued run-time support 1s wanted. As discussed
above, 1t may be desired to save register and/or memory data
in the case of a particular event, such as an OS crash. In such
a case, subsequent run-time support will not be applicable
until a system reset 1s performed, and the operating system 1s
re-booted. Thus, the answer to decision block 327 will be no,
and the process will exit. In cases 1n which the OS 1s still
operating, it may be desired to continue to provide run-time
access to the HPA. Since the maximum accessible address has
been raised to provide HPA region access, it 1s possible that
the operating system (via appropriate firmware device driver

calls) could access the HPA region at this point. To prevent
this, the maximum address 1s reset via the SET MAX_ AD-

DRESS command 1n a block 330 to the OS-VIS MAX AD-
DRESS watermark, and the cycle returns to wait for the next
detected event.

It 1s noted that 1t may be possible under some circum-
stances for the operating system to access the HPA region
after block 326. However, i the HPA access 1s set up to be
performed during an OS-transparent operation, such as ser-
vicing of an SMI with a service routine that concludes by
returning the maximum address to the OS-VIS_MAX_AD-
DRESS watermark 1n block 330 prior to returning control to
the operating system, the OS will be precluded from access-
ing the HPA region.

In one embodiment, the magnetic media firmware access
mechanism 1s implemented during pre-boot 1n accordance
with a recently introduced firmware load and execution
framework called the Extensible Firmware Interface (EFI)
(see, developer*intel*com/technology/efi; Note: periods
have been replaced with asterisks to avoid inadvertent hyper-
links). More particularly, EFI enables firmware to be loaded,
in the form of firmware modules and drivers, from a variety of
different resources, including primary and secondary flash
devices, option ROMs, and various persistent storage devices
(e.g., hard disks, CD ROMs, etc.)

With reference to FIG. 6, 1n response to a cold boot or
system reset, the instruction pointer of an EFI-compliant
computer system’s microprocessor 1s directed to the first
istruction 1n a set of platform initialization firmware code
600 that 1s stored on a firmware device (FD) 0. This firmware
device, which typically will comprise a non-volatile memory
component such as a flash device or ROM BIOS chip, com-
prises the boot firmware device (BFD) for the system. Execu-
tion of the platform initialization firmware begins at a reset
code portion 602, and proceeds sequentially until all of the
firmware to 1mnitialize the computer system has been executed.

US 8,281,116 B2

9

Under the EFI 2.0 architecture, this initialization process
includes various execution phases of the firmware, as shown
in FIG. 7. These execution phases, which include a Pre-EFI
Initialization (PEI) phase 700 a Driver eXecution Environ-
ment (DXE) phase 702, and an EFI 1.0 execution phase 704,
enable mnitialization and set-up of various platform devices
and services, and enable an operating system (OS) to be
booted 1n accordance with an OS launch phase 706. Accord-
ingly, the phases preceding the OS launch phase are collec-
tively referred to herein as the pre-boot phase or simply “pre-
boot.”

The PEI phase 1s responsible for main memory initializa-
tion and setting up enough of the platform fabric and
resources to hand-oif control to the DXE phase. As such, the
firmware code that 1s executed to perform the PEI phase
includes an Instruction Set Architecture (ISA)-specific PEI
core 708, which 1s also referred to as PEI framework 708. The
PEI framework includes firmware corresponding to a dis-
patcher 710, which upon execution 1s used to locate and
dispatch for execution one or more Pre-EFI imitialization
modules, also referred to herein as PEI Modules or PEIMs.
Firmware code in the PEIMSs 1s used to abstract the particular
platform, chipset, and policy abstractions from the baseboard.

During the DXE phase, an ISA-specific DXE core (1.e.,

[1

DXE framework 712) 1s executed, enabling one or more DXE
drivers to be loaded. The DXE drivers are responsible for
providing input/output (I/0) services, such as block device
abstraction, consoles, and the EFI file system. These drivers
include a distinguished driver called the Boot-Device Selec-
tion (BDS) that 1s responsible for abstracting the operation
system load and console selection policy.

During the EFI 1.0 execution phase, firmware code corre-
sponding to an EFI framework 714 that provides core EFI
operations 1s executed. The EFI framework also registers an
EFI library 716, and one or more EFI applications 718 and
720. Generally, the EFI applications are non-persistent
executable images that are used for transient services, such as
platform setup, clock setting, etc.

Each of the PEIMs and the DXE drivers may be provided
by the microprocessor vendor (e.g., Intel), the platform
manufacturer or tegrator (e.g., Hewlett-Packard, Dell,
Compagq, etc.), a BIOS vendor (e.g., AMI, Phoenix, etc.), or
an independent third party. Firmware code corresponding to
the PEIMs and DXE drivers provided by a microprocessor
vendor or platform manufacturer will typically be stored in
the BFD and/or another firmware device that 1s accessible to
the platform (e.g., mounted to the platform’s baseboard) and
1s included 1n the original computer system. For example, as
shown 1n FIG. 6, firmware code corresponding to a PEIM
module A, a PEIM module B and a DXFE driver 1 are stored on
FDO, while DXE drivers 2 and 3 are stored on a firmware
device FD1. Similarly, PEIM and DXE driver firmware code
provided by a BIOS vendor will generally be stored on the
BFD and/or another baseboard-mounted firmware device.
DXE drnivers may also be stored in option ROMs that are
provided with various add-on peripheral cards, such as SCSI
driver cards that are used to drive SCSI devices (not shown).

In one embodiment, various sets of firmware code are
arranged on various firmware devices 1n the form of “firm-
ware volumes.” This 1s enabled through use of a firmware
abstraction 1nterface known as a firmware volume protocol
instance. The firmware volume protocol instance 1s published
by a corresponding firmware volume driver that 1s loaded
during execution of the early firmware phase.

As a starting point, any firmware code that 1s accessed by a
system 1s stored 1n some sort of firmware device. A firmware
device 1s a persistent physical repository containing firmware

10

15

20

25

30

35

40

45

50

55

60

65

10

code and/or data. While a firmware device may typically
comprise a PROM or a FLASH component, other types of
persistent storage devices may also be used, such as a local
hard disk. A single physical firmware device may be divided
into smaller pieces to form multiple logical firmware devices.
Similarly, multiple physical firmware devices may be aggre-
gated into one larger logical firmware device. A logical firm-
ware device 1s called a firmware volume. In EFI 2.0, the basic
storage repository for data and/or code 1s the firmware vol-
ume. In general, each firmware volume 1s organized into a file
system. In one embodiment, this file system 1s called a firm-
ware file system (FFS). Other file systems may also be used.
As such, the file 1s the base unit of storage for EFI 2.0 firm-
ware.

The DX phase accesses firmware volumes using the file
abstraction contained in the Firmware Volume Protocol. The
Firmware Volume Protocol allows DXE to access all types of
firmware volumes, ncluding those that are not memory
mapped and those that do not implement the Firmware File
System (FFS) format, a firmware-based file system construct.
Typically, the Firmware Volume Protocol will be produced by
the FFS driver and will layer on top of the Firmware Volume
Block Protocol to access the firmware volume hardware. This
implementation yields the protocol stack shown 1n FIG. 8.

With reference to FIG. 9, in one embodiment a firmware
volume access mechanism 1s implemented as follows. During
execution of early firmware 900, one or more firmware vol-
ume drivers 902 are loaded from a local firmware device 904
(e.g., flash device 404) and executed. Execution of each firm-
ware driver causes one or more firmware volume protocol
instances to be published, as depicted by FV protocol

istances 906 A, 9068, 906C, and 906D. Each FV protocol

instance provides an abstracted interface that enables con-
sumers of firmware to access that firmware from a corre-
sponding firmware volume, as depicted by firmware volumes
908A,908B,908C, and 908D. By publishing these abstracted
interfaces, the firmware volumes corresponding to those
interfaces are made visible to the system.

Returning to FIG. 7, in accordance with principles of the
invention, one or more firmware volumes may be stored on an
HPA region of one or more system magnetic storage devices,
such as hard disk 414. For example, in the 1llustrated embodi-
ment of FI1G. 7, HPA region 416 comprises a logical firmware
device FDI, which contains a set of data corresponding to a
single firmware volume 604. In one embodiment, data within
a firmware volume 1s logically configured based on a block-
based allocation scheme.

In addition to providing a firmware storage and access
mechanism, the protected media area access techniques dis-
closed herein may be implemented during pre-boot to save
various system information, such as event logs, firmware
and/or hardware configuration data, etc. For example, a pro-
cess that implements this aspect of the mvention in accor-
dance with one embodiment 1s now described with reference
to the flowchart of F1G. 10. The process begins 1n a start block
1000, which corresponds to a system reset or power on startup
event. As before, appropnate firmware 1s loaded 1n a block
1002 to access the HPA of a selected magnetic media (e.g., the
OS boot device, although another magnetic storage device
may be used as well).

Next, 1n a block 1004, current system information 1s col-
lected. This information may typically include various firm-
ware and/or hardware configuration information. For
instance, this information may be collected 1n one embodi-
ment by storing such information 1n an event log during
firmware nitialization. After the configuration information 1s

US 8,281,116 B2

11

collected, the HPA 1s opened, the configuration information is
saved 1n the HPA, and the HPA 1s closed, as depicted by a

block 1006.

Subsequently, a new system reset or power on startup event
occurs 1n accordance with a start block 1008. Again, firmware
1s loaded to access the HPA 1n a block 1010, and current
system configuration information 1s collected in a block 1012
in a similar manner to the operations of blocks 1002 and 1004.
The HPA 1s opened 1n a block 1014, and the prior system
configuration information that was previously written to the
HPA 1s retrieved. The current and prior configuration infor-
mation data are then compared 1n a block 1016.

A determination 1s then made 1n a decision block 1018 to
whether the current and prior configuration information 1s the
same (1indicating no configuration change) or different (1ndi-
cating a configuration change has occurred. If the configura-
tion hasn’t changed, the logic proceeds to a block 1020 in
which access to the HPA 1s closed. The operating system then
boots and the pre-boot phase has completed 1n the normal
manner, as depicted by a block 1022.

If the configuration information indicates a change has
occurred, the logic proceeds to a block 1024 in which the
system and/or user 1s notified of the change. In some
instances, an undesired or unauthorized system change might
be made by a rogue entity, such as a third-party firmware
component. In other instances, an improperly coded firmware
component may produce an unwanted configuration change.
Accordingly, a determination 1s made 1 a decision block
1026 to whether the change should be authorized. Generally,
this determination may be automatically made by the system
firmware, or could be determined by a user through an appro-
priate user 1nterface.

If the configuration change 1s authorized, the logic pro-
ceeds to a block 1028 1n which the configuration information
in the HPA 1s updated, whereupon the access to the HPA 1s
closed followed by subsequent booting of the operating sys-
tem boots 1 blocks 1020 and 1022, respectiully.

In one embodiment, 1t 1s desired to prevent unstable con-
figurations. Accordingly a configuration rollback mechanism
1s employed 1n a block 1030 in response to a determination
that the change was not authorized, whereby the current sys-
tem configuration 1s changed back to a prior configuration. In
general, this change may take immediate effect, or may
require a system reset, wherein the new configuration 1s pre-
vented from being entered during a subsequent pre-boot. For
instance, data may be stored in the firmware (either in a
non-volatile memory device or the HPA to prevent one or
more firmware components from being loaded. Since the new
(temporally) configuration information was never updated 1n
the HPA and 1s no longer valid, the HPA 1s simply closed from
access 1n block 1020, completing the process.

Generally, the firmware for performing the operations dis-
cussed herein will be stored on the system’s BFD, and pos-
s1bly other system firmware devices, such as a secondary flash
component or the like. Typically, such firmware may either be
included with an original system, or updated at a subsequent
point 1n time, such as via a flash rewrite using firmware code
that 1s stored on removable media (e.g., CD-ROM or floppy
disk), or downloaded over a computer network. As used
herein, these firmware storage means machine-readable
mediums. A machine-readable medium includes any mecha-
nism for storing or transmitting information in a form read-
able by amachine (e.g., a computer). For example, a machine-
readable medium may include such devices as a read only
memory (ROM); a magnetic disk storage media; an optical
storage media; and a flash memory device, etc. In addition, a
machine-readable medium may include propagated signals

10

15

20

25

30

35

40

45

50

55

60

65

12

such as electrical, optical, acoustical or other form of propa-
gated signals (e.g., carrier waves, mirared signals, digital
signals, etc.) that are recerved via wired or wireless computer
networks.

With the landscape of non-volatile memory evolving from
strictly being related to 1/0 storage into one where the role of
some non-volatile memory 1s being considered as a possible
memory replacement, 1t can be advisable to change the
emphasis on memory usage models and to move toward a
differing usage model for Flash memory solutions. Future
platforms to be available, for example, from Intel Corpora-
tion, will have many gigabytes of Flash storage embedded
within them. Thus, there 1s a definite series of usage oppor-
tunities that may be established. Embodiments of the present
invention extend the above i1dentified concepts of using hid-
den regions in an HPA to non-magnetic NV storage which
would not necessarily be coupled to an ATAPI 5 compatible
controller. This implementation may be useful as platform
vendors become heavily invested 1n a much wider and deeper
proliferation of NAND/FastFlash/PCM SSD (solid-state
disk) solutions mto PC platform solutions.

Embodiments of the present invention employ a mecha-
nism which utilizes a method to lock-down a block device in
a form compatible with ATAPI’s HPA support and describes
the utilization of that area as a platform-only firmware exten-
s1on repository. This implementation extends the above 1den-
tified concept of using protected/hidden region of a magnetic
media under firmware control.

Utilizing the non-magnetic storage hidden areas allows
storage of platform-specific firmware extension on Flash
memory, for instance, as well as enabling crisis recovery
based on storing information in the hidden repository. Ini-
tially, HPA regions were used primarily for optional diagnos-
tic applications by booting an alternate boot target. The HPA
1s 1nvisible to the OS. Existing systems do not have this
capability or feature for solid-state storage devices. Embodi-
ments described above allow rollback to previous platform
configurations, based on tracking configuration update/
change information 1n the magnetic media HPA.

Embodiments of the present invention may store this con-
figuration change information in a non-magnetic hidden
region, similar to an HPA on magnetic media. Similarly, the
BIOS carves a region of the Flash memory, for instance, as a
hidden region. As described above for HPA in magnetic
media, prior to OS launch, this hidden region 1s locked down
so that the OS has no access to the hidden region 1n memory.
A maximum address for the media 1s set so that the OS 1s not
aware ol the hidden region. If the OS tries to access memory
in the hidden region a fault will occur because 1t 1s not an
authorized region of memory.

In systems being deployed now and 1n the future, magnetic
media may be non-existent. Some devices, for instance low
power, portable devices, may have only sold-state media, or
Flash memory. Therelore, 1t 1s desirable to be able implement
the equivalent of HPA 1n solid-state devices. In implementa-
tions involving magnetic storage, the ability to control the
hidden region depended on hard drive device controller tech-
nology. Flash memory device controllers utilize differing
technology than for magnetic storage.

Flash memory operates differently than magnetic storage.
However, there are software and hardware constructs avail-
able to control access to the device. In embodiments of the
present invention, interface access to the device may be emu-
lated. For instance, a virtual machine monitor (VMM) may be
used to capture accesses to the Flash memory device. A plat-
form resource layer (PRL) may also be used to sequester the
hidden area on the Flash memory device. Regardless of the

US 8,281,116 B2

13

implementation, the hidden area of the Flash memory device,
called HPA, below, for simplicity, will not be accessible
directly to the OS, but only to system calls and firmware
SErvices.

Solid-State Media Firmware-Controlled Access Scheme

Referring now to FIG. 11, there 1s shown a process that
implements this aspect of the invention 1n accordance with
one embodiment. The process begins i block 1100, after a
system reset or power on startup event. Appropriate firmware
1s loaded and executed, 1n block 1100, to perform the system
initialization operations described herein. In general, firm-
ware may be copied mto memory prior to execution and for
subsequent use for run-time firmware drivers. In an embodi-
ment, a determination 1s made as to whether HPA-like
enhancement for the solid-state memory 1s active, 1n block
1102. This determination may be based on a platform policy
embedded 1n the chipset SKU identifier or in the memory
controller. When implemented 1n software, the firmware may
be coded to 1dentity that this feature 1s enabled. ITthe platform
1s not HPA enabled, normal boot operations are continued 1n
block 1106.

If the platform 1s configured with the HPA-like enhance-
ment, then a determination 1s made, in block 1104, as to
whether this block device feature should be used, e.g., 1s the
feature active. This may be found 1n platform-specific con-
figuration data, similar to a platform setup option. If this
feature 1s mactive then normal boot operations are continued
in block 1106.

If the block device feature 1s active, then content from
block device 1s processed, as applicable, 1n block 1108. This
processing may include reading firmware extensions or post-
ing updates to device. Upon a boot failure, the platform may
be restored to a last known good working state at this point, as
described above, for instance 1n conjunction with FIG. 10. A
variety of applications may be stored in the hidden region to
be processed at this point before the launch of the OS.

A determination 1s made as to whether control 1s to be
passed to boot the payload, 1.e., the OS launcher, in block
1110. If the platform 1s not ready to launch the OS, then
firmware 1nitialization 1s continued, 1n block 1112. Control
may be passed back to block 1108 to process additional
firmware data, or to block 1110 to wait until the OS 1s ready
to be launched, 1.e., all boot processes are compete.

If boot 1s to commence, then the HPA 1s locked, or {frozen,
in block 1114. This Lock/Freeze may 1include forcing
attributes to be read-only, hiding range of sectors, etc. The
platform NV controller, 1.e., the Flash interface, may act as
intermediary for this behavior. This controller acts 1s similar
to a disk controller and the conceptual equivalent to a hard
drive controller. Block access may be virtualized through a
VMM, or PRL support may be used. Changing the read/write
attributes are new to environment, and not performed 1n exist-
ing systems. In other words, whereas, the concept of the
controller blocking access to certain locations of media 1s
generally known in the art, the concept of being able to
enforce read-only attributes (giving access but blocking
writes) or other allowing only write access 1s achievable using
embodiments of the present invention.

In an embodiment the control for the HPA-like hidden
region of Flash memory may be implemented in the hardware
memory controller. In another embodiment, control of the
hidden region 1s implemented by virtualization, e.g. with a
VMM component. Thus, this feature may be implemented in
either hardware or software, or a combination of both.
Regardless of how the interface abstraction 1s implemented as
a device driver for the Flash memory, access to the memory
appears similar to access to magnetic media, to the OS. It 1s

10

15

20

25

30

35

40

45

50

55

60

65

14

the abstraction interface that controls the hidden region and
protects this region from OS access.

In the following discussion, reference 1s made to command
names that are used in the HPA magnetic media embodiment
discussed above. In embodiments utilizing solid-state media,
the equivalent of the functionality of the commands may be
performed, but the implementation 1s not identical to the
embodiments discussed above. However, the functions are
similar and the command names are used for simplicity.

In an embodiment, once the hidden region is locked, a
READ NATIVE MAX ADDRESS command 1s 1ssued to
determine native size of media. In another embodiment, this
command may be performed earlier, before the region 1is
actually locked. Once the maximum address 1s set, the OS
cannot access the hidden region, above this address. It should
be noted that aspects of the process as described in FIG. 3
apply to solid-state hidden regions, as well. FIG. 11 shows a
process to set up the hidden region for sold state media, but
utilization of this feature may be performed as described in
conjunction with FIG. 3. For instance, run time access to the
hidden region may be implemented as described for blocks
314, 318, 320, 322, 324, 326 and 330.

In block 118 a SE'T_MAX_ADDRESS command may be
1ssued to a value below the read maximum address to reserve
the hidden region for firmware use. In bock 1120, a SET_
MAX_ FREEZE command may be issued so that the maxi-
mum address cannot be set again until system reset. Once the
maximum addressable location 1s set and appropnately
locked, the boot target may be launched 1n block 1122.

It should be noted that the commands 1ssued in blocks
1116,1118 and 1120 are equivalent to the commands used for
HPA regions 1n magnetic media, but are not 1n fact identical
constructs. Ina VMM implementation, these commands may
simply set local configuration parameters defining the avail-
able regions 1n memory. In a memory controller implemen-
tation, like the method as described for a VMM abstraction
which intercepts access to the device using virtualization, the
memory controller 1s the hardware component acting as inter-
mediary to the solid-state storage device. Similar features
may be implemented within the logic of the memory control-
ler so that the same read/write/access attributes can be
directly programmed 1into that hardware. Existing memory
controllers do not have this capability; however one of skill in
the art would understand how to redesign the memory con-
troller according to the description disclosed herein.

The above description of 1llustrated embodiments of the
invention, icluding what 1s described 1n the Abstract, 1s not
intended to be exhaustive or to limit the mvention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for 1llustra-
tive purposes, various equivalent modifications are possible
within the scope of the mvention, as those skilled in the
relevant art will recognize.

These modifications can be made to the invention in light of
the above detailed description. The terms used 1n the follow-
ing claims should not be construed to limait the invention to the
specific embodiments disclosed 1n the specification and the
claims. Rather, the scope of the invention 1s to be determined
entirely by the following claims, which are to be construed 1n
accordance with established doctrines of claim interpretation.

What 1s claimed 1s:

1. A method for accessing computer system firmware,
comprising;

accessing, via a first portion of firmware, a protected area

of media on which data are stored by a solid-state storage
device, said data including a second portion of firmware;
loading the second portion of firmware for subsequent

US 8,281,116 B2

15

use by the computer system, and allowing authorized
access and preventing unauthorized access to the pro-
tected area of the media during operating system run
time 1n a manner that 1s transparent to the operating
system.

2. The method of claim 1, wherein the operating system 1s
prevented from accessing the protected area of the media by
hiding the protected area of the media from the operating
system.

3. The method of claim 1, wherein the protected area of the
media comprises a portion of the media having an address
range defined by respective lower and upper address limits,
and wherein the protected area 1s accessed by performing
operations mncluding: setting a maximum accessible address
tor the media to correspond to the upper address limit; access-
ing the second portion of firmware; and resetting the maxi-
mum accessible address for the media to correspond to the
lower address limut.

4. The method of claim 3, wherein the upper limit corre-
spond to the native size of the media, the method further
comprising determining the native size of the media.

5. The method of claim 3, further comprising freezing the
maximum accessible address such that 1t may not be changed
until the computer system 1s reset or restarted.

6. The method of claim 1, wherein accessing the solid-state
storage device 1s controlled by at least one of a virtual
machine monitor device driver abstraction, a platform
resource layer device driver abstraction or a memory control-
ler abstraction, and wherein accessing the protected area 1s
controlled via the at least one abstraction.

7. The method of claim 1, further comprising accessing the
protected area of the media during operating system runtime
in a manner that is transparent to the operating system.

8. The method of claim 1, further comprising employing a
security mechanism to prevent components that are not
authorized to access the protected area from accessing the
protected area.

9. The method of claim 1, wherein the second portion of
firmware 1s stored 1n a firmware volume corresponding to the
Extensible Firmware Interface (EFI) standard.

10. The method of claim 1, further comprising saving sys-
tem 1nformation to the protected area of the media.

11. The method of claim 10, wherein the system informa-
tion comprises an 1mage of the boot code for the operating
system.

12. The method of claim 10, wherein the system 1informa-
tion comprises system state information.

13. The method of claim 10, wherein the system 1informa-
tion comprises operating system file system information.

14. The method of claim 10, wherein the system 1informa-
tion 1s saved during system run-time.

15. The method of claim 1, wherein allowing authorized
access comprises automatically allowing authorized access
and automatically preventing unauthorized access during
operating system normal runtime 1n a manner that 1s trans-
parent to the operating system during operating system nor-
mal runtime.

16. The method of claim 1 wherein accessing, via a first
portion of firmware comprises booting a computer using the
protected area of media accessed via the first portion of {irm-
ware 1n a manner that 1s transparent to the operating system.

17. A non-transitory machine-readable storage medium on
which firmware 1s stored, which when executed on a com-
puter system, enables the computer system to load a firmware
driver for accessing a solid-state storage device; access, via
the firmware driver, a protected area of media on which data
are stored by the solid-state storage device, said data includ-

10

15

20

25

30

35

40

45

50

55

60

65

16

ing extended firmware; and allow authorized access and pre-
vent unauthorized access to the protected area of the media
during operating system run time via the extended firmware
in a manner that 1s transparent to the operating system.

18. The non-transitory machine-readable storage medium
of claim 17, wherein execution of the firmware further
enables the computer system to configure an access scheme
for the solid-state storage device such that the protected area
of the media 1s hidden from an operating system to run on the
computer system.

19. The non-transitory machine-readable storage medium
of claim 17, wherein the protected area of the media com-
prises a portion of the media having an address range defined
by respective lower and upper address limits, and wherein
execution of the firmware turther enables the computer sys-
tem to set a maximum accessible address for the media to
correspond to the upper address limit prior to accessing the
protected area of the media; and reset the maximum acces-
sible address for the media to correspond to the lower address
limit after completing access of the protected area of the
media.

20. The non-transitory machine-readable storage medium
of claim 19, wherein execution of the firmware further
enables the computer system to freeze the maximum acces-
sible address such that it cannot be changed until the com-
puter system 1s reset or restarted.

21. The non-transitory machine-readable storage medium
of claim 17, wherein access to the solid-state storage device 1s
controlled by at least one of a virtual machine monitor device
driver abstraction, a platform resource layer device driver
abstraction or a memory controller abstraction, and wherein
access to the protected area 1s controlled via the at least one
abstraction.

22. The non-transitory machine-readable storage medium
of claim 17, wherein execution of the firmware further
enables the computer system to open up the protected area of
the media for access during system run-time operation; save
system information to the protected area; and close the pro-
tected area of the media from access.

23. The non-transitory machine-readable storage medium
of claim 22, wherein the protected area 1s accessed 1n a
manner that 1s transparent to the operating system.

24. The non-transitory machine-readable storage medium
of claim 22, wherein the system information i1s saved 1n
response to a system event and execution of the firmware
further enables the computer system to detect the system
event; switch execution of a computer system processor from
an operating system controlled execution mode to an execu-
tion mode that 1s hidden from the operating system; servicing
the system event by opening the protected area, write system
information pertaining to the system event to the protected
area, and close access to the system area; and return the

execution mode of the processor back to the operating system
controlled execution mode.

25. The non-transitory machine-readable storage medium
of claim 24, wherein the system event 1s an operating system
crash, and the system information comprises system state
information at the time of the operating system crash.

26. A method comprising: collecting current system con-
figuration nformation during computer system pre-boot
operations; opening, via firmware control, a protected area of
media corresponding to a solid-state storage device for
access; writing data corresponding to the current system con-
figuration 1n the protected area of the media; and allowing
authorized access and preventing unauthorized access to the

US 8,281,116 B2

17

protected are of the media via firmware control during an
operating system run time 1n manner that 1s transparent to the
operating system.

27. The method of claim 26, wherein the current system
confliguration information pertains to a configuration of the
computer system’s firmware.

28. The method of claim 26, wherein the current system

configuration information pertains to a configuration of the
computer system’s hardware.

29. The method of claim 26, further comprising: in
response to a system reset or power on startup event, collect-
Ing new current system configuration information during cur-
rent computer system pre-boot operations; opening, via firm-
ware control, the protected area of media corresponding to a
solid-state storage device for access; retrieving data stored 1n
the protected area of the media corresponding to a prior
system configuration; comparing the current system configu-
ration information with the prior system configuration infor-
mation; and determining if a change 1n the system configu-
ration has occurred based on the comparison.

30. The method of claim 29, wherein 1t 1s determined that
no change to the system configuration has occurred, further
comprising closing access to the protected area of the media.

10

15

18

31. The method of claim 29, wherein 1t 1s determined that
a change 1n the system configuration has occurred, further
comprising notifying at least one of the system and/or a user
that a system configuration change has occurred.

32. The method of claim 31, further comprising determin-
ing, via input from one of the system or the user, whether the
change 1s authorized, and 1f it 1s, updating the system con-
figuration mformation in the protected area of the media to
reflect the new current configuration of the computer system.

33. The method of claim 31, further comprising determin-
ing, via input from one of the system or the user, whether the
change 1s authorized, and 11 1t 1s not, rolling back the system
configuration to correspond to the configuration defined by
the prior system configuration information.

34. The method of claim 26, further comprising: control-
ling access to the solid-state storage device by at least one of
a virtual machine monitor device driver abstraction, a plat-
form resource layer device driver abstraction or a memory
controller abstraction, wherein access to the protected area 1s

20 controlled via the at least one abstraction.

	Front Page
	Drawings
	Specification
	Claims

