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1
METHOD FOR IDENTIFYING MARKED
IMAGES BASED AT LEAST IN PART ON

FREQUENCY DOMAIN COEFFICIENT
DIFFERENCES

PRIORITY

Priority 1s claimed as a divisional application to U.S. patent

application Ser. No. 11/331,767/ filed Jan. 13, 2006 now U.S.
Pat. No. 7,925,080, the disclosure of which 1s incorporated
herein by reference 1n 1ts entirety.

FIELD

This application 1s related to classitying or i1dentifying
content, such as marked 1images, for example.

BACKGROUND

In recent years digital data hiding has become an active
research field. Various kinds of data hiding methods have
been proposed. Some methods aim at content protection,
and/or authentication, while some aim at covert communica-
tion. The latter category of data hiding is referred to here as
steganography.

BRIEF DESCRIPTION OF THE DRAWINGS

Subject matter 1s particularly pointed out and distinctly
claimed in the concluding portion of the specification.
Claimed subject matter, however, both as to organization and
method of operation, together with objects, features, and/or
advantages thereof, may best be understood by reference of
the following detailed description 1f read with the accompa-
nying drawings 1n which:

FIG. 1 1s a schematic diagram 1llustrating one embodiment
ol a portion of a frequency domain coefficient 2-D array;

FIG. 2 1s a schematic diagram 1llustrating one embodiment
of a techmique to generate frequency domain coellicient array
differences:

FIG. 3 1s a plot illustrating the distribution of coelficient
array differences for a set of 1mages;

FI1G. 4 1s a schematic diagram 1llustrating an embodiment
for forming a one-step transition probability matrix, such as
to characterize a Markov process;

FIG. 5 1s a block diagram illustrating one embodiment of
generating features; and

FI1G. 6 1llustrates elements implemented 1n an embodiment
of the mvention.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth to provide a thorough understanding of
claimed subject matter. However, 1t will be understood by
those skilled i the art that claimed subject matter may be
practiced without these specific details. In other instances,
well known methods, procedures, components and/or circuits
have not been described 1n detail so as not to obscure claimed
subject matter.

Some portions of the detailed description which follow are
presented 1n terms of algorithms and/or symbolic representa-
tions of operations on data bits and/or binary digital signals
stored within a computing system, such as within a computer
and/or computing system memory. These algorithmic
descriptions and/or representations are the techniques used
by those of ordinary skill 1n the data processing arts to convey
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the substance of their work to others skilled in the art. An
algorithm 1s here, and generally, considered to be a seli-
consistent sequence of operations and/or similar processing
leading to a desired result. The operations and/or processing
may involve physical manipulations of physical quantities.
Typically, although not necessarily, these quantities may take
the form of electrical and/or magnetic signals capable of
being stored, transierred, combined, compared and/or other-
wise manipulated. It has proven convenient, at times, princi-
pally for reasons of common usage, to refer to these signals as
bits, data, values, elements, symbols, characters, terms, num-
bers, numerals and/or the like. It should be understood, how-
ever, that all of these and similar terms are to be associated
with appropriate physical quantities and are merely conve-
nient labels. Unless specifically stated otherwise, as apparent
from the following discussion, it 1s appreciated that through-
out this specification discussions utilizing terms such as “pro-
cessing”’, “computing”’, “calculating”, “determining” and/or
the like refer to the actions and/or processes of a computing,
platform, such as a computer or a similar electronic comput-
ing device, that mampulates and/or transforms data repre-
sented as physical electronic and/or magnetic quantities and/
or other physical quantities within the computing platform’s
processors, memories, registers, and/or other information
storage, transmission, and/or display devices.

Owing to the popular usage of JPEG 1mages, stegano-
graphic tools for JPEG 1images emerge increasingly nowa-
days, among which model based steganography (MB), F5
and OutGuess are the most advanced. However, 1t continues
to be desirable to develop new tools to 1dentity images that
include hidden data. In accordance with claimed subject mat-
ter, one embodiment described herein includes a method
based at least 1n part on statistical moments derived at least in
part from an 1mage 2-D array and a JPEG 2-D array. In this
particular embodiment, a first order histogram and/or a sec-
ond order histogram may be employed, although claimed
subject matter 1s not limited in scope 1n this respect. For
example, higher order histograms may be utilized 1n other
embodiments, for example. However, continuing with this
particular embodiment, from these histograms, moments of
2-D characteristic functions are also used, although, again,
other embodiments are not limited in this respect. For
example, higher order moments may be employed.

The popularity of computer utilization accelerates the wide
spread use of the Internet. As a result, millions of pictures
flow on the Internet everyday. Nowadays, the interchange of
JPEG (Joint Photographic Experts Group) images becomes
more and more frequent. Many steganographic techniques
operating on JPEG images have been published and have
become publicly available. Most of the techniques in this
category appear to modily an 8x8 block discrete cosine trans-
form (BDCT) coetficients in the JPEG domain to embed
hidden data. Among the steganographic techniques, the
recent published schemes, OutGuess F35, and the model-
based steganography (MB) appear to be the most advanced.
See, N. Provos, “Defending against statistical steganalysis,”
10th USENIX Security Symposium, Washington D.C., USA,
2001; A. Westteld, “F5 a steganographic algorithm: High
capacity despite better steganalysis,” 4th International Work-
shop on Infor-mation Hiding, Pittsburgh, Pa., USA, 2001; P.
Sallee, “Model-based steganography,” International Work-
shop on Digital Watermarking, Seoul, Korea, 2003. Out-
Guess embeds the to-be-hidden data using redundancy of the
cover 1mage. In this context, the cover image refers to the
content without the hidden data embedded. For JPEG images,
OutGuess attempts to preserve statistics based at least 1n part
on the BDCT histogram. To further this, OutGuess 1dentifies
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redundant BDC'T coefficients and embeds data into these
coellicients to reduce effects from data embedding. Further-
more, 1t adjusts coellicients 1 which data has not been
embedded to attempt to preserve the original BDCT histo-
gram. F3, developed from Isteg, F3, and F4, employs the
following techniques: straddling and matrix coding. Strad-
dling scatters the message as uniformly distributed as pos-
sible over a cover 1image. Matrix coding tends to improve
embedding efficiency (defined here as the number of embed-
ded bits per change of the BDCT coellicient). MB embedding
tries to make the embedded data correlated to the cover
medium. This 1s implemented by splitting the cover medium
into two parts, modeling the parameter of the distribution of
the second part given the first part, encoding the second part
by using the model and to-be-embedded message, and then
combining the two parts to form the stego medium. Specifi-
cally, the Cauchy distribution 1s used to model the JPEG
BDCT mode histogram and the embedding attempts to keep
the lower precision histogram of the BDCT modes
unchanged.

To detect hidden information in a stego 1mage, many ste-
ganalysis methods have been proposed. A universal stega-
nalysis method using higher order statistics has been pro-
posed by Farid. See H. Farid, “Detecting hidden messages
using higher-order statis-tical models™, International Confer-
ence on Image Processing, Rochester, N.Y., USA, 2002.
(hereinafter, “Farid”) Quadrature mirror filters are used to
decompose a test 1mage ito wavelet subbands. The higher
order statistics are calculated from wavelet coellicients of
high-frequency subbands to form a group of features. Another
group of features 1s similarly formulated from the prediction
errors ol wavelet coetlicients of high-frequency subband. In
Y. Q. Shi, G. Xuan, D. Zou, J. Gao, C. Yang, 7. Zhang, P. Chai,
W. Chen, C. Chen, “Steganalysis based on moments of char-
acteristic functions using wavelet decomposition, prediction-
error 1image, and neural network,” International Conference
on Multimedia and Expo, Amsterdam, Netherlands, 2005,
(heremaftter, “Shi et al.), a described method employs statis-
tical moments of characteristic functions of a test image, its
prediction-error image, and their discrete wavelet transform
(DWT) subbands as features.

However, steganalysis method specifically designed for
addressing JPEG steganographic schemes has been proposed
by Fridrich. See J. Fridrich, “Feature-based steganalysis for
JPEG 1mages and its implications for future design of stega-
nographic schemes,” 6th Information Hiding Workshop, Tor-
onto, ON, Canada, 2004. With a relatively small-size set of
well-selected features, this method outperforms other stega-
nalysis methods, such as those previously mentioned, when
detecting images that have hidden data created by OutGuess,
F5 and MB. See M. Kharrazi, H. T. Sencar, N. D. Memon,
“Benchmarking steganographic and steganalysis tech-
niques”’, Security, Steganography, and Watermarking of Mul-
timedia Contents 2005, San Jose, Calif., USA, 2005.

Recently, a scheme was developed to detect data hidden
with a spread spectrum method, in which the inter-pixel
dependencies are used and a Markov chain model 1s adopted.
See K. Sullivan, U. Madhow, S. Chandrasekaran, and B. S.
Manjunath, “Steganalysis of Spread Spectrum Data Hiding
Exploiting Cover Memory”, the International Society for
Optical Engineering, Electronic Imaging, San Jose, Calif.,
USA, 2005. In this approach, an empirical transition matrix of
a given test image 1s formed. This matrix has a dimensionality
of 256x256 for a grayscale image with a bit depth of 8. That
1s, this matrix has 65,536 elements. These large number of
clements make using all of the elements as features challeng-
ing. The authors therefore selected several of the largest prob-
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abilities of the matrix along the main diagonal together with
their neighbors, and some other randomly selected probabili-
ties along the main diagonal, as features. Of course, some
information loss 1s inevitable due to this feature selection
process. Furthermore, this method uses a Markov chain along
a horizontal direction and, thus, this approach does not nec-

essarily reflect the 2-D nature of a digital image.

Identifying JPEG 1mages 1n which data has been hidden
from JPEG 1mages that do not contain hidden data continues
to be desirable. One embodiment in accordance with claimed
subject matter involves employing JPEG 2-D arrays. In this
particular embodiment, a JPEG 2-D array 1s formed based at
least in part on JPEG quantized block DCT coetficients. Like-
wise, difference JPEG 2-D arrays may be formed along hori-
zontal, vertical and diagonal directions for this particular
embodiment and a Markov process may be applied to model
these difference JPEG 2-D arrays so as to utilize second order
statistics for steganalysis. In addition to the utilization of
difference JPEG 2-D arrays, a thresholding technique may be
applied to reduce the dimensionality of transition probability
matrices, thus making the computational complexity of the
scheme more manageable.

For this particular embodiment, steganalysis 1s considered
as a task of two-class pattern recognition. That 1s, a given
image may be classified as either a stego 1image (with hidden
data) or as a non-stego 1mage (without hidden data). As men-
tioned previously, modern steganorgraphic methods, such as
OutGuess and MB, have made great efforts to keep the
changes of BDCT coeflicients from data hiding relatively
small and therefore more difficult to detect. In particular, they
attempt to keep changes on the histogram of JPEG coetli-
cients relatively small. Under these circumstances, therefore,
as 1s employed 1n this embodiment, higher order statistics as
teatures for steganalysis may be desirable. Here, in particular,
for this embodiment, second order statistics are employed,
however, claimed subject matter 1s not limited in scope 1n this
respect.

For this embodiment, a JPEG 2-D array 1s formed. Like-
wise, a difference JPEG 2-D array along different directions
1s formed. To model the difference JPEG 2-D array using
Markov random process, a transition probability matrix may
be constructed to characterize the Markov process. Features
may then be derived from this transition probability matrix.
The so-called one-step ftransition probability matrix 1s
employed here for reduced computational complexity,
although claimed subject matter 1s not limited 1n scope 1n this
respect. For example, more complex transition probability
matrices may be employed 1n other embodiments. To further
reduce computational complexity, a thresholding technique 1s
also applied, as described 1n more detail below.

For this embodiment, features are to be generated from a
block DCT representation of an image; however, claimed
subject matter 1s not limited in scope 1n this respect. For
example, 1n alternate embodiments, other frequency domain
representations of an image may be employed. Nonetheless,
for this particular embodiment, 1t 1s desirable to examine the
properties of JPEG BDCT coellicients.

For a given 1mage, consider a 2-D array comprising 8x8
block DCT coellicients which have been quantized with a
JPEG quantization table, but not zig-zag scanned, run-length
coded and Huflman coded. That 1s, this 2-D array has the
same size as the given image with a given 8x8 block filled up
with the corresponding JPEG quantized 8x8 block DC'T coet-
ficients. Next, apply an absolute value to the DCT coetli-
cients, resulting in a 2-D array as shown 1n FIG. 1. For this
embodiment, this resultant 2-D array 1s referred to as a JPEG
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2-D array. As described 1n more detail below, the features for
this particular embodiment are to be formed from a JPEG 2-D
array.

Without the application of an absolute value operation,
JPEG BDCT quantized coellicients may be either positive, or
negative, or zero. BDCT coellicients in general do not obey a
(Gaussian distribution, however, these coeflicients are not sta-
tistically independent of each other necessary. The magnitude
of the non-zero BDC'T coellicients may be correlated along
the z1g-zag scan order, for example. Hence, a correlation may
ex1st among absolute values of the BDCT coetficients along
horizontal, vertical and diagonal directions. This observation
can be further justified by observing FIG. 3 shown below.
That 1s, the difference of the absolute values of two immedi-
ately (horizontally 1n FIG. 3) neighboring BDCT coellicients
are highly concentrated around 0, having a Laplacian-like
distribution. A similar observation may be made along verti-
cal and diagonal directions. Thus, as described below, this
particular embodiment may exploit this aspect of the coetli-
cients, although, of course, claimed subject matter 1s not
limited 1n scope 1n this respect.

A disturbance introduced by data embedding manifests
itself more apparently 1n a prediction-error 1mage than 1n an
original 1image. Hence, it 1s desirable to observe difierences
between an element and one of 1ts neighbors 1n a JPEG 2-D
array. Therefore, in this particular embodiment, the following
tour difference JPEG 2-D arrays may be employed, although
claimed subject matter 1s not limited 1n scope 1n this respect.

Denote a JPEG 2-D array generated from a given image by
F(u,v)(ue[1,S, ]|,ve[l1,S,]) where S 1s the size of a JPEG 2-D
array in horizontal direction and S 1n vertical direction. Then
as shown 1n FIG. 2, difference arrays may be generated as
follows:

Foluvy=Fuv)-Flu+l,y), (1)

F (uv)=F(uv)-F(uv+l), (2)

Fuvy=Fuv)-Flu+l v+1), (3)

F Au,v)=Fu+lyv)—-Flu,v+l), (4)

where ue[l,S -1],ve[l,S -1] and F,(u,v),F (u,v),F (u,v),
F_ (u,v) denote difference arrays in the horizontal, vertical,
main diagonal, and minor diagonal directions, respectively.

As suggested previously, the distribution of elements of the
above-described difference arrays may be Laplacian-like.
Most of the difference values are close to zero. For evaluation
purposes, an 1mage set comprising 7560 JPEG images with
quality factors ranging from 70 to 90 was accumulated. The
arithmetic average of the histograms of the horizontal differ-
ence JPEG 2-D arrays generated from this JPEG image set
and the histogram of the horizontal difference JPEG 2-D
array generated from a randomly selected image from this set
ofimages are shown 1n FIGS. 3(a) and (b), respectively. From
this figure, most elements 1n the horizontal ditference JPEG
2-D arrays fall into the mterval [-T, T] as long as T 1s large
enough. Values of mean and variance of percentage of ele-
ments of horizontal difference JPEG 2-D arrays for the image
set falling into [-T, T] if T={1, 2, 3, 4, 5, 6, 7} are shown in
Table 1. Both FIG. 3 and Table 1 tend to support the view that
thee distribution of the elements of the horizontal difference
JPEG 2-D arrays 1s Laplacian-like. Similar observations may
be made for difference JPEG 2-D array along other direc-
tions, such as vertical and diagonal
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TABLE 1
(-4, 4]

-1, 1] [-2,2]  [-3,3] (%) [-3,3]  [-6,6] [-7,7]
Mean 84.72 8¥.5% 90.66 91.99 92.92 93.60 94.12
Stan- 5.657 4.243 3.464 2.836 2421 2.104 1.850
dard
devi-
ation
(*) 91.99% 1s the mean, meaming that on statistic average 91.99% of the elements of

horizontal difference arrays generated from the image set fall into the range [-4, 4]. The
standard deviation 1s 2.836%.

As mentioned before, modern steganographic methods,
such as OutGuess and MB, have made efforts to keep changes
to the histogram of JPEG BDC'T coetlicients relatively small
from data embedding. Therefore, higher order statistics for
steganalyzing JPEG steganography may be useful. In this
embodiment, second order statistics are used so as not to
significantly increase computational complexity, although
depending upon the embodiment and application, use of sta-
tistics higher than second order may be desirable.

In this embodiment, a difference JPEG 2-D array is char-
acterized by using a Markov random process. In particular, a
transition probability matrix may be used to characterize the
Markov process. There are so-called one-step transition prob-
ability matrix and n-step transition probability matrix.
Roughly speaking, the former refers to the transition prob-
abilities between two immediately neighboring elements 1n a
difference JPEG 2-D array while the latter refers to the tran-
sition probabilities between two elements separated by (n—1)
clements. For a balance between steganalysis capability and
manageable computational complexity, a one-step transition
probability matrix 1s employed for this embodiment, as
shown 1n FIG. 4, although claimed subject matter 1s not
limited 1n scope 1n this respect.

To further reduce computational complexity, a threshold-
ing technique may also be employed, although claimed sub-
ject matter 1s not limited 1 scope 1n this respect. In this
embodiment, a threshold value, here T, 1s employed. Thus,
those elements 1n a difference JPEG 2-D array whose value
falls into {-T, -T+1,...,-1,0,1,...,T-1,T} is considered.
If an element has a value either larger than T or smaller than
—T, 1t will be represented by T or —T correspondingly. This
procedure results a transition probability matrix of dimen-
sionality (2T+1)x(2T+1). Of course, again, claimed subject
matter 1s not limited 1n scope to employing thresholding or to
these particular thresholding details. For example, in other
embodiments, a threshold level may vary. Nonetheless, for
this embodiment, the elements of these four matrixes associ-
ated with horizontal, vertical, main diagonal and minor
diagonal difference JPEG 2-D arrays are given by:

plFlu+1,v)=n|Fu, v) =m} = (3)

Sy—1 S;—1
E Z: S(F(u, v) =m, Flu+1, v) = n)

Sy—1 58,1

2 2 o(F(u, v)=m)

v=1 u=1

plF(u, v+ 1) =n|Flu, v) =m} = (6)

Sy—18,—1

Z Z S(F(u, v) =m, Flu, v+ 1) = n)

v=1 wu=1

Sy—158,—1

2 2 o(F(u, v) =m)

v=l u=1
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-continued

plFlu+ 1, v+ 1) =n|Flu, v) =m} = (7)

Sy—1 8,1
Z Z S(Fu, v) =m, Flu+1:v+1)=n)
v=1l u=l1

Sy—1 8,1

> > O(F(u, v) =m)

v=1 wu=1

plFlu,v+ 1) =n|Flu+1,v)=m} = (8)

Sy—1 8,1

Z Zc‘i(F(u+l,v)=m, Flu,v+1)=n)

v=1 wu=1

Sy—1 8,1

>0 2 o(Flu+ 1, v)=m)

v=1 u=1

where
me{-T,-T+1,... ,0,... ,T},
ne{-T,-T+1,... ,0,... T}, and

I, 1if Flu, v) =m, Flu,v+1)=n
0 Otherwise

{ (9)
o(F(u,v)=m, Flu,v+1)=n) =

In summary, for this embodiment, (2T+1)x(2T+1) ele-

ments are obtained for a transition probability matrix. Thus,
4 times.(2T+1)x(2T+1) elements are produced. Likewise,
these may be employed as features for steganalysis. In other
words, 4x(2T+1)x(2T+1) feature vectors have been produced
for steganaysis for this particular embodiment.

From data shown 1n FIG. 3 and Table 1, T 1n this example
1s set to 4, although claimed subject matter 1s not limited 1n
scope 1n this respect. Hence, for this embodiment, 11 an ele-
ment has an absolute value larger than 4, this element 1s
reassigned an absolute value 4 without sign change. The
resultant transition probability matrix 1s a 9x9 matrix for a
difference JPEG 2-D array. That 1s, 9x9=81 eclements per
transition probability matrix, or equivalently, 81x4=324 ¢le-
ments for this particular embodiment. Feature construction
for this particular embodiment 1s 1llustrated by a block dia-
gram shown in FIG. §.

A variety of techniques are available to analyze data, here
referred to as features, 1n a variety of contexts. In this context,
we use the term “analysis of variance process” to refer to
processes or techniques that may be applied so that ditfer-
ences attributable to statistical vanation are suiliciently dis-
tinguished from differences attributable to non-statistical
variation to correlate, segment, classily, analyze or otherwise
characterize data based at least 1n part on application of such
processes or techniques. Examples, without intending to limit
the scope of claimed subject matter includes: artificial 1ntel-
ligence techniques and processes, including pattern recogni-
tion; neutral networks; genetic processes; heuristics; and sup-
port vector machines (SVM).

Although claimed subject matter 1s not limited 1n scope to
SVM or SVM processes, 1t may be a convenient approach for
two-class classification. See, for example, C. Cortes and V.
Vapnik, “Support-vector networks,” in Machine Learning,
20, 273-297, Kluwer Academic Publishers, 1995. SVM may,
for example, be employed to handle linear and non-linear
cases or situations. For linearly separable cases, for example,
an SVM classifier may be applied to search for a hyper-plane
that separates a positive pattern from a negative pattern.

Thus, while Shi et al., for example, employed neural net-
works, for this embodiment a support vector machine (SVM)
1s used as a classifier. SVM 1s based at least 1n part on the 1dea
of hyperplane classifier. It uses Lagrangian multipliers to find
a separation hyperplane which distinguishes the positive pat-
tern from the negative pattern. 11 the feature vectors are one-
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dimensional (1-D), the separation hyperplane reduces to a
point on the number axis. SVM can handle both linear sepa-
rable and no-linear separable cases. Here, training data pairs
are denoted by {y,,w,},1=1, . .., 1 where y, eR" is the feature
vector, N 1s the dimensionality of the feature vectors, and
m.==x]1 for positive/negative pattern class. In this context, an
image with hidden data (stego-image) 1s considered as a
positive pattern while an 1mage without hidden data 1s con-
sidered as a negative pattern, although claimed subject matter
1s not limited 1n scope 1n this respect. A linear support vector
approach looks for a hyperplane H:w’y+b=0, and two hyper-
planes H,:w’y+b=-1 and H,:w’y+b=1 parallel to and with
substantially equal distances to H with the condition that
there are no data points between H, and H, and so that the
distance between H, and H, cannot feasibly be increase,
where w and b are the parameters. Once the SVM has been
trained, a selection z from the data may be classified using w
and b.

For a non-linearly separable case, a “learming machine”
may map 1put feature vectors to a higher dimensional space
in which a linear hyper-plane may potentially be located. In
this embodiment, a transformation from non-linear feature
space to linear higher dimensional space may be performed
using a kernel tfunction. Examples of kernels include: linear,
polynomial, radial basis function and sigmoid. A linear kernel
may be employed in connection with a linear SVM process,
for example. Likewise, other kernels may be employed 1n
connection with a non-linear SVM process. For this embodi-
ment, a polynomial kernel was employed.

Having formulated an embodiment system for identiiying
or classifying marked content, such as images, for example, 1t
1s desirable to construct and evaluate performance. However,
again, we note that this 1s merely a particular embodiment for
purposes of illustration and claimed subject matter 1s not
limited 1n scope to this particular embodiment or approach.

An 1mage database comprising 7,560 JPEG images with
quality factors ranging from 70 to 90 was employed. One
third of these 1images were an essentially random set of pic-
tures taken at different times and places with different digital
cameras. The other two thirds were downloaded from the
Internet. Each image was cropped (central portion) to the size
of either 768x512 or 512x768. Likewise, for purposes of
evaluation, chrominance components of the images are set to
be zero while luminance coetlicients are unaltered before data
embedding.

This performance evaluation 1s focused on detecting Out-
guess, F5, and MB1 steganography. The codes for these three
approaches are publicly available. See http://www.outguess.
org/;  http://wwwrn.nf.tu  dresden.de/.about.wesiteld/
t5.html; http://redwood.ucd-avis.edu/phil/papers/iwdw03.
htm Since there are quite a few zero BDCT coetlicients in the
JPEG 1mages and the quantity of zero coellicients varies, the
data embedding capacity differs from image to image. A
common practice 1s to use the ratio between the length of
hidden data and the number of non-zero BDCT AC coetii-
cients as the measure of data embedding capacity for JPEG
images. For OutGuess, 0.05, 0.1, and 0.2 bpc (bits per non-
zero BDCT AC coellicient) were embedded. The resultant
numbers of stego 1mage were 7498, 7452, and 7215, respec-
tively. For F5 and MB1, 0.05, 0.1, 0.2, and 0.4 bpc were
embedded, which provides 7560 stego 1mages. Note that the
step s1ze of MB1 embedding equals to two for this evaluation.

An embodiment of the mnvention is therefore directed to a
method of processing an image. The method includes training
an 1mage classifier to obtain a trained classifier. The training
includes forming at least one coellicient difference array
based at least 1n part on a frequency domain representation of
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atraining 1mage, as shown in 6010 of FIG. 6. The training also

includes thresholding the at least one coelficient di

‘erence

array, as shown in 6020. The training further includes training

11 -

the 1mage classifier using the thresholded at least one coe:
cient difference array, as shown 1n 6030.

One |

half of the images (and the associated stego 1mage)

were randomly selected to train the SVM classifier and the
remaining pairs were employed to evaluate the trained clas-
sifier. Approaches previously discussed, such as Farid’s, Shi
et al.’s, Fridrich’s, as well the previously described embodi- 10
ment were applied to evaluation detection of OutGess, F5 and
MB schemes. The results shown 1n Table 2 are the arithmetic
average 20 of random experiments. Likewise, as mentioned
previously, a polynomial kernel was employed. Unit here are
%; TN stands for true negative rate, TP stands for true positive 15

rate, and AR stands for accuracy.

10

It will, of course, be understood that, although particular
embodiments have just been described, the claimed subject
matter 1s not limited 1n scope to a particular embodiment or
implementation. For example, one embodiment may be 1n
hardware, such as implemented to operate on a device or
combination ol devices, for example, whereas another
embodiment may be 1n software. Likewise, an embodiment
may be implemented 1n firmware, or as any combination of
hardware, software, and/or firmware, for example. Likewise,
although claimed subject matter 1s not limited 1n scope 1n this
respect, one embodiment may comprise one or more articles,
such as a storage medium or storage media. This storage
media, such as, one or more CD-ROMs and/or disks, for
example, may have stored thereon instructions, that when
executed by a system, such as a computer system, computing
platform, or other system, for example, may result in an

TABLE 2
Farid’s Shietal.’s Fridrich’s Our Proposed

bpc TN TP AR TN TP AR TN TP AR TN TP AR
OutGuess 0.05 59.0 57.6 583 55.6 585 570 498 754 62.6 R7.6 90.1 RR9
OutGuess 0.1 70.0 63.5 668 614 663 639 689 833 7T6.1 946 965 955
OutGuess 0.2 81.9 753 786 724 T75 750 900 936 91.8 972 983 978
F5 0.05 55.6 459 508 579 450 515 461 61.0 536 586 57.0 578
F5 0.1 55.5 484 520 3546 546 546 584 633 608 681 7T0.2 69.1
F5 0.2 55.7 553 555 595 633 614 7T74 772 773 R58 RR3 R7.0
F5 0.4 62.7 650 639 715 7T71 743 926 930 928 9059 976 96.8
MBI 0.05 48.5 53.2 50.8 57.0 492 53.1 397 669 533 794 R82.0 R0.7
MB1 0.1 51.9 323 521 576 566 571 456 701 579 912 9033 923
MBI 0.2 52.3 56.7 545 63.2 66.7 650 583 775 679 967 978 973
MB1 0.4 553 63.6 594 742 R0.0 T7.1 R29 R6.8 84R 98K 994 991

Likewise, to examine contributions made by features along

different directions evaluation, reduced dimensionality

of 15

features was implemented, Hence, features from one direc-
tion at a time was implemented. The results shown 1n Table 4
are the arithmetic average of 20 random experiments with

polynomial kernel.

embodiment of a method in accordance with claimed subject
matter being executed, such as one of the embodiments pre-
viously described, for example. As one potential example, a
computing platform may include one or more processing
units or processors, one or more iput/output devices, such as
a display, a keyboard and/or a mouse, and/or one or more

TABLE 3
Horizontal Vertical Main Diagonal Minor Diagonal

bpc TN TP AR TN TP AR TN TP AR TN TP AR
OutGuess 0.05 77.7 R2.6 R0.1 789 831 K1.0 7T59 790 Ti5 T3R8 Ti4 756
OutGuess 0.1 89.1 95.0 920 90.5 954 93.0 88E 93.1 909 R6.6 92.3 Ro4
OutGuess 0.2 954 983 968 958 982 970 953 979 966 938 975 956
F5 0.05 55.8 53.77 547 56,7 524 546 516 563 54.0 513 529 52.1
F5 0.1 61.6 62.3 62.0 61.7 623 62.0 574 628 60.1 542 3569 555
F5 0.2 75.0 798 T774 758 R0.2 RO T1.8 76.2 740 614 657 636
F5 0.4 91.5 956 935 91.3 957 935 R91 925 908 774 R2.7 R0.1
MB1 0.05 69.9 724 71.1 TF0.6 728 T1.7 676 696 686 661 674 66.7
MB1 0.1 82.5 87.9 R5.2 83,7 R7.7 857 81.2 844 828 F81 825 80.3
MB1 0.2 925 964 944 941 968 955 928 956 942 90.1 939 920
MB1 0.4 97.6 989 982 982 994 98 979 991 985 965 9R7 976

55

Comparing tables, 1t appears that combining directions

enhances detection rate.

An embodiment of the invention 1s theretore directed to a

method of processing an image. The method includes traiming,
an image classifier to obtain a trained classifier. The training ¢V one or more tree expressions, although, again, claimed sub-

.

includes forming at least one coe

Icient difference array

based at least 1n part on a frequency domain representation of
atraining 1mage, as shown in 6010 of FIG. 6. The training also

includes thresholding the at least one coellicient di

‘erence

array, as shown in 6020. The training further includes training 65

11 -

the 1mage classifier using the thresholded at least one coe:
cient difference array, as shown 1n 6030.

memories, such as static random access memory, dynamic
random access memory, flash memory, and/or a hard drive.
For example, a display may be employed to display one or
more queries, such as those that may be interrelated, and or

ject matter 1s not limited 1n scope to this example.

In the preceding description, various aspects of claimed
subject matter have been described. For purposes of explana-
tion, specific numbers, systems and/or configurations were
set forth to provide a thorough understanding of claimed
subject matter. However, 1t should be apparent to one skilled

in the art having the benefit of this disclosure that claimed
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subject matter may be practiced without the specific details.
In other instances, well known features were omitted and/or
simplified so as not to obscure the claimed subject matter.
While certain features have been 1llustrated and/or described
herein, many modifications, substitutions, changes and/or
equivalents will now occur to those skilled 1n the art. It 1s,
therefore, to be understood that the appended claims are
intended to cover all such modifications and/or changes as fall
within the true spirit of claimed subject matter.

The mvention claimed 1s:
1. A method of classitying an 1mage comprising:
applying a trained analysis of a variance process to said
image, wherein the trained analysis of the variance pro-
cess includes forming at least one coetlicient difference
array including a plurality of elements, wherein each of
the elements of the at least one coellficient difference
array 1s compared to a threshold value, and wherein each
clement larger than the threshold value 1s assigned the
threshold value; and
classitying said image based at least 1n part on a value
obtained from application of the trained analysis of the
variance process.
2. The method of claim 1, wherein said trained analysis of
the variance process comprises a trained SVM process.
3. The method of claim 1, wherein the threshold value
varies.
4. An article of manufacture including a computer-readable
medium having computer-executable instructions stored
thereon, the mstructions comprising:

10
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instructions for applying a trained analysis of a variance
process to an 1mage, wherein the trained analysis of the
variance process includes forming at least one coetli-
cient difference array including a plurality of elements,
wherein each of the elements of the at least one coetii-
cient difference array 1s compared to a threshold value,
and wherein each element larger than the threshold value
1s assigned the threshold value; and
instructions for classitying said image based at least 1n part
on a value obtained from application of the trained
analysis of the variance process.
5. The article of claim 4, wherein said trained analysis of
variance process comprises a trained SVM process.
6. An apparatus comprising:
means for applying a trained analysis of a variance process
to an 1mage, wherein the trained analysis of the variance
process mcludes forming at least one coellicient differ-
ence array including a plurality of elements, wherein
cach of the elements of the at least one coelficient dif-
ference array 1s compared to a threshold value, and
wherein each element larger than the threshold value 1s
assigned the threshold value; and
means for classifying said image based at least in part on
the value obtained from application of the trained analy-
s1s of the variance process.
7. The apparatus of claim 6, where said means for applying
a trained analysis of a variance process comprises means for
applying a trained SVM process.
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