12 United States Patent

US008266577B2

(10) Patent No.: US 8.266,577 B2

Van Nest et al. 45) Date of Patent: Sep. 11, 2012
(54) RFID ENHANCED OPERATING SYSTEM (56) References Cited
(EOS) FRAMEWORK
U.S. PATENT DOCUMENTS

(75) Inventors: Nancy Lee Van Nest, Delray Beach, FL. 8,082,256 B2* 12/2011 Inoueetal. 707/740
(US); Keith Rider, Boynton Beach, FL, 8,120.480 B2* 2/2012 Hatanaka etal. 340/572 4
(US); Mohamed Benyounes, Boca 20060267731 AL* 1112006 Che v 340/10 |

Raton, FL, (US); Michael Polyakov . B e
: : LYKoV, 2007/0250358 AL* 10/2007 L€ ovevreeeeereceeererreeenn, 705/7
Boynton Beach, FL. (US); William 2009/0048936 Al* 2/2009 Lerchetal. ..cccooovvn... 705/17
Jeffreys, Lake Worth, FL (US) 2010/0060422 A1* 3/2010 Van Nestetal. 340/10.1

(73) Assignee: Sensormatic Electronics, LL.C, Boca
Raton, FLL (US)

*3) Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 1037 days.
(21) Appl. No.: 12/207,242
(22) Filed: Sep. 9, 2008

(65) Prior Publication Data
US 2010/0060422 Al Mar. 11, 2010

(51) Int.Cl.
GO6F 9/44 (2006.01)
GOG6F 9/00 (2006.01)

(52) US.CL ... 717/100; 71°7/120; 340/572.1

(58) Field of Classification Search 340/571.1,
340/572.4, 10.1; 71°7/100, 120; 179/328;

719/328
See application file for complete search history.

7 14

12

REF

Transceiver

18—,

RFiD Reade;r

| Communication
Interface

* cited by examiner

Primary Examiner — Christopher B Shin

(74) Attorney, Agent, or Firm — Alan M. Weisberg;
Christopher & Weisberg, P.A.

(57) ABSTRACT

A radio frequency 1dentification (“RFID”) reader includes a
hardware platform having a transcerver, an input/output inter-
face, a controller, and a memory. The transceiver receives
communication signals from at least one RFID tag. The con-
troller 1s communicatively coupled to the transcerver and the
input/output itertace and controls the operation of the RFID
reader. The memory 1s communicatively coupled to the con-
troller and contains a software development framework for
developing a software application. The framework includes a
plurality of predefined encapsulated functional components
that interact with at least one of the transcerver and the input/
output interface, to allow the software application to operate
in a manner that 1s independent of a specific embodiment of
the RFID reader hardware platiform.

16 Claims, 12 Drawing Sheets

18

He
interface

Cantroller ' g

I 22

Non-volatile Memory

Custom |~ 28
Applications

EQOS
Application
Framework

30
/ Linux 08

- 26
Libraries

24

U.S. Patent

Sep. 11, 2012 Sheet 1 of 12
10
RFID Reader
- 14 18
\Y |
12 -
R | Communication He
Transceiver Interface Interface
16 | .
| Controller a

o~ 22

Non-volatile Memory
- 28

custom 1/ Libraries |
Applications | .
Application |- M/ i
Framework ;

FIG. 1

/26

Reader Interface

64 ,

Search Control Configuration
. | Parameters
66

Device Specific

GPIO Parameters

Monitoring and
Control

- B8
Device
Management

Fort Paramelers

EPC Filter
Parameiers

Check Tag |/ '*

Enable Flag

FIG. 3

US 8,266,577 B2

US 8,266,577 B2

Sheet 2 of 12

Sep. 11, 2012

U.S. Patent

2
€

SSIjN uoheoijddy

&9

Aejdsic] abessan

0G

Juswisbeue|y YIoMeN

l2Beuey uoleinbBiyuon

¢ Il

I9jpUeH puBwWWOon

JAOJU0 Y INAIND 45

labeueyy
gjauireyn UoIEIYNON

jouos) Jebibis

gy -

GO S

217

sjusuodwion Alelixny

22

wiomauelJ uonenddy 03

SORHNN SO

P

Hoddne esusdil

Jalieuepy UoISIaA,

lajpueH s11s Gey

@oiligill] SUiAR(] lepiay

gg —
sjusuodwion 8100

g —

U.S. Patent Sep. 11, 2012 Sheet 3 of 12 US 8,266,577 B2

38

gl

Tag State Handler
Bl

Configuration
Faramelers

-f 87
RF Sources

84

Tag States

State Transition
_Parameters

Check Tag 88
Enable Flag
g0
Tag State Table

FIG. 4

46

RF Controf
Uz

Configuration Paramelers

Ri Sowrce Container 100
RIF Sources
REFF Sources /" 82

Tag states
 State Transition | 96 '

Harameters

RF Search 94

Schedule

, 96
RF Port Topology |
Ming NI:IIT‘I Search i/ 48
lntearval .

FIG. 5

US 8,266,577 B2

Sheet 4 of 12

Sep. 11, 2012

U.S. Patent

9 Ol

SLLj Sl Sl
goel 004 LU | Q0%

¢ U0 Yy2Jeaq € puUe ¥ Uo yoieag

s Q08
g 20In0g

AR

sl 08
Y 80IN0G

A

v U0 Yyoleag

004

20IA8(]

| lopesy 0}

s1sanbay
{oJess

¢ UORdY
Yoleas

, UOBOY
yoleag

L 2l

US 8,266,577 B2

Sl 48 SWLL Ll SLU
co9L 0071 008 L

SIAD]
u SW 008 SW 0ot SUl Q0¥ Sul OOt Su 0t 18PESY
— W U0 UalEeS g uo Yoleag Y PUE g U0 Yaieeg ¥ PUB Y UD 40JB8Q Y Uo yoieses c} sjsenbay
S) - UoJESS
)
'
L
=
e
¥ »,
UQijoy
uoless

3
\ o
—
3
1-.;
vt
W SW 00g S 00§ S 008 s

o S0JN0S q e3nng Y 301008 | ainpauog

N\ E . 235 38

U.S. Patent

US 8,266,577 B2

Sheet 6 of 12

Sep. 11, 2012

U.S. Patent

SiMn Alepuooeg
JAdellilg

gl

6 Ol

aimonig eyeq usag e

SWLL 1020104 4 SLEN B1e1e adAl
uoiosie | 1866y (1} be| 20IN0Q
A Se | be | JUSAT
. 45 1 gCl all

ogL — pE

L 0g peL —

8 ol

ainonng eleq siajelueled [puueyn UOHEDIION

uoneinq | bejd jie4 | 810An
108UL0N) | DUASESY 5
JlAley | @188

5213

EINEN
Lodey SalUEN a0Inog

uioday

LINWIXE A

gl — 4 AN L 119 -/ 801 Qdl

aleN jsuueyn

U.S. Patent Sep. 11, 2012 Sheet 7 of 12 US 8,266,577 B2

58
Network Mangement 156
142 Qutage Report 144
Qutage Report Outage Channel
Farameter Parameters
| q |- 148 156
| Enabje/Disable Cutage Report | | |
DRE Lockout | Max Size
Tag Read Below
1hreshold ' Host UR! - 160

Tag Read Below | } 152 | | _Specifications
- Threshold

- Tag Read Below | |- 154
Threshold 146
Interval Reader Settings _

140

SNMP System

162 166
. Master Agent | Alert Agent
| | 164 -
Sub-agent Statistics 168
g Agent

FIG. 10

U.S. Patent Sep. 11, 2012 Sheet 8 of 12 US 8,266,577 B2

162

SNMP
Master

SNMP |,
Sub-agent |
Library

SNMP Traps
and Value

Reguests

Application with
0SS Framework
FProcess

Agent
Process

FIG. 11

172 - 174 176

- Number | Characters Display
| of Linas | per Line {initialization

Display |New Line!| Cursor |

Display Parameters Data Structure

FIG. 12
184
186 190 192
Message !‘Jé?zstaage Message Mﬁ?;;ge
Name piay Priority

Duration Container |

Message Data Structure

FIG. 14

U.S. Patent Sep. 11, 2012 Sheet 9 of 12 US 8,266,577 B2

TextDisplayMessage

lessageDisplay | MessageBuilder
I ' I
-Reyyest I A
“Process :
[VessageName s
-notify
TriggerControl ' Application
I Buld N
B .
TriggerContro] MessageDisplay Application ReadearDevice
| o |
| Register{MessageName) I
%r&c&ss{MessageName :
ClearDigplay

Bunldw{essage Measagewame}

TextDisplayMessage

|

I

;
DmpiayM‘ta&sage(Text[ﬁiispIEyMemage}

i

;
|

|
I
|
I
|
I
|
|
I
|
I
I
:
I
|
|
!
WntaT:::SenaIPart{TextD:sPIay Message data) |
| .
|

|

FIG. 13

U.S. Patent Sep. 11, 2012 Sheet 10 of 12 US 8,266,577 B2

&)
2
ol
)
=
{}
&
$play M1 140s N
L0
Lt
. <
= W
o}
-
d
y M2 120s o
- lﬂﬂty Y
=
{rn
L

Display M1 360s
Priority 1

U.S. Patent Sep. 11, 2012 Sheet 11 of 12 US 8,266,577 B2

* Application Utilities

- 194

a Eése Agents

el
Passive ‘

Agent |

200

168 Deliverer classes

202

Log Utility

206

Notifier/Observer

MD5S Hash Utility Utility

Queue Classes 208 TCP Socket |/ 210

“Quess || [[listen Port
m 2185 |
| Lock Queue }’ 1 | ;CFZ ”:: 226
- - OCKe
I Wait Queue l/ | VWrappers

Wait Priority 995
-~ Queue

| Time Conversion | ~ 212
Uttlities

|

Type Conversion | ~ 414
Utilities

FIG. 16

US 8,266,577 B2

Sheet 12 of 12

Sep. 11, 2012

U.S. Patent

262 v

j8quosgng

DIOA :

A

IEYSELDle

2olesSay UI)SSad0ld+

-.I..I..I.ll.l. ..I_._l_._.._ll_.l_-_._._l.._._.._.__.__..!.ﬁ

_ abessap

L e — = — — 02

L} Old

[——

DIOA :

abessap

A

(Dswi Rabessoip)ssa00id«-0

X

ek TN TN NS NS MM pk ey e

{
;

SleAI8sqo |je Jo)

ploA : (xgabessapy ul)yoiedsicl+

IBAIesqO uiesibalag+

PIOA (, J8AJBSq O Ul)ieisiBa)M+

1SON

I.:.-_I_l_-.l_l.l.I.IJ

Lt

Y
BYsI|gng a2

- 9le

US 8,266,577 B2

1

RFID ENHANCED OPERATING SYSTEM
(EOS) FRAMEWORK

CROSS-REFERENCE TO RELAT
APPLICATION

T
»

n/a

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

n/a

FIELD OF THE INVENTION

The present invention relates generally to a method and
system for developing software applications and, more spe-

cifically for a method and system for developing soitware
applications executed on a radio-frequency identification

(“RFID”) reader.

BACKGROUND OF THE

INVENTION

Radio-frequency i1dentification (“RFID”) systems provide
a method for automatic identification that uses devices called
RFID tags to remotely store and retrieve data. An RFID tag
may be attached to or incorporated mto a product and 1denti-
fies the product through radio-frequency (“RF”’) waves. Most
RFID tags contain an integrated circuit (“IC”’) and an antenna.
The IC stores and processes information, and modulates and
demodulates an RF signal. The antenna recerves and trans-
mits the RF signal. RFID readers communicate with the IC of
the RFID tag to relay information between the tag and the
reader concerning the product. Today, there 1s a widespread
use of RFID systems in enterprise supply chain management
for improving the efliciency of mventory tracking and man-
agement.

RFID readers generally report all tag data that 1s read.
Duplicate tag reads and redundant data are reported without
filtering. Third party “middleware” software receiving the tag
data typically provides a layer of filtering so that the data set
reported to the customer 1s a meaningiul representation of the
number of tagged cartons or individual tagged products that
have passed through an antenna field.

A software solution that provides advanced capabilities for
processing and reporting tag data based on customizable tag
events and resides on the RFID reader 1s very desirable for
customers. This allows a customer to have control over the
type and amount of data recerved from the RFID reader and
use the data 1n any number of custom applications. One prior
solution provided an interface between the RFID reader and
the user. However, 1n this product, all features were hard-
coded into the application, rendering development of new
applications slow and intlexible. Adding features required
modifying and recompiling the existing application code.
Third party users often needed to customize a comprehensive
configuration file, typically very specific to their particular
site, enabling and disabling features that were configurable.

The difficulty presented 1n creating a software solution for
multiple RFID readers and reporting tag data to various
middleware packages has highlighted the need for a faster
development environment. Consideration of the need for cus-
tomizable feature sets and ongoing enhancements to support
additional readers and middleware packages has underlined
the need for the creation of a predefined development frame-
work to serve as a basis from which applications may be
rapidly developed.

10

15

20

25

30

35

40

45

50

55

60

65

2

Therefore, what 1s needed 1s a system and method for
rapidly developing software applications that reside on an
RFID reader using a predefined development framework.

SUMMARY OF THE INVENTION

The present invention advantageously provides a method,
system and radio frequency identification (“RFID”) reader
tor rapidly developing software applications that reside on an
RFID reader using a predefined development framework. The
development framework allows the software application to
operate 1n a manner that 1s independent of a specific embodi-
ment of the RFID reader hardware platform.

In accordance with one aspect of the present invention, an
RFID reader includes a hardware platform including a trans-
ceiver, an mput/output intertace, a controller, and a memory.
The transceiver 1s arranged to recerve communication signals
from at least one RFID tag. The controller 1s communica-
tively coupled to the transcerver, the mput/output interface,
and the memory. The controller controls the operation of the
RFID reader. The memory contains a software development
framework for developing a software application that is

executable on the hardware platiorm. The Iframework

includes a plurality of predefined encapsulated functional
components that interact with at least one of the transcerver
and the mput/output interface to allow the software applica-
tion to operate 1n a manner that 1s independent of a specific
embodiment of the RFID reader hardware platform.

In accordance with another aspect of the present invention,
a method 1s provided for developing software applications
residing on an RFID reader. The RFID reader includes a
memory. A software development framework 1s stored in the
memory of the RFID reader. The software development
framework includes a plurality of predefined functional com-
ponents that interact with the RFID reader 1n a manner that 1s
independent of RFID reader hardware.

In accordance with yet another aspect of the present inven-
tion, a system for developing RFID reader-resident applica-
tions includes an RFID reader and a host computer. The RFID
reader has a hardware platform which includes a memory for
storing at least one software application. The host computer1s
communicatively coupled to the RFID reader. The host com-
puter includes a software development framework for devel-
oping the at least one software application. The framework
includes predefined encapsulated functional components that
interact with the RFID reader hardware platiorm to allow the
at least one software application to operate 1n a manner that 1s
independent of a specific embodiment of the RFID reader
hardware platform.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention,
and the attendant advantages and features thereof, will be
more readily understood by reference to the following
detailed description when considered in conjunction with the
accompanying drawings wherein:

FIG. 1 1s a block diagram of an exemplary radio frequency
identification (“RFID”) reader constructed in accordance
with the principles of the present invention;

FIG. 2 1s a block diagram of an exemplary Enhanced Oper-
ating System (“EOS”) application framework constructed 1n
accordance with the principles of the present invention;

FIG. 3 1s a block diagram of a reader interface component,
which controls the reader hardware, constructed in accor-
dance with the principles of the present invention;

US 8,266,577 B2

3

FI1G. 4 1s a block diagram of an exemplary tag state handler
component constructed 1n accordance with the principles of

the present invention;

FIG. 5 1s a block diagram of an RF control component
constructed in accordance with the principles of the present
invention;

FIG. 6 1s a graph depicting exemplary timing operations of
an RF control component processing multiple search actions
in accordance with the principles of the present invention;

FI1G. 7 1s a graph depicting exemplary timing operations for
combining an RF schedule and a tag search action in accor-
dance with the principles of the present invention;

FIG. 8 1s a diagram of an exemplary notification channel
parameters data structure constructed 1n accordance with the
principles of the present invention;

FI1G. 9 1s a diagram of an exemplary tag event data structure
constructed in accordance with the principles of the present
invention;

FIG. 10 1s a block diagram of a network management
component constructed 1n accordance with the principles of
the present invention;

FIG. 11 1s a block diagram 1illustrating the interaction
between an application and a master agent in accordance with
the principles of the present invention;

FIG. 12 1s a diagram of a display parameters data structure
constructed 1n accordance with the principles of the present
invention;

FIG. 13 1s a block diagram illustrating the interaction
between an application, a reader device, and various inter-
faces constructed 1n accordance with the principles of the
present invention;

FIG. 14 1s a diagram of a message data structure con-
structed 1n accordance with the principles of the present
invention;

FIG. 15 1s a timing diagram illustrating displaying two
messages according to a priority schedule 1n accordance with
the principles of the present invention;

FIG. 16 1s a block diagram of an application utilities com-
ponent constructed in accordance with the principles of the
present invention; and

FIG. 17 1s an exemplary design pattern constructed in
accordance with the principles of the present mnvention.

DETAILED DESCRIPTION OF THE INVENTION

Before describing 1in detail exemplary embodiments that
are 1n accordance with the present invention, 1t should be
observed that the embodiments reside primarily 1n combina-
tions of apparatus components and processing steps related to
implementing a system and method for developing radio fre-
quency 1dentification (“RFID”) reader resident applications
which process, filter and report tag data based on customiz-
able tag events. Accordingly, the apparatus and method com-
ponents have been represented where appropriate by conven-
tional symbols 1n the drawings, showing only those specific
details that are pertinent to understanding the embodiments of
the present invention so as not to obscure the disclosure with
details that will be readily apparent to those of ordinary skill
in the art having the benefit of the description herein.

In this document, relational terms, such as “first” and ““sec-
ond,” “top” and “bottom,” and the like, may be used solely to
distinguish one entity or element from another entity or ele-
ment without necessarily requiring or implying any physical
or logical relationship or order between such entities or ele-
ments.

One embodiment of the present invention advantageously
provides a method and framework for developing resident

5

10

15

20

25

30

35

40

45

50

55

60

65

4

RFID reader applications using a set of predefined building
blocks called Enhanced Operating System (“EOS™) func-
tional components. The EOS application framework provides
users with the ability to develop RFID reader resident appli-
cations 1n a fast and eflicient manner. The framework allows
application developers to focus on the application itself and
not the details of I/O iterfaces and third party application
programming interface (“API”) calls. The framework enables
application programmers to create customized systems that
provide mimimal to fully featured EOS functionality.

Referring now to the drawing figures in which like refer-
ence designators refer to like elements, there 1s shown in FIG.
1, an exemplary RFID reader constructed 1n accordance with
the principles of the present invention, and designated gener-
ally as “10.” RFID reader 10 includes an antenna 12 coupled
to an RF transcerver 14 which transmits RF signals to and
receives RF signals from an RFID tag (not shown) in a well-
known manner. The RF transceiver 14 1s coupled to a con-
troller 16 which generally controls the operation of RFID
reader 10.

The controller 16 1s also coupled to a communication inter-
face 18 and an 1put/output (“I/O”") interface 20. The I/O
interface 20 interacts with any of a number of peripheral
input/output devices to present mformation to and collect
information from a user, including, but not limited to, a dis-
play screen, a keyboard, a keypad, a mouse, etc. The /O
interface 20 may include any number of I/O ports, including
but not limited to, serial, parallel, Universal Serial Bus
(“USB”), Firewire, VGA, HDMI, and other audio/video
ports.

The communication interface 18 enables communication
between the RFID reader 10 and a communication network,
including but not limited to a local area network (“LAN™), a
wide area network (“WAN”) such as the Internet, or other
intranet, a personal area network (“PAN™), a campus area
network (“CAN”), a metropolitan area network (“MAN),
etc. The communication interface 18 may be wired or wire-
less and may communicate using a variety of communication
protocols, mcluding, but not limited to, high level wireless
communication protocols as defined by the Institute of Elec-
trical and Electronics Engineers (“IEEE”) standard 802.15.4
(“Zigbee”), the communications standard defined by IEEE
802.11, (*Wi-F1”), the communication protocols defined
under IEEE 802.16, (“Wi1-MAX”), the industrial specifica-
tion for wireless personal area network (“PAN"") communi-
cation developed by the Bluetooth Special Interest Group
(“Bluetooth™), the communication protocols standardized
under IEEE 802.3 (*“Ethernet”™), etc.

The controller 16 1s also coupled to a non-volatile memory
22 which contains instruction modules for controlling the
operation of the RFID reader 10. Instruction modules include
an operating system 24, such as the Linux operating system,
and libraries 26 associated with writing, compiling and run-
ning software applications 28 using the Linux operating sys-
tem 24. The non-volatile memory 22 also includes an
Enhanced Operating System (“EOS”) application framework
30 which provides predefined building blocks for creating
applications 28 resident to the RFID reader 10. The EOS
Framework 30 1s discussed in more detail below. It should be
noted that although the exemplary EOS Framework 30 and
RFID reader 10 are shown to operate using the Linux OS 24,
the concepts and principles of the present invention may be
equally applied to other equivalent operating systems such as
the Microsoit Windows OS family, Macintosh OS family,
Solaris and Unix.

Referring now to FIG. 2, an EOS application framework
30, according to one embodiment of the present invention,

US 8,266,577 B2

S

provides a portable platform for RFID reader application
development. An application 28 that 1s developed using the
EOS Framework 30 does not need to depend upon the actual
reader hardware platiform, or any vendor API. Reader plat-
form dependency 1s abstracted from the application 28 by the
EOS Framework 30.

The EOS application framework 30 1s an object-oriented
framework that maintains the object orniented concept of
encapsulation and has a well defined public interface. The
framework 30 provides an API for developers, which allows
customization of configuration by publishing interface meth-
ods to programmatically modily values independent of a
configuration flat file.

The EOS application framework 30 i1s an architecture in
which basic building blocks, called EOS functional compo-
nents, are composed 1n order to develop RFID reader resident
applications 28. Each component provides an interface that
allows access to 1ts functionality. The framework 30 consists
of core components 32 and auxiliary components 34. The
core components 32 represent basic EOS functional compo-
nents and the relationships between them. Core components
32 should be included 1n every application 24 and provide a
mimmal EOS functionality. Core components 32 may
include a reader interface 36, a tag state handler 38, a version
manager 40, a license support manager 42, and Operating,
System utilities 44. The core components 32 define a semi-
complete core EOS application 24.

The reader interface 36 provides an object-oriented inter-
face to the reader vendor API, as well as interfaces required to
completely operate and manage the reader 10. The tag state
handler 38 filters out RFID tag responses according to their
current state; thus, reducing the number of tag reads queued
for transmission to the host. The version manager 40 main-
tains and reports reader soltware version information. The
license support component 42 1s responsible for licensing the
reader and monitoring the EOS Framework license. The O
utilities 44 are a set of wrappers for OS facilities that simplify
the usage of the OS system 24 functions. The OS utilities 44
implement a consistent usage policy for these functions, as
well as allow for easy migration from one operating system to
another, as only these wrappers need to be modified 1n order
to use the EOS Framework 30 with a new OS. Each core
component 32 1s discussed 1n more detail below.

Auxiliary components 34 include those areas where a
developer uses the framework 30 to add custom soitware to
increase functionality of the EOS Framework 30 to address
individual project needs. An application developer may
extend the core functionality by incorporating auxiliary
framework components 34. In other words, when the appli-
cation developer composes an application 24 with the frame-
work 30, he/she may 1gnore the inner workings of the frame-
work 30, and add only those auxiliary components 32
necessary to address the particular application requirements
without having to modily existing application code. Auxiliary
components 34 customize the framework 30 by being com-
bined with the core components 32 during the 1nstantiation
process. Auxihiary components 34 include an RF control
component 46, a trigger control component 48, a notification
channels manager 50, a general purpose (“GP”) output con-
troller 52, a command handler 54, a configuration manager
56, a network management component 58, a message display
component 60, and application utilities 62.

The RF control component 46 processes RF Schedule and
RF Search Actions and schedules tag searches. The trigger
control component 48 processes triggers, which include an
input trigger and a set of actions to perform. The notification
channels manager 50 creates and deletes notification chan-

10

15

20

25

30

35

40

45

50

55

60

65

6

nels used to deliver tag events data to host computers. The GP
output controller 52 controls the states of General Purpose
outputs. The command handler 534 processes incoming coms-
mands from the managing host computer. The configuration
manager 56 extracts component configuration parameters
from EOS Configuration files. The network management
component 58 has two separate subcomponents, an outage
report and a SNMP network management, each of which are
discussed 1n more detail below. The message display compo-
nent 60 displays application text messages on an LED/LCD
display connected to the reader I/O interface 20. Application
utilities 62 are used by the framework components as well as
framework applications to facilitate faster feature and appli-
cation development. Each auxiliary component 34 1s dis-
cussed 1n greater detail below.

Core Components

Core components 32 represent a basic set of instructions
that allow a user to create a working application. In one
embodiment of the present invention, the following core com-
ponents 32 are usable for each application.

Reader Interface

FIG. 3 shows an exemplary block diagram of a reader
interface component 36. Functions of the reader interface 36
may be performed by three interface blocks: search control
64, General Purpose I/O (“GPIO”) momtoring and control
66, and device management 68. Search control 64 provides
the user with the ability to start tag searches and perform tag
write, lock and kill functions. Search control 64 also provides
notifications when a tag search operation finds tags in the field
or times out (no tags found 1n the field). The GPIO monitoring
and control 66 provides a user with the ability to register for
notifications of input state changes and to set outputs to a
desired state. Furthermore, if a serial device, such as a display
device 1s connected to the reader’s I/O interface 20, the GPIO
monitoring and control interface 66 allows the user to send
data to the device. The device management 68 section pro-
vides an iterface to reader Linux shell commands and man-
agement API. The device management 68 section allows the
user to set and get reader network parameters, to perform
reader reset and restart, as well as update reader firmware.
Additionally, the device management 68 section contains
interfaces to register for reader failure notifications, such as
restart, reset, antenna failure, etc. The reader interface 36 1s an
active component that uses configuration parameters 70 for
mitialization. Exemplary configuration parameters 70
include device specific parameters 72, port parameters 74,
clectronic product code (“EPC”) filter parameters 76, and a
check tag enable flag 78. Device specific parameters 72
include parameters specific to each reader type. Port param-
cters 74 include parameters required to mnitialize an 1/0 port.
Port parameters 74 may include such items as baud rate,
parity, number of bits and tlow control. EPC filter parameters
76 may include a mask and value for the EPC tag filters to use
to filter out non desired tags. The check tag enable flag 78 1s
used to enable antenna failure detection.

EOS Framework components needing access to reader
resources use the reader interface 36 to perform their tasks.
Once the reader interface component 36 1s initialized, 1t
attempts to connect to reader 10 firmware using the reader
native API, 1.e., vendor API. If the connection 1s successtul,
other components and the application may instantiate and
initialize. Otherwise, the EOS process exits.

In order to recerve tag data collected by the reader, the user,
via an application, registers with the reader interface 36 using
a pointer. The reader interface 36 sends at least one tag mes-
sage to the user via the application’s process method. Each
tag message may contain information such as the antenna on

US 8,266,577 B2

7

which the tag 1s read, the air protocol used to read the tag, e.g.,
GENZ2, the number of bits 1n a tag 1D, the tag ID, the tag 1D
CRC, the number of times a tag 1s read, the tag detection time
stamp, the port to which the antenna 1s attached, etc.

The application process method can be designed to be very
cificient, as the application process method executes 1n the
context of the reader interface 36 thread. Inefficient imple-
mentation of this method may have negative effects on the
performance of the reader 10. Generally, the application pro-
cess should only deposit the tag message in some application
queue and return. The user application 28 may then remove
the tag message from the queue and take time processing the
message.

Tag State Handler

A block diagram of the tag state handler 38 1s shown 1n
FIG. 4. The tag state handler component 38 1s used to filter out
tags according to their current state, thereby, reducing the
number of tag reads queued for transmission to the host.
When the reader 10 1s searching for tags, it may encounter the
same tag multiple times during the same search cycle. To
prevent reporting the same tag multiple times, a Finite State
Machine for a tag (““Tag FSM”) can be defined. The tag state
handler 38 implements this Tag FSM.

The configuration parameters 80 for the tag state handler
38 include a container of RF sources 82. RF sources 82 15 a
named grouping of antennas located in a specific area. The RF
sources 82 are discussed 1n greater detail below 1n relation to
auxiliary component RF control 46. Each RF source 82 con-
tains information about which tag states 84 the user 1s inter-
ested 1n and what the state transition parameters 86 are. Pos-
sible tag states 84 that the tag state handler 38 may generate
include: new, glimpsed, observed, lost, purged, and unknown.
State transition parameters 86 may include an observed
threshold, an observed timeout, a glimpsed timeout, and a lost
timeout.

Another configuration parameter 82 used by the tag state
handler 38 1s the state eval cycle time parameter 88 (in mil-
liseconds). Every single tag read i1s queued into a tag state
table 90 (represents the state of tags currently 1n the field) for
state transition evaluation purposes. The evaluation cycle 1s
the cycle at which tags 1n the tag state table are evaluated for
state transitions. When a tag reaches the “Unknown” state, 1t
1s discarded from the state table 90.

The tag state handler interface 38 allows user to query
configuration parameters, register and/or deregister for noti-
fication of tag state transitions, 1.¢., tag events, and request a
tag state table resynchronization. To promote loose coupling,
between components, 1n one embodiment, the tag state han-
dler 38 does not deliver tag events directly to a notification
channel queue. Instead, the notification channels manager 50
registers for notifications of tag events from specific sources.
The tag state table resynchronization request causes the tag
state handler 38 to generate tag events based on the current
states of all tags 1n 1ts tag state table 90. This method 1s
generally used to determine the state of the tags that are in an
RF field accessible to the RFID reader 10.

Version Manager

The version manager component 40 1s used for maintain-
ing and reporting reader software version imformation. The
version manager interface 40 provides the user with ability to
set application version attributes as well as query the version
of any one of the following exemplary software components:
EOS Framework version, reader vendor, reader type, reader
firmware version, application name, application company
name, application version, and application Globally Unique
Identifier (“GUID”). In one embodiment, the version man-
ager 40 may not require any configuration parameters to start

10

15

20

25

30

35

40

45

50

55

60

65

8

executing. During its mitialization, the version manager 40
may query an application for its application version
attributes. If the application fails to provide these attributes,
the version manager 40 will cause the EOS process to exit.

License Support

The license support manager 42 1s responsible for licensing
the reader 10 and monitoring the EOS Framework license. In
one embodiment, the EOS Framework 30 1s arranged such
that 1t must be licensed 1n order to operate. The license man-
ager interface 42 provides the following methods:

Get License Key Seed—returns the reader’s MAC address

as the license key seed.

Set License Key—created a valid license file on the reader.

Get License Status—returns information about the state of

the license on the reader. This information may include
whether the license file 1s present, whether the license 1s
valid, whether the license 1s under evaluation mode, and
the length of time remaining 1n evaluation mode.

The license manager 42 may support momtoring of the
EOS Framework license only, or monitoring of the actual
application license.

Operating System Utilities

In order to make EOS Framework 30 portable, one embodi-
ment of the EOS Framework 30 does not use Linux operating
system threads library directly. Instead, the EOS Framework
30 may include Operating System utilities 44 consisting of a
set of wrappers for OS facilities, such as threads, semaphores,
mutexes, reader-writer locks and conditional variables. These
wrappers simplity the usage of the OS system functions and
implement a consistent usage policy for these functions. The
OS utilities 44 allow for easy migration from one operating
system to another, as only these wrappers need to be modified
to implement a new OS.

Auxiliary Components

RF Control

Referring now to FI1G. 5, a block diagram of an RF control
component 46, constructed 1n accordance with the principles
of the present invention 1s shown. In one embodiment, the RF
control component 46 1s responsible for processing RF sched-
ule and RF search actions and scheduling tag searches. Addi-
tionally, RF control 46 provides interfaces to initialize RF
control 46 and start 1ts execution, start searching on a set of
RF sources 82 for a specific duration, stop searching on a set
of RF sources 82, suspend and resume RF control 46 execu-
tion, report whether RF control 46 1s active or suspended, 1.¢.,
idle, and register/deregister from receiving search started and
search completed messages.

Configuration parameters 92 for RF control 46 include RF
search schedule 94, RF sources 82, RF port topology 96, and
minimum search interval 98. RF search schedule 94 1s a
schedule for searching on specified sources. The RF sources
parameter 82 includes a named grouping of antennas located
in a specific area. RF port topology 96 specifies reader ports
that are connected to antennas. Minimum Search Interval 98
sets the minimum number of milliseconds that a reader 10 1s
allowed to continue with a tag search prior to being stopped 1n
order to resume with the next search. Each of these configu-
ration parameters 1s described 1n more detail below.

In one embodiment, the initialization of RF control 46 1s
tightly coupled with the mitialization of trigger control 48.
Both the RF control 46 and the trigger control 48 components
should be instantiated prior to mitializing either one. Instan-
tiate mvolves creating an object and all of 1ts elements in
computer memory so the object 1s accessible by other pro-
gram ¢lements. In other words, once both are instantiated,
they can both be 1nitialized. In one embodiment of the EOS
Framework 30, RF control 46 mitialization depends upon

US 8,266,577 B2

9

trigger control 48 having been instantiated 1n order to register
for the processing of search and stop search actions. On the
other hand, trigger control 48 1nitialization depends upon RF
control 46 having been instantiated 1n order to register for the
processing of search started and search completed messages.

RF control 46 may run immediately upon initialization as
long as a search schedule 94 1s available. RF control 46
processes the first scheduled search entry by 1ssuing an appro-
priate search request, then processes the next scheduled
search entry and continues in a round robin fashion until
stopped. The search duration for each entry 1s the minimum
amount of time that the reader will search on the entry’s

sources.

If the RF search schedule 94 is not present, RF control 46
waits for a search action emanating from a trigger firing or an
application request to perform the next tag search. A “search
action” 1s described in more detail below 1n reference to the
trigger control 48. Upon receiving a search action, RF control
46 1ssues a search request to the reader device interface 36. If
multiple search actions are received, RF control 46 combines
sources Irom active search actions and re-issues a search
request for new set of active sources. RF control 46 monitors
durations to determine when a search action has completed.

FIG. 6 illustrates the RF control 46 processing multiple
search actions. If both RF schedule and a tag search action are
present, RF control 46 combines the RF sources and search
durations of both 1n performing a tag search.

FIG. 7 1llustrates the combiming of an RF schedule and a
tag search action. When a request to stop RF control 46 1s
activated via RF control stop method, RF control 46 is
blocked from execution until a resume method 1s 1nvoked.
During this time, RF schedule entries and search actions are
ignored. The execution resumes at an entry where the RF
control 46 1mitially stopped.

The RF search schedule 94 1s used to search based on a time
schedule. The schedule 94 consists of a number of schedule
entries, which may be either a search entry or a delay entry.
The search entry consists of a duration, e.g., 1n milliseconds,
and a set of sources to search on. When RF control 46 encoun-
ters the search entry, 1t 1ssues a search request to the reader
device interface 36. Once the search duration expires, RF
control 46 1ssues a stop search to the reader device interface
36. The delay entry consists of a delay duration element, e.g.,
in milliseconds. During the delay period, RF control 46 does
not 1ssue any scheduled search requests. However, 1f a search
action becomes active during a delay period, a corresponding
search request may be 1ssued.

RF sources 82 may be used for several purposes. For
example, RF sources 82 allow an application developer to
group antennas based on location, such as “sheltf” or “dock
door”, etc. RF sources 82 also provide configuration data for
the tag state handler 38. Each RF source 82 entry may contain
the name of the location, port IDs of antennas belonging to
this source, a list of tag states 84 to report, and state transition
parameters 86. RF source 82 entries are combined into a
container, namely RF source container 100. The RF source
container 100 allows the user to search for a source based on
a source name or port that the source contains.

The RF port topology 96 contains a list of all the RF ports
that are defined 1n the system. RF port topology 96 allows the
user to convert an antenna number to an RF port data structure
which 1s used by the reader device interface 36. The RF port
topology 96 provides the following functions: add/remove
RF port, get/set port address, and get/set power level. Each
port contains a port address, e.g., reader port number, and a
port power level.

10

15

20

25

30

35

40

45

50

55

60

65

10

Trigger Control
The trigger control component 48 processes trigger
actions, 1.€., performs a set of actions based on a trigger event.
The trigger control interface 48 allows the user to add trig-
gers, remove triggers, clear all triggers, register/deregister for
processing actions, and process application event messages.
The trigger control 48 does not require parameters 1n order to
be 1mtialized. Trigger control 48 1s thread-safe; therefore,
triggers can be added and removed at any point during run-
time. Note that the trigger control component 48 1s coupled
with RF control 46 and 1ts instantiation and initialization
should follow the rules specified above for the RF control 46.

Trigger control 48 processes triggers. Triggers include an
iput trigger and a corresponding set of actions to perform.
An mput trigger specifies triggering events which cause acti-
vation of the tnigger. Specific triggers may include, for
example, a GP mput trigger, a sequenced GP mput trigger, a
tag search successiul input trigger, a tag search timeout input
trigger, and an application input trigger. A GP input trigger 1s
activated when a specified GP input transitions to a specified
state. For example, 1f mput “A” transitions to high, then
activate this trigger. A sequenced GP iput trigger may be
activated when a specified GP input transitions to a specified
state and then another GP mput transitions to a specified state
within a specified time duration. For example, 11 input “A”
transitions to high and then mput “B” transitions to high
within 300 ms of mput “A”, then activate an action. A tag
search successiul mput trigger may be activated when RF
control 46 completes a search request and one or more tags
were detected during that search request on specific sources.
Trigger control 48 automatically registers with RF control 46
to receive a search completed message, 1.€., search completed
means at least one tag 1s read during the search. A tag search
timeout mput trigger may be activated when RF control 46
completes a search on specified sources and no tags are
detected during that search. Trigger control 48 automatically
registers with RF control 46 to receive search timeout mes-
sages.

An application mnput trigger 1s a trigger that 1s named and
called by an application 28. When the application specified
condition occurs, the application 28 can execute a process
application event message method. The application event
message contains a string with the event name. When the
application 28 invokes trigger control’s 48 process method
passing 1n the event message, trigger control 48 executes the
trigger action associated with that trigger. Trigger actions
such as search action, stop search action, set GP output action,
display message action, and notily application event action
are contemplated. Search action 1s used by RF control 46 to
start a search request. Search action includes a list of source
names to search for as well as a search duration. Stop search
action 1s used by the RF control 46 to terminate a search on a
set of sources. Stop search action includes a list of source
names that require search termination. Set GP output action 1s
used by the GP output controller 52 to set a specific output to
a specific state for a specific duration. Set GP output action
includes an output number, a desired state and a specific
duration. Display message action 1s used by the message
display 60 to display a named message on an optional LCD
display attached to the reader’s 1/O port. Display message
action contains the name of the message to display. Notily
application event action 1s used to notily an application 28 to
execute a named action and contains the name of the action to
be executed.

To promote loose coupling between different components
in the framework 30, trigger control 48 does not call action

processing methods of other components directly. Other

US 8,266,577 B2

11

components, as well as applications 28, register with the
trigger control 48 for processing the above actions. Trigger
control 48 uses the notification mechamism to inform other
components to execute the action. For example, RF control
component 46 registers for search action and stop search
action, output controller component 52 registers for set GP
output action, message display component 60 registers for
processing display message action, and the user application
28 registers for application event action.

Notification Channels Manager

The notification channels manager component 50 1s used to
create and delete notification channels used to deliver tag
events data to host computers. Notification channels manager
50 may be mitialized from configuration using a notification
channel parameters data structure 102, shown in FIG. 8. The
exemplary notification channel parameters data structure 102
contains the following fields: channel name 104, source
names 106, maximum report size 108 (in bytes), reporting
interval 110, state resync cycle 112, retry 1f connect fail flag
114, lease max duration 116, output buifer max 118, and
primary/secondary URIs 120.

Channel name 104 includes a name used to i1dentily the
notification channel. Source names 106 contain a list of
source names that this channel registers with to receive tag
events. Maximum report size 108 contains the maximum
length of reports from this channel 1n bytes. Reporting inter-
val 110 establishes how often to send reports. State resync
cycle 112 determines how often to send a request to the tag
state handler 38 to resynchronize with the tag state table 90.
The retry 11 connect fail flag 114 determines whether the
channel should continuously retry to send data 1f the TCP/IP
connection fails. Lease max duration 116 specifies the
amount of time a channel 1s to remain active prior to 1its
automatic deletion. Lease max duration 116 may be used as a
service channel to diagnose tag reads 1n case of antenna or
reader malfunction. The channel 1s automatically deleted
once the lease duration expires. Output butler max 118 speci-
fies the size of the channel tag events output butier in bytes.
Primary/Secondary Uniform Resource Identifiers (“URIs™)
120 include TCP/IP addresses and ports of data target host
computers. The channel will attempt to connect to the pri-
mary URI first, and 11 the connection attempt fails, automati-
cally switches to the secondary URI.

The nofification channels manager 50 reports tag event
data 1n the form of Event Reports. In addition to tag events,
other significant events are reported, including but not limited
to, reader reset event, bulfer full event, bulifer reset event,
resynch start event, resynch complete event, mput trigger
event, and a good-bye or channel termination event.

An exemplary tag event data structure 122 1s shown in FIG.
9. The tag event data structure 122 contains the following
fields: event type 124, tag state 126, tag source name 128, tag
1id 130, air protocol 132, trigger 134 and tag detection time
136. The event type field 124 describes the type of notification
message; for example, tag event or reader reset event. The tag
state filled 126 indicates whether or not the tag was seen 1n the
previous read cycle. The tag source name field 128 1dentifies
the antenna or grouping of antennas that detected the tag. The
tag 1d field 130 1s the EPC global tag identifier. The air
protocol field 132 refers to the type of protocol used to com-
municate with the tag. The trigger field 134 applies to an input
trigger event that 1s reported 11 an input port signal transitions
from Low to High, or vice versa. Tag detection time 136 1s the
time stamp at which the tag was read. An exemplary input
trigger event data structure 138 1s shown in FIG. 10. The input
tag event data structure 1s similar to the tag event data struc-
ture 122 but typically only contains fields for the event type

5

10

15

20

25

30

35

40

45

50

55

60

65

12

124, an input number, mput state and an event occurrence
time. The input number 1s the number of the physical input
port. The put state 1s Low or High, reflecting the type of
transition. Event occurrence time 1s the time the transition 1s
detected at the input port. Other events may contain event type
and occurrence time.

All channels may monitor their own state and data butifers.
Theuser can set up a percentage full threshold and be notified
when the butter reaches that threshold. To do so, the user sets
the threshold and registers for notification of the tag event
butler threshold message. The notification channels manager
interface 50 may perform several functions. For example,
using the notification channels manager 50, a user may create
a new channel with new 1nput parameters, remove an existing
channel along with 1ts output buttfer, alter the parameters of a
channel, set up butier bull thresholds for all channels, request
tag state resynchronization be performed, and register and/or
deregister for notifications of messages such as failed to con-
nect to target message, butler threshold reached message, and
butfer full message.

Output Control

The GP output control component 52 1s responsible for
controlling states of any general purpose output of the RFID
reader 10. Output states are typically high and low. The output
control component 52 does not require any configuration
parameters. During initialization this component registers
with the trigger control 48 for processing set GP output
actions. As a result, output control 52 1s instantiated after
instantiating trigger control 48. Currently, this instantiation 1s
controlled at the framework 1nitialization.

As described above 1n relation to the Trigger Control sec-
tion, the set GP output action contains three parameters:
output number, output state, and duration. Trigger control 48
searches through all configured triggers to find their respec-
tive set GP output actions. Trigger control 48 then 1nitializes
all output states, using the reader device interface 36, to states
opposite the action states. For example, if there 1s an action to
set output 3 to closed state, trigger control 48 1nitializes the
output to open state.

When output control 52 receives a set GP output action, it
uses the reader device interface 36 to set the requested output
to the requested state. Output control 52 then starts a timer for
the length of the duration specified. When the timer expires,
the state of the output 1s reset to 1ts previous state.

Command Handler

The command handler component 54 processes incoming,
commands from the managing host computer. Command
handler 54 creates two command channels, namely a secured
and an unsecured channel. The secured channel accepts
encrypted commands, such as Secure Socket Layer (“SSL”)
encrypted commands, over TCP/IP sockets. The unsecured
channel accepts unencrypted commands over TCP/IP sock-
ets. All the supported commands may be sent over the secured
channel. To disallow certain commands on the unsecured
channel, the user specifies 1 a configuration file the names of
the commands which are allowed on the unsecured channel.
This listcan also be passed as a parameter to the configuration
manager 56 when 1t 1s instantiated. Note that by default, 11 no
commands are specified as unsecured accessible 1n the con-
figuration file, the command handler 54 will allow any sup-
ported command to be processed as unsecured accessible.

Supported commands may include, but are not limited to:
get firmware version, reboot, get configuration time stamp,
update firmware, stop RF, resume RF, request state resynch,
set IP address, get reader state, set output, get license key
seed, set license key, get firmware update status, enable
DHCP, set hostname, get hostname, set DNS servers, request

US 8,266,577 B2

13

file transfer, add notification channel, remove notification
channel, get configuration file information, get license state,
get software info, restart EOS, set configuration, set reader
name, get reader name, set NTP server, get NTP server, set
EPC filter list, and remove EPC filter list. 5

Configuration Manager

The configuration manager component 56 1s responsible
for extracting component configuration parameters from con-
figuration files. An application may use the configuration
manager 56 to retrieve 1ts own configuration parameters from 10
the application portion of a configuration file.

Network Management

Referring now to FIG. 10, the network management com-
ponent 58, in one embodiment, consists of two separate sub-
components, an outage report 138 and a Simple Network 15
Management Protocol (“SNMP”) system component 140.

The outage report 138 reports reader outage events to the
host computer. Supported outage events may include reader
reset, tag read below threshold, and dense reader environment
(“DRE”) lockout. DRE lockout 1s the disabling of a reader’s 20
RF operations 1t 1t 1s determined that the reader’s RF opera-
tions 1s mterfering with the RF operations of another reader.
Outage reports 138 are formatted similarly to tag event
reports, but they are sent out via a separate channel. The
outage report interface 138 1s mitialized using outage report 25
parameters 142, outage channel parameters 144 and reader
settings 146. Outage report parameters 142 may include an
enable/disable DRE lockout outage 148, an enable/disable
tag read below threshold outage 150, a tag read below thresh-
old outage count 152, and a tag read below threshold outage 30
interval 154.

Outage reports 138 are messages from the reader 10 that
indicate outages have occurred. For any of the outage report
parameters 142 set to enabled, 1f that condition occurs, a
report of that occurrence will be 1ssued. For example, 1n the 35
case ol a DRE lockout outage, 11 the reader 10 goes into
lockout state because conditions indicate dense reader envi-
ronment, and the outage report parameter for DRE lockout
148 1s enabled, an outage report will be 1ssued. For the tag
read below threshold outage, 11 the number of tags read in a 40
read cycle 1s less than the threshold count, and the below
threshold outage parameter 1s enabled, a below threshold
outage report will be 1ssued. For outage count, the number of
tags read 1s compared to the value set in outage count to
determine whether the count has been reached or 1s below 45
threshold. For outage interval, the interval value tells at what
time interval the tags are counted. If the number of tags
counted 1s below the threshold, a notification 1s 1ssued.

Outage channel parameters 144 may include an outage
report maximum size 156, e.g., in number of events, a report 50
interval 158, and primary and secondary host URI specifica-
tions 160. The reader settings 156 contain the reader name,
which 1s included 1n the outage report 138.

The SNMP system component 140 delivers alerts and per-
formance statistics to the network management station via 55
Simple Network Management Protocol (SNMP). In one
embodiment, the SNMP system 140 has a master agent 162,

a sub-agent 164, an alert agent 166, and a statistics agent 168.
The master agent 162 includes a template for creating a
SNMP sub-agent library, which 1s statically linked 1n with the 60
application executable. The statistics agent 168 and the alert
agent 166 are grouped together under the EOS Framework
network management component 140 as a single library. The
sub-agent 164 acts as an interface between the application 28
and the master agent 162, as shown in FIG. 11. The alertagent 65
166 momnitors alert messages and dispatches SNMP alerts
when the alerting conditions are met. The statistics agent 168

14

1s responsible for reporting operational statistics via SNMP.
The SNMP system interface 140 may provide the following
methods: enable alerts, disable alerts, get tag read rate, and
get mnput trigger rate.

The network management component 38 1s not instantiated
by the framework initialization code. EOS Framework 30
does not require this component to run; however; 1n order to
include the SNMP system 58, the application 28 should
instantiate this component separately.

Message Display

The message display component 60 1s responsible for dis-
playing application text messages on an LED/LCD display
connected to the reader I/O interface 20. The message display
component 60 1s mitialized with the display parameters data
structure 170, as shown 1n F1G. 12. These parameters include,
but are not limited to, the number of lines available on the
display 172, characters per line 174, 1.e., the number of char-
acters that fit on a line, a display mnitialization 176 command
string, a display clear display 178 command string, a display
goto new line 180 command string, and a display hide cursor
182 command string. Because the displayed messages are
dynamic and may be updated during run time, the application
28 registers as a message builder with the message display
agent 60, as shown i FIG. 13. This drawing represents a
sequence diagram depicting the steps mnvolved for the appli-
cation to register as a message builder with the Message
Display Agent and display the message.

The message display interface 60, i an exemplary
embodiment, provides the user with the following methods:

Register message builder with the Message Display com-

ponent

Deregister message builder from the Message Display

components

Display Message with message name as a parameter

Display Message with message structure as a parameter.

The message data structure 184, as shown 1n FIG. 14, 1s
passed as a parameter to the message display agent 60. The
message data structure 184 may include, but 1s not limited to
a message name 186, message display duration 188, message
priority 190, and message lines container 192. Each message
has a display priority 190 and display duration 188. Higher
priority messages overwrite lower priority messages. In addi-
tion, an overwritten lower priority message may complete its
remaining duration once the higher priority message has
completed its display duration. For example, referring to FIG.

15, suppose there are two messages, M1 having a duration of
360 seconds and priority 1, and M2 having a duration of 60
seconds and priority 2. Message display agent 60 1s requested
to display M2 100 seconds after M1 has begun displaying.
FIG. 15 shows an example of in what order and for how long
the messages are displayed.

Application Utilities

In order to facilitate faster feature and application devel-
opment, the EOS Framework 30 provides a set of application
utilities 62, as shown in FIG. 16. These utilities 62 are used by
the framework components as well as framework applica-
tions 28. Application utilities 62 may include, but are not
limited to, base agents 194 (including passive agents 196 and
active agents 198), deliverer classes 200, a log utility 202, an
MD3 hash utility 204, a notifier/ observer utility 206, queue
classes 208, TCP Socket utilities 210, time conversion utilities
212, and type conversion utilities 214. Each utility 1s
described in detail below.

In accordance with one embodiment of the present inven-
tion, the EOS Framework 30 provides two types of base

US 8,266,577 B2

15

agents 194, a passive agent 196 and an active agent 198. A
passive agent 196 1s an abstract class that implements the
following features:

Class reference counting, which allows the user to control
number of instances of the objects 1n a system as well as
creation and destruction of these objects.

Timer facility, which allows the user to start and cancel
timers. When the timers expire, a timer event record 1s
placed in a queue for the passive agent 196. The user
monitors the queue for i1ts expired timer records. The
content of the timer record may be defined by the user.

Logging facility, which allows the user to log error and
debug information into the framework log files as well as
a system log.

Initialization, starting and destruction methods are pro-
vided as pure virtual functions which the user may
implement, thus making the system more dynamic and
flexible.

An active agent 198 contains passive agent features, as well
as a thread and a semaphore which are used to control execu-
tion of the agent 198. An active agent 198 runs 1n the context
of 1ts thread. Imitialization parameters for the active agent 198
may include RunMode, thread prionty, thread stack size,
sleep duration and block timeout.

An active agent 198 may run in four different modes: run
with sleep, run blocked, run blocked with timeout, and run
once. In the run with sleep mode, Run() method 1s executed,
followed by the thread sleeping for a specified duration.
When the thread wakes up, 1t executes Run() again and goes
back to sleep. This 1s done until a request to terminate 1s
received by the agent 198. In the run blocked mode, the Run(
) method 1s executed and then the thread 1s blocked. The
thread 1s manually restarted before 1t 1s able to run again. In
the run blocked with timeout mode, the agent 198 operates in
the same manner as the run blocked mode, however, the
thread 1s resumed when the timeout expires. In the run once
mode, the thread executes the Run() method once and exits.
Note that unlike threads, there 1s no need to implement an
infinite thread loop. Also, the thread-sate destruction of an
agent 1s handled automatically for the user as long he/she
tollows the agent pattern.

The deliverer classes 200 deliver data to the target host.
One example of a deliverer 200 that may be implemented by
the EOS Framework 30 1s a Socket Connection Manager
(“SCM”). This class uses TCP/IP sockets to connect and send
data to the host computer. This class may also provide a user
with the ability to set up two target hosts, a primary and a
secondary (fail-over). SCM attempts to send data to the pri-
mary host first, but 1f unsuccessiul, then attempts to send to
the secondary. IT both fa1l, SCM continues to bounce back and
forth between the primary and the secondary until 1t estab-
lishes a successtul connection. A user may configure SCM to
enable or disable a handshake between the reader and the
target host. When processing XML messages, SCM provides
a method to receive an entire XML document using a docu-
ment end XML tag to determine the end. The notification
channel component 50 uses SCM to deliver tag events to the
host.

The log utility 202 allows the user to log events and traces
into a log file for debugging purposes. Each component has 1ts
own log object where it logs 1ts events and traces. One
embodiment of the log utility 202 uses two files for logging
information. Initially, a first log file 1s written to until 1t
reaches 1ts maximum size. A second log file 1s then written to
until 1t 1s also full. When both log files have reached their
maximum capacity, the content of the first log file 1s erased
and 1s replaced with new log messages. The log files may be

10

15

20

25

30

35

40

45

50

55

60

65

16

stored 1n the reader’s RAM file system, thereby preventing
these files from surviving a reader reboot. Thus, 1f a user
needed to save these files, they should be transferred to a
non-volatile memory storage system e.g., floppy disk, hard-
drive, EEPROM, compact disc, memory stick, etc., prior to
reboot.

The log utility 202 allows the user to classity logs based on
the several severity levels. In one embodiment, logs may be
classified as critical, error, 1info, trace and debug. A critical log
may contain information concerming some critical error
which causes the system to stop performing some or all of its
functions. An error log may contain information relating to a
recoverable error. A info log may contain one or more nfor-
mational messages. A trace log may include function trace
messages which indicate the application has entered or exited
a function. A debug log includes debug messages. Each mes-
sage 1n the log file may be time stamped. Additionally, closing
a log file then reopening 1t may erase 1ts previous content.

The MD3 hash utility 204 allows a user to calculate the
file’s MD3 digest which 1s used to authenticate files when
transierring them to the reader 10. A managing host, via
command channel command, or an EOS Framework appli-
cation 28 invoking a configuration manager 56 method, may
retrieve the MD3 digest of a configuration file 1 order to
ascertain the itegrity of the file. In addition, the MD5 Hash
interface 204 provides the ability to imbed the digest into the
file 1tself, so that it may be transmitted with the file. The
Notifier/Observer utility 206 1s used to implement a Pub-
lisher—Subscriber design pattern. FIG. 17 shows how this
design pattern 1s used in the framework. A Publisher class
contains one or more Notifiers 206, each used for specific
message. This pattern promotes low coupling between sys-
tem components, thus reducing component dependencies and
increasing flexibility. A publisher class 228 may contain one
or more notifiers 206, each used for specific message. Com-
ponents wishing to recetve notifications subscribe by regis-
tering as Observers 230 with the sender of the message. The
Notifier 206 broadcasts the notifications to all registered com-
ponents. Subscribers 232 who inherit from the observer class
230 register themselves with the notifier 206. Subscribers 232
implement the process method, which 1s pure virtual in the
Observer 230 class. When the publisher 228 dispatches a
message to the subscribers 232, 1t calls a Notifier::

Dispatch() method which, in turn, calls the subscribers pro-
cess methods.

In one embodiment, the EOS Framework 30 also provides
four types of queue classes 208 to the application developer.
These are parameterized classes, and thus can be queues of

any data type. The queue classes 208 may include Queue 216,
LockQueue 218, WaitQueue 220, and WaitPriorityQueue

222. Queue 216 1s a basic “first-in-first-out” (“FIFO”) queue.
It may be set to any size. In addition, to add and remove
methods, Queue 216 also provides information about per-
centage ol occupancy and availability. This queue 1s not
strictly thread-safe, but may operate safely 1n a single pro-
ducer/single consumer environment. Queue 216 1s a non-
blocking queue, 1.e., the consumer thread will not be blocked
if the queue 1s empty.

LockQueue 218 adds a lock to the queue, making 1t safe to
use 1n multiple producer/multiple consumer environments.
WaitQueue 220 supports all the features of the Queue class
216 1n addition to blocking the consumer thread when the
queue 1s empty. When an item 1s added to the queue, the
consumer thread i1s unblocked. The WaitPriorityQueue 222
provides the user with the ability to add 1tems and prioritize

US 8,266,577 B2

17

them inside the queue. WaitPriorityQueue 222 1s also a block-
Ing queue, 1.e., the consumer 1s blocked when the queue 1s
empty.

In order to improve EOS Framework 30 portability to other
reader platforms as well as simplify communications over
TCP/IP network, EOS Framework 30 mmplements TCP
socket utilities 210 for Linux Socket interface. These wrap-
pers include listen port 224 and TCP/IP socket wrappers 226.
Listen port 224 allows the user to listen on a specific TCP/IP
port for commands and incoming messages. TCP/IP socket
wrappers 226 allow the user to poll, send and receive data.
The TCP socket utilities 210 are used by the command han-
dler component 54.

It 1s contemplated that at least some of the components 1n
the EOS Framework 30 and applications 28 may need to
manipulate time objects. To simplify these tasks, a set of time
conversion utilities 212 are provided by the framework 30.
For example, “Generate Time Stamp™ generates a time stamp
from an mput time value 1n the form YYYY-MM-DDTHH:
MM:SS. The mput time value includes number of seconds
and microseconds from beginning of UNIX EPOCH (00:00:
00 UTC Jan. 1, 1970). “Generate Current Time Stamp” gen-
crates a time stamp given current system time. “TimeDail”,
“TimeAdd” and “TimeClear” are wrappers for standard
Linux struct timeval handling macros. “IsTimelnBetween”,
“IsGreaterThanOrEqual” and “IsLessThanOrEqual” are
struct timeval comparison functions. Additional time conver-
s1on functions 212 convert milliseconds to struct timeval and
convert struct timeval to milliseconds since beginning of
UNIX Epoch and struct timeval. “Convert String To Time”
includes a time stamp to struct timeval. “Get Current Time”
gets current system time and “Get Uptime” gets the reader
uptime since the last reboot.

The EOS Framework 30 also provides conversion utilities
214. These 1nclude, for example, convert string to unsigned
integer, convert string to signed integer, convert string to
Boolean, convert Boolean to string, convert hex string to array
of bytes, and convert an unsigned integer to string. These
utilities 214 simplity type conversions.

The component mterfaces of the present invention define a
set of nteraction points between the interface and the external
world. The interface specifies the services (messages, opera-
tions, and variables) a component provides, defines the com-
putational commitments that a component may make and
places constraints on its usage. Additionally, design patterns,
as shown 1n FIG. 17, or templates may be utilized to ensure
optimized solutions to recurring design problems. A facade
pattern, for example, may be used 1n all component interface
objects, to provide a consistent layer between the developer
and the core and auxiliary components.

Additional design patterns incorporated into the frame-
work may include Strategy, Singleton, and Factory. The Strat-
egy Design Pattern basically consists of decoupling an algo-
rithm from 1ts host, and encapsulating the algorithm into a
separate class. More simply put, an object and its behavior are
separated and put into two different classes. This allows the
application designer to switch the algorithm that he/she 1s
using at any time. The Singleton Design Pattern ensures that
a class has only one instance and provides a global point of
access 1o that instance. The Factory Design Pattern specifies
various ways 1o separate the construction of a complex object
from 1ts representation, letting the application designer use
the same construction process to create different representa-
tions. The framework 30 may be available as a set of libraries
in the form of library archives (““.a” files). The libraries are
accompanied by a set of header files which provide external
interfaces to the framework’s functionality. In addition, a

10

15

20

25

30

35

40

45

50

55

60

65

18

version of the framework 30 may be available to run on a
Linux personal computer (“PC”) or other development plat-
form, as well as a set of “device simulation” libraries, which
allows a developer to write and test the application code on
the PC prior to embedding 1in the reader 10.

The present mvention can be realized 1n hardware, soft-
ware, or acombination of hardware and software. Any kind of
computing system, or other apparatus adapted for carrying
out the methods described herein, 1s suited to perform the
functions described herein.

A typical combination of hardware and software could be
a specialized or general purpose computer system having one
or more processing elements and a computer program stored
on a storage medium that, when loaded and executed, controls
the computer system such that it carries out the methods
described herein. The present invention can also be embedded
in a computer program product, which comprises all the
features enabling the implementation of the methods
described herein, and which, when loaded 1n a computing
system 1s able to carry out these methods. Storage medium
refers to any volatile or non-volatile storage device.

Computer program or application in the present context
means any expression, in any language, code or notation, of a
set of instructions intended to cause a system having an infor-
mation processing capability to perform a particular function
either directly or after either or both of the following a)
conversion to another language, code or notation; b) repro-

duction 1n a different material form.

In addition, unless mention was made above to the con-
trary, it should be noted that all of the accompanying drawings
are not to scale. Significantly, this invention can be embodied
in other specific forms without departing from the spirit or
essential attributes thereof, and accordingly, reference should
be had to the following claims, rather than to the foregoing
specification, as indicating the scope of the invention.

What 1s claimed 1s:

1. A radio frequency 1dentification (“RFID”) reader com-
prising;:

a hardware platform, the hardware platform including:

a transceiver, the transceiver arranged to receive com-
munication signals from at least one RFID tag;

an 1input/output interface;

a controller communicatively coupled to the transcerver
and the mput/output interface, the controller control-
ling operation of the RFID reader; and

a memory communicatively coupled to the controller,
the memory containing:;

a software development framework for developing a
soltware application that 1s executable on the hard-
ware platform, the framework including a plurality
of predefined encapsulated functional components

that interact with at least one of the transcerver and
the input/output interface to allow the software
application to operate 1n a manner that 1s indepen-
dent of a specific embodiment of the RFID reader
hardware platform, the functional components
including a set of core components, the set of core
components enabling the software application to
operate; wherein the set of core components
includes:
a reader interface, the reader interface operating
and managing the RFID reader;
a tag state handler, the tag state handler filtering
responses received from RFID tags according to
a current state;

US 8,266,577 B2

19

a version manager, the version manager maintain-
ing and supporting RFID reader software ver-
sion information;

a license support manager, the license support man-
ager 1ssuing and monitoring a license for the
soltware development framework; and

a set of operating system wrappers, the operating
system wrappers implementing a consistent
usage policy for operating system functions.

2. The RFID reader of claim 1, wherein the functional
components further include at least one auxiliary component.

3. The RFID reader of claim 2, wherein the at least one
auxiliary component 1s at least one of an RF control compo-
nent, a trigger control component, a notification channels
manager, a general purpose output controller, a command
handler, a configuration manager, a network management
component, a message display component, and an application
utility.

4. The RFID reader of claim 3, wherein the at least one
auxiliary component 1s an application utility, the application
utility including at least one of a base agent, a deliverer class,
a log utility, an MD5 hash utility, a notifier utility, a queue
class, a TCP socket utility, a time conversion utility, and a type
conversion utility.

5. The RFID reader of claim 2, wherein the at least one
auxiliary component 1s an RF control component, the RF
control component processing RF schedules, RF searches
and schedules tag searches.

6. The RFID reader of claim 2, wherein the at least one
auxiliary component 1s a trigger control component, the trig-
ger control component processing triggers, each trigger
including an input trigger and a set of actions to perform.

7. The RFID reader of claim 2, wherein the at least one
auxiliary component 1s a notification channels manager, the
notification channels manager managing notification chan-
nels to deliver tag event data to host computers.

8. The RFID reader of claim 7, wherein the tag event data
contains at least one of an event type, a tag state, a tag source
name, a tag identifier, an air protocol, a trigger, and a tag
detection time.

9. The RFID reader of claim 2, wherein the hardware
platform further includes an mput/output port controlled by
the input/output interface, wherein the at least one auxiliary
component 1s a general purpose output controller, the general
purpose output controller controlling a state of the mmput/
output port.

10. The RFID reader of claim 2, wherein the at least one
auxiliary component 1s a command handler, the command
handler processing commands from a host computer.

11. The RFID reader of claim 2, wherein the at least one
auxiliary component 1s a configuration manager, the configu-
ration manager extracting component configuration param-
eters from configuration files of the software development
framework.

12. The RFID reader of claim 2, wherein the at least one
auxiliary component 1s a network management component,
the network management component reporting outage events
and delivering alerts and performance statistics.

13. The RFID reader of claim 2, wherein the at least one
auxiliary component 1s a message display component, the
message display component outputting application messages
for presentation.

10

15

20

25

30

35

40

45

50

55

60

20

14. A method for developing software applications resid-
ing on a radio frequency identification (“RFID”) reader, the
RFID reader including a memory, the method comprising:

storing a software development framework 1n the memory
of the RFID reader, the software development frame-
work including a plurality of predefined functional com-
ponents that interact with the RFID reader 1n a manner
that 1s independent of RFID reader hardware, the func-
tional components include a set of core components, the
set ol core components enabling the software applica-
tion to operate, wherein the set of core components
includes:

a reader interface, the reader interface operating and
managing the RFID reader;

a tag state handler, the tag state handler filtering
responses received from RFID tags according to a
current state;

a version manager, the version manager maintaining and
supporting RFID reader software version informa-
tion;

a license support manager, the license support manager
1ssuing and monitoring a license for the software
development framework; and

a set of operating system wrappers, the operating system
wrappers implementing a consistent usage policy for
operating system functions.

15. The method of claim 14, wherein the functional com-
ponents further include at least one auxiliary component.

16. A system for developing radio frequency 1dentification
(“RFID”) reader-resident applications, the system compris-
ng:

an RFID reader, the RFID reader having a hardware plat-
form including a memory for storing at least one sofit-
ware application; and

a host computer communicatively coupled to the RFID
reader, the host computer including:

a soltware development framework for developing the at
least one software application, the framework including
predefined encapsulated functional components that
interact with the RFID reader hardware platform to
allow the at least one software application to operate 1n
a manner that 1s independent of a specific embodiment
of the RFID reader hardware platiorm, the functional
components including a set of core components, the set
of core components enabling the software application to
operate, wherein the set of core components includes:
a reader interface, the reader interface operating and

managing the RFID reader;

a tag state handler, the tag state handler filtering
responses recerved from RFID tags according to a
current state;

a version manager, the version manager maintaining and
supporting RFID reader software version informa-
tion;

a license support manager, the license support manager
1ssuing and monitoring a license for the software
development framework; and

a set of operating system wrappers, the operating system
wrappers implementing a consistent usage policy for
operating system functions.

	Front Page
	Drawings
	Specification
	Claims

