US008266237B2
a2y United States Patent (10) Patent No.: US 8.266.,237 B2
Moore et al. 45) Date of Patent: Sep. 11, 2012
(54) SYSTEMS AND METHODS FOR PROVIDING 2002/0147815 Al1* 10/2002 Tormasov etal. 709/226
2003/0028517 Al* 2/2003 Nakano et al. wovoevvvevi.. 707/1
DISTRIBUTLD, DECENTRALIZED DATA 2003/0063770 Al 4/2003 Svendsen et al. .o.......... 382/100
STORAGE AND RETRIEVAL 2003/0084020 AL* 5/2003 SHU oo 707/1
2003/0105831 Al 6/2003 O’KANE oovovoeooo. 709/217
(75) Inventors: George M. Moore, Issaquah, WA (US); 2003/0114341 A1 6/2003 Liu ..coovviviiiiiiiinn, 510/384
- 2003/0154238 Al 8/2003 Murphy et al. 709/201
Istvan Cseri, Redmond, WA (US) 2003/0158958 Al 82003 CRIU oo 709/231
. . . 2003/0177435 Al* 9/2003 Buddetal. ..o.oovvvvivviin., 714/776
(73) Assignee: Microsoft Corporation, Redmond, WA 2003/0233609 Al* 12/2003 Ikonomopoulos etal. ... 714/758
(US) 2004/0064633 AL* 4/2004 OOta weoeoeoooooeoon. 711/100
2004/0117549 Al* 6/2004 Nakamura ... 711/114
(*) Notice: Subject to any disclaimer, the term of this 2005/0004995 Al . 1/2005 Stochosky 709/219
patent 1s extended or adjusted under 35 2005/0050292 Aj" 3/2005 Oh oo, 7117170
U.S.C. 154(b) by 1070 days 2005/0078601 Al 4/2005 Moll et al
L y Y. 2006/0116117 Al* 6/2006 Takaseetal. ..oooovvviviii.. 455/420
(21) Appl. No.: 11/110,128 FOREIGN PATENT DOCUMENTS
| TP 2004-126716 A 4/2004
(22) Filed: Apr. 20, 2005 JP 2004-221756 A 8/2004
TP 2005-70987 A 3/2005
(65) Prior Publication Data WO WO 01/10125 Al 2/2001
US 2006/0242155 Al Oct. 26, 2006 OTHER PUBLICATIONS

“Past: A Large-Scale, Peer-to-Peer Archival Storage Facility”, http://
www.research.microsoft.com, Turning Ideas into Reality, Microsoft

(51) Int.Cl.

232§ §§§527 88828; Research home Page, Apr. 20, 2005, 2 pages.
GOGF 13/00 (2006.01) (Continued)
(52) US.CL oo, 709213, 709231, 711112 i o
(58) Field of Classification Search ... 709/213, rimary Bxapuner = BOSs SOHey

709/219 295 231 232226 711/112 (74) Attorney, Agent, or Firm — Woodcock Washburn LLP

See application file for complete search history.

(57) ABSTRACT
(56) References Cited Systems and methods for distributed, decentralized storage
and retrieval of data 1n an extensible SOAP environment are
U.S. PATENT DOCUMENTS disclosed. Such systems and methods decentralize not only
5,717,535 A * 2/1998 Frenchetal.cooo.o...... 360/53 the bandwidth required for data storage and retrieval, but also
5,948,062 A 9/1999 Tzelnic et al. the computational requirements. Accordingly, such systems
gjgggﬁég g) lgggg? ﬁraztl etal. .. 7157724 and methods alleviate the need for one node to do all the
292, 1 erstein : . . .
6.732.162 Bl 57004 Wood of al. 209/719 storgge and retrieval processing, and no single node 1is
7,328,303 Bl* 2/2008 Waterhouse etal. 711/112 required to send or receive all the data.
7,555,527 Bl 6/2009 Slaughter et al.
2002/0114341 Al 8/2002 Sutherland et al. 7 Claims, 4 Drawing Sheets
.................... A T e
34A .1 34B g . 34N
\"'Chunk \LChunk \"‘Chunk
Store L Store : Store
Service L Service g g Service
32 328 - 32N
\""Stream \"Stream \"'Stream
Store - Store ; g Store
Service o Service g Service

22
/
/ Routing Service /
> Storage Service |/\
20 Local Cache and Transport Layer

\ Bit Stream

US 8,266,237 B2
Page 2

OTHER PUBLICATIONS PCT Application No. PCT/US2006/08647: International Search

Report and Written Opinion of the International Searching Authority,
Google: AdSense, www.google.com/adsense, Home page, Apr. 20, Oct. 19, 2007, 7 pages.

2(_)055 2 pages. | Kobatake et al., “An Efficient Technique for Processing Compound
PIC&SH: 2, WWw.plcasa.com, Homfﬁ page, Apr. 2Qa 20053 1 page. | Quertes on DHT-based P2P Systems™, Technical Report of IEICE,
Mediated Peer-to-Peer Networking-An Effective Vehicle for deliv- The Institute of Electronics Information and Communication Engi-

ering Rich-Meida Content”, www.wwpi.com, Apr. 20, 2005, 2 pages. neers, Japan, Dec. 9, 2004, 104(513), 7-12.
EP Application No. 06737790: Extended European Search Report,

Aug. 30, 2010, 5 pages. * cited by examiner

US 8,266,237 B2

Sheet 1 of 4

Sep. 11, 2012

U.S. Patent

IIIIIIIIIIII) ...I.:....HIIIIIIIIIII...-. — - —
_ &y
slelelalsle QO

T2 5L sqonovt 173
W31SAS SWVYHOOHd NYNOOMI V1iVvQ
ONILVYH3dO | NOILVYOIlddY NVYHOO¥d
J3H10
........... ’ Gl

ejeq €l

N

SNVHO0Yd ssi
NOILVYOITdd¥
310NWdY

L9l

slelelelele

asnopy <9l pieogha)y

I
N\

081
d31NdWOD

310N

}IOMISN ealy Spi\

——

_
_
_
_
_
|
_
ld

LLL

wesbo.id — — === Y — r
aoepa)u| Ovt aoepaul 05k 001 Z1
SO|NPOIN acl Aowsy Aowa 90EL3jU| 0BLAU| WIOMJON
weibold J8ul0 3]l}e|OA-UON 9]l}B|OA-UON ynduj Jasn MIOMION ' Baly |2007

3|qBAOWY-UON ajqeAcway B "

swelboid sel < ﬁ ﬂ H ﬂ "

uonesijddy HPNP sng wa}sAg H H 1 5 sioyeadg?6t
— —— — ____ ! .

WBISAS $E1 ct momtmEo_m_. aoepaju| o "

Buesado A 0PI esaydusqd |« | |v_ Jauy 64
(WVY) Z€L m:_m.mmoen_ . -Hﬂ:‘_.o.ﬂ _
llllllll —— !

SOlg ttl - B ol .61 JOJUON
(WOY) LEL _ =
llllllllll OF1} - o _ L _

|

00L waijOO

U.S. Patent Sep. 11, 2012 Sheet 2 of 4 US 8,266,237 B2

14C

14B

O

12
a

14A

s

I (6
o

0
v
) ‘
B
(N /e
b wam
@
LL
<J

14

1

FIG. 2

weans ig

A . L - = S

19Ae podsuel | pue ayoes) 8907 02

US 8,266,237 B2

Sheet 3 of 4

Sep. 11, 2012

U.S. Patent

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

90INIBS
810]S
wealls

N

NCE

90INBSQ
910)S

yunyQ

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Eo_aww ebelols
] somies Bunoy - T _/

210]S
weaJs

)

ace

IIIVELS
2J0]S

AUNYO

11111111111111111111111111111111

ce

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

90INI9S
910}S
Emm.:wj

\ 4>

S0IAIBS
810]S

US 8,266,237 B2

Sheet 4 of 4

Sep. 11, 2012

U.S. Patent

iii
L |

90INIBQ
210]S

AUNYYH

92IAI8G - 90IAIDQ

910]Q - 210)S

HUNYD Uy
vbe | whe Ve

| someg | m 30IAI8S - | soineg
9101S - _m 310}S - 310)S
bei m w el - el

voe voE | voE

L . &

US 8,266,237 B2

1

SYSTEMS AND METHODS FOR PROVIDING
DISTRIBUTED, DECENTRALIZED DATA
STORAGE AND RETRIEVAL

FIELD OF THE INVENTION

The invention relates generally to systems and methods for
providing distributed, decentralized data storage and
retrieval. More particularly, the invention relates to distrib-
uted storage and retrieval models that provide cost-effective
mechanisms to enable peer-based services such as, for
example, rich media advertising, photo and video sharing and
storage, and video email.

BACKGROUND OF THE INVENTION

A number of scenarios may be enabled via a peer-based,
distributed storage system. Examples of such scenarios
include peer-based textual and rich media advertising stor-
age/caching/replication, peer-based digital photo and video
storage and sharing, and peer-based video email. These sce-
narios tend to be cost prohibitive as centralized services,
however, because storage costs can become unbounded 1n a
data center.

Many websites are moving to purely advertising-based
models with highly targeted advertisements that appear based
upon knowledge previously learned from the user. For
example, 1t 1s well-known that a great deal of demographic
data can be collected about people, and quite a bit of infor-
mation can be inferred based solely upon data collected 1n the
clickstream of a website. Highly targeted ads may be based
upon search keywords, for example. Such a scenario typically
requires lots of storage.

Storage of such advertisements in a centralized manner has
been done before. A difficulty, however, exists 1n certain
markets, such as emerging markets, because a different cost
structure may be needed to be able to efficiently store, for-
ward, and cache the advertisements to the local machine. In
many cases, 1t 1s cost prohibitive to centralize these ads and
pay storage costs 1n a datacenter because the ads are generally
localized 1nto the various world-wide markets. Paying band-
width costs to ship ads around the world 1s usually not an
eificient or inexpensive model.

Existing solutions for photo sharing fall into two major
camps: centralized storage (e.g., photos.msn.com) or point-
to-point (“P2P”") photo sharing (e.g., Google’s current ver-
sion of “Picasa’). Centralized storage has clear limitations: 1f
it 1s provided for free, the total space available for photo
storage may be severely limited. On the other hand, typical
user fees tend to be far 1n excess of what 1t would cost a user
to simply buy their own disk. If they buy their own disk,
however, then they are responsible for backing up the photos
and may be severely limited 1n the number of people who
could view the photos because most broadband connections
throttle the upload speeds.

P2P photo sharing solutions, such as Groove or Google’s
current version of Picasa, make entire copies of the photos
across all of the machines participating 1n a peer group.
Though this sidesteps the storage cost and bandwidth 1ssues
described above, 1t introduces different problems. For
example, 11 not many people are participating 1n the group,
then there 1s a fair chance (depending upon the uptime of the
various peers) that a participant’s photos may not be available
i their local copies were lost. In addition, this brute force
solution requires 100% of all peers to store 100% of all
photos. This tends to result 1n a great deal of redundant stor-
age used across the entire peer group, and does not scale well.

10

15

20

25

30

35

40

45

50

55

60

65

2

Video messages delivered via email suffer from many of
the same problems described above 1n connection with photo
sharing, but they are even more massive 1n size (making
storage costly). Delivery also tends to be unreliable, unless
serviced from a central datacenter. Though live P2P video
teleconferencing does not have the storage problems (be-
cause the video 1s consumed at the same time 1t 1s sent), 1t has
further limitations around quality (limited by bandwidth) as
well as synchronicity of the speaking parties.

-

Thus, there 1s a need in the art for distributed storage
models that provide cost-elffective mechanisms to enable
peer-based services such as rich media advertising, photo/
video sharing/storage, and video email, for example.

SUMMARY OF THE INVENTION

The ivention provides systems and methods for decentral-
1zed, distributed data storage and retrieval. Such a system may
include an interconnected network of nodes. Each node may
have running thereon a collection of one or more processes
that form a “local cache and transport layer,” a “stream store
layer,” a “chunk store layer,” and a “fragment store layer.” A

collection of processes may also be provided for “block™
storage.

The local cache and transport layer may include a storage
service and a routing service. The storage service may receive
a storage request to store a certain bit stream of arbitrary
length. The routing service may communicate the bit stream
to any of the stream store services. The stream store service
may store the bit stream 1n local persistent storage for later
retrieval, and also divide the bit stream into one or more
“chunks.” The stream store service may then communicate
the chunks to respective chunk store services. The chunk store
service may store the chunk 1n local persistent storage for
later retrieval, and also divide the chunk into one or more
“fragments.” The chunk store service may then encode the
fragments 1nto check blocks and communicate them to
respective fragment store services. The fragment store ser-
vice may store the fragment 1n local persistent storage for
later retrieval. Thus, the bit stream may be divided into a
plurality of check blocks, and each check block stored, in
general, on a different network node distributed over a vast
network of such nodes.

Such a decentralized, peer-to-peer, distributed storage sys-
tem may be used to store and cache digital advertisements
locally, such as, for example, 1n client PCs that reside in the
actual country or city where the ads are to be viewed. With
regard to digital photo and video storage and sharing, the
underlying distributed storage mechanisms may be leveraged
to achieve very high reliability and availability of the photos
without requiring massive amounts of redundancy. With
regard to video email, the distributed storage model may be
leveraged to build a reliable mail delivery system tuned for
large-sized video messages.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 15 a block diagram showing an example computing,
environment in which aspects of the invention may be 1mple-
mented.

FIG. 2 depicts an example of a distributed network.

FIGS. 3A and 3B depict an example distributed storage
system.

US 8,266,237 B2

3

DETAILED DESCRIPTION OF ILLUSTRATIV.
EMBODIMENTS

(L]

Example Computing Environment

FI1G. 1 and the following discussion are intended to provide
a briel general description of a suitable computing environ-
ment in which an example embodiment of the invention may
be implemented. It should be understood, however, that hand-
held, portable, and other computing devices of all kinds are
contemplated for use 1n connection with the present mven-
tion. While a general purpose computer 1s described below,
this 1s but one example. The present mvention also may be
operable on a thin client having network server interoperabil-
ity and interaction. Thus, an example embodiment of the
invention may be implemented in an environment of net-
worked hosted services 1n which very little or mimimal client
resources are implicated, e.g., a networked environment in
which the client device serves merely as a browser or inter-
face to the World Wide Web.

Although not required, the invention can be implemented
via an application programming interface (API), for use by a
developer or tester, and/or included within the network
browsing software which will be described 1n the general
context of computer-executable instructions, such as program
modules, being executed by one or more computers (e.g.,
client workstations, servers, or other devices). Generally, pro-
gram modules include routines, programs, objects, compo-
nents, data structures and the like that perform particular tasks
or implement particular abstract data types. Typically, the
functionality of the program modules may be combined or
distributed as desired in various embodiments. Moreover,
those skilled 1n the art will appreciate that the imnvention may
be practiced with other computer system configurations.
Other well known computing systems, environments, and/or
configurations that may be suitable for use with the invention
include, but are not limited to, personal computers (PCs),
automated teller machines, server computers, hand-held or
laptop devices, multi-processor systems, miCroprocessor-
based systems, programmable consumer electronics, net-
work PCs, minicomputers, mainframe computers, and the
like. An embodiment of the invention may also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network or other data transmission
medium. In a distributed computing environment, program
modules may be located in both local and remote computer
storage media including memory storage devices.

FI1G. 1 thus 1llustrates an example of a suitable computing,
system environment 100 1 which the mvention may be
implemented, although as made clear above, the computing
system environment 100 1s only one example of a suitable
computing environment and 1s not intended to suggest any
limitation as to the scope of use or functionality of the mven-
tion. Neither should the computing environment 100 be inter-
preted as having any dependency or requirement relating to
any one or combination of components 1illustrated 1n the
exemplary operating environment 100.

With reference to FIG. 1, an example system for imple-
menting the mvention includes a general purpose computing,
device 1n the form of a computer 110. Components of com-
puter 110 may include, but are not limited to, a processing,
unit 120, a system memory 130, and a system bus 121 that
couples various system components including the system
memory to the processing unit 120. The system bus 121 may
be any of several types of bus structures including a memory
bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of

10

15

20

25

30

35

40

45

50

55

60

65

4

example, and not limitation, such architectures include Indus-
try Standard Architecture (ISA) bus, Micro Channel Archi-

tecture (MCA) bus, Enhanced ISA (EISA) bus, Video Elec-
tronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus (also known as
Mezzanine bus).

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able mediathat can be accessed by computer 110 and includes
both volatile and nonvolatile, removable and non-removable
media. By way of example, and not limitation, computer
readable media may comprise computer storage media and
communication media. Computer storage media includes
both volatile and nonvolatile, removable and non-removable
media implemented 1n any method or technology for storage
ol mmformation such as computer readable mstructions, data
structures, program modules or other data. Computer storage

media includes, but 1s not limited to, random access memory
(RAM), read-only memory (ROM), Electrically-Erasable

Programmable Read-Only Memory (EEPROM), flash
memory or other memory technology, compact disc read-
only memory (CDROM), digital versatile disks (DVD) or
other optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by computer 110.
Communication media typically embodies computer read-
able 1nstructions, data structures, program modules or other
data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of 1ts characteristics set or changed 1n such a
manner as to encode mformation in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired connec-
tion, and wireless media such as acoustic, radio frequency
(RF), mirared, and other wireless media. Combinations of
any of the above should also be included within the scope of
computer readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as
ROM 131 and RAM 132. A basic mput/output system 133
(BIOS), containing the basic routines that help to transfer
information between elements within computer 110, such as
during start-up, 1s typically stored in ROM 131. RAM 132
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on
by processing unit 120. By way of example, and not limita-
tion, FIG. 1 1llustrates operating system 134, application pro-
grams 1335, other program modules 136, and program data
137. RAM 132 may contain other data and/or program mod-
ules.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 1llustrates a hard disk drive 141
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 151 that reads from or
writes to a removable, nonvolatile magnetic disk 152, and an
optical disk drive 155 that reads from or writes to a remov-
able, nonvolatile optical disk 156, such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used in the
example operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 141 1s typically

connected to the system bus 121 through a non-removable

US 8,266,237 B2

S

memory interface such as interface 140, and magnetic disk
drive 151 and optical disk drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as
interface 150.

The drives and their associated computer storage media
discussed above and 1illustrated in FIG. 1 provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 1s 1llustrated as storing operating
system 144, application programs 145, other program mod-
ules 146, and program data 147. Note that these components
can either be the same as or different from operating system
134, application programs 135, other program modules 136,
and program data 137. Operating system 144, application
programs 143, other program modules 146, and program data
147 are given different numbers here to illustrate that, at a
mimmum, they are different copies. A user may enter com-
mands and imnformation into the computer 110 through input
devices such as a keyboard 162 and pointing device 161,
commonly referred to as a mouse, trackball or touch pad.
Other input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner, or the like. These
and other iput devices are often connected to the processing
unit 120a-f through a user input interface 160 that 1s coupled
to the system bus 121, but may be connected by other inter-
face and bus structures, such as a parallel port, game port or a
universal serial bus (USB).

A monitor 191 or other type of display device 1s also
connected to the system bus 121 via an interface, such as a
video interface 190. In addition to monitor 191, computers
may also include other peripheral output devices such as
speakers 197 and printer 196, which may be connected
through an output peripheral interface 195.

The computer 110 may operate 1n a networked environ-
ment using logical connections to one or more remote com-
puters, such as a remote computer 180. The remote computer
180 may be a personal computer, a server, a router, a network
PC, a peer device or other common network node, and typi-
cally includes many or all of the elements described above
relative to the computer 110, although only a memory storage
device 181 has been illustrated 1n FIG. 1. The logical connec-
tions depicted 1n FIG. 1 include a local area network (LAN)
171 and a wide area network (WAN) 173, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets and the Internet.

When used in a LAN networking environment, the com-
puter 110 1s connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over the
WAN 173, such as the Internet. The modem 172, which may
be internal or external, may be connected to the system bus
121 via the user mput interface 160, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device 181.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

One of ordinary skill 1in the art can appreciate that a com-
puter 110 or other client devices can be deployed as part of a
computer network. In this regard, the present invention per-
tains to any computer system having any number of memory
or storage units, and any number of applications and pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

cesses occurring across any number of storage units or vol-
umes. An embodiment of the present invention may apply to
an environment with server computers and client computers
deployed 1n a network environment, having remote or local
storage. The present invention may also apply to a standalone
computing device, having programming language function-
ality, interpretation and execution capabilities.

Distributed Network

FIG. 2 depicts an example of a distributed network com-
prising a plurality of network nodes 10A-H. Such anode may
be a personal computer, for example, or any other network
device that includes processing and data storage capabilities,
such as, for example, a server, a router, a network PC, a peer
device, etc. The nodes 10 A-H may be peers that are intercon-
nected to one another over a local- or wide-area-network such
as an intranet or the Internet, for example.

Each node 10A-H may be assigned a unique address. The
length of the address may be chosen 1n order to ensure that
cach node has a unique address. In an example, Interned-
based system, where the network 1s expected to include tens
of millions of nodes, 160-bit addresses may be used. Such an
addressing scheme may form a routing overlay on top of the
TCP.

Processes distributed among the several nodes 10A-H may
communicate with each other over the network via simple
object access protocol (“SOAP”) messages. SOAP 1s a well-
known, lightweight, XML-based distributed computing pro-
tocol. A SOAP message 1s an XML document that includes a
SOAP envelope. The envelope includes an optional SOAP
header and a mandatory SOAP body. The SOAP message
header represents the metadata of the message and provides a
way to extend SOAP. The SOAP message body 1s the actual
message payload. The distributed processes may communi-
cate with one another by putting SOAP packets onto the
network.

A process may be a message originator (e.g., on node 10A
as shown), an intended message receiver (e.g., onnode 10G as
shown), or an intermediary (e.g., on node 10C as shown). The
message originator 1s the process that originally puts the
SOAP message onto the network. The intended message
receiver 1s the process to which the message 1s ultimately
destined. Accordingly, a SOAP message originating from the
message originator may include an address associated with
the intended message receiver.

It 1s possible, however, especially 1n large networks, that
the message originator does not know the address of the
intended message recerver. In fact, the message originator
might not even know that the intended message receiver
exists. Accordingly, to get the message to the intended
receiver (on 10G), a process on an itermediary node (10C)
may receive the message (12C), modity and/or copy the mes-
sage, and put one or more copies (12D-F) of the message back
onto the network. Thus, the message may “hop” around the
network until the message (12G) eventually hops to the
intended message recetver (on 10G). It has been found that,
for a network having about 10 million nodes, the average hop
count 1s about three, and the maximum hop count 1s about 5.8.

In order to optimize the number of hops 1t takes to get a
message from the originator to the mntended message recerver,
the nodes may “gossip.” That 1s, from time to time, nodes may
communicate information about themselves onto the net-
work. For example, a node may gossip about 1ts up-time or
bandwidth and the status of 1ts neighbors. Nodes also listen
for such information being commumnicated by their neighbors.
Consequently, each node learns, and retains information,
about certain of 1ts peers.

US 8,266,237 B2

7

Such gossiping enables a message originator to get a mes-
sage to an intended message recerver without specific knowl-
edge of the itended message receiver’s address. For
example, 11 the message originator wants to get a message to
a certain device, then the message originator need only get the
message as close to that device as possible (e.g., address 1t to
another node that 1s likely to know something about the
intended message receiver, or something about another node
that 1s likely to know something about the intended message
receiver, etc.). Because the neighbors of the intended message
receiver will have knowledge of the intended message
receiver, the message will eventually hop to the intended
message recerver. Thus, a resilient network may be built that
cnables message delivery even where, for example, the mes-
sage originator does not know how to get to the intended
message recipient directly, or cannot get to the intended mes-
sage recipient directly because of a firewall, for example, or
the like.

A service on each node 10A-H may also maintain a local
routing table 14A-H on behalf of one or more neighboring
nodes. Local routing tables are described in greater detail
below.

Systems and Methods for Distributed Data Storage

FIGS. 3A and 3B depict an example system for distributed
data storage. As shown, such a system may include an inter-
connected network of nodes (e.g., 30A, 30B, . . . 30N), such
as described above. Fach node 30A-N may have any number
ol processes running thereon. For example, each node 30A-N
may have a collection of one or more processes that form a
“local cache and transport layer,” 20 a collection of processes
that form a “stream store layer,” 32 a collection of processes
that form a “chunk store layer,” 34 and a collection of pro-
cesses that form a “fragment store layer,” 36. A collection of
processes (not shown) may also be included for check block
storage.

The local cache and transport layer 20 may include a stor-
age service 22 and arouting service 24. The storage service 22
and the routing service 24 may reside on the same node or on
different nodes. The storage service 22 may receive a storage
request (Bit Stream) from the same node or from a different
node via the network. The storage request may include a
request to store a certain bit stream. Such a bit stream may, in
general, have any arbitrary length M. The routing service 24
may communicate the bit stream to any of the one or more
stream storage services 32A-N. The stream storage service
that receives the bit stream may reside on the same node as the
routing service, or on a different node.

The stream store service at the recipient node (32A, as
shown) may receive one or more packets containing the bit
stream (1.e., the bit stream may be so long that more than one
packet 1s required to communicate 1t to the stream store ser-
vice). The stream store service 32A may store the bit stream
in local persistent storage for later retrieval. The stream store
service 32A may also divide the bit stream 1nto one or more
“chunks.” Fach chunk may be of length m=M bits. In an
example embodiment, each chunk may have a length of about
64K bits. The stream store service 32A may then communi-
cate each of the one or more chunks to respective chunk store
services 34A-N. A chunk store service that recerves a chunk
may reside on the same node as the stream store service 32A,
or on a different node.

The chunk store service at the recipient node (34A, as
shown) may receive one or more packets containing the
chunk and may store the chunk 1n local persistent storage for
later retrieval. The chunk store service 34 A may also divide
the chunk 1nto one or more “fragments.” Each fragment may
be of length 1=m bits. In an example embodiment, each

10

15

20

25

30

35

40

45

50

55

60

65

8

fragment may have a length of about 2K bits. The chunk store
service 34 A may then encode the fragments into check blocks
and communicate each of the one or more check blocks to
respective fragment store services 36 A-N. A fragment store
service that recerves a fragment may reside on the same node
as the chunk store service 34A, or on a different node.

The fragment store service at the recipient node (36A, as
shown) may receive one or more packets containing the frag-
ment, and may store the fragment in local persistent storage
for later retrieval. The fragment store services 36 A-N at the
recipient nodes may receive one or more packets containing
the respective check blocks, and each may store a respective
check block in local persistent storage for later retrieval.
Thus, the M-bit bit stream may be divided into a plurality of
k-bit check blocks, and each check block stored, 1n general,
on a different network node distributed over a vast network of
such nodes.

Preferably, the number of check blocks into which each
chunk 1s divided 1s more than enough to ensure reliable
retrieval with a great degree of confidence. Any of a number
of known algorithms may be employed for determining the
number of check blocks that should be stored to ensure, with
a certain confidence level, that the original bit stream may be
reconstructed from the check blocks. Such algorithms are
known to those skilled in the art, and theretfore, need not be
described 1n detail here.

In order to ensure that the data retrieval system (described
below) will be able to find the stored data later, an addressing
scheme may be used to determine where (1.e., on which
nodes) to store the data. The routing service, for example,
may compute, based on the bit stream 1tself, an address of a
node to which to route the bit stream. For example, 1 a
scenario such as described above where each node may be
identified by a umique address, a hash may be computed based
on the bit stream and a hash table may be consulted to deter-
mine a node address that corresponds to the hash value.

The bit stream may have a bit stream i1dentifier. For
example, the bit stream may be a file; the file may have a file
name. Accordingly, the file name may be considered a bit
stream 1dentifier. The user (1.e., the person seeking to store the
bit stream) may have a user identifier. For example, there may
be a public key associated with the user. In an example
embodiment, the bit stream 1dentifier and the user 1dentifier
may be concatenated, and a hash of the concatenated string
computed. The computed hash value may be used to deter-
mine the address of the node to which the bit stream 1s to be
sent for storage and subsequent storage processing as
described above. Similarly, a respective hash value may be
computed for each chunk, fragment and check block into
which the bit stream 1s decomposed. The chunks, fragments,
and check blocks may then be sent to the nodes having
addresses that correspond to the computed hash values.

In a network environment having millions of nodes, 1t may
be impractical (and undesirable) for each node to store and
maintain a hash table that includes a respective address asso-
ciated with every node. Accordingly, 1n an example embodi-
ment, a service on each node 10A-H may maintain a local
routing table 14A-H on behalf of one or more neighboring
nodes (see FI1G. 2). Preferably, every node knows about the
address space (1.e., the addressing scheme used to uniquely
identify the several nodes), but each node maintains a routing
table only for a few of 1ts neighbors. Thus, the hash table may
be distributed among the several nodes.

By using a distributed hash table, each node has 1insight into
only a small portion of the entire address space. As described
above, however, 1t 1s the nature of the underlying fabric that a
message originator need not know the address of the intended

US 8,266,237 B2

9

receiver. The message originator can compute a hash base on
the bit stream (or chunk or fragment or block) to be stored,
and consult i1ts local hash table. If the address 1s found, then
the message originator can send the message directly to the
intended recerver. Otherwise, the message originator puts the
message onto the fabric, and the message hops through one or
more intermediaries until 1t finds its way to the intended
recelver.

Eventually, as described above, the data (e.g., check block,
fragment, chunk, or bit stream) 1s persisted (1.e., stored per-
manently in storage) at a destination node. When the data 1s
persisted, the destination node may put a message onto the
fabric to inform the originating node that the data has been
persisted. When the originating node recerves the information
message, 1t accepts that the data has been persisted.

For example, when a check block 1s persisted on a desti-
nation node, the fragment store service may notify the chunk
store service that requested storage of the check block that the
check block has been persisted. Similarly, when all the check
blocks associated with a given chunk are persisted, the chunk
store service may notily the stream store service that
requested storage of the chunk that the chunk has been per-
sisted, etc. Eventually, the routing service at the local cache
and transport layer 1s notified that the bit stream has been
stored.

In order to confirm that storage has occurred properly, the
service requesting storage may start a timer when the data 1s
sent out for storage. For example, when a chunk store service
sends out 1ts fragments for storage, the chunk store service
may start a fragment storage confirmation timer. If the chunk
store service does not recerve confirmation that a particular
fragment has been stored before the timer expires, then the
chunk store service concludes that the fragment has not been
stored, and attempts to store the fragment elsewhere.

It should be understood, however, that a distributed system
as described above may have the capability to “alter” time.
That 1s, each node may have a time manager that keeps time
tor that node relative to absolute system time. Thus, time may
be slowed, stopped, or even reversed on a particular node
relative to absolute system time and to the time frame of other
nodes. Accordingly, because time at the node requesting stor-
age may be running faster than time at the node(s) on which
the data1s to be stored (or intermediary nodes), the timer at the
node requesting storage may expire belore the data 1s per-
sisted, even though there 1s nothing wrong with the storage
process—time 1s merely running slower. To accommodate for
this, the storing node can, periodically, send a message to the
node requesting storage to inform the node requesting storage
that, even though storage i1s not yet completed, the node
requesting storage should not time out.

In order to retrieve the bit stream (or, as described below, a
portion of the bit stream), the routing service 24 in the local
cache and transport layer 20 may put a message onto the
network requesting that the data be retrieved from the node(s)
on which 1t 1s stored. To retrieve the data, the routing service
24 may compute the key associated with the data. For
example, as described above, the routing service may com-
pute a hash of the bit stream 1dentifier and user identifier. The
computed hash value may be used to determine the address of
the node to which the bit stream was sent for storage and
subsequent storage processing.

The routing service may then consult the local routing table
to determine the address (or nearest neighbor address) asso-
ciated with the hash, and request the bit stream from that
address. I the bit stream 1s still stored in the local cache
associated with that stream store service, then the stream store
service returns the bit stream 1n one or more packets to the

10

15

20

25

30

35

40

45

50

55

60

65

10

node that requested 1t. If the bit stream 1s not still stored in the
local cache associated with that stream store service, then the
stream store service computes the hashes associated with the
chunks into which the bit stream was decomposed, and
requests those chunks from the chunk store services to which
those chunks were sent during the storage process.

If a chunk remains 1n local cache associated with that
chunk store service, then that chunk 1s returned to the node
that requested it. If not, then the chunk store service computes
the hash associated with the fragments associated with that
chunk, and requests those fragments from the nodes on which
those fragments were stored.

This process continues—retrieving check blocks to recon-
stitute the fragments, retrieving fragments to reconstitute the
chunks, retrieving chunks to reconstitute the bit stream, until
the bit stream 1s reconstituted and returned to the node that
requested 1t. As described above, the nature of the underlying
fabric 1s that routing to the key will lead the message to the
nodes on which the data 1s stored.

As described above, the bit stream may be divided into a
plurality of contiguous check blocks (fragments, chunks).
Accordingly, the retrieval process need not retrieve the entire
bit stream, and may retrieve only a subset of the check blocks
(fragments, chunks). In general, the retrieval process may
begin with any check block (fragment, chunk) in the bit
stream and end with any other check block (fragment, chunk).
To retrieve only a portion of the bit stream, the retrieval
service need only determine the addresses associated with the
check blocks (fragments, chunks) that make up that portion of
the bit stream, and request reconstitution of that portion of the
bit stream from those check blocks (fragments, chunks).
Because the hashing process works by hashing the identifier
of the previous layer and the ordinal number (1.¢., offset) of
the chunk, that 1s, the check block in the lower layers, 1t 1s
possible to find the hash value of any of the pieces.

It 1s anticipated that a node on which a check block 1s
persisted may no longer be on the network when the data 1s
retrieved (e.g., the data may have been overwritten, deleted,
or corrupted; the node may be unavailable at the time the data
1s requested; the node may have been removed from the
network permanently; etc.). Preferably, as described above,
the number of check blocks 1nto which each chunk 1s divided
1s more than enough to ensure reliable retrieval with a great
degree of confidence, even when a number of check blocks
are 1rretrievable. It 1s also anticipated that one or more nodes
may be added to the network between the time the data 1s
stored and the time it 1s retrieved. If a new node that 1s closer
to the key has been introduced, then, due to the nature of the
underlying fabric, a previously existing node (one that existed
at the time the data was stored) will realize that the new node
has been introduced and that the new node 1s closer to the data
sought to be retrieved. Accordingly, the new node may “push”™
the appropriate message(s) to the new node 1n order to con-
tinue the process ol hopping the message to the node on which
the data 1s stored.

According to an aspect of the imvention, a decentralized,
peer-to-peer, distributed storage mechanism may be used to
store and cache ads, for example, locally, such as in client PCs
that reside 1n the actual country or city where the ads are to be
viewed. In this manner, not only may textual or banner ads be
stored, but so may rich media (e.g., full motion video plus
stereo audio) television-style advertisements, localized to a
specific region, neighborhood, or individual.

With regard to digital photo and video storage and sharing,
the underlying distributed storage mechanisms may be lever-
aged to achieve very high reliability and availability of the
photos without requiring such massive amounts of redun-

US 8,266,237 B2

11

dancy such as 1n Google’s current version of Picasa. This
scenario may be particularly important given the increased
number of phone-based cameras appearing in the market.
Even with a phone-based camera having 1ts own local mass
storage, the user may still have problems backing up photos
and sharing them electronically. This may be especially inter-
esting 1n emerging markets where mobile phone usage 1s
exploding due to more ready build-out of a wireless 1nfra-
structure.

With regard to video email, the distributed storage model
may be leveraged to build a reliable mail delivery system
tuned for large-sized video messages. In such a system, the
quality problem may be solved because the system 1s no
longer bound by the bandwidth limitations of either the
sender or the recerver. It also allows the receipts to be freed
from being in the same place at the same time. This scenario
may be important in emerging markets where complex scripts
make 1t difficult to type textual messages on a keyboard, and
high rates of 1lliteracy make 1t difficult to send any type of text
message.

Thus, there have been described systems and methods for
distributed, decentralized storage and retrieval of data 1n an
extensible SOAP environment. It should be understood that
such systems and methods decentralize not only the band-
width required for data storage and retrieval, but also the
computational requirements. That 1s, such systems and meth-
ods alleviate the need for one node to do all the storage and
retrieval processing, and no single node 1s required to send or
receive all the data.

It should further be understood that, although the invention
has been described 1n connection with certain preferred
embodiments depicted 1n the various figures, other similar
embodiments may be used, and modifications or additions
may be made to the described embodiments for practicing the
invention without deviating therefrom. For example, when 1t
1s being stored, the data may be encrypted, signed, etc., so that
the retrieving process can verily that the retrieved data 1s, in
fact, the expected data. The invention, therefore, should not
be limited to any single embodiment, but rather should be
construed 1n breadth and scope 1n accordance with the fol-
lowing claims.

What 1s claimed:

1. A system comprising:

a plurality of processor nodes, each one of the plurality of
processing nodes comprising storage;

a distributed hash table comprising a plurality of local
routing tables maintained in the plurality of processor
nodes, each of the plurality of local routing tables con-

10

15

20

25

30

35

40

45

12

taining hash values corresponding to node addresses of
neighboring network nodes;

a storage service configured to receive a storage request
message comprising a bit stream; and

a routing service configured to receive the bit stream from
the storage service, divide the bit stream 1nto a plurality
of chunks, compute hash values for each of the plurality
of chunks, each hash value based on a concatenation of
a bit stream 1dentifier and a user identifier, and transmait
into a network a plurality of chunk store messages, the
transmitting comprising consulting a local routing table
of a first processor node to determine if an address of a
recipient processor node corresponds to a neighboring
network node of the first processor node, the recipient
processor node comprising a chunk store service that
divides a recerved chunk into a plurality of fragments,
encodes a fragment into a check block, and transmits the
check block to a fragment store service.

2. The system of claim 1, the recipient processor node

further comprising:

a fragment store service that 1s configured to receive from
the chunk store service at least one of the plurality of

fragments and store the at least one of the plurality of
fragments.

3. The system of claim 1, further comprising a retrieval
system configured to retrieve a portion of the stored bit stream
by using an oilfset value associated with a chunk.

4. The system of claim 1, wherein the chunk store service
starts a timer when the check block 1s sent out for storage and,
if the chunk store service does not receive a confirmation
from the fragment store service that the check block has been
stored before the timer expires, the chunk store service
attempts to store the fragment elsewhere.

5. The system of claim 1, wherein each of the plurality of
processor nodes has a time manager that provides alterable
time relative to an absolute system time.

6. The system of claim 1, the routing service further con-
figured to:

a) specifically direct a first chunk store message to the
neighboring network node when a first hash value cor-
responding to the neighboring network node i1s present
in the local routing table; and

b) transmit the first chunk store message 1nto the network
for hopping through an intermediary network node
when the first hash value 1s not present 1n the local
routing table.

7. The system of claim 1, the storage request message

comprising a SOAP message.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

