12 United States Patent

Carpentier et al.

US008261066B2
(10) Patent No.: US 8,261,066 B2
45) Date of Patent: *Sep. 4, 2012

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)
(58)

(56)

5,202,982 A

SYSTEM AND METHOD FOR SECURE
STORAGE, TRANSKFER AND RETRIEVAL OF
CONTENT ADDRESSABLE INFORMATION

Inventors: Paul R. Carpentier, Boechout (BE);
Jan F. Van Riel, Geel (BE); Tom

Teugels, Schoten (BE)

EMC Corporation, Hopkinton, MA
(US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 945 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 11/094,026

Filed: Mar. 30, 2005

Prior Publication Data

US 2005/0172124 Al Aug. 4, 2005

Related U.S. Application Data

Continuation of application No. 09/391,360, filed on
Sep. 7, 1999, now Pat. No. 6,976,163.

Int. CI.
HO4L 29/06 (2006.01)

US.CL 713/1635; 707/698

Field of Classification Search 707/1-9,
707/100, 102, 103 R, 103, 103 Z, 200,
707/202-203, 212; 709/212-216; 726/3-4,
726/18-19

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
4/1993 Gramlick et al.
(Continued)

102

File

Algorithm

FOREIGN PATENT DOCUMENTS
2294132 A 4/1996

(Continued)

GB

OTHER PUBLICATIONS

Bosselaers et al., ““The RIPMED-160 Cryptographic Hash Function”,
Dr. Dobb’s Journal, Jan. 1997.

(Continued)

Primary Examiner — Kim Vu
Assistant Examiner — Leynna lTruvan

(74) Attorney, Agent, or Firm — Krishnendu Gupta; Robert
Kevin Perkins; Joseph D’ Angelo

(57) ABSTRACT

An algorithm (such as the MD5 hash function) 1s applied to a
file to produce an intrinsic unique 1dentifier (IUI) for the file
(or message digest). The file 1s encrypted using 1ts IUI as the
key for the encryption algorithm. An algorithm 1s then applied
to the encrypted file to produce an IUI for the encrypted file.
The encrypted file 1s safely stored or transferred within a
network and 1s uniquely 1dentifiable by 1ts IUI. The encrypted
file 1s decrypted using the IUI of the plaintext file as the key.
The IUI serves as both a key to decrypt the file and also as
verification that the integrity of the plaintext file has not been
compromised. IUIs for any number of such encrypted files
may be assembled into a descriptor file that includes meta
data for each file, the IUI of the plaintext file and the IUI of the
encrypted file. An algorithm 1s applied to the descriptor file to
produce an IUI for the descriptor file. The plaintext descriptor
file 1s then encrypted using the descriptor file IUI as a key for
the encryption algorithm. An algorithm 1s applied to the
encrypted descriptor file to produce an IUI for the encrypted
descriptor file. The IUI of the encrypted descriptor file 1s a
location-independent identifier to locate the encrypted
descriptor file. A flattened descriptor file includes the IUIs of
encrypted data files and the IUI of the encrypted descriptor
file. An algorithm 1s applied to the flattened descriptor file to
produce 1ts own IUI.

57 Claims, 17 Drawing Sheets

-

l 108
Encryption {Z'

106”%@&@

Encrypted
File

)

104

Algorithm

plaintext MD5

)

112 S

‘ encrypted MD5 l

—

114

US 8,261,066 B2

Page 2
U.S. PATENT DOCUMENTS WO 99/38092 7/1999

5,404,508 A 4/1995 Konrad et al. WO 99/38093 71999

5,581,764 A 12/1996 Fitzgerald et al.

5,600,834 A 2/1997 Howard OTHER PUBLICATIONS

5,659,599 A 8/1997 Arumainayagam et al.

5,689,706 A 11/1997 Raoetal. ..c.oovvvvvvvvinnnn 707/201 Fowler, et al., “A User-Level Replicated File System”, Jun. 21-25,

5,694,596 A 12/1997 Campbell 1993, Usenix Summer 1993 Technical Conference.

g’;%’gég i I%Zigg; ig:;n:tszla al. Andrew Gore, “FileWave agents across Atlantic”, Mar. 29, 1993,

5,742,807 A 4/1998 Masinter MACWEEK.

5,754,844 A 5/1998 Fulleroooovvvvvvveeiennnnnn, 707/6 Greene, et al., “Multi-Index Hashing for Information Retrieval”,

5,757,9;5 A 5/1998 Aucg;mith ct al. Nov. 20-22, 1994, Proceedings, 35 Annual Symposium on Founda-

5,907,619 A 5/1999 Davis tions of Computer Science, IEEE.

g’g?é’ii i légggg I\Gdaérl?l?;tel“taaéi ol 207/102 Robert Hess, “FileRunner gets in sync with MAC”, May 3, 1993,

6,173,272 B1* 1/2001 Thomas et al. 705/42 ~ MACWEEK.

6,181,336 Bl 1/2001 Chiuetal. ..coooovvivviiiiin., 715/736 Hirano et al., “Improved Extendible Hashing with High Concur-

6,539,373 Bl 3/2003 Gpha rency”’, 1995, Systems and Computers in Japan, vol. 26, No. 13.

O T w 10/a00s 715202 Moore etal., “Why LIFNs?”, Aug. 31, 1995, www.netlib.org.

7260564 BL* /2007 Milsted etal. ..o 705/ Pruskeretal, “The Siphon: Managing Distant Replicated Reposito-
200 2/60054 Q5 Al 1/2002 O’Brien et al. ries”, Nov. 8-9, 1990, Proceedings on the Management of Replicated
2002/0019935 Al 2/2002 Andrew et al. Data, IEEE.

FOREIGN PATENT DOCUMENTS

96/32685
97/43717

WO
WO

10/1996
11/1997

Rich et al., “Hobgoblin: A File and Directory Auditor”, Sep. 30-Oct.
3, 1991, Lisa 'V, San Diego, CA.

* cited by examiner

U.S. Patent Sep. 4, 2012 Sheet 1 of 17 US 8,261,066 B2

B

ile B

Descriptor File 30

Meta Data 32

34 36
File Meta Data MDS A 20

H

oA
556 | 22
’

/ Descriptor File MD5S 40
0

FIG. 1
(Prior Art)

U.S. Patent Sep. 4, 2012 Sheet 2 of 17 US 8,261,066 B2

102
i th
File Algorl m plaintext MDS
106
108
Encryption
106 plaintext MDS O
110

Encrypted

File Algonthm encrypte 4 MDS

FIG. 2

U.S. Patent Sep. 4, 2012 Sheet 3 of 17 US 8,261,066 B2

130

Descriptor File

File Meta Data {~_134
Algorithm
Key MD5
132 plaintext MDS 106 ;

136

encrypted MDS5 114 138

140
138 = : : i I
142

000

Encrypted Descriptor File

Algorithm
———S——> Master MD5S

144

146

FIG. 3

U.S. Patent Sep. 4, 2012 Sheet 4 of 17 US 8,261,066 B2

Select Files 202 Encrypt Descriptor File 230
Using Key IUI

Generate Intrinsic Generate (Ul for
Unique Identifier (1Ul) 206 Encrypted Descriptor File 234
for Each File (Master 1Ul)
: ____________ | Convert Master |lUl and | 238
| Compress Each File JI\" 210 Key JUl to ASCII Format
|

L e -

Encrypt Each File Store Files 242
TP 214
Using its U
Generate Ul for Each Return Master lUl and
Encrypted File 218 Key IUIl to Originator <46
222

Create a Descriptor
File

Generate |U| for
Descriptor File 226

(Key |UI)

FIG. 4

U.S. Patent Sep. 4, 2012 Sheet 5 of 17 US 8,261,066 B2

Descriptor File Meta Data 302

Folder Name O.S Attributes
26 plaintext MD3S encrypted MD5S 328
30 O.S. Attributes 4~ 332
.
00O
| Folder Name 4~_ 342
4
00O

O
O
O
Administrative Data 346

/ Descriptor File Example
0

FIG. S

U.S. Patent

Sep. 4, 2012 Sheet 6 of 17 US 8,261,066 B2

<?xml version='1.0'7?>
<!DOCTYPE ecml SYSTEM "http://www.waveresearch.be/dtd/ecml.dtd">
<ecml version="2.0" compatibleversion="2.0">

<eclipdescription>

<meta
<meta
<meta
<meta
<meta

name="type" value="Dell"/>

name="name" value="Encrypted Network Package"/>
name="comment" wvalue="this 1s a comment"/>
name="author .name" value="Abraham Felsenstein"/>
name="author.email" value="syncromedia@ping.be"/>

<meta name="encoding" value="StandardCrypt"/>
<meta name="compatibletype" value="Standard"/>
<meta name="numfiles" value="4"/>

<meta name="numfolders" wvalue="1"/>

<meta
<meta

name="totalsize" value="9011"/>

name="creation.date"

value="1999.07.22 11:25:44
GMT+02:00"/>
<meta name="author.organization" value=""/>
<keyword name="Contract_ID" value="0005" namespace="dell"/>
<keyword name="Contract_Name" value="Sales 005"
namespace="dell"/>
<keyword name="Contract_Destination" value="John Doe"
namespace="dell" />
</eclipdescription><!---->
<eclipcontents>
<hfml>
<folder name="net" winattributes.readonly="false"
winattributes.hidden="false" winattributes.system="false"
winattributes.archive="false" winattributes.temp="false">
<file name="FtpClient.class" size="3648"
mdS5="FVHLQCT1TFJ62x4ULSLQFO94ILRP"
decoded.md5="3SBUVEESBOAVLXB061D0OES18E7G" decoded.size="7064"
whenmodified="1999.06.14 13:20:50 GMT+02:00"
whencreated="1999.07.22 11:03:31 GMT+02:00"
winattributes.readonly="false" winattributes.hidden="false"
winattributes.system="false" winattributes.archive="true"
winattributes.temp="false"/>
<file name="FtplInputStream.class" size="560"
mAd5="CSVINULL4RDSQOx447NTI4T4BOGB"
decoded .md5="A5UU0028DRBF7VIxXDGOD31VMOH24E" decoded.size="978"
whenmodified="1999.06 .14 13:20:50 GMT+02:00"
whencreated="1999.07.22 11:03:31 GMT+02:00™"
winattributes.readonly="false" winattributes.hidden="false™"
winattributes.system="false" winattributes.archive="true"
winattributes.temp="false"/>
<file name="FtpLoginException.class" size="320"
mdS="2TTKCDL66E173x0OMFO09ROE7IHH1"
decoded.md5="Cl1KHALJ3VDILOXF8QJ3PDPLJTUL" decoded.size="491"
whenmodified="1999.06.14 13:20:50 GMT+02:00"
whencreated="1999.07.22 11:03:32 GMT+02:00"
winattributes.readonly="false" winattributes.hidden="false"
winattributes.system="false" winattributes.archive="true"
winattributes.temp="false"/>
<file name="FtpProtocolException.class" size="320"
mAS="ARC34POF68KASXA4ECGO0O3L0OK42"
decoded.md5="9UA8J446KV0S7xXx39EMOCIHDUSKI" decoded.size="478"
whenmodified="1999.06.14 13:20:50 GMT+02:00"
whencreated="1999.07.22 11:03:32 GMT+02:00"
winattributes.readonly="false" winattributes.hidden="false"
winattributes.system="false" winattributes.archive="true"
winattributes.temp="false"/>

</folder><!--net-->
</hfmls><t---->
</eclipcontents><!---->
</ecml><!---->

FIG. 6A
Descriptor File Example

U.S. Patent Sep. 4, 2012 Sheet 7 of 17 US 8,261,066 B2

<?xml version='1.0'7>
<I1DOCTYPE ecml SYSTEM “http://ww.waveresearch.be/dtd/ecml.dtd“>
<cecml version="2.0" compatibleversion="2.0">
<eclipdescription>
<meta name="type" value="Dell"/>
<meta name="name" value="Encrypted Network Package"/>
<meta name="comment" value="this is a comment"/>
<meta name="author.name” value="Abraham Felsenstein”/>
<meta name="author.email” value="syncromedia@ping.be" />
<meta name="encoding" value="StandardCrypt"/>
<meta name="compatibletype" value="Standard"/>
<meta name="numfiles" wvalue="4"/>
<meta name="numfolders" value="1"/>
<meta name="totalsize" wvalue="9011"/>
<meta name="creation.date" value="1999.07.22 11:25:44
GMT+02:00" />
<meta name="author.organization" wvalue=""/>
<keyw0rd.name="Contract_ID"'value=“0005" namespace="dell" />
</eclipdescription><!---->

<eclipcontents>
<keyfile mdS="82F04VM1EQJISDx1UJ4GOV3TTS7E" size="896"

whenmodified="1999.07.22 11:25:44 GMT+02:00"/>
<file mdS="FVHLOCT1TFJ62x4ULSLQF94ILRP" size="3648"
whenmodified="1999.06.14 13:20:50 GMT+02:00"/>
<file md5="CSVINULL4RDSQx447NTI4T4BQGB" size="560"
whenmodified="1999.06.14 13:20:50 GMT+02:00"/>
<file mdS="2IIKCDL66E173x0MFO9ROE7THH1" size="320"
whenmodified="1999.06.14 13:20:50 GMT+02:00" />
<file md5="ARC34P9F68KAIXA4ECGI03L0K42" size="320"
whenmodified="1999.06.14 13:20:50 GMT+02:00"/>
</eclipcontents><!---->
<ecliporigiln clipboxid="040-762-05-413-6338" clipboxcount="23"
seatid="c7cd7bl2-bcdf-11d2-b045-00400569835e">

</ecliporigin><!---->

<eclipsignature digest="gliWJo2zugBCcRTgTrHD4Kg==
II/>
</ecml><!---->

FIG. 6B
Flattened Descriptor File Example

U.S. Patent Sep. 4, 2012 Sheet 8 of 17 US 8,261,066 B2

402
Descriptor File

410
414
File Name File Meta Data 412
420 ﬁ “encrypted MD5: Algorithm
plaintext MD5 || encrypted MD5 416 d Key MD5

File Meta Data S
430 ['plaintext MD5 |[encrypted MD5 422 404
File Meota Data 406
| plaintext MDS | encrypted MDS 432
440
Encryption
406 KeyMD5 ()
452
| , Algorithm
Encrvpted Descriptor File —-S——v Master MD5
454 -
456
460

Flattened Descriptor File

Master MD5 456

470 encrypted MDS1~~ 416 % User MD5S

encrypted MDS ~_ 422 462

464
encrypted MDS+~_432

FIG. 7

U.S. Patent Sep. 4, 2012 Sheet 9 of 17 US 8,261,066 B2

Select Files 502 Encrypt Descriptor File 530
Using Key U]

Generate Intrinsic Generate Ul for
Unique ldentifier (1U1) 506 Encrypted Descriptor File 534
for Each File (Master 1UI)

| | Create Flattened ' 538
I Compress Each File ,{_, 510 Descriptor File
| |

Generate 1U| for
Flattened Descriptor File 542

I
I
I
I
I
I
I
I
|
|
I
I
J

Encrypt Each File
Using its 1UI o14 (User IUI)

Convert User Ul and
for Each
Ge";;f;;t’e'd T T~ 518 Key IUI to ASCIl Format T~ °#4
Create aF:Ijeescnptor £0 Store Files £48

Generate Ul for
Descriptor File 526

Return User Ul and Key
IUI to Originator

552

(Key 1UI)

FIG. 8

U.S. Patent Sep. 4, 2012

602 Receive Master |UI

Look For File Identified
606 by Master U]

(FIG. 11)

Receive Encr'\{pted
Descriptor File

urporting to Correspond
to Master {UI

610

Calculate Ul of
614 Received Encrypted
622 Descriptor File

Not
Verified

Receive Key Venfied Verify Descriptor File is
[UI Authentic 618

626
Decrypt Build Directo;y
Encrypted Structure Based on 638
Descriptor Information in
File Descriptor File
630
Verify Look For Encrypted
Plaintext Files Listed in Descriptor
Descriptor File [verified File (FIG. 11) 642
is Authentic
Not
Venfied 034

Receive an Encrypted

Error Handler File

Verify Encrypted File is

Authentic 650

FIG. 9

Sheet 10 of 17

US 8,261,066 B2

Decrypt Encrypted File 654

Using Plaintext Ul

Verify Plaintext File is
Authentic 658

Not Verified

Error Handler 56D

Verified
Update File Request List 666

No All Files

Received? 070

Yes

Indicate All Files Received 674

Populate Directory
Structure with Files

U.S. Patent Sep. 4, 2012 Sheet 11 of 17 US 8,261,066 B2

Eeceive

otential

Receive User |U] 702 Encryptled
Descriptor File

Verify Received File
Is Authentic 746
Look For File Look For File
ldentified by User Ul 706 | Identified By | Receive Key U 7950
(FIG. 11) Master Ul

. 738
Receive Potential Decrypt Encrypted 254
Flattened Descriptor 710 Descriptor File
File
Verify F’Iain_text
Verify Received File Descriptor File Is 760
s Authentic 14 Authentic

‘Build Directory

Look For Encrypted
Files in Flattened Structure Based on 764
718 Descriptor File

Descriptor File
(FIG. 11)

Yes 734 _
Decrypt Encrypted

Receive an Encrypted No ~All Files Files Using Plaintext 768
File Received lUIs
722
Verify Plaintext Files 279
Verify Encrypted File | Are Authentic
IS Authentic T~ 726

Populate Directory

Structure with Files 776

730

Update File Request

List

FIG. 10

U.S. Patent Sep. 4, 2012 Sheet 12 of 17 US 8,261,066 B2

Obtain File

Start
Error Handler 824

|dentify Ul of Desired 802 Not Found
File
Found | Look For File on 897
FTP Servers
804

Look for File Locally ' Not Found

in Cache Using 1UI ‘Found Look for File on

Mounted volumes 820
on File Servers

Not Found

806 Not Found
LLook for File in Local ;
Conventional Storage Look for File on
Cound Pre-configured 818

Not Found or Vggkg?gwn

Broadcast File
Location Request on

Peers on LAN Not Found

Found

Request Download Using
File Request

Receive File Data 812
Packet

Store File Segment
Data

810

Complete

FIG. 11

U.S. Patent Sep. 4, 2012 Sheet 13 of 17 US 8,261,066 B2

Secure Storage Example

900

9 /

Bank Terminal

Secure
Banking Application

Master MD5

' Key MD5 .

942

904

902) 906
Customer Intrinsic — Key MD$S

. Unique
S'gnag{: Card| — | | jentifier

[Generation—l_"’ Ma_sterMDs

l 908

| Encrypted |
Card File |~ 210

—

Public
Storage

916

FIG. 12

U.S. Patent Sep. 4, 2012 Sheet 14 of 17 US 8,261,066 B2

024
022 926

Unique ey MDS
Master MD5

File Identifier

Generation

E-Mail
930
929 SSL

934 TN y
Public Storage . ‘
User MD5 | Key MD5 Authentu;:ate
Information
936 V
Authentication Database

User MD5 935 931
Authenticate
SN

User

Encrypted
File

923

FIG. 13
Access Control Example

U.S. Patent Sep. 4, 2012 Sheet 15 of 17 US 8,261,066 B2

Software Company

Software
Files

942 /

944

948 952

Intrinsic Key MD5
Unique >

ldentifier

Generation — > User MDS

954

950

Escrow Agent

Encrypted

Files 056

Software User

Encrypted
Files User MDS

954

946

FIG. 14
Escrow Example

U.S. Patent Sep. 4, 2012 Sheet 16 of 17 US 8,261,066 B2

User | User
Computer Computer 72
970 1 AN
960
Server
\ Computer
974
968
Server
Computer 960
964 LAN
User | User User
Computer Computer Computer

962

FIG. 15

U.S. Patent Sep. 4, 2012 Sheet 17 of 17 US 8,261,066 B2

10006

%@ S 1012

=~
1010
FIG. 16
Y 100
1014
1022 1024 -
REMOVABLE
PROCESSOR(S) MEMORY DISK
920

T

1004 1010 1012 1030 1040
DISPLAY KEYBOARD MOUSE SPEAKERS NETWORK
INTERFACE

FIG. 17

US 8,261,066 B2

1

SYSTEM AND METHOD FOR SECURE
STORAGE, TRANSKFER AND RETRIEVAL OF
CONTENT ADDRESSABLE INFORMATION

This application 1s a continuation of prior application Ser.
No. 09/391,360, filed Sep. 7, 1999 now U.S. Pat. No. 6,976,
165 entitled SYSTEM AND METHOD FOR SECURE
STORAGE, TRANSFER AND RETRIEVAL OF CON-
TENT ADDRESSABLE INFORMATION.

FIELD OF THE INVENTION

The present invention relates generally to the secure stor-
age, transier and retrieval of information using a computer.
More specifically, the present invention relates to a technique
for identilying information using an intrinsic umque identi-
fier and for securely storing, transferring and retrieving that

information using related techniques.

BACKGROUND OF THE INVENTION

Digital information (such as a computer file) must often be
identified to be 1n a particular state, denoted by the status of
the information as of some event or time. Digital information
1s highly subject to change; normal attempts to improve the
content, 1nadvertent commands or actions which change the
content, or tampering by others are difficult to detect.

Another problematic attribute of digital information 1s that
copies may exist which are identical 1n content but differ in
the meta data that the computer system uses to describe the
digital information. Such meta data includes the date/time
recorded for the creation or last modification of the file and
the file name. The meta data may imply that otherwise iden-
tical copies of digital information are different when in fact
they are not. Such confusion makes 1t difficult to avoid unnec-
essary duplication of content on a single computer or on a
collection of computers on a network. The 1nability of sys-
tems to reliably distinguish different versions of files with the
same 1dentifier or to recognize 1dentical files with different
identifiers wastes network resources and creates confusion
when files are transierred between users of a network.

Further, data on computer systems can generally only be
accessed through 1dentifiers which to a greater or lesser extent
include information about the location of the file 1n the stor-
age ol the computer. For example, files within a sub-directory
are at risk 1f someone changes the sub-directory name. If
changed, the path to a file becomes invalid, and all of the
stored or remembered names of files become mvalid as well.

Finally, 1t 1s inconvenient for computer users to identify
collections of specific versions of digital files. It would be
desirable for users to refer to collections of specific copies or
versions of digital files without creating a new entity which
incorporates copies of the files into a new form. Many mecha-
nisms have been created to combine such copies into what are
commonly called archive files. Such solutions create addi-
tional copies which are often proliferated to many systems.
The difficulty 1s that digital copies of many of the files 1n an
archive are already present on the systems to which they are
copied, which 1s wastetul and potentially confusing.

One result 1s that duplicate copies of digital files are fre-
quently stored on computer storage devices (at expense to the
owner of the system) or transierred via telecommunications
devices (at further expense to the system owner and the tele-
communications provider). This duplication strains limited
resources and causes needless confusion on local networks
and on collections of systems connected by telecommunica-
tion networks.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

To address various of these problems, unique solutions
have been presented 1n U.S. patent application Ser. Nos.
09/236,366 and 09/235,146, filed Jan. 21, 1999 in the name of
Carpentier et al. each of which 1s incorporated by reference
herein, 1n 1ts entirety. In one embodiment of these inventions,
a technique as shown in FIG. 1 1s used. FIG. 1 1illustrates a
technique by which a number of files are umiquely repre-
sented by an identifier for later retrieval. As shown 1n FIG. 1,
the cryptographic hash junction known as the M D35 algorithm
(as on example) 1s applied to the contents of the file A to
produce a unique 1dentifier 20 for that file which 1s referred to
as MD3 A. The algorithm 1s also applied to files B and C to
produce unique 1dentifiers 22 and 24. Next, a descriptor file
30 1s created that includes meta data 32 that describes high
level information concerning the files (such as the folders 1n
which they are enclosed, time stamps, size, etc.) and infor-
mation for each file. In one embodiment, the information for
cach file includes the file name 34, file meta data 36 (such as
time stamp, size, etc.) and the recently calculated MD35 20 for
the file. As shown, such information may be included for each
of the other files. Next, the MD?3 algorithm may be applied to
descriptor file 30 to produce a unique 1dentifier 40 for descrip-
tor file 30.

As described 1n the above patent applications, the unique
identifier 40 for descriptor file 30 can be used to provide many
advantages. For example, identifier 40 can be used to
umquely 1dentify descriptor file 30, and 1n turn the 1dentifiers
20-24 can then be used to uniquely 1dentity files A, B and C.
Accordingly, files A, B and C may be stored once anywhere
on a network and may be eventually located, retrieved and
identified using i1dentifier 40 and descriptor file 30.

Although the above techniques have many advantages, and
are extremely useful in certain applications, there 1s nonethe-
less room for improvement in the area of mformation man-
agement. As alluded to above, managing front office files and
web-based information 1s a big problem with today’s work-
ers. Because data 1s referred to by breakable URLs and path
names, the disadvantages are huge: data can be modified,
corrupted, misplaced, and unreachable. As a result, valuable
information 1s lost to an enterprise or its integrity becomes
suspect.

More specifically, data protection relies on an extensive
organization and expensive specialists to manage, backup and
archive digital information. Locating and retrieving the right
information from 1ts exact location can be time consuming 1f
not impossible because the mmformation may be dispersed
across various hard disks, file servers, and the Internet in
duplicated forms and with a variety of hard-coded file names.
Furthermore, sharing such information internally and exter-
nally can seriously degrade network performance, not to
mention putting sensitive information at risk. Electronic mail
attachments can be too large or take too long to transier. A
download from an FTP server or a web site may have to be
started all over again 1f interrupted. The same exact download
performed by a large number of users in one site can slow
down the whole network. In addition, files are continually
being modified, deleted, moved or misplaced, meaning that
there 1s no certainty in the location of a file or 1n 1ts data
integrity. Thus, 1t 1s no surprise that workers themselves
become responsible for managing their own data and saving
versions of documents. Such efforts are extremely time con-
suming and may not always work.

Although the embodiments described 1n the above appli-
cations may address some of these problems, there are further
issues that remain to be addressed. For example, 11 unique
identifier 40 1s either intercepted or otherwise obtained by an
unscrupulous individual, that individual may then be able to

US 8,261,066 B2

3

retrieve descriptor file 30 which would then allow the indi-
vidual to locate and retrieve files A, B and C. If these files

contain sensitive or secret company 1information, there would
then be a problem. In other words, the advantage provided by
identifier 40 1n that 1t can be used to uniquely locate a group
of files can also be turned to a disadvantage 11 the wrong party
obtains 1dentifier 40 and gains access to sensitive information
contained in the files. Furthermore, even though files A, B and
C may be stored anywhere on a network 1n a location-inde-
pendent manner, a secret file might still be stolen, viewed,
and/or printed 11 1t 1s not secured appropriately.

Thus, workers are called upon to secure their own data files.
For example, a file may be stored in a computer in a physically
secure location (such as 1n a locked room with only electronic
access), the file may be electronically locked using a pass-
word or other operating system function, the file may be
encoded, or some other security technique may be used. Thus,
it 1s no surprise that workers themselves become responsible
for managing the security of their own data, encrypting files,
password-protecting files, hiding files and finally saving ver-
sions of files where they believe they are safe and can be
located later. Placing the burden upon the worker to 1imple-
ment security for a particular file and then maintain that
security over the life of the file 1s extremely onerous, expen-
stve, and may not be foolproof.

Accordingly, a technique 1s desired that would provide
elficient and near foolproof security for digital information
and/or 1ts respective unique 1dentifiers. In particular, it would
be desirable to have such a technique that works well with the
embodiments described in the above patent applications;
such a technique would provide a user with the assurance that
not only can a file be uniquely 1dentified, but also that the file
can be kept secure from prying eyes and 1ts integrity can be
guaranteed.

SUMMARY OF THE INVENTION

In a first embodiment of the invention, an algorithm 1s
applied to a file to produce an intrinsic unique identifier (IUI)
for the file. To provide security for the file, the file 1s then
encrypted using the recently produced IUI as a key for the
encryption algorithm. The file may also be compressed 1n
addition to being encrypted. An algorithm 1s then applied to
the encrypted file to produce an IUI for the encrypted file.
Thus, the encrypted file may be sately stored or transferred
within a network and 1s uniquely identifiable by 1ts IUI. An
authorized party who obtains the encrypted file may then
decrypt the encrypted file using the IUI of the plamtext file 1f
he or she has access to this key. Using the IUI of the file to also
serve as a key to encrypt the file provides many advantages.
For example, a single identifier (1n this case the IUI) serves as
both a key to decrypt the file and also as verification that the
integrity of the plaintext file has not been compromised. Fur-
ther advantages and specific applications of this technique are
presented below. In one specific embodiment, the MD35 algo-
rithm 1s used to generate the IUI for the plaintext file. The
resulting MD?3 (the result of the hash function) may then be
used to verily that the plaintext file has not changed.

In a further addition to this first embodiment, IUIs for any
number of such encrypted files may be assembled into a
descriptor file. In one specific implementation, the descriptor
f1le includes meta data for each file (such as the file name), the
IUI of the plaintext file and the IUI of the encrypted file. An
algorithm 1s applied to the descriptor file to produce an IUI for
the descriptor file. The plaintext descriptor file 1s then
encrypted using the descriptor file IUI as a key for the encryp-
tion algorithm. The result produces an encrypted descriptor

10

15

20

25

30

35

40

45

50

55

60

65

4

file. An algorithm 1s then applied to the encrypted descriptor
file to produce an IUI for the encrypted descriptor file. The
encrypted files and the encrypted descriptor file may then be
sately stored or transierred within a network. The IUI of the
encrypted descriptor file 1s used as a location-independent
identifier to locate the encrypted descriptor file.

Thus, an 1nterested party 1s able to locate and retrieve the
encrypted descriptor file using 1ts IUI. The party would not,
however, be able to decrypt the encrypted descriptor file
unless 1t 1s also provided with the IUI of the descriptor file
which has been used as an encryption key. Thus, this key may
be withheld from a party until such a party 1s authorized to
gain access to information included within the files. Once the
party obtains the IUI of the descriptor file, it may then decrypt
the encrypted descriptor file to obtain the plaintext descriptor
file. Using the IUIs of the encrypted and plaintext files
included 1n the descriptor file, the party may then locate the
encrypted data files and decrypt them. In an alternate imple-
mentation, the IUIs of the encrypted data files may be located
outside of the descriptor file and may be provided to the
interested party so that the party may retrieve the encrypted
data files. In this scenario, the IUIs of the encrypted data files
may or may not be present within the descriptor file.

In a second embodiment of the mvention a flattened
descriptor file may also be produced. A descriptor file, its TUI,
an encrypted descriptor file and 1ts IUI may be produced as
described 1n the first embodiment. Additionally, a flattened
descriptor file 1s created based upon the descriptor file. The
flattened descriptor file includes the IUIs of the encrypted
data files and the IUI of the encrypted descriptor file. An
algorithm 1s then applied to the flattened descriptor file to
produce its own IUI. The IUI of the flattened descriptor file
may then be used as a unique identifier to indirectly reference
all of the data files listed within the descriptor file. Using the
IUI of the flattened descriptor file, an interested party may
retrieve the tlattened descriptor file (1n plaintext). Using the
IUIs 1t contains the party may then obtain not only the
encrypted data files but also the encrypted descriptor file.

At this point, however, even though the party has the
encrypted data files, 1t does not have access to these files. At
a suitable time, the party may then be supplied with the IUI of
the descriptor file which serves as a key to decrypt the
encrypted descriptor file. Once decrypted, the party may then
use the descriptor file as described 1n the first embodiment to
retrieve and decrypt the data files. Advantageously, two 1tems
are necessary for retrieval and decryption of the data files: the
IUI of the flattened descriptor file which allows retrieval of
the encrypted data files; and the IUI of the plaintext descriptor
file which allows decryption of the encrypted descriptor file.
Thus, one or both may be withheld from a party to prevent its
access to the data files, while allowing the party to physically
obtain the encrypted files. Furthermore, a party able to
retrieve the encrypted data files 1s guaranteed that the files
have not been changed from the time their IUIs have been
calculated, but 1s unable to decrypt these files unless 1t
receives the second item.

Through use of the present invention, each file to be stored
or transierred need only be encrypted once using one key, and
only the encrypted version of the file need be manipulated.
There 1s no need to use different keys for different users.
Further, should the same file exist 1n two different locations
on a computer or within a network, use of the present inven-
tion produces an encrypted file for each that i1s the same
automatically. Thus, only this single encrypted file need be
stored and/or transferred. Such benefits accrue automatically
due to the nature of the present invention. The encrypted form
of each file can be stored or transmitted anywhere within a

US 8,261,066 B2

S

computer network without the need for firewalls, access con-
trol, virtual private networks, or secure session protocols.
Further, by using the intrinsic unique identifier to serve as the
encryption key for the file as well, this single identifier not
only serves to authenticate the file but also to verity the
integrity of the file.

The present invention 1n 1ts many embodiments provides a
variety of advantages in numerous applications which will be
discussed below.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further advantages thereof,
may best be understood by reference to the following descrip-
tion taken 1n conjunction with the accompanying drawings in
which:

FI1G. 1 1llustrates a prior art technique by which any num-
ber of files are uniquely represented by an 1dentifier for later
retrieval.

FIG. 2 1llustrates a technique by which a file may be
encrypted according to one embodiment of the imvention.

FIG. 3 illustrates a technique by which a descriptor file 1s
created and encrypted according to one embodiment of the
invention.

FI1G. 4 1s a flow diagram describing how an intrinsic unique
identifier (IUI) may be created for a group of files.

FI1G. 5 illustrates symbolically one example of a descriptor
file.

FIG. 6 A 1illustrates an example of an implementation of a

descriptor file written using a modified version of XML.

FIG. 6B 1llustrates a modified or “flattened” descriptor file
suitable for use 1n the second embodiment.

FIG. 7 illustrates a technique for generating intrinsic
unique 1dentifiers (IUIs) according to a second embodiment
of the mvention.

FIG. 8 1s a flow diagram describing a technique for creating,
a number of 1intrinsic unique identifiers representing a collec-
tion of files according to a second embodiment of the inven-
tion.

FI1G. 9 15 a flow diagram describing how files identified in
FIGS. 2 and 3 may be retrieved.

FIG. 10 1s a flow diagram describing retrieval of files
uniquely identified using the embodiment of FIG. 7.

FIG. 11 1s a flow diagram describing how a file may be
looked for and obtained in accordance with an embodiment of
the present invention.

FI1G. 12 1s a block diagram 1llustrating a use of the mven-
tion in the area of secure storage.

FIG. 13 15 a block diagram 1llustrating use of an embodi-
ment of the mvention in the area of access control.

FIG. 14 1s a block diagram 1llustrating use of an embodi-
ment of the mvention for escrow purposes.

FIG. 15 1s a block diagram 1illustrating a computer network
environment suitable for use with an embodiment of the
invention.

FIGS. 16 and 17 show one possible form of a computer
system.

DETAILED DESCRIPTION OF THE INVENTION

The present invention 1s applicable to a wide variety of
digital information. As used herein, digital information may
refer to a computer file, a group of files, a group of file
identifiers, or other collections of data or database informa-
tion. Such other collections of data include documents,
selected frames or clips from digital audio or video streams,
streams from message records or files, of log entries from

10

15

20

25

30

35

40

45

50

55

60

65

6

audits or status logs of systems. Database information might
include selected database records from a relational, hierar-

chic, network or other format database. Indeed, digital infor-
mation may include any string of binary digits used wholly or
in part by some application or device. In one embodiment, the
present mvention manipulates digital information as binary
large objects, or BLOBs (a bit sequence).

The following discussion illustrates embodiments of the
invention using the example of typical computer files for ease
of understanding. It should be pointed out, however, that
embodiments of the invention are well-suited for use with any
of the before mentioned digital information.

As discussed above, 1t would be desirable to address secu-
rity 1ssues relating to computer files and to the intrinsic unique
identifiers (IUIs) of the data files and of a descriptor file. As
pointed out, 1t 1s possible for a data file to be obtained by
unauthorized parties or for an IUI of a descriptor file to be
intercepted. Although 1t may appear that standard encryption
techniques may address these problems, there are drawbacks
associated with conventional uses of these standard tech-
niques.

For example, it can prove burdensome to store or send a file
to numerous people using public key cryptography. In order
to send a single file to fifty people using public key cryptog-
raphy, one would first have to obtain the public key from each
of the fifty people. Then, fifty copies of the file would have to
be made, and each file encrypted with a different one of the
fifty keys. Fifty different encrypted files would then be cre-
ated which are sent out or stored for later retrieval. The prob-
lem 1s that the single file that was started with has now become
fifty different files each of which must be managed and trans-
ported separately. Calculation of an 1dentifier for each of the
fifty encrypted files would then produce fifty different 1den-
tifiers each of which must be managed and transported. It
would be most desirable to have a single copy of the plaintext
file and a single copy of the encrypted file for use by an
authorized entity to cut down on the proliferation of files
copies.

Use of conventional symmetric cryptography also has
drawbacks. Using the above example of a single file to be
distributed to fifty people, one might choose to use a different
random key to encrypt the file fifty times. Again, fifty differ-
ent encrypted files must be generated and each of the random
keys must also somehow be transmitted to each person. Fur-
ther, consider the situation 1n which fifty different files are to
sent to one person. IT only a single key 1s used to encrypt all of
the files, then 1t would become much easier to hack the key
and determine 1ts value by an unscrupulous third party. Fur-
ther, 1f each file 1s encrypted with a different key, then each of
these keys must somehow be transmitted to the person and
managed 1n a secure fashion.

Finally, a typical prior art use of either asymmetric or
symmetric cryptography to encrypt a file might provide a file
that 1s encrypted, but the keys used do not provide assurance
that the file has not somehow been tampered with 1n either its
plaintext or encrypted form. Also, a file that has been tam-
pered with might not be able to be decrypted. It would be most
desirable if a single key could be used tonotonly encryptafile
but to also 1nsure the integrity of its contents. Further, 1t would
be desirable to store and/or transmit the key or keys for a given
set of files 1n a secure manner. Accordingly, the present inven-
tion realizes a technique for addressing the above 1ssues.

First Embodiment

FIG. 2 illustrates a technique by which a file may be
encrypted according to one embodiment of the mvention.

US 8,261,066 B2

7

FIG. 3 illustrates a technique by which a descriptor file 1s
created and encrypted according to one embodiment of the
invention. FIG. 4 1s a flow diagram describing how an intrin-
s1c unique 1identifier (IUI) may be created for a group of files.
FIG. 4 will be explained with reference to FIGS. 2 and 3. In 5
step 202 a group of files (or one file) 1s selected and 1its
corresponding file data and any meta data 1s collected. As
mentioned above, the files selected may be computer files or
any of the digital information previously described. The files
selected may include a descriptor {file, any type of encrypted 10
or compressed file or files that themselves contain intrinsic
unique 1dentifiers. File 102 1s an example of one of the files
selected and will be used to illustrate this embodiment. Other
selected files or information are preferably treated 1n a similar
fashion as file 102. 15

In step 206 an intrinsic unique 1dentifier (IUI) 1s generated
for each file. Algorithm 104 1s applied to file 102 to produce
IUI106. The algorithm may be applied to the complete file or
to any portion of the file. Algorithm 104 1s preferably any
algorithm that can generate a reliably unique identifier for the 20
file based upon the file contents. As such, the IUI generated 1s
repeatable in that application of the algorithm again to the file
will produce the same IUI. The term “intrinsic” 1s used to
indicate that the IUI 1s based at least in part (or in whole) upon
the contents of the file. Algorithm 104 may be any of a wide 25
variety ol algorithms. By way of example, algorithm 104 may
be a hash function such as the MD?3S algorithm or SHA-1 that
produce a message digest, or may be an error detection algo-
rithm such as employed in cyclic redundancy checking
(CRC). 30

Preferably, an algorithm should consistently produce the
same binary number for any specific instance of digital infor-
mation and such a binary number should be practically
proven to be unique with a reasonably high probability for the
class of digital information being 1dentified. Use of such an 35
algorithm over two binary sequences that result in the same
binary number can prove that the two binary sequences are
the same. Conversely, use of the algorithm over two binary
sequences that result in different binary numbers can prove
that the binary sequences are different. Such an algorithm 40
simplifies the identification of copies of a particular portion of
digital information (such as a computer file). The result of
such an algorithm 1s referred to herein as an intrinsic unique
identifier (IUI). Other algorithms may be used to generate an
intrinsic unique 1dentifier as long as the probability of gener- 45
ating 1dentical idenftifiers from different files i1s below a
threshold that 1s defined as acceptable.

In a preferred embodiment of the invention, the algorithm
used 1s the MD5 algorithm and produces a 128-bit message
digest referred to herein as simply the “MD5.” In this case, 50
algorithm 104 generates plaintext MD5 106. Plaintext MD5
106 1s an 1ntrinsic umque 1dentifier for file 102 and uniquely
identifies file 102 based upon it contents. Should file 102 be
changed a newly calculated MD3 would not match the MD5
calculated for the previous version of the file. 55

In step 210 an optional compression step may be per-
formed. In a preterred embodiment, each file 1s also com-
pressed. Any of a wide variety of compression algorithms
may be used; the LZW algorithm 1s preferable, although other
algorithms associated with formats such as GZIP and CAB 60
may be used. Compression may also be performed after
encryption although 1t 1s preferable to perform compression
first, or to perform both together. Alternatively, it 1s possible
to perform the compression step and not the encryption step.

In step 214 each file 1s encrypted using its recently gener- 65
ated MD5 as the key for the encryption algorithm. For
example, file 102 1s encrypted using encryption algorithm

8

108 with the key being plamtext MD3S 106 to produce an
encrypted file 110. Any of a wide variety of ciphers may be
used as the encryption algorithm. By way of example, the
“Two Fish” algonithm works well, although other algorithms
such as block and stream cipher may also be used.

The use of plaintext MD35 106 to encrypt file 102 provides
advantages. The single key used to encrypt and decrypt file
102 can also be used to verily the integrity of the file because
the key happens to be plaintext MD35 106 that has been gen-
erated using the MD35 algorithm. Because 1t 1s an intrinsic
unique 1dentifier it may also be used to verily that the contents
of file 102 have not changed.

Now that encrypted file 110 has been created it may be
stored and/or transiferred within a computer network 1n a
secure manner. In step 218 an intrinsic unique identifier 1s
generated for file 110 using algorithm 112. In this example,
algorithm 112 1s the MD?3 algorithm and the result is
encrypted MD3 114. Preferably, algorithm 112 1s the same as
algorithm 104. It 1s possible, however, that the two algorithms
may be different; for example, by convention it may be agreed
that plaintext ﬁles use a particular algorithm while encrypted
files use a different algorithm to generate their intrinsic
unique 1dentifiers.

At this point, a secure and suificient technique for storing,
locating and retrieving file 102 has been described. Encrypted
file 110 may now be stored within a computer network instead
of storing the plaintext file 102. By providing a user with
encrypted MD5 114, the user will be able to locate and
retrieve file 110. The integrity of file 110 can be guaranteed by
recalculating the MD?3 of the file and comparing 1t to MD5
114. The key 106 to encryption algorithm 108 may be held by
the originating party and only released to a user when 1t 1s
desired that the user has access to file 110. Once the key 106
1s given to someone that has retrieved file 110, the file may be
decrypted to produce plaintext file 102. Thus, two pieces of
information are necessary for a user to have access to file 102:
encrypted MD5 114 and plamtext MD5 106. A user that 1s
provided with encrypted file 110 1s also guaranteed that the
original plaintext file has not been changed.

In step 222 a descriptor file 1s created that represents all of
the files that have been selected. FIGS. 5 and 6 provide greater
detail of how a descriptor file may appear. Descriptor file 130
may i1nclude a variety of information and may take many
forms. In this example, for each of these files selected and
previously encrypted, it includes a file name 132, file meta
data 134, plamntext MD5 106 and encrypted MD5 114. In
other embodiments the encrypted MD?3 for each file may also
be located elsewhere to assist 1n locating the encrypted files
and may or may not also appear 1n file 130. A descriptor file
130 includes the plaintext MD5 for each file, once descriptor
file 130 has been obtained 1t may be used to decode the
encrypted files to obtain the original plaintext files.

In step 226 an intrinsic umque identifier 1s generated for
descriptor file 130. In a preferred embodiment, algorithm 136
1s the MD)5 algorithm which 1s used to create MD5 138 which
1s preferred to as the “key MD5.” In step 230 descriptor file
130 1s encrypted using key MD35 138 as the key to encryption
algorithm 140 to produce encrypted descriptor file 142. Pret-
crably encryption algorithm 140 1s the Two Fish algorithm.
File 130 may also be compressed 1n a similar way as dis-
cussed 1 step 210. MD5 138 1s referred to as the “key MD3S”
because it provides the key for decrypting file 142.

In step 234 an intrinsic unique identifier for file 142 1s
generated using algorithm 144. Preferably, the MD35 algo-
rithm 1s used to produce master MD3 146. Pretferably, algo-
rithms 136 and 144 are the same algorithms although they
may be different, and may be different from algorithms 104

US 8,261,066 B2

9

and 112. By convention, it may be agreed upon beforehand to
use different algorithms 1n different places. Also, meta data
134 may also indicate which algorithms are to be used with
the plaintext and encrypted files. By the same token, meta
data for file 130 may be included therewithin to indicate
algorithm 136. At this point, the selected files have been
uniquely identified using either master MD5 146 or key MD3
138.

Step 238 15 an optional step 1n which the master MD5 and
the key MD5 are encoded. Because a resultant MD?3J 1s a
128-bit number, 1t may be desirable to encode this number 1n
a more manageable form for human use. The resultant num-
ber may be encoded in any of a variety of forms including
decimal, hexadecimal or binary. Preferably, the number 1s
converted to a base 36 number mapped to the set of twenty-six
alphabetic and numeric characters in the base ASCII charac-
ter set. This mapping 1s referred to as “ASCII Armoring” and
1s commonly used to render binary information 1n a limited
character set for transmission over protocols that require con-
tent to be constrained to alphanumeric coding. In a preferred
embodiment, a flag character 1s included at a predetermined
position within the resulting string bringing the total length of
the string to 27 characters. This flag character could also
provide information such as algorithm to use, type of file, etc.

Theresultis a27-character ASCII string of digits and upper
case letters. Such a format provides a compact form that may
more easily be written down by a person and/or manipulated
by a computer, and 1s also 1n a form that 1s easily accommo-
dated by many software programs. In addition, this particular
representation of an intrinsic unique 1dentifier has the advan-
tage of being more easily retrieved by data query, coded 1nto
soltware application file requests, referenced by a content or
asset management system, requested 1n an object browser,
clectronically copied and pasted from one document to
another, sent via electronic mail, etc.

Master MD5 146 may also be associated with a file locator
to assist with finding file 142. Although the invention works
without an additional file locator, one may be used. An
example of a file locator 1s a URL, an IP address, or a path
name.

In step 242 the encrypted files that have been created may
be stored. The files created may be stored in any suitable
location such as on the user’s computer, at a remote server, 1n
an archive, at the site of a future user, or other. In fact, the files
created need not be stored together, but may be stored 1n
different locations. Preferably, the files that are stored for
tuture reference by a user include the encrypted files (such as
file 110) and the encrypted descriptor file 142. Preferable, the
plaintext files (such as file 102) and the plaintext descriptor
file 130 need not be stored 1n an accessible location due to
security. The files may be destroyed or kept by the originator
in a secure location. Because the plaintext files can be created
from the encrypted files using the appropnate key, 1t 1s not
necessary to have the plaintext files easily available.

In step 246 the master MD5 146 and the key MD3 138 are
returned to the originator for future reference. At this point,
both the master MD35 and the key MD3 would be needed by a
party who wishes to access the encrypted files. For example,
should the originator wish an interested party to have access
to the encrypted files at some point, he may provide that party
with the master MD3. Using master MD35 that party could
obtain encrypted descriptor file 142 but would have no way of
decrypting 1t. Only when the party is provided with key MD5
from the originator, can that party decrypt file 142 and obtain
not only the encrypted MD5s (to locate each encrypted file)
but also the plamtext MD?3 for each file (which would allow
that party to decrypt the encrypted file and verify that the

10

15

20

25

30

35

40

45

50

55

60

65

10

original file has not changed). Alternatively, an interested
party may be provided with the encrypted MD3s 1n addition

to the master MD35 which would allow that party to retrieve
the encrypted files but not decrypt them. Once the key MD5
was provided, the party could decrypt the descriptor file,
obtain the keys for the data files, and decrypt them. In an
alternative embodiment, the user may be supplied with MD5s
for the encrypted data files but 1s not supplied with the master
MD?35 or the key MD3 until a later time. Alternatively, the user
may be supplied with the key MD35 1nitially and the master
MD?35 later. Such embodiments have a variety of applications
which are discussed below.

Descriptor File Examples

FIG. 5 illustrates symbolically one example of a descriptor
file 300. In general, a descriptor file includes the plaintext
MD3 for each of the encrypted data files. Thus, once the
descriptor file 1s obtained and decrypted the user may then
decrypt the encrypted data files using the plaintext MD5 for
cach file as a key 1n the decryption algorithm. Other informa-
tion may optionally be included within the descriptor file to
assist with locating an encrypted data file, reconstructing 1ts
directory environment, and/or administrating a scheme for
generating revenue for the use of such a technique. Further, a
descriptor file may be implemented 1n any of a wide variety of
modeling languages; examples are given in FIG. 6A.

In one specific embodiment, descriptor file 300 includes
meta data 302 that describes optlons regarding the descriptor
file and information concerning its use and contents. By way
of example, meta data 302 includes the type of the descriptor
file, a name for the descriptor file, a creation date, comments,
the number of data files that it represents, the number of
directory folders 1t represents, the total size of all of the files
combined that 1t represents and other information such as
author, keywords, etc.

A user-supplied name may be assigned when the descriptor
file 1s created and 1s used as a mnemonic aid by the user to
identify a folder (for example) from which files represented
by the descriptor file have originated. In another embodiment
of the invention, the name of the folder 1tself 1s suggested
automatically as a mnemonic aid. This name can be associ-
ated with the master MD3S created for the descriptor file to
enable a user to more easily 1dentify the general contents of a
descriptor file. For example, when retrieving data using a
particular master MD5 this name may be included to assist the
user. The creation date indicates when the descriptor file was
created and 1s useful for keeping track of versions. Comments
may be inserted mto the descriptor file for any purpose by the
user. The number of files represented, number of folders and
total size 1s useful for progress status during downloading.

A descriptor file may include any number of represented
files and optionally may include the folders 1n which the files
originally resided. Any number of folders and any hierarchy
may be represented in the descriptor file. By way of example,
included 1s a folder name 310, 1ts time stamp 312 and oper-
ating system attributes 314. Time stamp 312 indicates when
the folder was last modified. Attributes 314 indicate operating
specific attributes for the folder such as whether the folder 1s
read-only, whether 1t should be hidden, and 1ts type such as
system, archive or temporary.

Any number of files may be 1ndicated as being originally
found within folder 310, such as the files 1dentified by file
name 320 and file name 340. A wide variety of meta data may
be present that provides information regarding the file 1den-
tified by file name 320. Included 1s a time stamp 322 indicat-
ing when the file was last changed, a size 324, the plaintext

US 8,261,066 B2

11

MD35 326, the encrypted MD3S 328, a creation date of the file
330, and any number of operating specific attributes 322.
These attributes may include the read or write status of the
file, the file type, its creator, etc. By including the encrypted
MD3 328 for the file, the file becomes content addressable
using the encrypted MD35 as a location-independent file
name. Plaintext MD3 326 can then be used to decrypt the
retrieved encrypted file. Other file names and associated meta
data may also be indicated as being included 1n folder 310.
Any number of folders and their included files (indicated by
324 and 344) may also be included. A hierarchy of folders
may exist in which one folder and its files are present within
another folder.

Administrative data 346 may also be included within the
descriptor file 300 to assist in generating revenue from use of
the technique, tracking the software which embodies the tech-
nique, etc. By way of example, data 346 includes an 1identifier
indicating on which machine the software was originally
installed. In one embodiment of the invention, software
which embodies the invention 1s either sold, licensed, or
provided free to users. Included along with the software 1s a
so-called “token box” that represents the number of times that
a user may create a descriptor file and generate a master MD5
for a collection of files. Included within data 346 would then
be a token box identifier and a token box count. The box
identifier uniquely 1dentifies the particular box that was pro-
vided along with software to a user. The box count indicates
the number of times that a user may generate a descriptor file
and its corresponding master MD35. For example, a user may
pay for (or recetve Iree) software embodying the mnvention
that has a box count of 1000. The software keeps track of this
box count variable and decrements it each time the user
creates an encrypted descriptor file and 1ts associated master
MD?3. The box identifier and the current box count are then
included within data 346. The box identifier may by useful to
indicate that only certain types of descriptor files may be
generated. Preferable, it 1s unique for a given copy of software
provided to a customer and 1s similar to a serial number. The
box count included within the descriptor file 1s useful for
tracking token boxes that have been “hacked” into to circum-
vent paying.

Also included within data 346 may be a digest of the
complete descriptor file. For example, the digest may be
created by performing a hash function upon the descriptor file
and then encrypting the hash produced with a secret key
known only to the manufacturer of the software. Asymmetric
or symmetric cryptography may be used. By including this
digest within (or at the end) of the descriptor file, the manu-
facturer of the software can prove whether or not the descrip-
tor file and/or 1ts associated master MD3S was created by the
manufacturer because only the manufacturer can calculate
this unique digest. Thus, the manufacturer can determine 1t
another entity created the descriptor file and/or 1ts master
MD35. This information may be usetul 1n determining whether
to process a request for a retrieval of {files, for requesting
payment from an entity, or for legal protection of a particular
implementation.

The type of a descriptor file indicates one of a variety of
types of the file and 1ts associated master MD35. In general, a
particular type provides different meta data and different
behavior for different classes of descriptor files. For example,
certain types of descriptor files may include certain meta data
that are not present within other types and may cause a soft-
ware agent or an operating system to 1nitiate various actions
that are different from other types. A wide variety of types
may be defined for descriptor files. By way of example, these
types include the following. A standard type may automati-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

cally placeretrieved files back into a default folder on the desk
top of the user’s computer when the files are retrieved using
embodiments of the present invention. In other scenarios,
however, it may be desirable to retrieve a file and place it in a
particular location within a computer or elsewhere. An
extended type of descriptor file allows the descriptor file to
include meta data for each file name or folder indicating to
where within a computer and/or 1ts operating system the file
shall be placed when 1t 1s recerved. For example, for perform-
ing soltware replacement or upgrades, meta data included
within the descriptor file for each file may indicate that a
particular file should replace a file within the operating sys-
tem of the computer. Thus, when the present invention i1s used
to retrieve a file, a software agent may automatically place the
retrieved file 1n the location indicated by the meta data.

Because automatic replacement or placement of operating,
system or application soitware files may be sensitive and
require permission, a certificate may be included along with
the descriptor file for this type. In this scenario a user of a
descriptor file first approves of a given creator of the files that
are to be retrieved. The software agent that implements the
present invention then keeps track of a list of creators that are
approved by the user. The user and the creator then agree upon
a digital certificate that authenticates the creator to the user.
Creation and use of digital certificates are well-known 1n the
art and any of a variety may be used. In this situation, included
within meta data 302 1s a certificate from the creator that
guarantees the authenticity of the files indicated within the
descriptor file. Once the software agent has decrypted the
descriptor {file, 1t retrieves the certificate of the creator and
verifies that 1t does 1n fact authenticate that particular creator.
The software agent then compares that creator to the list of
approved creators, and if there 1s a match, the indicated files
in the descriptor file are retrieved, decrypted and installed on
the user’s computer where 1ndicated.

Another type of descriptor file 1s a trial type. When using
this type of descriptor {file, an advertisement appears on the
user screen whenever a descriptor file 1s created and a master
MD3 generated. In return for viewing the advertisement, the
box count for that particular user 1s not decremented. The data
representing the advertisement may be stored within the soft-
ware agent that embodies the present invention, or may also
be included within the descriptor file.

Another type of descriptor file 1s a service type. This
descriptor file includes meta data that 1dentifies a software
plug-1n 1n any suitable fashion. By way of example, the plug-
in may be identified using an intrinsic unique identifier (IUI)
according to any embodiment of the present invention or may
be identified by using a file name, location, etc. When files are
retrieved by the soitware agent by using the descriptor file, the
software plug-in 1s i1dentified, located and automatically
installed upon the user’s computer. For example, the plug-in
may be a Java file to load or XML configuration files.

Descriptor files may also be customized by a user. For
example, a user may create a custom type of descriptor file
that automatlcally adds particular meta data and behavior to
the file when 1t 1s created. Custom descriptor files may also be
created for each company to whom software embodying the
present invention 1s to be provided. For example, any relevant
information may automatically be added to the descriptor file
when created or the user may be prompted to add information
that 1s relevant to the type of descriptor file and its contents.
Automatic behavior may be added to a custom descriptor file
that performs certain actions when a descriptor file 1s used to
retrieve files. For examples, codes within the descriptor files
may automatically send electronic mail. Other actions that
may occur iclude publication on web sites.

US 8,261,066 B2

13

FIG. 6A 1illustrates an example of an implementation of a
descriptor file written using an application of XML. The

extensible mark up language (XML) 1s preferred although
other mechanisms such as mnitialization (““.1n1” files) may be
used. The particular descriptor file shown uses a so-called
“hyperfile” modeling language (HFML) based on XML to
describe the structure of the directories contaiming files as
well as the files themselves. An HFML 1s described in the U.S.
provisional patent application No. 60/072,316, filed Jan. 23,
1998. In general, 1t should be noted that implementation of the
invention 1s not restricted to a descriptor file written 1n any
particular syntax. The HFML in the preferred embodiment 1s
used because it 1s readily parsed and can be used to generate
a tree-structured directory of the files and keys.

The descriptor file o FIG. 6 A includes two MD5s for each
file. The MD?3 termed “decoded.md>™ corresponds to plain-
text MD3 106 of FIG. 2 (for example), and represents an
intrinsic umque 1dentifier for a plaintext file. The MDS5
termed simply “md5” corresponds to encrypted MD3S 114 of
FIG. 2, and represents an intrinsic unique identifier for the
encrypted plamntext file. The descriptor file of FIG. 6A
includes no administrative data, although 1t may.

FIG. 6B illustrates a modified or “flattened” descriptor file
suitable for use 1n the second embodiment. In the second
embodiment (described 1in FIGS. 7 and 8), descriptor file 402
may be implemented as 1n FIG. 6 A, and flattened descriptor
file 460 may be implemented as in FIG. 6B. Note that the file
of FIG. 6B includes the MD?3 of the encrypted descriptor file
of FIG. 6A (termed the “keyfile md>™), and includes the
MD3s for the encrypted plaintext files, but not the MD35s for
the plaintext files. FIG. 6B also includes administrative data
(“eclipcontents™) such as a box identifier, a box count, a seat
identifier, and a digest.

Second Embodiment

The first embodiment has described the technique by
which a master MD3 and a key MD3 are provided to a user
who wishes to locate and access a collection of encrypted
files. Because the master MD3 only allows access to
encrypted descriptor file 142, 1t would be difficult for a user to
locate and retrieve the encrypted data files because the
descriptor file 1s encrypted. It 1s not until the user 1s also
provided with the key MD?35 that the user 1s able to decrypt the
descriptor file and obtain the MD5s, allowing 1t to locate the
encrypted data files. In various situations 1t may be desirable
to allow a user to not only obtain the encrypted descriptor file
at first, but also to allow the user to locate and obtain the
encrypted data files without allowing those files to be
encrypted. For example, this 1s useful when administrating
pool servers, load balancing, caching, mirroring, and in other
applications such as escrowing.

FIGS. 7 and 8 describe an embodiment by which the user 1s
not only allowed access to the encrypted descriptor file, but
also obtains the means to locate the encrypted data files. FIG.
7 1llustrates a technique for generating intrinsic unique 1den-
tifiers (IUIs) according to a second embodiment of the inven-
tion. FIG. 8 1s a flow diagram describing a technique for
creating a number of intrinsic unique i1dentifiers representing
a collection of files according to a second embodiment of the
invention.

In steps 502-518 a collection of files are selected, MD3s are
generated and the files are encrypted 1n a similar fashion as
described 1n steps 202-218 (not shown 1n FIG. 7). In step 522
descriptor file 402 1s created. Descriptor file 402 includes
representative meta data for any number of files and may also

include other information such as 1s shown in FIGS. 5and 6 A.

10

15

20

25

30

35

40

45

50

55

60

65

14

Included are a file name 410 representing a first file, 1ts
associated file meta data 412, 1ts plaintext MD5 414 gener-
ated from the plaintext file and an encrypted MD3 416 that 1s
generated from the encrypted file. File name 420 and file
name 430 represent second and third files, respectively, and

cach have their associated meta data, plamntext MD3S and
encrypted MD)5.

In step 526 algorithm 404 1s used to generate key MD5 406
for descriptor file 402. In step 530 descriptor file 402 1is
encrypted using key MD3 406 as the key to encryption algo-
rithm 440 to produce encrypted descriptor file 452. MD5 406
1s referred to as “key MDS5” because 1t provides the key for
decrypting file 452. In step 534 master MD35 456 for file 452
1s generated using algorithm 434. Preferably, algorithms 404
and 454 are the same algorithms although they may be dii-
ferent, and may be different from algorithms used with the
data files.

At this point master MD3 456 may be provided to a user to
allow the user to locate and obtain encrypted descriptor file
452. The user, however, would be unable to locate the
encrypted data files. It 1s concervable that the originator may
simply provide the encrypted data files to the user or may
provide file locators for them or may even provide their
encrypted MD35s 1n any fashion. In a preferred embodiment,
however, the encrypted MD5s for the encrypted data files are
provided 1n another modified descriptor file.

In step 538 flattened descriptor file 460 1s created based 1n
part upon the information 1n descriptor file 402. Included
within the flattened descriptor file 406 are the encrypted
MD35s 416, 422 and 432 that provide intrinsic unique 1denti-
fiers to locate the encrypted files represented by file names
410, 420 and 430 1n descriptor file 402. File 460 may be
created by duplicating file 402, removing certain information

and adding other information. For example, master MD5 456
1s also added to file 460 to allow a user to access file 452. Meta
data 470 associated with the file 460 may also be added. This
meta data may be the same descriptor file meta data as found
in file 402, may be a subset of that data, or may be different
meta data or may not appear at all. For example, meta data 470
includes publicly searchable items but not private data.

The flattened descriptor file may take a wide variety of
other forms. For example, other types of file locators may be
included instead of the MD3s to provide access to the
encrypted files or to the plaintext data files. Also, master M35
456 15 optional, and file meta data may also be included for
cach file.

In step 542 algorithm 462 1s applied to file 460 to create a
user MD5 464 that 1s an intrinsic unique identifier for file 460.
Preferable, algorithm 462 1s the MD5 algorithm. In step 544
the user MD35 464 and key MD3 406 are preferably converted
to ASCII format 1n a similar fashion as described 1n step 238
to provide 1dentifiers that are more manageable by a user.
Because master MD5 456 1s not handled directly by a user in
this embodiment, 1t 1s optional whether to encode this 1den-
tifier 1n file 460.

In step 548 the relevant files are stored for later access by a
user. The files to be stored include the encrypted data files,
encrypted descriptor file 452 and non-encrypted flattened
descriptor file 460. These files may be stored 1n any suitable
computing device or computer network and may be distrib-
uted 1n different locations. In one embodiment, the files are
stored 1n what 1s termed a file “pool”. In general, a file pool
refers to a collection of distributed storage devices that store

files only being identified by their MD35s (or other IUIs).

In step 352 the user MD5 464 and the key MD5 406 are
returned to the originator for possible distribution to a
requesting user. In this fashion, access to the encrypted data

US 8,261,066 B2

15

files and eventually to the plaintext files are provided simply
via two 1dentifiers, namely, user MD5 464 and key MD5 460.

For example, using user MD5 464, the user can access and
read file 460 which provides access to the encrypted data files
and to the encrypted descriptor file (via the master MD35).
Once the user 1s also supplied with key MD3 406, the user
may decrypt the encrypted descriptor file, obtain the plaintext
MD35s, and decrypt each of the encrypted data files.

File Retrieval Embodiments

At this point 1n time, the originator of the data files has
generated key MD3S 138 and master MD5 146 and has
securely stored the encrypted files on a computer or on a
distributed computer network. An interested party such as a
user or software program may perform the following steps to
retrieve the files.

In step 602 the user recerves the master IUI (in this example
master MD3) which 1s the identifier uniquely representing the
files to be retrieved. In step 606 the user looks for the file
identified by master MD35 146. The file may be searched for
and obtained 1n a wide variety of ways. By way of example,
the user looks for the file on a local computer or throughout a
distributed computer network. Preferably, the file 1s initially
identified by matching master MD3 146 with the MD35 of a
particular file found. In a preferred embodiment of the inven-
tion, step 606 may be implemented as described in FIG. 11. In
step 610 an encrypted descriptor file 142 that purports to
correspond to master MD5 146 1s recerved. Once received,
the user may assume that the descriptor file 1s authentic by
virtue of the search performed 1n step 606. It may be prefer-
able, however, to verily that the received file 1s the correct file
by first calculating the MD3 of the received encrypted
descriptor file in step 614.

In step 618 the received file 1s verified as being authentic by
comparing master MD3 146 with the MD?3 just calculated
from the received file. If the MD35s do not match, then control
returns to step 606 to look for another file. If the MD5s match,
then the file 1s authentic and the process may continue. Steps
614 and 618 arec optional steps.

By virtue of possessing encrypted descriptor file 142, at
this point the user 1s effectively guaranteed that all data files
that have been encrypted and identified i the plaintext
descriptor file are effectively sealed and have not changed.
For example, should an unscrupulous party attempt to modity
one of the data files, the MD5s of the plaintext file and of the
encrypted file would not match with MD35 106 and 114 in the
plaintext descriptor file. In this way, the holder of the
encrypted descriptor file can be assured that once the descrip-
tor file 1s decrypted that it will be able to verifiably identify the
original data files that have been identified 1n the descriptor
file. In this way, encrypted descriptor file 142 serves as a type
of escrow of the original data files. As such, key MD3 138
may be delivered to the user concurrently with master MD3
146, sometime shortly there after, or at some later time when
the originator wishes the user to have access to the original
data files.

Therelore, at some appropriate time, in step 622 the user
receives the key IUI (in this case key MD3 138) and may
begin to obtain the original files. In step 626 the user uses key
138 to decrypt descriptor file 142 and obtain plaintext
descriptor file 130. Although optional at this point, in step 630
the user may wish to verily that plaintext descriptor file 130 1s
also authentic. For example, the user may recalculate the
MD?35 for file 130 and compare it to key 138. Such a check
verifies that a bogus descriptor file 130 has not been substi-
tuted for the correct descriptor file and then encrypted using,

10

15

20

25

30

35

40

45

50

55

60

65

16

key 138. Additionally, a digest may be recalculated for file
130 and compared to a previously calculated digest already
present 1n file 130. For example, as pointed out 1n FIG. 5,
administrative data 346 may include a unique digest that has
been calculated by the true creator of descriptor file 130. If,
for some reason the MD5s to not match or the digest is
incorrect, the 1 step 634 an error handler 1s imnvoked to pro-
duce a suitable error message and a suitable action.

In step 638 the directory structure (1f any) described 1n
descriptor file 130 1s rebuilt using the information contained
in the descriptor file. For example, a directory structure such
as 1s shown 1n FIG. 5 or 6 A or some other structure may be
built. A huierarchy of folders may be created, folder and direc-
tory attributes may be assigned and individual file attributes
may be 1dentified for assigning to particular files once these
files are retrieved.

Because descriptor file 130 lists the encrypted MD5 114 of
cach file identified, the user may now look for each of the
encrypted files using these MD5s. Step 642 may be per-
formed 1n any suitable fashion, for example, may be per-
formed as described 1n step 606 and 1n FIG. 11 by which afile
1s 1dentified having a particular TUI.

In step 646 a file 1s received that purports to correspond to
encrypted MD35 114. Although the user may assume that this
retrieved file 1s authentic, 1t 1s preferable 1n step 650 that the
retrieved file 1s verified. By recalculating the MD3S of
encrypted file 110 (for example) this recalculated MD3
maybe compared to encrypted MD5 114 to verity that the file
identified 1n descriptor file 130 1s 1n fact the file that has just
been retrieved. 11 the file 1s not verified then step 642 may be
implemented again to find the correct file.

Assuming the file has been verified, in step 654 encrypted
file 110 1s decrypted using plamntext MD35 106 to obtain the
original plaintext file 102. In thus embodiment of the mven-
tion, plaintext MD5 106 1s also present within descriptor file
130 along with encrypted MD5 114. In other alternative
embodiments, 1t 1s conceivable that plaintext MD5 106 need
not be present within file 130 but 1s delivered to the user in
another suitable fashion. The user may now assume that file
102 1s the original file that has been sealed earlier. In an
alternative embodiment, the user may also verify the authen-
ticity of file 102 by recalculating 1ts MD35 and comparing this
recalculated MD5 with plaintext MD3 106. Such a check
verifies that an unscrupulous party has not substituted a bogus
file for oniginal file 102 and then encrypted the bogus file
using the MD?3 of the original file. If the file 1s not verified,
then a suitable error handler 662 1s invoked.

If verified, in step 666 a file request list 1s updated to
indicate that file 102 has been accurately been obtained. If not
all files 1dentified 1n descriptor file 130 have been received,
then control returns to step 646 to recerve another file. If all
files have been recerved, in step 674 an indication 1s provided
to the user that all files 1dentified 1n descriptor file 130 have
been successtully retrieved. In this fashion, a user provided
with master MD3S 146 and key MD5 138 1s provided the
means to obtain the orniginally encrypted and identified files,
and 1s guaranteed that the original files have not been altered
since they were encrypted.

FIG. 10 1s a flow diagram describing retrieval of files
umquely identified using the embodiment of FIG. 7. Through
the use of user MD35 464 and key MD5 406 a user may later
locate and retrieve the plaintext versions of the files identified
in descriptor file 402. Through the use of this embodiment a
user 1s allowed to retrieve not only the encrypted descriptor
file, but also the encrypted data files to retain 1n his posses-
sion. This may be advantageous in certain situations such as
soltware escrow and pool management where a user wishes to

US 8,261,066 B2

17

keep 1n his possession the actual encrypted data files. The files
cannot be decrypted, however, until key 406 1s also supplied
to the user.

Steps 702-710 may be performed 1n a stmilar fashion as 1n
steps 602-610. In step 710, however, the file recerved 1s poten-
tially the plaintext flattened descriptor file 460. In step 714 the
user may further verify that the received flattened descriptor
file 1s authentic by recalculating a digest for the file and
comparing 1t to the digest included within administrative data

346 of file 460 (1f present).
Now that the user has obtained the plaintext flattened
descriptor file, in steps 718 and 722 the user may look for and

retrieve those encrypted data files that are identified by their
corresponding MD5s (for example 416, 422 and 432)

included in file 460. These files may be identified and

retrieved 1n any suitable manner and are preferably retrieved
using the techniques described 1n steps 642, 646 and in FIG.

11.

In step 726 a recerved encrypted file 1s verified as being
authentic by comparing its newly calculated MD3 with the
MD3 from file 460 that has been used to retrieve 1t. If not
authentic, control returns to step 722 to wait for another file.
Once verified, in step 730 a file request list 1s updated to
indicate that one of the encrypted data files has been success-
tully recerved. If, 1n step 734 not all files have been received,
then control returns to step 722 to wait for another file.

In step 738 master MD3S 456 1s extracted from file 460. By
using master MD3 456 present within flattened descriptor file
460, the user may now locate and retrieve encrypted descrip-
tor file 452. Once the user 1s supplied with key MD5 406 from
the orniginating party (once certain conditions are met, for
example), the user will be able to eventually retrieve the
original data files. For example, steps 738-764 may be per-
tormed as described 1n steps 606-638 above. Note that 1n step
750 the key MD)5 1s not supplied unless the originator wishes
the user to have access to the original files.

Because the user has already retrieved the encrypted data
files, once the directory structure has been built the user may
decrypt the encrypted files 1n step 768 using the plaintext
MD35s that are found 1n descriptor file 402. In an alternative
embodiment, the plaintext MD3s need not be included the file
402, but may be supplied to the user in some other fashion. In
step 772 the plaintext files may be verified as described 1n step
658. Finally, 1n step 776 the directory structure may be popu-
lated with the plaintext files to restore them to their proper
place. Additionally, any file meta data included 1n descriptor
file 402 may also be applied to each file.

Thus, through this embodiment a user to able to retrieve the
encrypted descriptor file and all encrypted data files using
user MD5 464. The user 1s unable to decrypt the data files
until key MD5 406 1s supplied.

FIG. 11 1s a flow diagram describing how a file may be
looked for and obtained 1n accordance with an embodiment of
the present invention. The procedure of FIG. 11 may be used
to implement steps 606, 642, 706, 718 and 738 of F1GS. 9 and
10 1n a preferred embodiment of the invention.

In a preferred embodiment, a file (for example) 1s recerved
in portions or segments. In other embodiments, files may be
received whole or 1n a manner specified by any file transier
protocol. A file request list includes all of the files that are
being requested until those files are received 1n their entirety.
It 1s also possible that a file segment request list would be
implemented that would 1include individual segments being
requested. For example, individual segments of files may be
requested when data or a code patch for a software application
1s required, or when specific entries for a database are

10

15

20

25

30

35

40

45

50

55

60

65

18

obtained by a store or query result. An importer program
manages the transfer of files to the recipient and determines
when the files are.

In one embodiment, the importer has a specific hierarchy of
locations 1 a computer system (or on a network) 1n which 1t
looks for the files listed 1n a descriptor file. Thus, the importer
may be implemented using a chained system which looks for
f1les 1n different places. Thus, files are searched for first in the
most convenient location and then 1n progressively less con-
venient locations. This “assembly line” i1s configurable in
kind and quantity of importers and may automatically and
dynamically change to optimize economy, security or perfor-
mance. Because the MD35s serve as content-based file names
that enable the content of files to be verified once the files are
recovered, 1t 1s possible to allow files to be recovered from
arbitrary locations where they may be found withoutregard to
checking the contents of the file using some sort of check
SUI.

In step 802 the intrinsic unique 1dentifier (IUI) of the file
desired to be obtained 1s 1dentified. This IUI may be any
suitable 1dentifier such as an MDS3 that uniquely 1dentifies a
data file, a descriptor file, any encrypted {file, or other digital
information. In the following steps, the IUI may be matched
with a particular file using any of a variety of techniques. In a
preferred embodiment, files are stored along with their file
name which 1s the IUI of the file. In other words, the encoded
2’7-bit alphanumeric MD3S of the file 1s also used as its file
name. In this embodiment, the file system of a computer 1s
used to help match the IUI with a particular file. In other
embodiments, a database may use an IUI as a look up (or data
base key) into the database to find the location of the file that
1s 1dentified by the IUI. The database may contain a pointer to
the file or the actual contents of the file 11 the file 15 a file object
in an object-oriented database. Other techniques may be used
to associate an IUI with a file 1 a storage device to facilitate
matching a received IUI with a particular file on the storage
device. For example, an IUI may also be associated with afile
as a file attribute. It 1s also possible to recalculate an IUI for a
found file and then compare it to an i1dentified IUI to deter-
mine 1f the file 1s the correct file to retrieve. Other techniques
include object database storage.

In step 804 an importer program looks for the desired file
using 1ts IUI 1n a local cache on the computer. In a preferred
embodiment of the invention, this cache 1s a pool of files into
which files have been stored previously, for example 1n steps
242 and 548. Advantageously, this pool of files stores the TUI
of a file as 1ts file name for efficient retrieval. The cache may
be implemented on a local disk, within RAM, or on another
local device. Preferably, the pool cache 1s organized as a
hierarchy of folders wherein the included files use their IUIs
as their file names. The pool cache preferably uses key/value
lookup where an IUI 1s the key and the value 1s the bit
sequence to be retrieved. If the file 1s found it 1s retrieved and
the procedure ends.

I1 the file 1s not found locally 1n a pool cache, 1n step 806 the
importer looks for the file 1n local conventional storage. For
example, of the file 1s not included 1n pool cache where the
IUI 1s the file name, 1t 1s possible that the file 1s still stored
locally and its IUI 1s associated with the file 1n some other
manner. For example, the IUI may be a file attribute of a file
and all files on local conventional storage (such as memory,
disk, tape) may be scanned to search for a file attribute that
matches the identified IUI. As a last result, brute force
method, local storage may be scanned to determine the con-
tents of all files present and an IUI may be recalculated for all
of these files. The 1dentified IUI from step 802 may then be

compared against each of these newly calculated IUIs to

US 8,261,066 B2

19

determine the correct file to be retrieved. 11 the file 1s found 1t
1s retrieved and the procedure ends.

If the file 1s not found 1n conventional storage, 1n step 808
a file location request 1s broadcast to peer computers on a
local area network. A file request list that includes the IUI of
the file and 1ts sequence numbers may also be created. Pret-
erably, the 1dentified IUI 1s broadcast to all computers on the
network that implement a pool cache. These computers may
then determine 11 the desired file 1s present within their pool
by examining the broadcast IUI. Additionally, it 1s possible
for a peer computers to examine 1ts local conventional storage
using the techniques described above. 11 the file 1s found, the
computer having the file returns a location indicator to the
requesting computer indicating the network location of the
desired file.

In step 810 the original computer establishes a one-to-one
link with the computer that contains the desired file and
requests a download of the file using a file request. In this
embodiment, the file 1s downloaded segment by segment,
although 1t 1s possible that the file may be downloaded all at
once. In step 812 the originating computer recerves a file data
packet containing segment data for the desired file. The
sequence number of the recerved file data packet 1s checked
against the file request list to determine if the packet recerved
1s for a file that 1s desired. Suitable examples of a file request
and file data packet are shown 1n the above referenced appli-
cation Ser. Nos. 09/236,366 and 09/235,146.

If the data packet 1s needed for the current desired file, then
in step 814 the segment data from the file data packet 1s stored
as part of the desired file and the file request list 1s updated to
indicate that this particular segment has been received. Step
818 checks whether the file 1s complete and all segments have
been received. 11 so, the file has been fully retrieved and the
procedure ends. If not, then the originating computer waits to
receive another downloaded file data packet 1n step 812.

If, 1n step 808 the desired file was not found, then 1n step
818 the importer sends a request for the file to any pre-
configured or well-known servers that implement a pool
cache. For example, an importer may be pre-configured to
connect to certain servers using an IP address 1f that server 1s
known to implement a pool cache. By passing the IUI of the
desired file to the particular server, the server may determine
if the file 1s present within the pool cache by examining the file
names of its files. Other addressing techmques may be used to
form a connection with one of these servers. If the file 1s found
it 1s retrieved and the procedure ends.

In step 808 these peer computers may be dedicated pool
cache servers that are dedicated to collecting and storing files
that are 1dentified by their IUI. In this fashion, broadcasting to
these pool servers 1s eflicient 1n that there 1s a high likelithood
that one of the servers has the desired file in 1ts cache. The
broadcast may also reach certain software agents located on
the computers whose primary function i1s to generate the
unique 1dentifiers such as 1s described in FIGS. 4 and 8. These
soltware agents may also store the files and their associated
IUIs 1n a pool cache of their own or in local conventional
storage.

If the file 1s not found in step 818 then in step 820 the
importer looks for the desired file on any mounted volumes of
file servers attached to the local area network. In this situa-
tion, the file servers identified may not necessarily implement

a pool cache in a standard format, but nonetheless may store
the desired file on a mounted volume such as in RAM, on disk,
etc. The 1dentified IUI may be used to find the desired file
using any of the techniques discussed 1n step 802. I the file 1s
found 1t 1s retrieved and the procedure ends. If the file 1s not
found, then 1n step 822 the importer looks for the desired file

5

10

15

20

25

30

35

40

45

50

55

60

65

20

on any suitable FTP server using a URL, for example. In this
situation the FTP servers may be accessed over the Internet
using a URL and are passed the IUI of the desired file. As the
servers may not implement a pool cache 1n a standard format,
any of the techniques described 1n step 802 may be used to
find the desired file on the FTP server. If the file 1s found 1t 1s
retrieved and the procedure ends.

I1 the file 1s not found, other techniques may be used such
as making a request over a GSM telephone and retrieval via
satellite, using a web search engine to find the file associated
with an IUI etc. An error handler may be invoked 1n step 824
to return a suitable error message 1 necessary. Thus, the
procedure of FIG. 11 describes a technique by wish a desired
file 1s searched for 1n an efficient manner using 1ts IUI. Local
and likely places for the file are searched first while the
remote and less likely places are searched later.

Examples of Use

The various embodiments described herein are suitable for
use 1n a wide range of technical and business applications. For
example, the invention 1s useful 1n the secure storage ot docu-
ments, 1 access control, 1n escrow of documents, for encryp-
tion 1ssues, and 1n reliably proving creation of documents.
The following examples may be implemented using any of

the embodiments described herein, for example the embodi-
ment of FIG. 2, the embodiment of FIG. 3 or the embodiment
of FIG. 7.

For any application, meta data 470 of flattened descriptor
file 460 may be used to help an interested party search for and
find content of interest. For example, consider a book whose
chapters are encrypted and distributed on the Internet using an
embodiment of the present mvention. Meta data 470 may
include keywords that help to describe the book, and loca-
tions where user MD5 may be found and payment made to
receive key MD?3. Thus, as the flattened descriptor file 1s not
encrypted, an interested party can perform a search on the
Internet for a book using author, subject or title keywords; 1f
these keywords are present 1n meta data 470, then the party
may retrieve the flattened descriptor file and eventually
retrieve the book using embodiments described herein.

In the area of the secure storage, 1t 1s often desirable to be
able to store documents 1n a public location that may be easily
accessed by certain entities but not allow the documents to be
opened or read except by authorized parties. FIG. 12 15 a
block diagram illustrating a use of the invention 1n the secure
storage area. In this example, a bank desires to digitize a
customer’s signature card and have 1t available for its distrib-
uted terminals to access and verily. One difficulty 1s that the
card must be kept secure and not released to outside parties.
The digital signature card file 902 1s processed using an
embodiment of the present invention 904 to produce a key
MD35 906 and a master MD5 908. As part of the process an
encrypted version of the card file 910 1s also produced. When
implemented using the embodiment of FIG. 2, key 906 cor-
responds to MD3S 106 and master 908 corresponds to MD5
114. In the embodiment of FIG. 3, the card file may be
combined with other file and/or bank or card meta data to
produce a descriptor file which then yields key 906 and mas-
ter 908. Key 906 and master 908 are then stored securely
within a banking application 912 resident upon a bank termi-
nal 914. Terminal 914 may be in communication with a bank
mainiframe that had onginally calculated the MD5s and
downloaded them to the terminal. In this example, security
for this master and the key are the responsibility of the bank-

ing application.

US 8,261,066 B2

21

The encrypted card file 910 may then be transferred over
the Internet or some other data link to non-secure public
storage 916. Because file 910 1s encrypted, an outside party
cannot read 1t even though 1t 1s stored 1n public storage. When
application 112 has a need for a particular card file, it may
then use key 906 and master 908 to retrieve the encrypted file
from public storage 916 and decrypt 1t. Such a scenario 1s
possible with multiple customer files and/or other types of
documents. Other secure storage applications may be found
in areas such as insurance and health.

FIG. 13 1s a block diagram 1llustrating use of an embodi-
ment of the invention 1n the area of access control. Often an
entity produces documents or information that 1t wishes to
provide to an authorized user, but only upon authentication of
that user. Further, an entity may not wish to perform the
authentication 1itself, but may wish another to perform the
authentication. In this example, originator 921 has produced
a file 922 that 1t wishes user 923 to have access to, but only 1f
user 923 can authenticate 1tself, or 1f a certain time has passed,
or 11 other conditions are met. Using a suitable embodiment of
the mmvention 924, file 922 i1s processed to produce an
encrypted version 925, a key MD35 926 and a user MD5 927.
I1 utilizing the embodiments shown in FI1G. 2 or FIG. 3, user
MD3 927 would correspond to encrypted MD5 114 or master
MD35 146, respectively. Originator 921 is then free to transter
the encrypted file to public storage 928, to keep 1t 1tself, or
evento deliveritto user 923. Because the file 1s encrypted, the
user may not access it.

Next, user MD35 1s delivered to the user via email 929,
another data link, a telephone, or any other physical exchange
medium. By possession of user MD?3J, user 923 may locate
and retrieve the encrypted file but will not be able to decrypt
it. Concurrently or thereaiter, the two MD35s are transmitted
to an authentication database 931 in a secure manner. For
example, an Internet connection 930 using SSL may be used.
A secure connection 1s preferred, as possession of both MD3s
would allow any party to read the encrypted file. Database
931 may be present upon any suitable authentication server
that acts an authenticating agent for originator 921. For
example, the server may be an LDAP server and protocol 930
and 935 may be secure LDAP protocols. Both MD?3s are
stored 1n a record 932 of the database along with authentica-
tion information 933. Information 933 1s any suitable infor-
mation suitable for authenticating user 923, such as a pass-
word. The authentication server also contains any of a wide
variety of authenticating mechanisms for authenticating out-
side parties. Such authentication mechanisms are well known
in the art.

In order to access the encrypted file, user 923 delivers via a
data link 934 both the user MD3 and the user’s authentication
information. The user MD3 serves as a record locator within
the database to locate the correct key and authentication infor-
mation. The authentication server next authenticates the user
by comparing the authentication information or by perform-
ing some other well-known process. If authentic, the key
MD?35 1s then delivered via a data link 935 back to user 923.
Preferably, link 935 1s a secure link such a an SSL protocol
that protects the key. Once user 923 1s 1n possession of key
MD?3, 1t may now decrypt the encrypted file directly, or by
way of decrypting an encrypted descriptor file.

In this example, originator 921 may decide to revoke the
user’s privilege to view the file at any time by simply com-
municating with the authentication server. The server would
then be directed to always to decline authentication for the
user. Alternatively, record 932 may be associated with any
number of users that might be authenticated to download key

MD3.

10

15

20

25

30

35

40

45

50

55

60

65

22

In another area of access control, files embodying music
may be delivered to a user over the Internet who 1s not allowed
to access the files until he or she has paid. Using the embodi-
ment of FIG. 3, for example, the encrypted files may be
delivered with a master MD)5, or with the encrypted descrip-
tor file 142 itself. Once the user completes a credit card
payment over the Internet, the 1ssuing enftity delivers key
MD35 138 to the user which allows the user to decrypt the
descriptor file. Once decrypted, the user has access to the
plaintext MD3s which allows the user to decrypt the music
files. Alternatively, the encrypted music files are not delivered
to the user, but are located and retrieved by the user using the
encrypted MD5 114 included in the descriptor file. Other
examples 1n the area of access control 1n which this embodi-
ment may be usetul are publishing on the Internet.

FIG. 14 1s a block diagram 1illustrating use of an embodi-
ment of the mnvention for escrow purposes. A wide variety of
information may be put into escrow such as experimental
records, legal documents, government records, etc. In this
example, software company 942 produces a soltware pro-
gram 1n the form of a software file 944 which 1s used by a
software user 946. For any of a number of reasons, both
parties have agreed that the software files will put 1n to escrow
for later access by the user 1f needed. The company, however,
does not wish anyone to have access to the files unless the
proper conditions are met. Accordingly, an embodiment of
the invention 948 processes files 944 to produces encrypted
files 950, a key MD5 952 and a user MD3 954. User MD?5 1s
then provided to the software user. In the embodiment of FIG.
7, files 950 may be retrieved by the user using a flattened
descriptor file, or the file may simply be delivered to the user
from the software company. In the embodiment of FIG. 3,
user MD3 corresponds to master MD3 146 and the encrypted
files may be stored 1n a public location held by escrow agent
956, or may be even by delivered from the company to the
user.

Key MD3 952 1s delivered to escrow agent 956 who retains
it until a condition previously agreed upon by the company
and the user 1s met. Upon satisfaction of the condition, key
952 1s delivered 958 to the user using any suitable means.
Once 1n possession ol the key, the user may decrypt an
encrypted descriptor file to obtain the plaintext MD3s which
will allow the user to decrypt and read the files 950. Thus,
soltware escrow 1s made simpler.

In another example of escrow, a pharmaceutical company
1s 1n the process of getting a drug approved and 1s generating
voluminous evidence and clinical data that 1t may need to
provide to the FDA. The company may wish to speed up the
approval process and 1nsure that 1ts massive amounts of data
cannot be altered over time. The FDA, 1n a similar fashion,
desires an assurance that such clinical data 11 held 1n escrow
does not change over time. Using an embodiment of the
present invention, a single MD35 (or other type of 1dentifier)
can represent an enormous amount of data and insure to the
FDA that the documents originally used to create the MD35
have not changed since that time.

In this example, the company regularly generates a user
MD3 and a key MD3 based upon any number of data files that
the government may need to access. The user MD35 1s then
delivered to the FDA, at the same time the data files may be
held by an escrow agent, put into public storage, or even
delivered to the government. Because the company may wish
to limit access to the data files should the approval process be
abandoned, the files have previously been encrypted using an
embodiment of the invention. Advantageously, should the
company forgo the approval process, it may choose not to

US 8,261,066 B2

23

deliver the key MD?3 to the FDA and as such the FDA (or
anyone else) would be unable to decrypt the descriptor file.

At the end of the approval process, the company delivers
the key MD)5 to the FDA who may then use it in conjunction
with the user MD?3 to decrypt the data files and view them.
The company 1s protected against anyone viewing their files
prematurely. The FDA 1s protected against the data being
changed 1n the meantime, because the user MD35 and the key
MD35 guarantee that the files eventually decrypted are the
ones that were originally used to create the user MD35 and they
key MD)5.

The present invention may also be used 1n situations where
the government or other entity 1s concerned about an entity
using encryption that 1s unbreakable. For national security
reasons, the government may wish at some point to decrypt
private party communications. In this example, the private
party agrees to encrypt their communications using an
embodiment of the present invention in which a key MD35 and
a master MD3 (or a user MD?3J) are generated. The files that
have been encrypted by the private party are delivered to
public storage or to a government server for salekeeping.
Based upon accepted legal principles and an agreement
between the private party and the government, the key MD3
and the master MD5 are delivered to a suitable government
agency for safekeeping. If at some future time it 1s legally
determined that the communications of the private party must
be decrypted, the government agency may release both the
key MD3 and the master MD3 to an appropriate legal entity
who would then be able to not only locate and access the files
but to decrypt them. Further, due to the nature of the present
invention, both parties are virtually assured that the files
eventually decrypted are the original files making up the
secret communications of the private party.

Embodiments of the present invention may also be used to
prove the existence of records on a particular date. For
example, consider an individual inventor who 1s working
diligently to perfect an invention. His records include digital
text files, digital drawings, and/or handwritten documents
which may be digitized. On a particular date, the inventor uses
an embodiment of the invention to create a key MD35 and a
master MD5 (or auser MDS3) for all of his records 1n the form
of computer files. The single MD?35 1s then delivered to the
Patent Oflice. The Patent Office logs the MD35 as being
received on a certain date and keeps 1t for satekeeping. Both
the master MD35 and the key MD5 remain with the individual
inventor. The actual digital files (encrypted) may be kept by
the iventor, placed 1n public storage, or even delivered to the
government.

Should the inventor wish to abandon his invention and not
disclose it, he simply need not provide the key MD?3 to the
Patent Office and the files would not be able to be decrypted.
I1 the inventor desires to prove a date of conception some time
later, the key MD35 1s delivered to the Patent Office which then
has the capability to locate and decrypt the inventor’s original
documents. By virtue of the original master MD35 being
logged on particular date, 1t may be reliably be proven that the
original documents that are eventually decrypted using the
master MD5 and the key MD35 where 1n fact 1n existence on
that earlier date.

In another example on how the present invention may be
used to prove the existence of records on a particular date,
consider a Notary Public with access to the Internet. A party
who desires proof of the existence of a document on a par-
ticular date uses an embodiment of the mnvention to generate

a unique MD?3 for that document. For example, the embodi-
ments of FIG. 2, FIG. 3 or FIG. 7 may be used, in which case

the user generates MD5 114, master MD5 146 or user MD3

10

15

20

25

30

35

40

45

50

55

60

65

24

464. The user sends the MD5 (preferably encoded) to the
Notary via electronic mail or some other suitable method on
a particular date. The Notary receives the MD?3, logs it, and
notarizes 1t as being received on a particular date. At a later
point 1n time, the corresponding key MD35 may be provided
by the user to reliably prove that the document identified by
the original MD5 was 1n existence on the date that the Notary
received the original MD)5.

A generated intrinsic unique i1dentifier (IUI), such as an
alphanumeric encoded MD5, may be embedded 1n, trans-
ported, or attached to a wide variety of physical objects. For
example, either MD5 may be receirved embedded 1n an elec-
tronic mail message to specity a set of files. Alternatively, the
MD35s may be generated automatically by a network device
performing the backup of the files and directories specified.
The MD3s may be produced by a business application, thus
sealing the relevant digital information relating to a particular
transaction. In addition, MD5s may be generated for other
reasons by any user, network node, application or hardware
device that needs to uniquely specity a file or group of files for
some purpose. Such MD3s may be embedded 1n and readily
accessed from database applications, legacy applications run-
ning on mainframes, text retrieval applications, web sites, eftc.

Further, an IUI (such as an alphanumeric encoded MD?3)
might be placed into digital content to 1dentify that content,
authorize its use, address further information, etc. For
example, a music file such as the MP3 format might mix 1n,
“splice,” or use a watermark to embed an IUI 1nto the actual
music {ile. Such an IUI might also be embedded 1into genetic
material to reference further information about that genetic
material.

An IUI might be attached physically to a physical object to
provide a reference for extensive information about that
object. For example, a bar code representing an IUI might be
present on a home appliance and represent a user’s manual.
Or, the alphanumeric representation of an IUI may be present
on an object; a user might then type the IUI into a computer to
receive files over the Internet about that object.

An IUI might be present within memory of a computing
device to reference much more extensive programming or
data for that device. For example, consider a typical smart
card with a memory capacity of 2 K bytes. This limited
memory space 1s used for small programs and data. When
inserted into a smart card terminal, such as an ATM, connec-
tions are made with other computing devices to execute the
limited program and data stored on the smart card. To expand
the usable program size, or the number of programs execut-
able on a smart card, an IUI 1s embedded 1n memory of the
smart card. The IUI uniquely 1dentifies additional programs

or data that can be loaded onto the smart card, or executed by
the terminal or smart card. The same would work with other

portable devices such as mobile telephones, personal digital
assistants, etc.

Computer System Embodiment

FIG. 15 1s a block diagram 1llustrating a computer network
environment suitable for use with an embodiment of the
invention. User computer 962 connected to LAN 964 along
with other computers access Internet 968 via a server com-
puter 966. Connected thereto 1s another server computer 974
attached to LAN 970 that includes user computer 972. As
embodied 1n a software program, agent software residing
upon either computer 962 or 972 1s arranged to implement the
flows for FIGS. 4 and 8 and produce encrypted files, descrip-
tor files and the intrinsic unique identifiers. The files and

US 8,261,066 B2

25

identifier may then be held locally or distributed throughout
the network 1n any suitable fashion.

When implementing the flows of FIG. 9 or 10, computer
9772 includes agent software that identifies an intrinsic unique
identifier and begins to look for it. If not found locally, the
request for a file or files 1s handled by server computer 974
that implements server software. Such server software may
implement the flows of FIGS. 9 and 10 and portions of FIG.
11 to look for, retrieve, decrypt and deliver the requested files
to computer 972. In an alternative embodiment, the functions
implemented by the agent software and the server software
need not be separated, but may be embodied within a single
soltware program that 1s present on one computer or any
number of computers.

FIGS. 16 and 17 illustrate a computer system 1000 suitable
for implementing any of the computers mentioned herein.
FIG. 16 shows one possible physical form of the computer
system. Of course, the computer system may have many
physical forms ranging from an integrated circuit, a printed
circuit board and a small handheld device up to a huge super
computer. Computer system 1000 includes a monitor 1002, a
display 1004, a housing 1006, a disk drive 1008, a keyboard
1010 and a mouse 1012. Disk 1014 1s a computer-readable
medium used to transfer data to and from computer system
1000.

FIG. 17 1s an example of a block diagram for computer
system 1000. Attached to system bus 1020 are a wide variety
of subsystems. Processor(s) 1022 (also referred to as central
processing units, or CPUs) are coupled to storage devices
including memory 1024. Memory 1024 includes random
access memory (RAM) and read-only memory (ROM). As 1s
well known 1n the art, ROM acts to transfer data and instruc-
tions uni-directionally to the CPU and RAM 1s used typically
to transier data and instructions in a bi-directional manner.
Both of these types of memories may include any suitable of
the computer-readable media described below. A fixed disk
1026 15 also coupled bi-directionally to CPU 1022; 1t provides
additional data storage capacity and may also include any of
the computer-readable media described below. Fixed disk
1026 may be used to store programs, data and the like and 1s
typically a secondary storage medium (such as a hard disk)
that 1s slower than primary storage. It will be appreciated that
the information retained within fixed disk 1026, may, in
appropriate cases, be incorporated in standard fashion as vir-
tual memory 1n memory 1024. Removable disk 1014 may
take the form of any of the computer-readable media
described below.

CPU 1022 1s also coupled to a vaniety of input/output
devices such as display 1004, keyboard 1010, mouse 1012
and speakers 1030. In general, an input/output device may be
any of: video displays, track balls, mice, keyboards, micro-
phones, touch-sensitive displays, transducer card readers,
magnetic or paper tape readers, tablets, styluses, voice or
handwriting recognizers, biometrics readers, or other com-
puters. CPU 1022 optionally may be coupled to another com-
puter or telecommunications network using network inter-
face 1040. With such a network interface, it 1s contemplated
that the CPU might receive information from the network, or
might output information to the network in the course of
performing the above-described method steps. Furthermore,
method embodiments of the present mvention may execute
solely upon CPU 1022 or may execute over a network such as
the Internet 1n conjunction with a remote CPU that shares a
portion of the processing.

In addition, embodiments of the present invention further
relate to computer storage products with a computer-readable
medium that have computer code thereon for performing

10

15

20

25

30

35

40

45

50

55

60

65

26

various computer-implemented operations. The media and
computer code may be those specially designed and con-
structed for the purposes of the present invention, or they may
be of the kind well known and available to those having skall
in the computer software arts. Examples of computer-read-
able media include, but are not limited to: magnetic media
such as hard disks, tloppy disks, and magnetic tape; optical
media such as CD-ROMs and holographic devices; magneto-
optical media such as floptical disks; and hardware devices
that are specially configured to store and execute program
code, such as application-specific integrated circuits
(ASICs), programmable logic devices (PLDs) and ROM and
RAM devices. Examples of computer code include machine
code, such as produced by a compiler, and files containing
higher level code that are executed by a computer using an
interpreter.

Although the foregoing invention has been described 1n
some detail for purposes of clarity of understanding, 1t will be
apparent that certain changes and modifications may be prac-
ticed within the scope of the appended claims. For example,
in the embodiment of FIG. 7, the key identifier could be
provided first to a user, and then the master identifier later,
instead of the other way around. Therefore, the described
embodiments should be taken as illustrative and not restric-
tive, and the invention should not be limited to the details
given herein but should be defined by the following claims
and their full scope of equivalents.

The mvention claimed 1s:

1. A method of managing a plurality of digital assets stored
in a computer system comprising at least a first computer, the
plurality of digital assets comprising a first digital asset, the
first digital asset comprising content and having associated
metadata, the method comprising acts of:

(A) creating a customized first descriptor file that com-
prises content that includes at least some of the metadata
associated with the first digital asset and an 1dentifier of
the first digital asset that 1s based, at least 1n part, on a
cryptographic hash of at least some of the content of the
first digital asset, the first descriptor file being a first type
of descriptor file that 1s one of a plurality of customized
descriptor file types created by a user, at least some
metadata and behavior being automatically added to the
first descriptor file based on the first descriptor file being
of the first type, wherein the behavior that 1s automati-
cally added to the first descriptor file based on the first
descriptor file being of the first type 1s specified by the
user and causes the first descriptor file to be placed 1n a
particular folder based on the first descriptor file being of
the first type, wherein the particular folder 1n which the
first descriptor file 1s placed is specified by the user; and

(B) storing the first descriptor file on the computer system
in the particular folder so that the first descriptor file 1s
accessible as one of the plurality of digital assets and
creating an identifier of the first descriptor file that 1s
based, at least 1n part, on a cryptographic hash of at least
some of the content of the first descriptor file.

2. The method of claim 1, wherein the plurality of digital
assets comprises a second digital asset, the second digital
asset comprising data and having associated metadata, and
wherein the method further comprises acts of:

(C) creating a second descriptor file that comprises at least
some of the metadata associated with the second digital
asset, the second descriptor file being a second type of
descriptor file, at least some metadata being automati-
cally added to the second descriptor file based on the
second descriptor file being of the second type, wherein
the at least some metadata automatically added to the

US 8,261,066 B2

27

second descriptor file differs in at least some respects
from the at least some metadata automatically added to
the first descriptor file; and

(D) storing the second descriptor file on the computer

system so that the second descriptor file 1s accessible as
one of the plurality of digital assets.

3. The method of claim 1, wherein the first computer man-
ages storage of the first digital asset, wherein the computer
system further comprises a second computer having an appli-
cation program that generates the first digital asset, and
wherein the act (B) comprises an act of storing the first
descriptor file 1n a manner that enables the first descriptor file
to be accessed by the application program.

4. The method of claim 1, wherein the act (B) comprises an
act of storing the first descriptor file as a file on the computer
system.

5. The method of claim 1, further comprising an act of:

(C) creating a unique identifier for the first descriptor file,

the unique 1dentifier comprising information that iden-
tifies the first descriptor file as belonging to a class of
digital assets that comprise metadata relating to other
digital assets.

6. The method of claim 5, further comprising an act of:

(D) creating a unique identifier for the first digital asset, the

umque identifier for the first digital asset comprising
information that identifies the first digital asset as
belonging to a class of digital assets that do not comprise
metadata relating to other digital assets.

7. The method of claim 1, wherein the first computer 1s a
s1lo that manages storage of the first digital asset.

8. The method of claim 1, wherein the first computer 1s a
file server that manages storage of the first digital asset.

9. The method of claim 1, wherein the first computer 1s a
storage system that manages storage of the first digital asset.

10. The method of claim 1, wherein the computer system
comprises a plurality of computers in addition to the first
computer, wherein the plurality of computers are intercon-
nected by at least one network, and wherein each of the
plurality of computers manages storage of one or more of the
plurality of digital assets.

11. The method of claim 1, wherein the computer system
turther comprises a second computer and at least one net-
work, and wherein the first and second computers are peer
computers coupled by the at least one network.

12. The method of claim 1, wherein the first computer
manages storage of the second digital asset, and wherein the
act (B) comprises an act of storing the second digital asset on
the first computer.

13. The method of claim 1, wherein the first computer
manages storage of the second digital asset, and wherein the
act (B) comprises an act of storing the second digital asset on
a storage device managed by the first computer.

14. The method of claim 1, wherein the act (A) comprises
an act of creating the descriptor file to include at least one
searchable keyword associated with the first digital asset.

15. The method of claim 14, wherein the at least one
searchable keyword 1s descriptive of the first digital asset.

16. The method of claim 1, wherein the act (A) comprises
creating the first descriptor file to comprise at least some
metadata added to the first descriptor file based on the first
descriptor file being of the first type.

17. The method of claim 16, wherein the act (A) comprises
creating the first descriptor file to comprise at least some
metadata automatically added to the first descriptor file based
on the first descriptor file being of the first type.

18. The method of claim 16, wherein the act (A) comprises
creating the first descriptor file to comprise at least some

5

10

15

20

25

30

35

40

45

50

55

60

65

28

metadata added to the first descriptor file, 1n response to a
prompt of a user of the computer system, based on the first
descriptor file being of the first type.

19. The method of claim 1, wherein the act (A) comprises
creating the first descriptor file to comprise at least one behav-
1ior added to the first descriptor file based on the first descrip-
tor file being of the first type.

20. At least one non-transitory computer readable medium
encoded with instructions that, when executed on a computer
system, perform a method of managing a plurality of digital
assets stored 1n the computer system, wherein the computer
system comprises at least a first computer, the plurality of
digital assets comprising a first digital asset, the first digital
asset comprising content and having associated metadata, the
method comprising acts of:

(A) creating a customized first descriptor file that com-
prises content that includes at least some of the metadata
associated with the first digital asset and an 1dentifier of
the first digital asset that 1s based, at least in part, on a
cryptographic hash of at least some of the content of the
first digital asset, the first descriptor file being a first type
of descriptor file that 1s one of a plurality of customized
descriptor file types created by a user, at least some
metadata and behavior being automatically added to the
first descriptor file based on the first descriptor file being
of the first type, wherein the behavior that 1s automati-
cally added to the first descriptor file based on the first
descriptor file being of the first type 1s specified by the
user and causes the first descriptor file to be placed 1n a
particular folder based on the first descriptor file being of
the first type, wherein the particular folder 1n which the
first descriptor file 1s placed is specified by the user; and

(B) storing the first descriptor file on the computer system
in the particular folder so that the first descriptor file 1s
accessible as one of the plurality of digital assets and
creating an 1dentifier of the first descriptor file that 1s
based, at least in part, on a cryptographic hash of at least
some of the content of the first descriptor file.

21. The at least one non-transitory computer readable
medium of claim 20, wherein the plurality of digital assets
comprises a second digital asset, the second digital asset
comprising data and having associated metadata, and wherein
the method further comprises acts of:

(C) creating a second descriptor file that comprises at least
some ol the metadata associated with the second digital
asset, the second descriptor file being a second type of
descriptor file, at least some metadata being automati-
cally added to the second descriptor file based on the
second descriptor file being of the second type, wherein
the at least some metadata automatically added to the
second descriptor file differs 1n at least some respects
from the at least some metadata automatically added to
the first descriptor file; and

(D) storing the second descriptor file on the computer
system so that the second descriptor file 1s accessible as
one of the plurality of digital assets.

22. The at least one non-transitory computer readable
medium of claim 20, wherein the first computer manages
storage of the first digital asset, wherein the computer system
turther comprises a second computer having an application

program that generates the first digital asset, and wherein the
act (B) comprises an act of storing the first descriptor file 1n a
manner that enables the first descriptor file to be accessed by
the application program.

US 8,261,066 B2

29

23. The at least one non-transitory computer readable
medium of claim 20, wherein the act (B) comprises an act of
storing the first descriptor file as a file on the computer sys-
tem.

24. The at least one non-transitory computer readable
medium of claim 20, wherein the method further comprises
an act of:

(C) creating a unique identifier for the first descriptor file,
the unique 1dentifier comprising information that iden-
tifies the first descriptor file as belonging to a class of
digital assets that comprise metadata relating to other
digital assets.

25. The at least one non-transitory computer readable
medium of claim 24, wherein the method further comprises
an act of:

(D) creating a unique 1dentifier for the first digital asset, the
umque identifier for the first digital asset comprising
information that identifies the first digital asset as
belonging to a class of digital assets that do not comprise
metadata relating to other digital assets.

26. The at least one non-transitory computer readable
medium of claim 20, wherein the first computer 1s a silo that
manages storage of the first digital asset.

27. The at least one non-transitory computer readable
medium of claim 20, wherein the first computer 1s a file server
that manages storage of the first digital asset.

28. The at least one non-transitory computer readable
medium of claim 20, wherein the first computer 1s a storage
system that manages storage of the first digital asset.

29. The at least one non-transitory computer readable
medium of claim 20, wherein the computer system comprises
a plurality of computers in addition to the first computer,
wherein the plurality of computers are interconnected by at
least one network, and wherein each of the plurality of
puters manages storage ol one or more of the plurality of
digital assets.

30. The at least one non-transitory computer readable
medium of claim 20, wherein the computer system further
comprises a second computer and at least one network, and
wherein the first and second computers are peer computers
coupled by the at least one network.

31. The at least one non-transitory computer readable of
claim 20, wherein the first computer manages storage of the
second digital asset, and wherein the act (B) comprises an act
of storing the second digital asset on the first computer.

32. The at least one non-transitory computer readable
medium of claim 20, wherein the first computer manages
storage of the second digital asset, and wherein the act (B)
comprises an act of storing the second digital asset on a
storage device managed by the first computer.

33. The at least one non-transitory computer readable
medium of claim 20, wherein the act (A) comprises an act of
creating the descriptor file to include at least one searchable
keyword associated with the first digital asset.

34. The at least one non-transitory computer readable
medium of claim 33, wherein the at least one searchable
keyword 1s descriptive of the first digital asset.

35. The at least one non-transitory computer readable
medium of claim 20, wherein the act (A) comprises creating,
the first descriptor file to comprise at least some metadata
added to the first descriptor file based on the first descriptor
file being of the first type.

36. The at least one non-transitory computer readable
medium of claim 35, wherein the act (A) comprises creating,
the first descriptor file to comprise at least some metadata
automatically added to the first descriptor file based on the
first descriptor file being of the first type.

10

15

20

25

30

35

40

45

50

55

60

65

30

37. The at least one non-transitory computer readable
medium of claim 35, wherein the act (A) comprises creating
the first descriptor file to comprise at least some metadata
added to the first descriptor file, 1n response to a prompt of a
user of the computer system, based on the first descriptor file
being of the first type.

38. The at least one non-transitory computer readable
medium of claim 20, wherein the act (A) comprises creating
the first descriptor file to comprise at least one behavior added
to the first descriptor file based on the first descriptor file
being of the first type.

39. At least one computer, 1n a computer system, for man-
aging a plurality of digital assets stored in the computer
system, wherein the plurality of digital assets comprising a
first digital asset, the first digital asset comprising content and
having associated metadata, the at least one computer com-
prising:

at least one storage device; and

at least one controller, coupled to the at least one storage
device, that:

(A) creates a customized first descriptor file that com-
prises content that includes at least some of the meta-
data associated with the first digital asset and an 1den-
tifier of the first digital asset that 1s based, at least 1n
part, on a cryptographic hash of at least some of the
content of the first digital asset, the first descriptor file
being a first type of descriptor file that 1s one of a
plurality of customized descriptor file types created
by a user, at least some metadata and behavior being
automatically added to the first descriptor file based
on the first descriptor file being of the first type,
wherein the behavior that 1s automatically added to
the first descriptor file based on the first descriptor file
being of the first type 1s specified by the user and
causes the first descriptor file to be placed 1n a par-
ticular folder based on the first descriptor file being of

the first type, wherein the particular folder 1n which
the first descriptor file 1s placed 1s specified by the
user; and

(B) stores, on the at least one storage device, the first
descriptor file 1n the particular folder so that the first
descriptor file 1s accessible as one of the plurality of
digital assets and creates an 1dentifier of the first
descriptor file that 1s based, at least in part, on a
cryptographic hash of at least some of the content of
the first descriptor file.

40. The at least one computer of claim 39, wherein the
plurality of digital assets comprises a second digital asset, the
second digital asset comprising data and having associated
metadata, and wherein the at least one controller:

(C) creates a second descriptor file that comprises at least
some of the metadata associated with the second digital
asset, the second descriptor file being a second type of
descriptor file, at least some metadata being automati-
cally added to the second descriptor file based on the
second descriptor file being of the second type, wherein
the at least some metadata automatically added to the
second descriptor file differs in at least some respects
from the at least some metadata automatically added to
the first descriptor file; and

(D) stores the second descriptor file on the at least one
storage device so that the second descriptor file 1s acces-
sible as one of the plurality of digital assets.

41. The at least one computer of claim 39, wherein the at
least one computer 1s a first computer and wherein the com-
puter system further comprises a second computer having an
application program that generates the first digital asset, and

US 8,261,066 B2

31

wherein the at least one controller stores the first descriptor
file 1n a manner that enables the first descriptor file to be
accessed by the application program.

42. The at least one computer of claim 39, wherein the, at
least one controller stores the first descriptor file as a file on
the computer system.

43. The at least one computer of claim 39, wherein the at
least one controller:

(C) creates a umique 1dentifier for the first descriptor file,
the unique 1dentifier comprising information that iden-
tifies the first descriptor file as belonging to a class of
digital assets that comprise metadata relating to other
digital assets.

44. The at least one computer of claim 43, wherein the at

least one controller:

(D) creates a unique 1dentifier for the first digital asset, the
umque identifier for the first digital asset comprising
information that identifies the first digital asset as
belonging to a class of digital assets that do not comprise
metadata relating to other digital assets.

45. The at least one computer of claim 39, wherein the at
least one computer 1s a silo that manages storage of the first
digital asset.

46. The at least one computer of claim 39, wherein the at
least one computer 1s a file server that manages storage of the
first digital asset.

47. The at least one computer of claim 39, wherein the at
least one computer 1s a storage system that manages storage
of the first digital asset.

48. The at least one computer of claim 39, wherein the
computer system comprises a plurality of computers 1n addi-
tion to the at least one computer, wherein the plurality of
computers are interconnected by at least one network, and
wherein each of the plurality of computers manages storage
of one or more of the plurality of digital assets.

49. The at least one computer of claim 39, wherein the at
least one computer 1s a first computer and wherein the com-

5

10

15

20

25

30

35

32

puter system further comprises a second computer and at least
one network, and wherein the first and second computers are
peer computers coupled by the at least one network.

50. The at least one computer of claim 39, wherein the at
least one computer manages storage of the second digital
asset, and wherein the at least one controller stores the second
digital asset on the at least one storage device.

51. The at least one computer of claim 39, wherein the at
least one computer manages storage ol the second digital
asset, and wherein the at least one controller stores the second
digital asset on the at least one storage device.

52. The at least one computer of claim 39, wherein the at
least one controller creates the descriptor file to include at
least one searchable keyword associated with the first digital
asset.

53. The at least one computer of claim 352, wherein the at
least one searchable keyword 1s descriptive of the first digital
asset.

54. The at least one computer of claim 39, wherein the at
least one controller creates the first descriptor file to comprise
at least some metadata added to the first descriptor file based
on the first descriptor file being of the first type.

55. The at least one computer of claim 54, wherein the at
least one controller creates the first descriptor file to comprise
at least some metadata automatically added to the first
descriptor file based on the first descriptor file being of the
first type.

56. The at least one computer of claim 34, wherein the at
least one controller creates the first descriptor file to comprise
at least some metadata added to the first descriptor file, 1n
response to a prompt of a user of the computer system, based
on the first descriptor file being of the first type.

57. The at least one computer of claim 39, wherein the at
least one controller creates the first descriptor file to comprise
at least one behavior added to the first descriptor file based on
the first descriptor file being of the first type.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

